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Abstract 12 

Carrot is a globally important crop, yet efficient and accurate methods for quantifying its most 13 
important agronomic traits are lacking. To address this problem, we developed an automated analysis 14 
platform that extracts components of size and shape for carrot shoots and roots, which are necessary 15 
to advance carrot breeding and genetics. This method reliably measured variation in shoot size and 16 
shape, leaf number, petiole length, and petiole width as evidenced by high correlations with hundreds 17 
of manual measurements. Similarly, root length and biomass were accurately measured from the 18 
images. This platform quantified shoot and root shapes in terms of principal components, which do 19 
not have traditional, manually-measurable equivalents. We applied the pipeline in a study of a six-20 
parent diallel population and an F2 mapping population consisting of 316 individuals. We found high 21 
levels of repeatability within a growing environment, with low to moderate repeatability across 22 
environments. We also observed co-localization of quantitative trait loci for shoot and root 23 
characteristics on chromosomes 1, 2, and 7, suggesting these traits are controlled by genetic linkage 24 
and/or pleiotropy. By increasing the number of individuals and phenotypes that can be reliably 25 
quantified, the development of a high-throughput image analysis pipeline to measure carrot shoot and 26 
root morphology will expand the scope and scale of breeding and genetic studies.   27 
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1 Introduction 28 

Carrot is a globally important crop that originated in Central Asia (Iorizzo et al., 2013; Vavilov, 29 
1992) with a secondary center of diversity in Asia Minor (Banga, 1957). A hallmark of carrot 30 
domestication is the capacity to develop a thickened storage root (Macko-Podgórni et al., 2017). 31 
Selective breeding has since improved taproot size, shape, and uniformity, resulting in forms that 32 
have served as the primary delimiter of variety classification since the 1600s (Simon et al., 2008). By 33 
comparison, carrot shoots have received much less attention despite the practical limitation of poor 34 
weed competitive ability during the seedling stage, with successful crop establishment often 35 
requiring intensive herbicide application and hand weeding (Bell et al., 2000; Bellinder et al., 1997; 36 
Colquhoun et al., 2017; Swanton et al., 2010), or the fact that the petioles must be sufficiently strong 37 
for the root to be mechanically harvested (Rogers and Stevenson, 2006). Currently, a primary 38 
breeding objective is to achieve rapidly growing, sturdy shoots without compromising the size and 39 
shape of the storage root. Therefore, methods to measure both shoots and roots more objectively are 40 
required (Horgan, 2001). These methods should be quantitative and objective, replacing traditional 41 
subjective descriptors such as circular, obovate, obtriangular, and narrow oblong to describe the root 42 
profile, or blunt, slightly pointed, and strongly pointed to describe the distal end (or tip) of the storage 43 
root. Similarly, methods should characterize shoot architecture more comprehensively than typical 44 
measurements of plant height, width, and biomass.  45 

Image analysis has proven useful in describing several crop shoot systems while growing in 46 
controlled environments, during the field season, and after harvest (Fahlgren et al., 2015; Furbank 47 
and Tester, 2011; Lobet et al., 2013). Notably, a similar approach to characterizing carrot shoots must 48 
accommodate some special issues. In contrast to many crops, carrots do not produce a shoot structure 49 
by erecting a typical stem axis with leaves. Instead, an apical meristem at or beneath the soil 50 
produces leaves attached by petioles to internodes that do not elongate during the vegetative phase of 51 
the crop cycle. The petiole of each leaf, not the internode, elongates at an angle to lift and spread the 52 
leaf blade. Thus, the cluster of petioles attached to the crown of the root is a major architectural 53 
feature of the shoot structure that a phenotyping method must capture.   54 

In addition to attributes of individual plant parts, allocation of resources between the shoot and root 55 
of plants plays a central role in crop fitness and improvement  (Lynch, 2007; Poorter et al., 2012). 56 
Thus, a phenotyping platform for a root crop such as carrot should measure both shoot and root traits. 57 
For instance, what may appear to be a practically helpful change in shoot architecture could 58 
negatively impact light interception and therefore photosynthesis (Falster and Westoby, 2003), while 59 
altered root structure could influence fibrous root architecture, which plays a critical role in water and 60 
nutrient acquisition (Lynch, 1995; York et al., 2013). The evidence of pleiotropic relationships 61 
between root and shoot phenotypes in Arabidopsis (Bouteillé et al., 2012), maize (Dignat et al., 2013; 62 
Ruta et al., 2010), barley (Naz et al., 2014), soybean (Manavalan et al., 2015), rice (Li et al., 2009), 63 
and lentil (Idrissi et al., 2016) is yet another motivation to build a comprehensive root and shoot 64 
phenotyping platform for carrot.  65 

Any improved methods for measuring shoot and root phenotypes in carrot would be useful in studies 66 
designed to identify genetic loci that control these traits. To date, the majority of genetic studies in 67 
carrot have focused on storage root pigmentation, specifically anthocyanin content (Cavagnaro et al., 68 
2014; Yildiz et al., 2013) and carotenoid accumulation (Bradeen and Simon, 1998; Buishand and 69 
Gabelman, 1979; Ellison et al., 2017; Iorizzo et al., 2016; Just et al., 2007, 2009). More recently, two 70 
potential domestication loci that influence carrot morphology were identified on chromosome 2 for 71 
early flowering (Vrn1; Alessandro et al., 2013) and storage root development (DcAHLc1, Macko-72 
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Podgórni et al., 2014, 2017). Additionally, the observation of a linear relationship between the 73 
logarithms of shoot biomass and storage root biomass in carrot (Hole et al., 1983; Turner et al., 2018) 74 
suggests potential genetic relationships, but the causal genetic loci, the extent of polygenic control, 75 
and the influence of pleiotropy on shoot and root architecture in carrot have not yet been investigated.  76 

For the reasons outlined above, carrot breeders are interested to measure carrot root and shoot 77 
morphologies, preferably more objectively (Horgan, 2001). More precise and objective data on the 78 
traits of interest will increase the ability to leverage genomic data and the potential for genetic gain in 79 
breeding projects. Current limitations include the inability to measure some traits of interest and the 80 
labor cost to collect hand measurements. These bottlenecks can be addressed using high-throughput 81 
image analysis (Fahlgren et al., 2015; Furbank and Tester, 2011). Moreover, increasing precision and 82 
sample size through automated image analysis will support practical breeding efforts by decreasing 83 
experimental error, thereby improving estimates of heritability, facilitating the detection of causative 84 
genetic loci, and expanding our understanding of quantitative inheritance (Kuijken et al., 2015).  85 

Here we describe a relatively simple and low cost method to acquire 2D images of whole, excavated 86 
carrot plants. This is coupled with a set of custom computer algorithms that quantify shoot 87 
architectural features as well as the size and shape of storage roots. The entire pipeline is shown to 88 
detect meaningful variation for traits of interest in two commonly used experimental populations of 89 
carrot: a six-parent diallel mating design (Turner et al., 2018) and an F2 mapping population 90 
exhibiting segregation for root shape and shoot architecture. To further demonstrate the utility of this 91 
phenotyping method for genetic studies in carrot, we also applied multiple quantitative trait loci 92 
(QTL) mapping (MQM) to hand and image measured data from the F2 population. This pipeline, 93 
coupled with the availability of a carrot genome (Iorizzo et al., 2016) and the accessibility of high-94 
throughput genotyping resources, will enable further insight into the underlying genetics of complex 95 
shoot and root traits in carrot. 96 

2 Materials and Methods 97 

2.1 Plant Materials and Experimental Design 98 

Samples included individual plants from two sources: a diallel mating design with six diverse inbred 99 
parents and an F2 population that segregates for plant height, shoot biomass, and storage root shape. 100 
Seeds were sown on 1.5 meter (m) plots with 1 m spacing between rows. Carrots were harvested and 101 
stored at 1-2°C prior to imaging. Field sites included the University of California Desert Research 102 
and Extension Center (Holtville, CA, USA) and the University of Wisconsin Hancock Agricultural 103 
Research Station (Hancock, WI, USA). Figure S1 diagrams the sample size and sources of 104 
individuals used for imaging and QTL mapping, which are described briefly below.  105 

Diallel progenies were grown in a randomized complete block design (RCBD) with two replicates in 106 
WI (2015) and CA (2016) (see Turner et al. 2018 for additional details). The F2 population, L8708 x 107 
Z020, was identified from prior field screening as segregating for plant height, shoot biomass, and 108 
root storage shape and color. This population was derived from a cross between L8708, an orange 109 
inbred line with a medium-long storage root and compact shoots, and Z020, a yellow, cultivated 110 
landrace from Uzbekistan with a short, blunt-tipped storage root and broad, prostrate leaves. A single 111 
F1 plant was selected from this cross and selfed to produce the F2 population used for mapping in this 112 
study. F2 plants were grown at the CA location in 2013 (n = 63) and 2016 (n = 450) and at the WI 113 
location in 2016 (n = 77). Additional F2 plants of the same cross, but derived from a different F1 114 
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plant, were also grown at CA in 2016 (n=128) and were used only for validation of image 115 
measurements.  116 

2.2 Manual Measurements 117 

A total of 1041 carrot plants were measured manually and photographed for the dual purpose of 118 
developing an automated phenotyping method and determining the genetic architecture of important 119 
traits. Hand measurements were recorded for shoot height (cm), root length (cm), leaf number, shoot 120 
biomass (g), and root biomass (g). Unless otherwise specified, the term ‘root’ will refer to the storage 121 
root in this report. Shoot height, measured as the distance from the crown to the tip of the longest 122 
leaf, was recorded in the field for three plants per plot of each diallel entry and after harvest for each 123 
F2 individual. Root length was measured as the distance from the crown to the tip of the storage root, 124 
defined here as having a diameter greater than 2 mm. Leaf number was recorded as the total number 125 
of fully expanded, true leaves. Shoot biomass was sampled by removing all shoot tissue more than 4 126 
cm above the crown. For root biomass, fresh weight was recorded for the entire root and for a 127 
subsample, which was dried and extrapolated to estimate dry weight for the entire root. Fresh weights 128 
were recorded immediately for both shoot and root tissues. For dry shoot and root weights, samples 129 
were dried at 60°C in a forced-draft oven and values were recorded after reaching constant mass. 130 
Ground truth data for digital measurements of petiole length and diameter was recorded for a subset 131 
of 100 images using ImageJ (Schneider et al., 2012).   132 

2.3 Image Acquisition and Preprocessing 133 

Digital images were collected in tandem with hand measurements. The imaging set-up consisted of a 134 
2.5 cm PVC frame (145 cm long x 100 cm wide x 136 cm tall) with a white, non-reflective baseboard 135 
and a Nikon D3300 DSLR camera mounted on a centered, overhead boom. The baseboard was 136 
divided into upper and lower halves by a black, horizontal line with a gap in the center where a carrot 137 
was positioned such that its shoot lay above the line and the root below it (Figure 1A, left). A 138 
computer running custom gphoto2 scripts controlled the camera (Gage et al., 2017). All images were 139 
acquired in ambient light with an 18-55 mm lens set to 18 mm and positioned 85 cm above the 140 
baseboard. Carrot leaves were deliberately arranged to maximize the distance between individual 141 
leaves.  142 

Input files were raw Nikon Electronic File (NEF) images (dimensions 6000 x 4000 pixels) with 143 
uniform positioning of the carrot crown on the focal plane. As part of the computational workflow, 144 
raw NEF files were automatically converted to Tagged Image Format (TIF) files with a resolution of 145 
129 dots per inch. These files served as the inputs for custom trait extraction algorithms written in the 146 
MATLAB 9.0 language (The MathWorks Inc., 2016). To separate the carrot plant from the 147 
background, the red-green-blue (RGB) images were converted to grayscale and to the hue-saturation-148 
value (HSV) representation of color. The S channel was subtracted from the grayscale image and the 149 
Otsu threshold method was applied to produce a binary image (MASK) in which pixels belonging to 150 
the carrot object were white (1) and background pixels were black (0). Based on the location of the 151 
horizontal black line on the baseboard, images were split into shoot and root sections for 152 
corresponding morphometric analyses. 153 

2.4 Computational Workflow 154 

As described by Miller et al. (2017), a high-throughput computational workflow was implemented 155 
using a community cyberinfrastructure, which is publicly available as a software tool through the 156 
CyVerse Discovery Environment web interface (Figure 1). Briefly, image files were uploaded to the 157 
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integrated rule-oriented data store system (iRODS) (Rajasekar et al., 2010) managed by CyVerse 158 
(Merchant et al., 2016) (Figure 1). Each image was processed as a separate computational job using 159 
parallel computing enabled by the University of Wisconsin’s Center for High-Throughput 160 
Computing. Scheduling, resource matching, execution of analyses, and return of results was managed 161 
by the HTCondor software (Thain et al., 2005). Results were then returned to the data store holding 162 
the original images (Figure 1A).  163 

2.5 Image Analysis 164 

All images were processed through a two-stage workflow (Figure 1B) and data was returned as both 165 
individual CSV files for each measurement and as an indexable JavaScript Object Notation (JSON) 166 
file containing all measurements. For the shoot, root, and whole carrot masks, data output included 167 
classic image measurements of a bounding box (used to measure shoot height, root length, and root 168 
width), convex hull, eccentricity, equivalent diameter, Euler number, perimeter, and solidity. 169 
Measurements of interest included shoot and root biomass profiles, petiole width, petiole number, 170 
and petiole length, which are described in detail below. File names, measurements, and data structure 171 
are described in Table S1.  172 

2.5.1 Distribution of Shoot Biomass 173 

Morphological features of the shoot were quantified from the portion of the binarized image that lay 174 
above the horizontal line marking the root-shoot junction. Each pixel in the plant mask has a value of 175 
1 (white) and each pixel outside of the mask is black (value of 0). The diagram in Figure 2A 176 
demonstrates how an elliptical grid originating at the crown was used to create a shoot biomass 177 
profile (SBP). A running sum of each pixel value (integral) along each sweep (θ = -π to π) of the grid 178 
determined the amount of digital biomass (or shoot area) at each radius. The entire distribution of 179 
digital biomass (white pixels) is given by: 180 

𝑆𝐵𝑃 𝑟 = 	 𝑀𝐴𝑆𝐾 𝑟, 𝜃 𝑑𝜃
-

.-
 181 

At the lowest values of r, the SBP primarily reflects petiole material. The contribution of leaf blade 182 
material increases as r increases, then decreases at r values that exceed the plant mask, as shown in 183 
Figure 2A. The result was stored as an n-dimensional vector, where n is the number of points along 184 
the radius, i.e. the number of sweeps used to build the distribution. The default value of n is 1000. To 185 
document the fidelity of each analysis, the algorithm also generates an image of the binarized carrot 186 
shoot with overlays of the half elliptical grid and computed biomass profile. The SBP determined in 187 
this way formed the basis for subsequent shoot trait extraction methods.  188 

2.5.2 Petiole Characteristics 189 
To estimate petiole width, a Euclidean distance transformation (EDT) was applied over the entire 190 
binary shoot image. The EDT labels each pixel in the plant mask with a value equal to the distance to 191 
the nearest contour pixel. Next, the image was skeletonized. The EDT value at each skeleton point 192 
was sampled to produce a distribution of values corresponding to each pixel in the mask. This 193 
distribution was used as the input for the prediction step using partial least squares (PLS) regression 194 
(Wold, 1982; Wold et al., 1984) against the ground truth values from ImageJ. The number of 195 
components to retain in the PLS model was assessed using cross-validation with a one-fold holdout. 196 

To predict the number of petioles in an image, the digital shoot biomass (i.e. the sum of white pixels 197 
in the binary shoot image) was divided by the algorithm-measured petiole width. This was performed 198 
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for every image of a shoot. The resulting ratio of total mass divided by average petiole width value 199 
was the input for PLS regression against the true counts, which were collected by hand at the time the 200 
image was acquired. The number of components to retain in the PLS model was assessed using 201 
cross-validation with a one-fold holdout. 202 

To predict petiole length, the SBP was subjected to principal components analysis. The principal 203 
components extracted from the SBP and the ground truth values for petiole length, which were 204 
collected from 100 images in ImageJ, were used to train a two-layer feed forward neural network 205 
(Bhandarkar et al., 1996). The prediction step was also performed with PLS regression as was done 206 
for the petiole number. In this case, the neural network method provided higher correlations than PLS 207 
regression. Vectors for petiole counts, width, and length were returned to the data store for 208 
subsequent analyses.  209 

2.5.3 Root Shape  210 
A root biomass profile was generated by recording the number of white pixels along each horizontal 211 
sweep, which was returned as a 1000-dimensional vector (Figure 2B). To focus exclusively on shape 212 
differences, the root biomass profile was normalized by both length and width prior to principal 213 
components analysis, which was used to examine symmetrical shape variance. The binarized root 214 
image with the root outline in green was also returned to the data store for error checking. 215 

2.6 Correlations and Repeatability  216 

All downstream analyses were performed in R 3.3.2 (R Core Team, 2016). Pearson’s correlation 217 
coefficients (r) and Spearman’s rho (ρ) were used to compare manual- and image-measured traits. 218 
For manual-measured and digital biomass, correlations were estimated using a linear log-log 219 
relationship, following established guidelines for allometric models of biomass partitioning in carrot 220 
(Hole et al., 1983) and in seed plants (Enquist and Niklas, 2002). When possible, algorithm-measured 221 
values were converted from pixels to centimeters using reference points of known size on the 222 
baseboard.  223 

Repeatability, which describes the proportion of trait variance attributable to differences among 224 
rather than within individuals, was calculated using observations for 336 individual plants 225 
representing 42 crosses from a six-parent diallel mating design. Variance components were assessed 226 
using the linear mixed-effects model 𝑦012 = 𝜇 + 𝐺0 + 𝐸1 + 𝐵2 1 + 𝐺𝐸01 + 𝑅012, where 𝑦012 is the 227 
phenotype, 𝐺0 is the effect of genotype, 𝐸1 is the effect of environment, 𝐵2(1) is the effect of 228 
replication k within environment j, 𝐺𝐸01 is the interaction between genotype i and environment j, and 229 

𝑅012 is the residual error. Repeatability was estimated on an entry-mean basis as  :;
<

(:;
<=	:;>?

< /A=:B
</CA)

  , 230 

where t is the harmonic mean of test environments and r is the harmonic mean number of replications 231 
in each environment. Similarly, repeatability was calculated for each individual environment as 232 

:;
<

(:;
<=:B

</C)
.   233 

2.7 DNA Extraction and Quantification  234 

Following image capture, a 1.5 g leaf sample (fresh weight) was collected from each F2 plant. Total 235 
genomic DNA was isolated from ~20 mg of lyophilized leaf tissue using the CTAB method of 236 
Murray and Thompson (1980) with modifications by Boiteux et al. (1999). DNA quality was 237 
assessed visually using 1% agarose gel electrophoresis and double-stranded DNA was quantified 238 
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using the Quant-iT™ PicoGreen® dsDNA assay kit (Life Technologies, Grand Island, NY, USA). 239 
Concentrations were normalized to 10 ng/µl.  240 

2.8 Genotyping-by-Sequencing (GBS)  241 

GBS was conducted following the protocol of Elshire et al. (2011) and as described for carrot 242 
(Arbizu et al., 2016; Ellison et al., 2017; Iorizzo et al., 2016). Library construction and sequencing 243 
were performed by the University of Wisconsin-Madison Biotechnology Center (WI, USA) using 244 
half-sized reactions. Genomic DNA was digested with ApeK1, barcoded, and pooled for sequencing 245 
with 85-95 pooled samples per Illumina HiSeq 2000 lane. Samples were sequenced using single end, 246 
100 nt reads and v3 SBS reagents (Illumina, San Diego, CA, USA). 247 

SNPs were called using the TASSEL-GBS pipeline version 5.2.31 (Bradbury et al., 2007; Glaubitz et 248 
al., 2014). Filtering was conducted in VCFtools version 0.1.14 (Danecek et al., 2011) with the 249 
following parameters: a minimum minor allele frequency of 0.1 and maximum missing data of 10% 250 
for both genotype and marker.  251 

2.9 Genetic Map Construction 252 

Linkage maps were constructed using the JoinMap 4.1 software (Van Ooijen, 2011). Markers and 253 
genotypes which deviated from expected segregation ratios based on a Chi-square test (P < 0.001) 254 
were excluded. All linkage groups were obtained at a LOD threshold greater than 10. The regression 255 
mapping algorithm was used with Kosambi’s mapping function to calculate the distance between 256 
markers (Kosambi, 1943). Linkage groups were achieved by aligning GBS sequences to the carrot 257 
genome (Iorizzo et al., 2016) and corresponded to nine chromosomes. After initial mapping, markers 258 
defined as having insufficient linkage were flipped to the opposite phase and remapped. Two rounds 259 
of the regression mapping algorithm were used to increase the number of loci incorporated into the 260 
map.  261 

2.10 QTL Mapping 262 

QTL analysis was conducted in R 3.3.2  (R Core Team, 2016) using the R/qtl package (Broman and 263 
Sen, 2009). Individuals included 316 F2 plants from the CA2016 environment. Genotype 264 
probabilities were calculated using a step value of one for the entire linkage map and an assumed 265 
genotyping error rate of 0.001. Missing genotype data was replaced with the most probable values 266 
using the Viterbi algorithm (method = ‘argmax’) in the ‘fill.geno’ function.  267 

Multiple QTL mapping (MQM) (Jansen and Stam, 1994) was performed in R/qtl using the 268 
‘mqmscan’ function with an additive model and cofactor significance set to 0.001 (Arends et al., 269 
2010). Cofactors were set at a fixed marker interval of 5 cM. Following scripts developed by Moore 270 
et al. (2013), genome-wide LOD significance thresholds were determined for each phenotype using 271 
parallel computing on the Open Science Grid (OSG) (Sfiligoi et al., 2009; Pordes et al., 2007). 272 
Significance thresholds were based on 10,000 random permutations (Churchill and Doerge, 1994) 273 
with the assumed genotyping error rate set to 0.001 and α = 0.01. For each QTL, confidence intervals 274 
were determined using the 1.5 LOD drop off flanking the most significant peak of the QTL. Linkage 275 
maps and QTL intervals were plotted in Mapchart 2.1 (Voorrips, 2002). Percent variance explained 276 
(PVE) was calculated using the formula 𝑃𝑉𝐸 = 1 − 10

H<
I JKL, where n is the number of individuals 277 

(Broman and Sen, 2009). QTL were named using an abbreviation for the trait (e.g. ht, height) 278 
suffixed with the chromosome (1-9), and finally the serial number of QTLs on the chromosome (e.g. 279 
ht-2.1, ht-2.2).  280 
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3 Results 281 

3.1 Image analysis 282 

For the 1041 images submitted through the analysis pipeline, 917 (88%) ran successfully and 283 
returned data. Of the 124 images that failed, two were also missing hand measurements, eight had 284 
root defects such as sprangle (i.e. branching of the root), 60 had poor lighting or shadowing, eight 285 
overlapped with the edge of the image or the black line separating the shoot and root, and 46 failed 286 
for reasons which were not readily identifiable, with possible explanations including the presence of 287 
numerous fibrous roots, interference of labels, and/or diminutive plant size.  288 

3.2 Correlations between hand and algorithm measurements 289 

Overall, traits extracted automatically from images had strong and significant (P<0.001) correlations 290 
with their manually measured analogs, ranging from r = 0.77 for leaf number to r = 0.93 for root 291 
biomass. Relationships among manual- and image-measured values for shoot height, shoot biomass, 292 
root length, and root biomass are detailed in Figure 3. Shoot height and root length each had 293 
correlations of r = 0.88 between manual and image measurements, with larger correlations observed 294 
for shoot biomass and shoot area (r = 0.91) and between root biomass and root area (r = 0.93). 295 
Notably, correlations ranged from low to moderate when comparing shoot to root attributes, such as 296 
shoot height and root length (r = 0.18), and the correlation between shoot and root biomass deviated 297 
from unity for both manual measurements (r = 0.72) and for algorithm values (r = 0.62).  298 

Similarly, Figure 4 presents the strong correlations between manual measurements and algorithm 299 
predictions for petiole attributes, with manual measurements of petiole length and width based on 300 
ground truth data from images. The highest correlation was observed for petiole length (n=100, 301 
r=0.90, ρ=0.91), followed by petiole width (n=100, r=0.85, ρ=0.86), and leaf number (n=910, 302 
r=0.77, ρ=0.84). For leaf number, accuracy was noticeably reduced above 15 leaves, at which point 303 
it becomes difficult to resolve individual petioles in a 2D space. Similarly, estimates may also be 304 
skewed for plants with dense, compact shoots. Correlations among all phenotypes, including 305 
additional measurements, are provided in Figure S2.  306 

3.3 Principal components analysis of shoot biomass and root shape  307 

For shoot biomass profiles, principal components analysis identified differences in the magnitude and 308 
location of biomass (Figure 5). The first two principal components accounted for 80.3 percent of the 309 
variation explained (PVE). Sweeping PC1 detected differences in overall biomass accumulation 310 
(43.7 PVE), which is likely a combination of increases in both leaf number and total leaf area. 311 
Sweeping PC2 corresponded to decreasing petiole length and overall height (36.6 PVE), capturing 312 
variation for shoot compactness.  313 

To identify symmetrical differences in root shape, root biomass profiles were rescaled to constant 314 
length and width prior to principal components analysis. Principal components detected differences 315 
in the contour of the roots, with the first three principal components accounting for 88.6 PVE (Figure 316 
6). Changes in PC1 corresponded to differences in overall shape (conical vs. cylindrical; 66.4 PVE). 317 
Variation in PC2 was associated with the shape of the root tip from a tapered shape to a blunt, 318 
rounded shape (16.6 PVE). For PC3, changes corresponded to diameter in the longitudinal section 319 
(5.6 PVE).  320 
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Results differed slightly from findings using landmark analysis by (Horgan, 2001), in which principal 321 
components for root shape included variation for size (short and thick vs. long and thin; 72.0 PVE), 322 
tapering (cylinder vs. cone; 10.8 PVE), thickness (8.2 PVE), bending (3.4 PVE), asymmetry (2.0 323 
PVE), and tapering at the tip (0.9 PVE). Differences can be explained in part by the decision to 324 
correct for aspect ratio (i.e. the ratio of width to height), which allowed us to explain more variation 325 
in shape independent of root length and width. Disparities may also result from differences in 326 
measurement technique and in the range of root shapes represented in each study. Interestingly, our 327 
results are also similar to findings in Japanese radish (Iwata et al., 1998), which identified principal 328 
components for aspect ratio (73.9 PVE), bluntness at the distal end of the root (14.2 PVE), and 329 
swelling in the middle of the root (3.9 PVE).  330 

3.4 Repeatability 331 

Estimates of repeatability were moderate for most traits, ranging from low (e.g. root length) to high 332 
(e.g. shoot height) and were comparable between manual and image measurements (Table 1, Table 333 
2).  For shoot traits, repeatability across environments was highest for both manual and image-334 
derived measurements of height (0.52 and 0.59, respectively) and leaf number (0.31 and 0.49, 335 
respectively), with low values observed for image-derived measurements of shoot biomass (0.19) 336 
(Table 1). In general, repeatability was relatively higher within rather than across environments for 337 
most traits. For instance, petiole width, which has a low repeatability across environments, had 338 
moderate to high repeatability within environments (0.35 in WI2015 and 0.84 in CA2016).  339 

Repeatability for root traits ranged from 0.01 for manual measurements of root length to 0.32 for 340 
manually measured root biomass, with a value of 0 observed for root PC2 (Table 2). Observations of 341 
low repeatability for root length and shape characteristics may be due to low phenotypic variation 342 
among the inbred parents, which were primarily selected for divergent shoot characteristics, and/or 343 
genotype by environment interaction (GxE). As observed for shoot traits, estimates of repeatability 344 
were generally higher within environments, supporting the importance of GxE for these phenotypes.  345 

Compared to manual measurements, image derived values successfully identified the lowest ranking 346 
line for shoot height (L6038), shoot biomass (L6038), and root biomass (B7262) (Table 1 and Table 347 
2). Discrepancies between manual and image measurements, for instance between the highest line for 348 
shoot height based on manual measurements (Nbh2189A x B7262B) and based on image 349 
measurements (Nbh2189A x P6139B), may be due to differences in how the measurements were 350 
obtained (e.g. measured at the plot level in the field or for individual plants) and due the prevalence 351 
of missing observations in the WI2015 season. 352 

3.5 Genotyping and genetic linkage map construction 353 

A total of 116,030 SNPs were identified for 467 individuals. After filtering for missing data and 354 
allele frequency, the final data set contained 15,659 high quality SNPs. The linkage map was 355 
constructed using 461 individuals and included a total of 640 high quality SNP markers across nine 356 
chromosomes (Figure S3). The total distance covered was 719 cM with an average marker spacing 357 
of 1.1 cM and a maximum marker spacing of 17.7 cM (Table S2).   358 

3.6 QTL for shoot and root traits 359 

Overall, seven significant QTL on chromosomes 1, 2, 3, 4, 5, and 7 were identified for manual 360 
measurements of carrot shoot and root traits. Of these, six QTL were also detected for traits extracted 361 
computationally from images (Figure 7). Additionally, the use of image based measurements 362 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 4, 2018. ; https://doi.org/10.1101/384974doi: bioRxiv preprint 

https://doi.org/10.1101/384974


 Automated image analysis for genetic studies of carrot shoot and root shape 

 
10 

resulted in the identification of two additional QTL for root PC1 and petiole width on chromosomes 363 
6 and 8, respectively. Significant QTL, including the most significant marker and corresponding 1.5 364 
LOD interval, are described in detail for shoot traits in Table 3 and for root traits in Table 4. In 365 
general, the total PVE was similar for manually measured traits compared to their image-based 366 
counterparts, the notable exception being root length, for which the manual measurement only had 19 367 
PVE compared to 41 PVE for the image measurement.  368 

We observed co-localization of QTL for shoot and root traits on the distal ends of chromosomes 2 369 
and 7, which was consistent for both manual and image-based measurements. Significant QTL on 370 
chromosome 2 were identified for manual measurements of shoot height, shoot biomass, leaf 371 
number, and root biomass, and for image-based measurements of shoot height, shoot area, leaf 372 
number, petiole width, petiole length, shoot PC2 (correlated with height), root length, root area, and 373 
root PC2 (corresponding to the degree of tip fill).  Similarly, significant QTL on chromosome 7 374 
included manually measured shoot height, shoot biomass, and root biomass, and image measured 375 
shoot height, shoot biomass, petiole width, petiole length, root PC2 (tip fill), and root PC3 376 
(associated with root thickening). In general, the QTL on chromosomes 2 and 7 also accounted for 377 
most of the PVE. For shoot traits, this ranged from 8% for leaf number to 53% for shoot height 378 
(Table 3) and, for root traits, from 4% for root PC3 (root thickening) to 38% for root PC2 (tip fill) 379 
(Table 4). Additional significant QTL explained a relatively small proportion of the variance and are 380 
described below.  381 

Shoot traits: For manual measurements of shoot height, a third QTL was identified on chromosome 382 
5 (5 PVE), which was not captured by the corresponding image measurement. Additional QTL for 383 
shoot biomass included regions on chromosomes 3 (6 PVE) and 4 (5 PVE), of which only the region 384 
on chromosome 3 was found for the image-extracted trait (4 PVE).  This same region on 385 
chromosome 3 was also identified for petiole length (3 PVE) and for shoot PC2 (5 PVE).  For the 386 
image measurement of petiole width, two QTL, which were not identified for any hand 387 
measurements, were found on chromosomes 4 (5 PVE) and 8 (6 PVE). Despite strong correlation of 388 
shoot PC1 with shoot biomass, no QTL were identified for shoot PC1.  389 

Root traits: In contrast to the region on chromosome 7 described above, a QTL on the proximal end 390 
of chromosome 7 was identified for manually measured root length (4 PVE), but not for the 391 
corresponding image measurement. Two other QTL for root length were identified on chromosomes 392 
1 and 3 for both manual (9 PVE and 6 PVE, respectively) and image (14 PVE and 7 PVE) 393 
measurements. The same QTL on chromosome 3, which was also identified for shoot biomass and 394 
petiole length, was detected for root PC2.  For image-based measurements of root length and 395 
biomass, another QTL was also identified on chromosome 4 (10 PVE and 4 PVE, respectively).  396 

4 Discussion 397 

Plant phenomics has the potential to accelerate plant improvement through increased scope, 398 
throughput, and accuracy (Bucksch et al., 2014; Fahlgren et al., 2015; Furbank and Tester, 2011). 399 
These advances are especially beneficial in specialty crop breeding, as phenotypes are often complex 400 
and population sizes are limited by the time required to obtain measurements. This advantage is 401 
further realized in biennial crops such as carrot, where breeding is accelerated to annual cycle and 402 
phenotyping occurs in the narrow window between the harvest of vegetative roots and planting of 403 
vernalized roots for seed production (Simon, 2000; Simon et al., 2008).   404 
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To facilitate crop improvement efforts in carrot, we present a pipeline to assess whole-plant 405 
morphology, which to date has lacked protocols for standardized, quantitative measurements. This 406 
method will enable more in-depth genetic and phenotypic studies in carrot by providing: (1) robust, 407 
reliable and repeatable measurements of carrot morphology and (2) augmented throughput, which 408 
improves the statistical power of subsequent analyses by increasing sample size. Additionally, the 409 
phenotypes measured by this pipeline encompass both theoretical and applied importance for 410 
improvement of crop quality and yield, providing a means to accelerate genetic gain for primary 411 
breeding targets in carrot.  412 

4.1 Image analysis as a promising tool to measure carrot phenotypes 413 

The efficacy of image analysis to estimate carrot shoot and root morphology was validated on 917 414 
field grown carrot plants from multiple locations and commonly used experimental designs. We 415 
anticipate that this analysis will be equally suitable for plants grown in the greenhouse or in other 416 
environments. In addition to providing measurements not attainable by hand, throughput for image 417 
analysis took approximately one third of the time needed for collection of the equivalent hand 418 
measurements. This time difference can be explained by the ability to capture multiple traits of 419 
interest from an image, which requires one step for data collection (image acquisition), compared to 420 
multiple manual measurements for individual traits, which can require several steps (e.g. biomass, 421 
which requires sampling, weighing, drying, and reweighing). Additionally, rapid processing of 422 
samples may also reduce potential errors during data entry and variation due to differences in the 423 
duration of storage prior to measurements (Bucksch et al., 2014; Fiorani and Schurr, 2013; Lobet et 424 
al., 2013).  The throughput of this method could be further improved by barcoding individual plants 425 
and including a marker of known size during imaging to automatically convert pixels to metric units.  426 

The high correlation between image-extracted traits and hand-measured analogs (r >0.7) provides 427 
evidence that this is a reliable method to capture phenotypic diversity and quantitative trait variation 428 
for important breeding targets in carrot. By enabling precise measurements for larger population 429 
sizes, the power of subsequent genetic investigations will be improved to enable more precise 430 
estimates of heritability and ultimately to better inform breeding strategies to increase genetic gain 431 
(Fiorani and Schurr, 2013; Kuijken et al., 2015). Additionally, a distinct advantage of this approach is 432 
the ability to measure shape parameters, which do not have an objective or practical hand 433 
measurement equivalent. Previous work on carrot shoot morphology includes image analysis of 434 
leaflet shape (Horgan et al., 2001) and an assessment of phenotypic and genotypic diversity for shoot 435 
height in commercially available carrot germplasm (Luby et al., 2016). However, this is the first 436 
method to implement a high-throughput, quantitative assessment of carrot shoot architecture. The 437 
capability to capture variation for shoot morphology will benefit future investigations into the 438 
improvement of crop establishment and weed competitive ability in carrot, which are increasingly 439 
important for successful crop production (Colquhoun et al., 2017; Turner et al., 2018).  440 

Carrot root shape has been extensively studied in the context of variety classification and crop 441 
quality. Previous work to quantify root shape includes the use of power law curves (Bleasdale and 442 
Thompson, 1963), machine vision (Howarth et al., 1992), landmark analysis (Horgan, 2001; Horgan 443 
et al., 2001), X-ray computed tomography (Rosenfeld et al., 2002), and quality assessment using 444 
geometric criteria (Koszela et al., 2013). The scope of these approaches was restricted to assessing 445 
varietal and quality differences in root shape, independent of haulm characteristics, and was limited 446 
to commercially available varieties. We build upon these methods by characterizing root shape 447 
without landmarks (Horgan et al., 2001), expanding the methodology to capture shoot architecture, 448 
and demonstrating the detection of subtle but biologically important variation in diverse genetic 449 
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resource populations. Deviations from previous reports of principal components for carrot root shape 450 
can be partly explained by the decision to normalize for root length and width (i.e. aspect ratio), a 451 
step which can be omitted if aspect ratio is a trait of interest. It is also worth noting that the scope of 452 
our approach could be improved with the inclusion of additional root classes, such as Paris Market 453 
and Kuroda types (Simon et al., 2008).  454 

4.2 Identification of QTL for shoot and root characteristics  455 

Vegetative plant organs often evolve as phenotypic modules, and consequently tend to be highly 456 
correlated and share evolutionary tracts (Bouchet et al., 2017). We observed strong correlations 457 
among shoot and root biomass and leaf number, consistent with recently reported results for 458 
developmental phenotypes in maize (Bouchet et al., 2017) and with the general observation that plant 459 
organs tend to evolve as phenotypic modules (Murren, 2002; Pigliucci and Preston). Despite the 460 
strong correlation between shoot and root biomass, the deviation of this linear relationship from unity 461 
could also suggest that carrot growth may depart from a steady state, with biomass allocation in the 462 
shoot not directly proportional to biomass in the storage root (Poorter et al., 2012). Alternatively, this 463 
disparity could also result from an inability to account for fibrous root mass, which is lost during 464 
harvest. 465 

For the F2 population in this study, a total of seven unique QTL were detected for carrot shoot and 466 
root morphology, which are traits of primary interest to improve carrot quality and yield. Of these, 467 
three QTL had large effects and accounted for over 10 PVE for a given trait, while the remainder had 468 
small to moderate effects. QTL for image measurements tended to overlap with QTL for manual 469 
measurements, providing confirmation that this pipeline can be used reliably for genetic studies of 470 
shoot and root morphology in carrot. Notably, QTL for several traits in this study had various 471 
amounts of overlap with previously identified QTL for root swelling on chromosomes 2, 3, 4, and 5 472 
(Macko-Podgórni et al., 2017). 473 

We report evidence for the co-localization of QTL for shoot traits (height, leaf number, biomass, 474 
petiole width, and petiole length) and root characteristics (length, biomass, and tip fill) on the distal 475 
end for the long arm of chromosome 2. This suggests a pleiotropic basis and/or tight genetic linkage 476 
for the morphological integration of shoot and root architecture in carrot. This finding is also 477 
consistent with the recent identification of a QTL and selective sweep on a nearby region of 478 
chromosome 2, which included the identification of a candidate domestication gene in carrot 479 
(DcAHLc1) (Macko-Podgórni et al., 2017). DcAHLc1 is a regulatory gene in the AT-HOOK MOTIF 480 
CONTAINING NUCLEAR LOCALIZED (AHL) family, which is highly conserved across monocot 481 
and dicot species and influences plant growth and development (Zhao et al 2012). Members of the 482 
AHL gene family have been linked to shoot and root characteristics in other species, including 483 
hypocotyl elongation (Street et al., 2008; Xiao et al., 2009), increased plant biomass (Jiang et al., 484 
2004), root growth (Zhou et al., 2013), and phytohormone regulation (Matsushita et al., 2007; 485 
Rashotte et al., 2003; Vom Endt et al., 2007). Interestingly, in this study we also find a member of 486 
the AHL gene family within the confidence interval for the QTL identified on chromosome 2 (Table 487 
S3). While our findings support evidence that the region on chromosome 2 is important for carrot 488 
growth and development, they differ from the findings of Macko-Podgórni et al. in two important 489 
ways: (1) we did not observe overlap between the support intervals of significant QTL on 490 
chromosome 2 in this study and the DcAHLc1 gene and (2) we did not find any significant QTL for 491 
image-based measurements of root width, although we did observe a significant QTL for root PC2, 492 
which captures variation in the amount of tapering (or swelling) at the tip of the root. A likely 493 
explanation for not finding the DcAHLc1 gene to contribute to root shape in our study, which used a 494 
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cross between domesticated breeding stocks, is that Macko-Podgórni et al. (2017) used a wild x 495 
domesticated cross (D. carota subsp. commutatus x 2874B), in which the DcAHLc1 gene is 496 
segregating. Together, these findings suggest the possibility of additional candidate gene(s) on 497 
chromosome 2 and tight linkage among genes influencing carrot shoot and root development, which 498 
are inherited together as a suite of traits. 499 

By providing a foundation for future genetic mapping and genome-wide association studies, the 500 
significant QTL detected in this study will contribute to the development of marker-assisted selection 501 
and fine mapping efforts for carrot shoot and root morphology. Further research will be necessary to 502 
validate the prevalence and importance these regions in different genetic backgrounds, over the 503 
course of developmental stages, and across environments.  504 

4.3 Conclusions and future directions 505 

The development of a high-throughput image analysis pipeline for carrot shoot and root morphology 506 
provides new opportunities for crop improvement and to elucidate the underlying genetics for 507 
quantitative traits. The design for image collection is simple, low-cost, and could be easily adapted 508 
for use in other crops with similar morphology. Ideally, this methodology could be expanded to other 509 
important crops, e.g. cassava, beet, radish, and other members of the Apiaceae family, such as celery, 510 
parsnip, parsley, and cilantro, which have widespread culinary uses but lack substantial research 511 
investment. Images are also an ideal medium to facilitate collaborations, as they transfer 512 
multidimensional information for which analysis is standardized and automated (Lobet et al., 2013). 513 
As such, the ability to analyze and share carrot images through public repositories is an opportunity 514 
to increase the scope, archival, and reproducibility of carrot research.   515 

Data from this method can be used in numerous applications for carrot breeding and research. 516 
Morphological variation can be rapidly assessed and catalogued for diverse genetic backgrounds, 517 
providing a resource to better inform experimental design and population selection for more in-depth 518 
analysis. This pipeline can be used in tandem with physiological studies, for instance to evaluate the 519 
effects of gibberellic acid and cytokinin, which are known to influence carrot shoot and root 520 
morphology (Wang et al., 2015b, 2015a). Phenotypic data can also be integrated into predictive 521 
models for carrot growth and development by imaging plants at various developmental stages, 522 
permitting further investigation of allometric relationships between the shoot and root. In future 523 
studies, it will also be important to consider the relationship between fibrous root architecture, which 524 
provides a source of photosynthates, water, and soil-borne nutrients, and the storage root, which 525 
serves as a sink for these metabolites that are essential for vegetative and reproductive growth.  526 

This approach is specifically tailored for a carrot breeding program, but could also complement 527 
existing image analysis software and methods for detailed analyses. For example, research on the 528 
genetic basis of lateral branching in carrot roots is underway using RootNav (Pound et al., 2013) and 529 
SmartRoot (Lobet et al., 2011), which are well established methodologies to quantify root system 530 
architecture. Potential improvements and expansions of our method include incorporation of uniform 531 
lighting and a marker of known size, as well as extension of carrot phenotyping to field-scale 532 
measurements over the course of the growing season. 533 

The method presented in this study provides an initial step in automated phenotyping for carrot. By 534 
enabling rapid, precise measurements of important agronomic characteristics in carrot, this platform 535 
will allow carrot breeders to measure greater population sizes, increasing throughput and supporting 536 
downstream analyses.  537 
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5 Data Availability 538 

All images, scripts, and sequence data used in this study are publicly available. Images are available 539 
at https://de.cyverse.org/dl/d/2F1B4398-9D2E-4BF4-BFFF-65F507DB6865/sampleCarrotImages.zip 540 
and will also be deposited in the Dryad digital repository (https://datadryad.org/). Custom algorithms 541 
for image analysis are accessible on CyVerse as part of the PhytoMorph ToolKit. Scripts for data 542 
processing, visualization, and QTL mapping are available on GitHub at 543 
https://github.com/mishaploid/carrot-image-analysis. SNPs from the F2 mapping population will be 544 
deposited as VCF files on FigShare. 545 
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 813 

Figure 1: A high-throughput workflow to measure carrot morphology from images. (A) A user 814 
collects a stack of individual carrot images, which are uploaded from a local data store to the iRODS 815 
data system on CyVerse for trait extraction. Following image processing, quantitative data is returned 816 
to the user for downstream analyses. (B) Once uploaded to CyVerse, images are processed in the 817 
Discovery Environment using custom algorithms via a high-throughput computing (HTC) resource. 818 
The workflow is split into two applications: the first extracts traits which are directly measured from 819 
the image (e.g. area, bounding box, etc.), while the second uses a regression model built from a 820 
validation set of 100 ground-truth measurements to predict leaf number, petiole length, and petiole 821 
width.  822 
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 823 

Figure 2: Steps to generate biomass profiles for the shoot and root of individual carrot plants.  (A) 824 
An image mask of a carrot shoot is superimposed with half of an elliptical grid. Holding each radius 825 
(r) of the grid constant, the image mask is integrated along each angular sweep (q) to produce a shoot 826 
biomass profile with defined regions belonging to the petioles and to the leaf blades. (B) For the 827 
carrot root mask, pixels are summed across each row to produce a root biomass profile.  828 
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 829 

Figure 3: Correlation matrix of selected manual and algorithm measurements in carrot (n=917 830 
individuals). Trait distributions are on the diagonal, with Pearson’s correlation coefficients (r) and 831 
Spearman’s rho (ρ) displayed on the upper triangle and linear relationships on the lower triangle. All 832 
correlations were significant at P < 0.001. Trait key: S_height = shoot height (cm); S_BB = shoot 833 
bounding box height (cm); S_biomass = shoot biomass (g, fresh); S_area = digital shoot biomass 834 
(px); R_length = root length (cm); R_BB = root bounding box height (cm); R_biomass = root 835 
biomass (g, fresh); R_area = digital root biomass (px). Note that biomass traits are natural log 836 
transformed.  837 
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 838 

Figure 4: Comparison of manual measurements to algorithm-derived values for leaf number (left, 839 
n=910, R2=0.59, P≤0.001), petiole length (middle, n=100, R2=0.81, P≤0.001), and petiole width 840 
(right, n=100, R2=0.72, P≤0.001).  841 
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 842 

Figure 5: Principal components analysis for shoot biomass profiles (n = 917 individuals). (A) The 843 
first two principal components (PC1 and PC2) detect variation for the magnitude and location of 844 
carrot shoot biomass, respectively. Shoot biomass profiles are shown for the top three and leftmost 845 
three images. From left to right, sweeping PC1 primarily reflected the amount of biomass (43.7% 846 
variation explained). From top to bottom, sweeping PC2 reflected where the biomass was distributed 847 
(i.e. petiole length) (36.6% variation explained). (B) Correlation of shoot PC1 with biomass 848 
(P≤0.001). (C) Correlation of shoot PC2 with shoot height (P≤0.001).    849 
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 850 

Figure 6: Eigenvectors for principal components analysis of carrot root shape after normalization for 851 
aspect ratio (n=917 individuals). Lines represent a parameter sweep of the principal component, 852 
capturing symmetrical variation in root shape. (A) Changes in PC1 modified the extent of root 853 
tapering (conical vs. cylindrical) and explained 66.4% of the observed variation. (B) Changes in PC2 854 
reflected the degree of tapering at the tip of the root (i.e. tip fill) and explained 16.6% of the observed 855 
variation. (C) Changes in PC3 captured variation for thickening in the longitudinal section of the root 856 
and explained 5.6% of the observed variation.    857 
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 858 

Figure 7: LOD curves for manually measured traits (top), image measured traits which were 859 
analogous to manual measurements (middle), and traits that were only measured from images 860 
(bottom). Arrows designate QTL that were identified by image measurements but not by manual 861 
measurements. Horizontal lines indicate the significant LOD thresholds for P<0.05 (solid) and 862 
P<0.01 (dashed).    863 
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Table 1: Estimates of repeatability, trait ranges, and corresponding pedigrees for shoot 864 
characteristics in 42 inbreds and hybrids from a six-parent carrot diallel. Measurements include 865 
values measured manually and from images. Values are mean ± standard error. 866 

 867 

  
Repeatability 

     Trait WI2015 CA2016 Overall   Value Genotype 

M
an

ua
l 

shoot height (cm) 0.83 0.93 0.52 min 32.58 ± 0.85 L6038B 

   
max 71.5 ± 1.68 Nbh2189A x B7262B 

shoot biomass  
(g; fresh) 

0.81 0.78 0.45 min 13.38 ± 1.13 L6038B 

   
max 83.55 ± 32.15 L7262A x Nbh2189B 

shoot biomass  
(g; dry) 

0.88 0.71 0.51 min 1.26 ± 0.14 L6038B 

   
max 14.6 ± 3.62 L7550A x P0159B 

leaf number 
  

0.36 0.53 0.31 min 2.17 ± 0.17 P0159B 
      max 26.75 ± 0.35 P6139A 

Im
ag

e 

shoot bounding 
box height (cm) 

0.64 0.86 0.59 min 29.12 ± 0.94 L6038B 

   
max 54.24 ± 2.25 Nbh2189A x P6139B 

shoot area (cm2) 0.03 0.83 0.19 min 252.87 ± 24.39 L6038B 

   
max 768.93 ± 106.65 Nbh2189A x P0159B 

leaf number 0.41 0.46 0.49 min 7.23 ± 0.4 L6038A 

   
max 16.04 ± 2.34 7262A x Nbh2189B 

petiole width 
(cm) 

0.35 0.84 0.24 min 0.32 ± 0.01 Nbh2189A x L6038B 

   
max 0.49 ± 0.02 Nbh2189A x B7262B 

petiole length 
(cm) 

0.48 0.80 0.53 min 6.6 ± 4.7 L6038A x P0159B 

   
max 33.34 ± 1.12 P6139A x Nbh2189B 

shoot PC1 a 0.73 0.82 0.35 min -26497.94 ± 9283.82 P0159A 

   
max 5639.89 ± 1880.02 L6038A x P6139B 

shoot PC2 a 
  

0 0.84 0.31 min -19350.49 ± 6184.13 Nbh2189A x P0159B 
      max 15611.1 ± 1024.33 P0159B 

a Measurements of principal components are relative to the full data used in this study and values are 
presented as raw component scores.  
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Table 2: Estimates of repeatability, trait ranges, and corresponding pedigrees for root characteristics 870 
in 42 inbreds and hybrids from a six-parent carrot diallel. Measurements include values measured 871 
manually and from images. Values are mean ± standard error. 872 

 873 

  
Repeatability 

     Trait WI2015 CA2016 Overall   Value Genotype 

M
an

ua
l 

root length 0.42 0.39 0.01 min 20.58 ± 1.25 B7262B 
   max 33.79 ± 1.43 L7550A x L6038B 

root biomass  
(g; fresh) 

0.45 0.48 0.26 min 25.37 ± 3.9 B7262B 
   max 266.51 ± 63.22 L7550A x P0159B 

root biomass  
(g; dry)  

0.48 0.55 0.32 min 3.23 ± 0.67 B7262B 
      max 34.54 ± 8.31 L7550A x P0159B 

Im
ag

e 

root bounding 
box height (cm) 

0.62 0.41 0.05 min 10.1 ± 7.32 B7262A x L7550B 

   
max 32.15 ± 1.14 L7550B 

root bounding 
box width (cm) 

0.38 0.26 0.12 min 3.29 ± 0.28 P6139B 
   max 8.97 ± 2.35 P0159A x Nbh2189B 

root area (cm2) 0.55 0.33 0.2 min 21.12 ± 3.10 B7262B 
   max 85.88 ± 16.06 P0159A x Nbh2189B 

root PC1 a 0.21 0.36 0.21 min -3.74 ± 0.66 B7262B 
   max 3.37 ± 6.58 B7262A x L7550B 

root PC2 a 0 0.1 0 min -0.68 ± 0.32 Nbh2189A x P6139B 

   
max 2.32 ± 0.38 B7262A x L7550B 

root PC3 a 
  

0 0.56 0.12 min -1.03 ± 0.06 P0159A x P0159B 
      max 0.95 ± 0.2 L7550B 

a Measurements of principal components are relative to the full data used in this study and values are 
presented as raw component scores.  
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Table 3: Significant QTL (α=0.05), LOD values, percent variance explained (PVE), and 1.5 LOD 876 
intervals for manual and image-based measurements of shoot traits in carrot.  877 

 878 

 
 

(Trait) 
chromosome 

QTL 
name 

Closest 
Marker LOD value PVE left marker right marker 1.5 LOD 

Interval (Mb) 

M
an

ua
l 

(height)        
2 ht-2.1 S2_43085743 32.49 37.72 S2_42846844 S2_43581817 0.73 
5 ht-5.1 S5_41414532 3.33 4.73 S5_6457993 S5_41951182 35.49 
7 ht-7.1 S7_28224489 10.84 14.61 S7_15056433 S7_29551603 14.50 

(shoot biomass)    
 

   
2 sb-2.1 S2_43085743 16.42 21.28 S2_42846844 S2_43581949 0.74 
3 sb-3.1 S3_38999634 4.16 5.89 S3_23294327 S3_48725969 25.43 
4 sb-4.1 S4_5516472 3.88 5.49 S4_2983852 S4_17556866 14.57 
7 sb-7.1 S7_29473453 11.12 14.97 S7_20379319 S7_34717088 14.34 

(leaf number)    
 

   
2 ln-2.1 S2_43085743 6.57 9.13 S2_42024242 S2_43581949 1.56 

im
ag

e 

(height)    
 

   
2 ht-2.2 S2_43085743 28.67 34.15 S2_42846844 S2_43581998 0.74 
7 ht-7.2 S7_20387007 8.43 11.56 S7_11718785 S7_31550284 19.83 

(shoot area)    
 

   
2 sa-2.1 S2_43085743 10.73 14.48 S2_42846844 S2_43581949 0.74 
3 sa-3.1 S3_38999634 3.02 4.30 S3_23294327 S3_48725969 25.43 
7 sa-7.1 S7_31972865 5.28 7.41 S7_19018242 S7_34717088 15.70 

(leaf number)    
 

   
2 ln-2.2 S2_43581949 5.81 8.12 S2_42342776 S2_43581949 1.24 

(petiole width)    
 

   
1 pw-1.1 S1_33448879 6.69 9.29 S1_29083233 S1_49929471 20.85 
2 pw-2.1 S2_43085743 2.90 4.13 S2_42342776 S2_43581949 1.24 
4 pw-4.1 S4_5516472 3.76 5.33 S4_2983852 S4_17556866 14.57 
7 pw-7.1 S7_33430504 8.94 12.22 S7_20379319 S7_34717088 14.34 
8 pw-8.1 S8_2442141 4.05 5.73 S8_1370824 S8_5678858 4.31 

(petiole length)    
 

   
2 pl-2.1 S2_43085743 18.16 23.26 S2_42846844 S2_43581949 0.74 
3 pl-3.1 S3_23294327 2.15 3.09 S3_23294327 S3_49446360 26.15 
7 pl-7.1 S7_28187058 7.25 10.02 S7_20387007 S7_31550284 11.16 

(shoot PC2)    
 

   
2 spc2-2.1 S2_43085743 21.10 26.47 S2_42846844 S2_43581949 0.74 
3 spc2-3.1 S3_48507169 3.27 4.66 S3_23294327 S3_50144206 26.85 
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Table 4: Significant QTL (α=0.05), LOD values, percent variance explained (PVE), and 1.5 LOD 881 
intervals for manual and image-based measurements of root traits in carrot.  882 

 883 

 
(Trait) 

chromosome 
QTL 
name 

Closest 
Marker LOD value PVE left marker right marker 1.5 LOD 

Interval (Mb) 

ha
nd

 

(length)        
1 rl-1.1 S1_38352734 6.47 9.00 S1_25151874 S1_49277871 24.13 
3 rl-3.1 S3_37060244 4.39 6.20 S3_23294327 S3_43735481 20.44 
7 rl-7.1 S7_833073 3.15 4.49 S7_442640 S7_3313327 2.87 

(biomass)        
2 rb-2.1 S2_43085743 4.42 6.24 S2_42024242 S2_43581949 1.56 
7 rb-7.1 S7_28224489 3.99 5.65 S7_11718785 S7_34717122 23.00 

im
ag

e 

(length)        
1 rl-1.2 S1_38352734 10.44 14.11 S1_33448879 S1_47240093 13.79 
2 rl-2.1 S2_43085743 7.21 9.98 S2_42024242 S2_43581949 1.56 
3 rl-3.2 S3_23294327 5.23 7.33 S3_23294327 S3_36496196 13.20 
4 rl-4.1 S4_5516472 7.43 10.26 S4_2983852 S4_8969556 5.99 

(area)        
2 ra-2.1 S2_43085743 3.80 5.38 S2_42024242 S2_43581949 1.56 
4 ra-4.1 S4_5516472 2.84 4.06 S4_2983852 S4_8969556 5.99 

(PC2)        
2 rpc2-2.1 S2_43085743 21.10 26.47 S2_42846844 S2_43581949 0.74 
3 rpc2-3.1 S3_48507169 3.27 4.66 S3_23294327 S3_50144206 26.85 
7 rpc2-7.1 S7_28187058 8.78 12.01 S7_19018242 S7_32082761 13.06 

(PC3)        
7 rpc3-7.1 S7_15056433 2.80 4.00 S7_442640 S7_35971570 35.53 
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