1	Etiology of fever in Ugandan children: identification of microbial pathogens using
2	metagenomic next-generation sequencing and IDseq, a platform for unbiased metagenomic
3	analysis
4	
5	Akshaya Ramesh ^{1, 2, †*} , Sara Nakielny ^{3*} , Jennifer Hsu ⁴ , Mary Kyohere ⁵ , Oswald
6	Byaruhanga ⁵ , Charles de Bourcy ⁶ , Rebecca Egger ⁶ , Boris Dimitrov ⁶ , Yun-Fang Juan ⁶ , Jonathan
7	Sheu ⁶ , James Wang ⁶ , Katrina Kalantar ³ , Charles Langelier ⁴ , Theodore Ruel ⁷ , Arthur
8	Mpimbaza ⁸ , Michael R. Wilson ^{1, 2} , Philip J. Rosenthal ⁴ , Joseph L. DeRisi ^{3, 6} [†]
9	
10	* - These authors contributed equally to this work
11	[†] - Corresponding authors
12	
13	1 – Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
14	2 – Department of Neurology, University of California, San Francisco, CA, USA
15	3 – Department of Biochemistry and Biophysics, University of California, San Francisco, CA,
16	USA
17	4 – Division of Infectious Diseases, Department of Medicine, University of California, San
18	Francisco, CA, USA
19	5 – Infectious Diseases Research Collaboration, Kampala, Uganda
20	6 – Chan Zuckerberg Biohub, San Francisco CA

- 21 7 Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics,
- 22 University of California, San Francisco, CA, USA
- 23 8 Child Health and Development Centre, Makerere University, Kampala, Uganda
- 24

25 e-mail address for authors:

- 26 Akshaya Ramesh: Akshaya.Ramesh@ucsf.edu
- 27 Sara Nakielny: ucsfsara@gmail.com
- 28 Jennifer Hsu: Jennifer.Hsu@kp.org
- 29 Mary Kyohere: pk_marx@yahoo.com
- 30 Oswald Byaruhanga: byaruos@gmail.com
- 31 Charles de Bourcy: cdebourcy@chanzuckerberg.com
- 32 Rebecca Egger: regger@chanzuckerberg.com
- 33 Boris Dimitrov: bdimitrov@chanzuckerberg.com
- 34 Yun-Fang Juan: yunfang@chanzuckerberg.com
- 35 Jonathan Sheu: jsheu@chanzuckerberg.com
- 36 James Wang: jwang@chanzuckerberg.com
- 37 Katrina Kalantar: kkalantar@berkeley.edu
- 38 Charles Langelier: Chaz.Langelier@ucsf.edu
- 39 Theodore Ruel: Theodore.Ruel@ucsf.edu
- 40 Arthur Mpimbaza: arthurwakg@yahoo.com
- 41 Michael R. Wilson: Michael.Wilson@ucsf.edu
- 42 Philip J. Rosenthal: Philip.Rosenthal@ucsf.edu
- 43 Joseph L. DeRisi: joe@derisilab.ucsf.edu

44 Abstract

45	Background: Febrile illness is a major burden in African children, and non-malarial causes of
46	fever are uncertain. We built and employed IDseq, a cloud-based, open access, bioinformatics
47	platform and service to identify microbes from metagenomic next-generation sequencing of
48	tissue samples. In this pilot study, we evaluated blood, nasopharyngeal, and stool specimens
49	from 94 children (aged 2-54 months) with febrile illness admitted to Tororo District Hospital,
50	Uganda.
51	
52	Results: The most common pathogens identified were Plasmodium falciparum (51.1% of
53	samples) and parvovirus B19 (4.4%) from blood; human rhinoviruses A and C (40%),
54	respiratory syncytial virus (10%), and human herpesvirus 5 (10%) from nasopharyngeal swabs;
55	and rotavirus A (50% of those with diarrhea) from stool. Among other potential pathogens, we
56	identified one novel orthobunyavirus, tentatively named Nyangole virus, from the blood of a
57	child diagnosed with malaria and pneumonia, and Bwamba orthobunyavirus in the nasopharynx
58	of a child with rash and sepsis. We also identified two novel human rhinovirus C species.
59	
60	Conclusions: This exploratory pilot study demonstrates the utility of mNGS and the IDseq
61	platform for defining the molecular landscape of febrile infectious diseases in resource limited
62	areas. These methods, supported by a robust data analysis and sharing platform, offer a new tool
63	for the surveillance, diagnosis, and ultimately treatment and prevention of infectious diseases.
64	
65	Keywords: Metagenomic Next-Generation Sequencing, Febrile illness, surveillance, pathogen
66	discovery, IDseq, cloud computing

67 Introduction

68 The evaluation of children with fever is challenging, particularly in the developing world. 69 A febrile child in sub-Saharan Africa may have a mild self-resolving viral infection or may be 70 suffering bacterial sepsis or malaria-major causes of disability and death [1], [2]. In the past, 71 febrile illness in children under five years of age in most of Africa was treated empirically as 72 malaria due to the limited availability of diagnostics and the risk of untreated malaria progressing 73 to life-threatening illness. This strategy changed with new guidelines from the World Health 74 Organization (WHO) in 2010, which recommend limiting malaria therapy to those with a 75 confirmed diagnosis [3]. However, standard recommendations for management of febrile 76 children who do not have malaria are lacking. Increased knowledge about the prevalence of nonmalarial pathogens associated with fever is needed to inform management strategies for febrile 77 78 children who do not have malaria [2].

79

80 Advances in genome sequencing hold promise for addressing global infectious disease 81 challenges by enabling unbiased detection of microbial pathogens without requirement for the 82 extensive infrastructure of modern microbiology laboratories [4], [5]. Although sequence-based diagnostics have not yet replaced most traditional microbiological assays, this situation is 83 84 rapidly changing, as sequence-based strategies are incorporated for clinical care [6]–[10], and 85 costs have declined dramatically over the past decade [11]. A significant roadblock toward 86 implementation of sequence-based diagnostics is the extensive computational requirements and 87 bioinformatics expertise required. In fact, as sequencing costs decline, computational expenses 88 may proportionally increase due to inevitable expansion of existing genomic databases.

89

90	To address these challenges, we developed IDseq, a cloud-based open-source
91	bioinformatics platform and service for detection of microbial pathogens from metagenomic
92	next-generation sequencing (mNGS) data. IDseq requires minimal computational hardware and
93	is designed to enhance accessibility and build informatics capacity in resource limited regions.
94	Here, we leveraged IDseq and mNGS data to perform an exploratory proof-of-concept molecular
95	survey of febrile children in rural Uganda to characterize pathogens associated with fever,
96	including both well-recognized and novel causes of illness.
97	
98	Analyses/Results
99	Clinical presentations of children providing samples for analysis
100	From October to December, 2013, 94 children admitted to Tororo District Hospital were
101	enrolled (Table 1). Their mean age was 16.4 (IQR: 8.0-12.0) months, and 66 (70.2%) were
102	female. Chief symptoms reported in addition to fever were cough (88.3%), vomiting (56.4%),
103	diarrhea (47.9%), and convulsions (27.7%). Top admitting diagnoses were respiratory tract
104	infection (57.4%), gastroenteritis/diarrhea (29.8%), and septicemia (11.7%) (Data file 1a).
105	
106	Serum and nasopharyngeal (NP) swab samples were collected from 90 children each; for
107	four children, only one of the two sample types was successfully collected. Although 45 (47.9%)
108	of the children had a presenting symptom of diarrhea, stool samples were available for only 10
109	due to logistical constraints. Blood smears identified P. falciparum in 12 of the 90 samples that
110	underwent mNGS analysis.
111	

112 Metagenomic sequencing findings

113	mNGS was performed on 90 serum, 90 NP swab, and 10 stool samples and analyses was
114	done using the IDseq pipeline (see Methods section, Figure 1); detailed findings are reported in
115	Data file S1b. For each sample type, RNA was extracted, libraries were prepared, samples were
116	sequenced, and reads were analyzed using the IDseq Portal. A mean of 11.5 million (IQR 6.4 -
117	15.2 million) paired-end reads were obtained per sample; sequencing statistics are in Data file
118	Table S2. For one batch of serum samples, only a single read, rather than paired-end reads, was
119	produced.
120	
121	mNGS of serum
122	At least one microbial species was detected in 60 (66.7%) serum samples; more than one
123	microbe was detected in 11 (12.2%) samples (Figure 2A). The most commonly identified
124	microbes were <i>Plasmodium falciparum</i> (46, 51.1%) and parvovirus B19 (4, 4.4%). <i>P. falciparum</i>
125	was detected in 10/12 samples from patients reported as smear-positive for malaria parasites.
126	mNGS detected <i>Plasmodium spp</i> . in 37 additional samples that were smear negative (36 P.
127	falciparum, 1 P. malariae). Viruses detected from serum included human immunodeficiency 1
128	virus (HIV-1), hepatitis A virus, rotavirus A, human herpesvirus (HHV) type 6, HHV type 4,
129	HHV type 7, human rhinovirus (HRV)-C, HRV-A, enteroviruses (enterovirus A71,
130	Coxsackievirus B2 and echovirus E30), human parechovirus 2, hepatitis B virus, a novel
131	orthobunyavirus (described in greater detail below), human cardiovirus (Saffold virus),
132	mamastrovirus 1 and Norwalk virus (Figure 2A).
133	
134	Multiple viruses were detected from serum in patients with <i>Plasmodium</i> infections (10 of 46

135 (21.7%) samples; Table S1a). Three of the four identified parvovirus B19 infections were

associated with *P. falciparum*. Additionally, GB virus C and torque teno virus (TTV), which are
of unknown clinical significance [12], [13], were identified in the serum of 25 (27.8%) and 37
(41.1%) children, respectively.

139

140 mNGS of NP swabs

141 A total of 90 NP swabs was collected and processed; 52 (57.7%) of these were from 142 patients with admission diagnoses of pneumonia, respiratory tract infection, or bronchiolitis 143 (Table 1). Chest imaging was not available to further assess these diagnoses. 73 NP samples 144 (81.1%) contained at least 1 viral species (Figure 2B). HRV-A and HRV-C were the most 145 prevalent, followed by respiratory syncytial virus (RSV), cytomegalovirus (HHV-5), influenza B, and coronavirus OC43. Other respiratory viruses identified included influenza A, HRV-B, 146 147 adenovirus B, 3 human parainfluenza virus types, metapneumovirus, coronavirus NL63, avian 148 coronavirus, coxsackievirus A2, coxsackievirus B2, polyomaviruses (KI), HHV-6 and HHV-7. 149 Other viruses identified that are not typically considered respiratory pathogens included hepatitis 150 A virus, hepatitis B virus, parvovirus B19, mamastrovirus 1, Bwamba orthobunyavirus, 151 betapapillomavirus 1, and rotavirus. Additionally, TTV was found in 49 (54.4%) NP swab 152 samples, including one sample with both gemykrogvirus and TTV. For 26 (28.8%) patients, 153 mNGS identified respiratory viral co-infections, most commonly with HRV-C (n=11) and HRV-154 A (n=5) (Table S1b). The same microbial species was identified in the NP swab and serum 155 samples in 6 patients, one each with HRV-A, HRV-C, hepatitis A virus, hepatitis B virus, 156 rotavirus A, and parvovirus B19.

157

158	Bacteria identified in NP samples included four dominant genera, which together
159	comprised 79% of all microbial reads—Moraxella (39.4%), Haemophilus (16.7%),
160	Streptococcus (16.2%), and Corynebacterium (6.6%). Given that diversity loss in the microbial
161	flora in lower respiratory tract samples correlates with pneumonia [14], [15], we compared the
162	Simpsons diversity Index (SDI) in patients with and without clinical diagnoses of respiratory
163	tract infection. We found no significant difference between patients with (mean $SDI = 0.51$, IQR
164	0.37 - 0.65) or without (mean SDI = 0.51, IQR = 0.42 - 0.65; p = 0.86) diagnoses of respiratory
165	infection (Figure S1). This finding is consistent with a growing body of work demonstrating that
166	microbial composition of the nasopharynx may not correlate well with that of the lower
167	respiratory tract in patients with pneumonia [16]–[18].
168	
169	mNGS of stool
170	Among the 10 stool samples collected and sequenced, pathogens were detected in 9/10
170 171	Among the 10 stool samples collected and sequenced, pathogens were detected in 9/10 samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i>
171	samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i>
171 172	samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i> (40%), and human parechovirus (40%). Seven children had co-infections: two rotavirus A and
171 172 173	samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i> (40%), and human parechovirus (40%). Seven children had co-infections: two rotavirus A and human parechovirus, and one each rotavirus A and <i>Cryptosporidium</i> , rotavirus A and
171 172 173 174	samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i> (40%), and human parechovirus (40%). Seven children had co-infections: two rotavirus A and human parechovirus, and one each rotavirus A and <i>Cryptosporidium</i> , rotavirus A and enterovirus, <i>Cryptosporidium</i> and human parechovirus, <i>Cryptosporidium</i> and Norwalk virus, and
171 172 173 174 175	samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i> (40%), and human parechovirus (40%). Seven children had co-infections: two rotavirus A and human parechovirus, and one each rotavirus A and <i>Cryptosporidium</i> , rotavirus A and enterovirus, <i>Cryptosporidium</i> and human parechovirus, <i>Cryptosporidium</i> and Norwalk virus, and <i>Giardia</i> and human parechovirus. Five samples also had <i>Blastocystis hominis</i> , a microbe of
171 172 173 174 175 176	samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i> (40%), and human parechovirus (40%). Seven children had co-infections: two rotavirus A and human parechovirus, and one each rotavirus A and <i>Cryptosporidium</i> , rotavirus A and enterovirus, <i>Cryptosporidium</i> and human parechovirus, <i>Cryptosporidium</i> and Norwalk virus, and <i>Giardia</i> and human parechovirus. Five samples also had <i>Blastocystis hominis</i> , a microbe of
171 172 173 174 175 176 177	samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i> (40%), and human parechovirus (40%). Seven children had co-infections: two rotavirus A and human parechovirus, and one each rotavirus A and <i>Cryptosporidium</i> , rotavirus A and enterovirus, <i>Cryptosporidium</i> and human parechovirus, <i>Cryptosporidium</i> and Norwalk virus, and <i>Giardia</i> and human parechovirus. Five samples also had <i>Blastocystis hominis</i> , a microbe of uncertain pathogenicity.
171 172 173 174 175 176 177 178	samples. The three most common pathogens identified were rotavirus A (50%), <i>Cryptosporidium</i> (40%), and human parechovirus (40%). Seven children had co-infections: two rotavirus A and human parechovirus, and one each rotavirus A and <i>Cryptosporidium</i> , rotavirus A and enterovirus, <i>Cryptosporidium</i> and human parechovirus, <i>Cryptosporidium</i> and Norwalk virus, and <i>Giardia</i> and human parechovirus. Five samples also had <i>Blastocystis hominis</i> , a microbe of uncertain pathogenicity.

181	comparison with existing orthobunyavirus genomes indicated that this draft sequence includes
182	97.5%, 100% and 91% of the L, M, and S coding regions, respectively (Fig 3). Average read
183	coverage across the segments was 86-fold. Phylogenetic comparison showed that the novel virus
184	was significantly divergent from known orthobunyaviruses, sharing 44.9-55.1% amino acid
185	identity with the closest known relatives, Calchaqui virus, Kaeng Khoi virus, and Anopheles A
186	virus (Figure 3, Figures S3a-c). Of note, despite the divergence of this virus, 47.9% of the reads
187	that belong to this new genome were detectable using default parameters in the IDseq pipeline,
188	allowing for facile subsequent assembly. The virus was isolated from a patient from Nyangole
189	village, Tororo District-hence, we propose the name "Nyangole virus", consistent with
190	nomenclature guidelines for the family Bunyaviridae.
191	In addition, a second orthobunyavirus, Bwamba virus, was identified in the NP swab
192	sample from a patient admitted with rash, sepsis, and diarrhea. Insufficient sample and
193	sequencing reads precluded genome assembly of this virus.
194	
195	Genomic characterization of human rhinoviruses and influenza B in NP swabs
196	
197	Human rhinoviruses
198	Within the species rhinovirus, we assembled <i>de novo</i> a total of 13 HRV-C (mean
199	coverage: 39-fold) and 13 HRV-A (mean coverage: 268-fold) genomes (> 500 bp (Figure 4)). Of
200	these, 10 HRV-A and 9 HRV-C genomes had complete coverage of the VP1 region, which is
201	used to define enterovirus types [19]. HRV types are defined by divergence of >73% in the VP1
202	gene. As such, we found three HRV-A and eight HRV-C types in this cohort. One individual
203	harbored two distinct HRV-A types (genome pairwise identity=75.3%, VP1 pairwise

204	identity=67.1%). Additionally, we assembled two novel HRV-C isolates from two patients
205	admitted with gastroenteritis (patient ID: EOFI-014), and pneumonia, malaria and diarrhea
206	(patient ID: EOFI-133), that shared 70.1% and 70.7% nucleotide sequence identity at VP1
207	compared to the closest known HRV-C (Accession JQ245968 and KF688606, respectively). The
208	Picornavirus Working Group has established that novel HRV-Cs should exhibit at least 13%
209	nucleotide sequence divergence in the VP1 gene [20], qualifying these two isolates as novel.
210	
211	Influenza B virus
212	We assembled influenza B genome segments (>500bp, mean-coverage: 41-fold) from six
213	of seven samples containing influenza B virus (one sample had insufficient sequencing reads).
214	The viruses assembled were >99% similar to each other and >99% identical to the
215	B/Massachusetts/02/2012-like virus included in the vaccine recommended by WHO for the
216	2013-2014 northern hemisphere and 2014 southern hemisphere influenza seasons (Accession
217	numbers: NC_002204 to NC_002211).
218	
219	Antimicrobial resistance profiling in the nasopharynx and stool
220	We employed Short Read Sequencing Typing (SRST2) to survey the resistance gene
221	landscape of our metagenomic dataset [21]. In total, 86% of patients were found to harbor
222	molecular evidence of resistant organisms in their nasopharynx and 50% in their stool. For both
223	stool and NP swabs, genes conferring resistance to beta lactams were the most abundant, and
224	included $ampC$ (n=2), which confers resistance to first through third generation cephalosporins,
225	and IMP-1 (n=1) which confers broad spectrum resistance that includes carbapenems. In

addition, genetic signatures of resistance to other antibacterial agents including aminoglycosides,
macrolides/lincosamides, phenicols, sulfas, and tetracyclines were identified (Figure S2).

228

229 Discussion

The clinical management of children with fever is challenging in Africa, where clinicians often have access only to malaria diagnostics. A better understanding of the microbial agents causing fever in African children is needed to inform the development of better diagnostic algorithms and therapeutic guidelines. To address this unmet need, we developed and deployed IDseq in combination with unbiased mNGS to characterize the etiology of fever in Ugandan children admitted to a rural district hospital. We identified a wide range of pathogens in these children.

237

238 Other studies evaluating causes of febrile illness in African children have focused on a 239 limited number of pathogens [22]–[25]. In a study of febrile children in Tanzania utilizing rapid 240 diagnostic tests, serologic tests, culture, and molecular tests, viruses accounted for 51% of lower 241 respiratory infections, 78% of systemic infections, and 100% of nasopharyngeal infections. 242 Additionally, 9% of the children had malaria and 4.2% bacteremia [26]. In febrile children in 243 Kenya, reported pathogens were spotted fever group *Rickettsia* (22.4%), influenza (22.4%), 244 adenovirus (10.5%) parainfluenza virus 1-3 (10.1%), Q fever (8.9%), RSV (5.3%), malaria 245 (5.2%), scrub typhus (3.6%), human metapneumovirus (3.2%), group A Streptococcus (2.3)% 246 and typhus group Rickettsiae (1.0%) [27], [28]. Another study reported bacteremia in 19.1% of 247 children admitted to a referral hospital in Uganda [29]. Additionally, in patients (across all age

groups) with severe febrile illness, bacteremia was detected in 10.1% in North Africa, 10.4% in
East Africa, and 12.4% in West Africa [30].

250

251 Traditional pathogen detection methods, including culture, serology, and pathogen 252 directed molecular methods, are logistically challenging in resource limited settings due to the 253 need for extensive microbiology laboratory infrastructure. Unbiased sequencing approaches are 254 designed to identify all potential pathogens, but have been limited by high cost. The costs of 255 deep sequencing are rapidly decreasing, but the analysis of mNGS data necessarily incurs an 256 increasingly large cost, as the available genomic databases to be searched continue to expand. 257 Other major challenges for mNGS approaches include the need for better control datasets, in 258 particular to enable discrimination of contaminants and commensal organisms from true 259 pathogens. The IDseq platform was based on our prior experience with in-house pipelines for 260 pathogen detection [5], [31], [32], and it aims to address existing computational and 261 bioinformatics barriers by providing facile cloud-based mNGS analysis without the requirement 262 for significant on-premise computational infrastructure.

263

Using mNGS and IDseq, the most common pathogen identified in the blood of febrile Ugandan children was *P. falciparum*, an expected result considering the high incidence of malaria in Tororo District at the time of this study [33]. Some discrepancies were seen compared to blood smear readings, with false positive smears probably due to errors in slide reading, a common problem in African clinics [34], and false negative smears due to the expected greater sensitivity of mNGS for identification of *P. falciparum*. In children with only sub-microscopic parasitemia, it is uncertain whether fevers can be ascribed to malaria, and in fact many children

had both *P. falciparum* and additional pathogens identified. Interestingly, three of the four cases
of parvovirus B19 were found in association with *P. falciparum*; this co-infection has been

- associated with severe anemia with life-threatening consequences [35]–[37].
- 274

275 HRV was the most commonly identified virus in NP swab samples, consistent with 276 findings previously reported in sub-Saharan Africa and developed countries [38]-[42]. HRV-C 277 was most frequently encountered (54.1%), followed by HRV-A (43.2%) and HRV-B (2.7%), 278 similar to the distribution of HRVs previously reported in Kenya [38]. We identified two novel 279 HRV-C species; these viruses were about 70% identical to the most closely related previously 280 described HRV-C species [20]. Overall, we detected at least three HRV-A and eight HRV-C 281 types co-circulating in Tororo District. Of note, during the same collection period, a lethal HRV-282 C outbreak was reported in chimpanzees in Kibale National Park, in western Uganda [43]. The 283 HRV-C reported in western Uganda was modestly related to an isolate observed in our study 284 (74% nucleotide identity; 81% amino acid identity) (Figure 4) [43]. Our results confirm that a 285 wide spectrum of HRVs infects Ugandan children. In addition to HRV, we detected a spectrum 286 of other known respiratory viruses, including RSV, human parainfluenza viruses, human 287 coronaviruses, and adenovirus.

288

Diarrheal disease is one of the leading causes of death in children in Africa [44]. Approximately 48% of febrile children in our study presented with diarrhea, but due to logistical constraints stool specimens were available for only 10 cases. Rotavirus A, the leading cause of pediatric diarrhea worldwide [45], was the most commonly identified pathogen in this cohort. Rotavirus vaccination, known to be highly effective, is yet to be implemented in Uganda, but the need is clear [45]. In addition to rotavirus A, we detected *Cryptosporidium*, norovirus, *Giardia*, *B. hominis* and several enteroviruses in stool specimens. Enteroviruses, HRV-C, and
mamastrovirus were also identified in the serum of three children with clinical diagnoses of
gastroenteritis or diarrhea.

298

299 Unbiased inspection of microbial sequences from sera revealed a novel member of the 300 orthobunyavirus genus, tentatively named Nyangole virus, which was identified as a co-infection 301 with *P. falciparum* in a child with clinical diagnoses of malaria and pneumonia. The virus was 302 surprisingly divergent from known viruses, with an average amino acid similarity of 51.6% to its 303 nearest known relatives including Calchaqui, Anopheles A and Kaeng Khoi viruses. Mosquitoes 304 have been proposed as a vector for Calchaqui and Anopheles A viruses; Kaeng Khoi virus has 305 been isolated from bedbugs [46]–[48]. Antibodies to these viruses have been detected in human 306 sera, but their role as human pathogens is uncertain [46]–[49]. While the depth of coverage of 307 Nyangole virus sequence in our patient suggests significant viremia, and other orthobunyaviruses 308 are responsible for severe human illnesses (e.g., California encephalitis virus, La Crosse virus, 309 Jamestown Canyon virus, and Cache Valley virus) [50], it is unknown whether the identified 310 virus was responsible for the presenting symptoms.

311

312 NP swab analysis identified another Orthobunyavirus, Bwamba virus, in a child admitted 313 with rash, sepsis and diarrhea. This virus has previously been described to cause fever in Uganda 314 [51]. Our identification of two orthobunyaviruses, including one novel virus, in a small sample 315 of febrile Ugandan children suggests that the landscape of previously unidentified viruses that 316 infect African children and potentially cause febrile illness, is significantly under explored. Molecular evidence of resistance to every available antibiotic except vancomycin in the WHO Essential Medicines List was identified in this study [52]. Three children had genotypic evidence of ESBL producing organisms predicted to be resistant to ceftriaxone, a frontline antibiotic for severe infections in this region [53]. In addition, one of these three children carried IMP-1, which also confers resistance to carbapenems, a class of antibiotics reserved for the most resistant infections.

323

324 Our exploratory pilot study had important limitations. First, our samples were not 325 collected randomly, but rather were a convenience sample due to the logistical constraints of our 326 small clinical study; as such the results should not be seen as broadly representative of pathogens 327 infecting Ugandan children. In particular, the lack of identification of bacteremia in study 328 subjects may have been due to a relative paucity of severe illness, compared to that in other 329 studies, in our cohort of admitted children. Second, clinical evaluation of children followed the 330 standards of a rural African hospital, so diagnostic evaluation was limited to physical 331 examination and malaria blood smears. Much more may be learned by linking rigorous clinical 332 evaluation with mNGS results, and thereby more comprehensively assessing associations 333 between clinical syndromes and specific pathogens.

334

335 Despite these limitations, our study demonstrates the utility of the mNGS/IDseq platform,
336 and provides an important cross sectional snapshot of causes of fever in African children.
337 Combining unbiased mNGS and the IDseq platform enabled the identification of likely known

and novel causes of pediatric illness, and makes available a powerful new open access tool for

339 the characterization of infectious diseases in resource limited settings

340 **Potential implications**

341 This study provides a snapshot of pediatric fever in Tororo District, Uganda. mNGS 342 permits universal pathogen detection using a single assay, and thus avoids the need for multiple 343 independent, and often costly tests to determine disease etiology. Despite the promise and 344 decreasing costs of this technology, the extensive computational and bioinformatic infrastructure 345 needed to perform analysis of sequencing data remains a major barrier to implementation of 346 mNGS in the developing world. Here we address the need for bioinformatic democratization and 347 computational capacity building with IDseq, an open access platform to bring infectious disease 348 surveillance to regions where it is needed most. As progress is made toward elimination of 349 malaria in sub-Saharan Africa, it will be increasingly important to understand the landscape of 350 pathogens that account for the remaining burden of morbidity and mortality. The use of mNGS 351 can contribute importantly to this understanding, offering unbiased identification of infecting 352 pathogens.

353

354 Materials and Methods

355

356 Enrollment of study subjects:

We studied children admitted to Tororo District Hospital, Tororo, Uganda, with febrile illnesses. Potential subjects were identified by clinic staff, who notified study personnel, who subsequently evaluated the children for study eligibility. Inclusion criteria were: 1) age 2-60 months; 2) admission to Tororo District Hospital for acute illness; 3) documentation of axillary temperature >38.0°C on admission or within 24 hours of admission; and 4) provision of informed consent from the parent or guardian for study procedures.

363

364 Study specimens:

365	NP swabs and blood were collected from each enrolled subject within 24 hours of
366	hospital admission. Approximately 5 ml of blood was collected by phlebotomy, the sample was
367	centrifuged at room temperature, and serum was then stored at -80°C. NP swab samples
368	collected with FLOQSwabs [™] swabs (COPAN) were placed into cryovials with Trizol
369	(Invitrogen), and stored at -80°C within ~5 min of collection. For subjects with acute diarrhea (\geq
370	3 loose or watery stools in 24 hours), stool was collected into clean plastic containers and stored
371	at -80°C within ~5 min of collection. Samples were stored at -80°C until shipment on dry ice to
372	UCSF for sequencing.
373	
374	Clinical data:
375	Clinical information was obtained from interviews with parents or guardians, with
376	
570	specific data entered onto a standardized case record form that included admission diagnosis and
377	specific data entered onto a standardized case record form that included admission diagnosis and physical examination as well as malaria blood smear results. For malaria diagnosis, thick blood
	-
377	physical examination as well as malaria blood smear results. For malaria diagnosis, thick blood
377 378	physical examination as well as malaria blood smear results. For malaria diagnosis, thick blood smears were Giemsa stained and evaluated by Tororo District Hospital laboratory personnel
377 378 379	physical examination as well as malaria blood smear results. For malaria diagnosis, thick blood smears were Giemsa stained and evaluated by Tororo District Hospital laboratory personnel following routine standard-of-care practices. No efforts were made to improve on routine
377378379380	physical examination as well as malaria blood smear results. For malaria diagnosis, thick blood smears were Giemsa stained and evaluated by Tororo District Hospital laboratory personnel following routine standard-of-care practices. No efforts were made to improve on routine practice, so malaria smear readings represent routine standard-of-care rather than optimal quality
377378379380381	physical examination as well as malaria blood smear results. For malaria diagnosis, thick blood smears were Giemsa stained and evaluated by Tororo District Hospital laboratory personnel following routine standard-of-care practices. No efforts were made to improve on routine practice, so malaria smear readings represent routine standard-of-care rather than optimal quality

385 clinical samples as well as positive (HeLa cells) and negative (water) controls, and unbiased

386	cDNA libraries were generated using previously described method [54]. Barcoded samples were
387	pooled, size selected (Blue Pippin), and run on an Illumina HiSeq2500 to obtain 135 base pair
388	(bp) paired-end reads
389	
390	Bioinformatic analysis and pathogen identification:
391	Microbial pathogens were identified from raw sequencing reads using the IDseq Portal
392	(https://idseq.net), a novel cloud-based, open-source bioinformatics platform designed for
393	detection of microbes from metagenomic data (Figure 1). IDseq scripts and user instructions are
394	available at https://github.com/chanzuckerberg/idseq-dag and the graphical user interface web
395	application for sample upload is available at <u>https://github.com/chanzuckerberg/idseq-web</u> .
396	IDseq is conceptually based on previously implemented platforms [5], [31], [32], but is
397	optimized for scalable Amazon Web Services (AWS) cloud deployment. Bioinformatics data
398	processing jobs are carried out on demand as Docker containers using AWS Batch. Alignments
399	to the National Center for Biotechnology Information (NCBI) database are executed on
400	dedicated auto scaling groups (ASG) of Amazon Elastic Compute Cloud (EC2) instances, with
401	the number of server instances varied with job load. Fast downloads of the NCBI database from
402	the Amazon Simple Storage Service to each new server instance are enabled by the open-source
403	tool s3mi (https://github.com/chanzuckerberg/s3mi). Initial alignment and removal of reads
404	derived from the human genome is performed using the Spliced Transcripts Alignment to a
405	Reference (STAR) algorithm [55]. Low-quality reads, duplicates, and low-complexity reads are
406	then removed using the Paired-Read Iterative Contig Extension (PRICE) computational package
407	[56], the CD-HIT-DUP tool [57], and a filter based on the Lempel-Ziv-Welch (LZW)

408 compression score, respectively. A second round of human read filtering is carried out using

409	bowtie2 [58]. Remaining reads are queried against the most recent version of the NCBI
410	nucleotide and non-redundant protein databases (updated monthly) using GSNAPL and
411	RAPSearch2 [59], [60], respectively. Reads matching GenBank records in the superphylum
412	Deuterostomia are removed, given the high likelihood that such residual reads are of human
413	origin. The relative abundance of microbial taxa is calculated based on reads per million (rpM)
414	mapped at the genus level. To distinguish potential pathogens from ubiquitous environmental
415	agents including commensal flora, a Z-score is calculated for the value observed for each genus
416	relative to a background of healthy and no-template control samples [31]. An overview of this
417	pipeline is represented in Figure 1.
418	
419	IDseq can process 150 samples at a given time. As of this writing, the current version of
420	the IDseq pipeline (IDseqv1.8) processes fastq files with approximately 70 million reads,
421	typically containing >99% host sequence, in 34 minutes. Run times may vary depending on
422	demand, percentage of non-host sequence, and autoscaling parameters.
423	
424	For this study we report species greater than 0 rpM and Z-scores detected in the serum,
425	stool, and NP samples. Consistent with previous studies, low levels of "index bleed through" or
426	"barcode hopping" (assignment of sequencing reads to the wrong barcode/index) was observed
427	within the non-templated control samples [61]. To prevent mis-assignment, when a microbe
428	found in more than one sample, it was reported only when present at levels at least four times the
429	level of mis-assigned reads observed in the control samples. Given the extremely high levels of
430	rotavirus found in stool samples, these samples were run in duplicate, and only microbes
431	identified in both samples and present at levels at least four times the number of reads mis-

assigned in the control samples were reported. If the reads identified for a given pathogen were
not species-specific, we reported the corresponding genus. For NP and stool samples, because
the nasopharynx and intestines are normally colonized with commensal bacteria [62]–[65], only
non-bacterial species were reported.

436

437 Genome assembly, annotation and phylogenetic analysis:

438 To more comprehensively characterize the genomes of identified microbes PRICE [56] 439 and St. Petersburg genome assembler (SPAdes) [66] were used to de novo assemble short read 440 sequences into larger contiguous sequences (contigs). Assembled contigs were queried against 441 the NCBI nt database using BLAST to identify the closest related microbes. GenBank annotation 442 files from genome sequence records corresponding to the highest scoring alignments were used 443 to identify potential features within the *de novo* assembled genomes. Geneious v10.3.2 was used 444 to annotate newly assembled genomes. Reference genomes for multiple sequence alignments and 445 phylogenetic analyses were downloaded from NCBI. Multiple sequence alignments were 446 generated using ClustalW in MEGA v6.0 and the Geneious aligner in Geneious v10.3.2. 447 Neighbor-joining phylogenetic trees were generated using Geneious v10.3.2 and further assessed using FigTree v1.4.3. Annotation of protein domains in the novel orthobunyaviruses was 448 449 performed using the InterPro webserver [67] as well as direct alignment against previously 450 known orthobunyaviruses. The TOPCONS webserver [68] was used for the identification of 451 transmembrane regions and signal peptides, and the NetNglyc 1.0 Server 452 (http://www.cbs.dtu.dk/services/NetNGlyc/) for the identification of glycosylation sites. 453

454 **Evaluation of NP microbiome diversity:**

455	We applied SDI to evaluate alpha diversity of microbes identified in NP samples. For this
456	analysis patients were stratified into two categories based on clinical assignment: respiratory
457	infections (admitting diagnosis of pneumonia, respiratory tract infection, or bronchiolitis; n=52)
458	and all other syndromes (n=39); cases with unknown admitting diagnosis were excluded. SDI
459	was calculated in R using the Veganv2.4.4 package on genus-level reads per million values for
460	all microbes, including bacteria. A Wilcox Rank Sum test was used to evaluate differences in
461	SDI between patients in the two categories.
462	
463	Antimicrobial resistance gene identification in nasopharynx and stool:
464	The SRST2 computational package was used to identify antimicrobial resistance genes
465	using the Argannot2 database as previously described [21]. We defined extended spectrum β -
466	lactamase (ESBL) as a β -lactamase conferring resistance to the penicillins, first-, second-, and
467	third-generation cephalosporins including the gene classes proposed by Giske et al [69].
468	
469	Availability of data and code
470	All raw data have been deposited under Bioproject ID: PRJNA483304. Assembled
471	genomes can be accessed in GenBank: Accession numbers: MH685676-MH685701,
472	MH685703- MH685719, MH684286-MH684293, MH684298-MH684334. All the raw data,
473	intermediate data and IDseq reports can also be accessed at https://idseq.net [Project ID: Uganda
474	- all - 2]. All IDseq scripts and user instructions are available at
475	https://github.com/chanzuckerberg/idseq-dag and the graphical user interface web application for
476	sample upload is available at https://github.com/chanzuckerberg/idseq-web. While IDseq is

- 477 under continuous development and improvement, full version control of processing runs and
- 478 reference databases are standard features.

479

480 **Declarations:**

- 481 List of abbreviations
- 482 AWS Amazon Web Services
- 483 ASG Auto Scaling Groups
- 484 BLAST Basic Local Alignment Search Tool
- 485 EC2 Elastic Compute Cloud
- 486 ESBL Extended spectrum β -lactamase
- 487 HHV human herpesvirus
- 488 HIV-1 human immunodeficiency 1 virus
- 489 HRV Human Rhinovirus
- 490 IQR Inter-quartile range
- 491 L coding region Large segment coding region (RNA-dependent RNA polymerase)
- 492 LZW Lempel-Ziv-Welch
- 493 M coding region Medium segment coding region (glycoprotein)
- 494 MEGA Molecular Evolutionary Genetics Analysis
- 495 mNGS metagenomic next-generation sequencing
- 496 NCBI National Center for Biotechnology Information
- 497 NP swab Nasopharyngeal swab
- 498 nr database non-redundant database
- 499 nt database nucleotide database
- 500 PRICE Paired-Read Iterative Contig Extension
- 501 rpM reads per million
- 502 RSV respiratory syncytial virus
- 503 S coding region Small segment coding region (nucleocapsid)
- 504 SDI Simpsons diversity Index
- 505 SPAdes St Petersburg genome assembler
- 506 SRST2 Short Read Sequencing Typing
- 507 STAR Spliced Transcripts Alignment to a Reference
- 508 TTV torque teno virus
- 509 VP1 Capsid protein VP1
- 510 WHO World Health Organization
- 511
- 512 Ethics approval and consent to participate

513	The study protocol was approved by the Uganda National Council of Science and Technology
514	and the Institutional Review Boards of the School of Medicine, Makerere University-College of
515	Health Sciences and the University of California, San Francisco.
516	
517	Competing interests
518	None
519	
520	Funding
521	JLD is supported by the Chan Zuckerberg Biohub. CB, BD, YJ, JS, RE and JW are funded by
522	the Chan Zuckerberg Initiative. SN was supported by Howard Hughes Medical Institute. PJR is
523	funded by the National Institutes of Health, and work on this project by JH, MK, OB, and PJR
524	was funded by the Doris Duke Charitable Foundation. MRW is supported by the Rachleff
525	Foundation, NINDS K08NS096117 and the University of California, San Francisco Center for
526	Next-Gen Precision Diagnostics, which is supported by the Sandler Foundation and the William
527	K. Bowes, Jr. Foundation. AR is supported by the Rachleff Foundation. CL is supported by
528	NHLBI K23HL138461-01A1, Nina Ireland Foundation and Marcus Program in Precision
529	Medicine. KK is supported by the UC Berkeley UC San Francisco Joint Program in
530	Bioengineering.
531	
532	Authors contributions
533	SN, JH, MK, OB, TR, AM, PR and JLD contributed to experimental design, data acquisition and
534	sample processing. SN, JH, MK, OB, PR, TR, and AM, contributed to patient recruitment and

535 clinical testing. CB, BD, YJ, JS, RE, and JW developed the IDseq pipeline. AR, KK, CL, SN,

536 PR, MRW, and JLD contributed to data analysis. AR, MRW, PR, and JLD contributed to537 manuscript writing.

538

539 Acknowledgements

- 540 We thank the children and families in Tororo District, Uganda, who participated in this study.
- 541 We thank Eric Chow, Jessica Lund, and the UCSF Center for Advanced Technology for
- 542 assistance with sequencing. We recognize Amy Kistler. for intellectual discussions and
- 543 comments on the paper. We thank Mark Stenglein for his helpful discussions and advice.
- 544

545 **Figures:**

- 546 Figure 1: Schematic representation of IDseq pipeline
- 547 Figure 2: Microbes found in (A) serum and (B) nasopharyngeal (NP) swab samples. Note that

548 bacterial species were not considered for NP samples.

- 549 Figure 3: Characterization of the novel orthobunyavirus identified in a febrile child. (A)
- 550 Schematic representation of the large (L) or RNA dependent RNA polymerase, medium (M) or
- 551 polyprotein of Gn, NSm and Gc proteins and small (S) segment encoding the nucleocapsid (N)
- 552 protein of Nyangole virus and percentage identity with the most closely related virus.
- 553 Phylogenetic tree of all complete orthobunyavirus genome sequences along with Nyangole virus
- are represented in (B) for the RNA dependent RNA polymerase and (C) for the glycoprotein.
- 555 Figure 4: Phylogenetic tree of all complete HRV genomes from NCBI and HRV genomes
- assembled in this study (Purple Rhinovirus A, Orange Rhinovirus C)
- 557

558 Supplemental figures:

- 559 Figure S1: Simpsons diversity index (SDI) for samples with pneumonia versus other etiologies.
- 560 Each triangle represents one sample.
- 561 Figure S2: Antimicrobial resistant genes identified in (A) nasopharynx and (B) stool samples
- 562 Figure S3: Complete phylogenetic tree of (A) Large (L) or RNA dependent RNA polymerase,
- 563 (B) Medium (M) or polyprotein of Gn, NSm and Gc proteins and (C) Small (S) segment
- 564 encoding Nucleocapsid segments
- 565
- 566 **Table 1:** Overview of the patients enrolled in the study

	Age	Gender	
Clinical category	(mean, months)	Male 25 9 3 5 2	Female
Respiratory illness (54)	14.0	25	28
Diarrhea/gastroenteritis (28)	12.1	9	19
Malaria (11)	15.5	3	7
Sepsis (11)	19.9	5	6
Malnutrition (5)	18.4	2	3
Other (15)	21.1	11	3

The other category includes the following admission criteria: unknown (n=10), UTI (n=1), meningitis (n=2), hepatitis (n=1), fever (n=1). Gender information were missing for one child in the following categories: Respiratory illness, Malaria and Other. Age information were missing for one child in the following categories: Respiratory illness and Other.

⁵⁶⁸ **Table S1:** (A) Co-infection table for *P. falciparum*

Microbial co-infections with <i>P.falcipatum</i>	Number of cases
Parvovirus B19	2
Human herpesvirus 4	1
Human immunodeficiency virus 1	1
Norwalk virus	1
Orthobunyavirus	1
HRV-A	1
HRV-C	1
Rotavirus A	1
Parvovirus B19, HRV-C and human parechovirus 2	1

⁵⁶⁷

570 **Table S1:** B) Co-infection table for HRV

microbial co-infections with HRV	number of cases
Human coronavirus OC43	2
Human parainfluenza virus 1	2
Rotavirus A	2
Hepatitis A	1
HHV type 5	1
HHV type 6	1
Human parainfluenza virus 4	1
RSV	1
KI polyomavirus	1
RSV and Mamastrovirus 1	1
RSV and human parainfluenza virus 1	1
HHV type 5 HHV type 7, human coronavirus OC43	1
Hepatitis B, human coronavirus NL63 and influenza A	1

571

572 Data files:

573 Data file 1: (A) Clinical signs and symptoms of patients enrolled in the study. (B) mNGS

574 findings in patients enrolled in the study

575 Data file 2: Total number of sequencing reads and unique non-human reads in all samples

576 analyzed

577

578 **References**

579

- 580 1. Maze MJ, Bassat Q, Feasey NA, Mandomando I, Musicha P, Crump JA. The
- 581 epidemiology of febrile illness in sub-Saharan Africa: implications for diagnosis and
- 582 management. Clin Microbiol Infect. 2018; 24(8):808-814. doi:10.1016/j.cmi.2018.02.011.
- 583 2. Prasad N, Sharples KJ, Murdoch DR, Crump JA. Community prevalence of fever and
- relationship with malaria among infants and children in low-resource areas. Am J Trop
- 585 Med Hyg. 2015;93(1):178-180. doi:10.4269/ajtmh.14-0646.

- 586 3. Guidelines for the treatment of malaria, 2nd edition. World Health Organization. 2010.
- 587 4. Bibby K. Metagenomic identification of viral pathogens. Trends Biotechnol.
- 588 2013;31(5):275-279. doi:10.1016/j.tibtech.2013.01.016.
- 589 5. Yozwiak NL, Skewes-Cox P, Stenglein MD, Balmaseda A, Harris E, DeRisi JL. Virus
- identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl
- 591 Trop Dis. 2012;6(2):e1485. doi:10.1371/journal.pntd.0001485.
- 592 6. Wilson MR, Naccache SN, Samayoa E, et al. Actionable Diagnosis of Neuroleptospirosis
- 593 by Next-Generation Sequencing. N Engl J Med. 2014;370(25):2408-2417.
- 594 doi:10.1056/NEJMoa1401268.
- 595 7. Wilson MR, Shanbhag NM, Reid MJ, et al. Diagnosing Balamuthia mandrillaris
- 596 Encephalitis with Metagenomic Deep Sequencing. Ann Neurol. 2015;78(5):722-730.
 597 doi:10.1002/ana.24499.
- 598 8. Doan T, Wilson MR, Crawford ED, et al. Illuminating uveitis: metagenomic deep
- sequencing identifies common and rare pathogens. Genome Med. 2016;8:1-2.
- 600 doi:10.1186/s13073-016-0344-6.
- Quan PL, Wagner TA, Briese T, et al. Astrovirus encephalitis in boy with X-linked
 agammaglobulinemia. Emerg Infect Dis. 2010;16(6):918-925.
- 603 doi:10.3201/eid1606.091536.
- 10. Palacios G, Druce J, Du L, et al. A New Arenavirus in a Cluster of Fatal Transplant-
- 605 Associated Diseases. N Engl J Med. 2008;358:991-998. doi: 10.1056/NEJMoa073785.
- 606 11. Muir P, Li S, Lou S, et al. The real cost of sequencing: Scaling computation to keep pace
- 607 with data generation. Genome Biol. 2016;17(1):1-9. doi:10.1186/s13059-016-0917-0.
- 608 12. Naoumov N V. TT virus highly prevalent, but still in search of a disease. J Hepatol.

609 2000;33(13):157-159. doi:10.1016/S0168-8278(00)80173-7.

- 610 13. Hafez MM, Shaarawy SM, Hassan AA, Salim RF, Abd El Salam FM, Ali AE. Prevalence
- 611 of transfusion transmitted virus (TTV) genotypes among HCC patients in Qaluobia
- 612 governorate. Virol J. 2007;4:1-6. doi:10.1186/1743-422X-4-135.
- 613 14. Abreu NA, Nagalingam NA, Song Y, et al. Sinus Microbiome Diversity Depletion and
- 614 Corynebacterium tuberculostearicum Enrichment Mediates Rhinosinusitis. Sci Transl
- 615 Med. 2012;4(151):151ra124-151ra124. doi:10.1126/scitranslmed.3003783.
- 616 15. Langelier C, Zinter M, Kalantar K, et al. Metagenomic Next-Generation Sequencing
- 617 Detects Pulmonary Pathogens in Hematopoietic Cellular Transplant Patients with Acute
- 618 Respiratory Illnesses. Am J Respir Crit Care Med. 2018 Feb 15;197(4):524-528. doi:
- 619 10.1164/rccm.201706-1097LE.
- 620 16. Park DE, Baggett HC, Howie SRC, et al. Colonization density of the upper respiratory
- 621 tract as a predictor of pneumonia Haemophilus influenzae, Moraxella catarrhalis,
- 622 Staphylococcus aureus, and Pneumocystis jirovecii. Clin Infect Dis. 2017;64:S328-S336.
- 623 doi:10.1093/cid/cix104.
- 17. Loens K, Van Heirstraeten L, Malhotra-Kumar S, Goossens H, Ieven M. Optimal
- 625 sampling sites and methods for detection of pathogen possibly causing community-
- 626 acquired lower respiratory tract infections. J Clin Microbiol. 2009;47(1):21-31.
- 627 doi:10.1128/JCM.02037-08.
- 18. Zar HJ, Barnett W, Stadler A, Gardner-Lubbe S, Myer L, Nicol MP. Aetiology of
- 629 childhood pneumonia in a well vaccinated South African birth cohort: A nested case-
- 630 control study of the Drakenstein Child Health Study. Lancet Respir Med. 2016;4(6):463-
- 631 472. doi:10.1016/S2213-2600(16)00096-5.

- 632 19. Lukashev AN, Vakulenko YA. Molecular evolution of types in non-polio enteroviruses. J
- 633 Gen Virol. 2017;98(12):2968-2981. doi:10.1099/jgv.0.000966.
- 634 20. McIntyre CL, Knowles NJ, Simmonds P. Proposals for the classification of human
- 635 rhinovirus species A, B and C into genotypically assigned types. J Gen Virol.
- 636 2013;94(PART8):1791-1806. doi:10.1099/vir.0.053686-0.
- 637 21. Inouye M, Dashnow H, Raven LA, et al. SRST2: Rapid genomic surveillance for public
- health and hospital microbiology labs. Genome Med. 2014;6(11):1-16.
- 639 doi:10.1186/s13073-014-0090-6.
- 640 22. Chipwaza B, Mugasa JP, Selemani M, et al. Dengue and Chikungunya Fever among Viral
- Diseases in Outpatient Febrile Children in Kilosa District Hospital, Tanzania. PLoS Negl
 Trop Dis. 2014;8(11). doi:10.1371/journal.pntd.0003335.
- 643 23. Jacob ST, Pavlinac PB, Nakiyingi L, et al. Mycobacterium tuberculosis Bacteremia in a
- 644 Cohort of HIV-Infected Patients Hospitalized with Severe Sepsis in Uganda-High
- 645 Frequency, Low Clinical Sand Derivation of a Clinical Prediction Score. PLoS One.
- 646 2013;8(8). doi:10.1371/journal.pone.0070305.
- 647 24. Crump JA, Morrissey AB, Nicholson WL, et al. Etiology of Severe Non-malaria Febrile
- 648 Illness in Northern Tanzania: A Prospective Cohort Study. PLoS Negl Trop Dis.
- 649 2013;7(7). doi:10.1371/journal.pntd.0002324.
- 650 25. Chipwaza B, Mhamphi GG, Ngatunga SD, et al. Prevalence of Bacterial Febrile Illnesses
- 651 in Children in Kilosa District, Tanzania. PLoS Negl Trop Dis. 2015;9(5).
- 652 doi:10.1371/journal.pntd.0003750.
- 653 26. D'Acremont V, Kilowoko M, Kyungu E, et al. Beyond Malaria Causes of Fever in
- Outpatient Tanzanian Children. N Engl J Med. 2014;370(9):809-817.

655 doi:10.1056/NEJMoa1214482.

- 656 27. O'Meara WP, Mott JA, Laktabai J, et al. Etiology of pediatric fever in Western Kenya: A
- 657 case-control study of falciparum Malaria, Respiratory Viruses, and Streptococcal
- 658 Pharyngitis. Am J Trop Med Hyg. 2015;92(5):1030-1037. doi:10.4269/ajtmh.14-0560.
- 659 28. Maina AN, Farris CM, Odhiambo A, et al. Q fever, scrub typhus, and rickettsial diseases
- 660 in children, Kenya, 2011–2012. Emerg Infect Dis. 2016;22(5):883-886.
- 661 doi:10.3201/eid2205.150953.
- 662 29. Kibuuka A, Byakika-Kibwika P, Achan J, et al. Bacteremia among febrile ugandan
- children treated with antimalarials despite a negative malaria test. Am J Trop Med Hyg.
- 664 2015;93(2):276-280. doi:10.4269/ajtmh.14-0494.
- 30. Prasad N, Murdoch DR, Reyburn H, Crump JA. Etiology of severe febrile illness in low-
- and middle-income countries: A systematic review. PLoS One. 2015;10(6):1-25.
- 667 doi:10.1371/journal.pone.0127962.
- 668 31. Wilson MR, O'Donovan BD, Gelfand JM, et al. Chronic Meningitis Investigated via
- 669 Metagenomic Next-Generation Sequencing. JAMA Neurol. 2018;94158.
- 670 doi:10.1001/jamaneurol.2018.0463.
- 671 32. Naccache SN, Federman S, Veeraraghavan N, et al. A cloud-compatible bioinformatics
- 672 pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical
- 673 samples. Genome Res. 2014;24(7):1180-1192. doi:10.1101/gr.171934.113.
- 674 33. Oguttu DW, Matovu JKB, Okumu DC, et al. Rapid reduction of malaria following
- 675 introduction of vector control interventions in Tororo District, Uganda: a descriptive
- 676 study. Malar J. 2017;16(1):1-8. doi:10.1186/s12936-017-1871-3.
- 677 34. Mekonnen SK, Aseffa A, Medhin G, Berhe N, Velavan TP. Re-evaluation of microscopy

678		confirmed Plasmodium falciparum and Plasmodium vivax malaria by nested PCR
679		detection in southern Ethiopia. Malar J. 2014;13(48). doi:10.1186/1475-2875-13-48.
680	35.	Agarwal R, Baid R, Datta R, Saha M, Sarkar N. Falciparum malaria and parvovirus B19
681		coinfection: A rare entity. Trop Parasitol. 2017;7(1):47-48. doi:10.4103/2229-
682		5070.202299
683	36.	Duedu KO, Sagoe KWC, Ayeh-Kumi PF, Affrim RB, Adiku T. The effects of co-
684		infection with human parvovirus B19 and Plasmodium falciparum on type and degree of
685		anaemia in Ghanaian children. Asian Pac J Trop Biomed. 2013;3(2):129-139.
686		doi:10.1016/S2221-1691(13)60037-4.
687	37.	Toan NL, Sy BT, Song LH, et al. Co-infection of human parvovirus B19 with
688		Plasmodium falciparum contributes to malaria disease severity in Gabonese patients.
689		BMC Infect Dis. 2013;13(1). doi:10.1186/1471-2334-13-375.
690	38.	Onyango CO, Welch SR, Munywoki PK, et al. Molecular epidemiology of human
691		rhinovirus infections in Kilifi, coastal Kenya. J Med Virol. 2012;84(5):823-831.
692		doi:10.1002/jmv.23251.
693	39.	O'Callaghan-Gordo C, Bassat Q, Morais L, et al. Etiology and epidemiology of viral
694		pneumonia among hospitalized children in rural mozambique: A malaria endemic area
695		with high prevalence of human immunodeficiency virus. Pediatr Infect Dis J.
696		2011;30(1):39-44. doi:10.1097/INF.0b013e3181f232fe.
697	40.	Mbayame Ndiaye Niang, Ousmane M. Diop, Fatoumata Diene Sarr, Deborah Goudiaby,
698		Hubert Malou-Sompy, Kader Ndiaye, Astrid Vabret LB. Viral Etiology of Respiratory
699		Infections in Children Under 5 Years Old Living in Tropical Rural Areas of Senegal: The
700		EVIRA Project. J Med Virol. 2010;82:866-872. doi: 10.1002/jmv.21665.

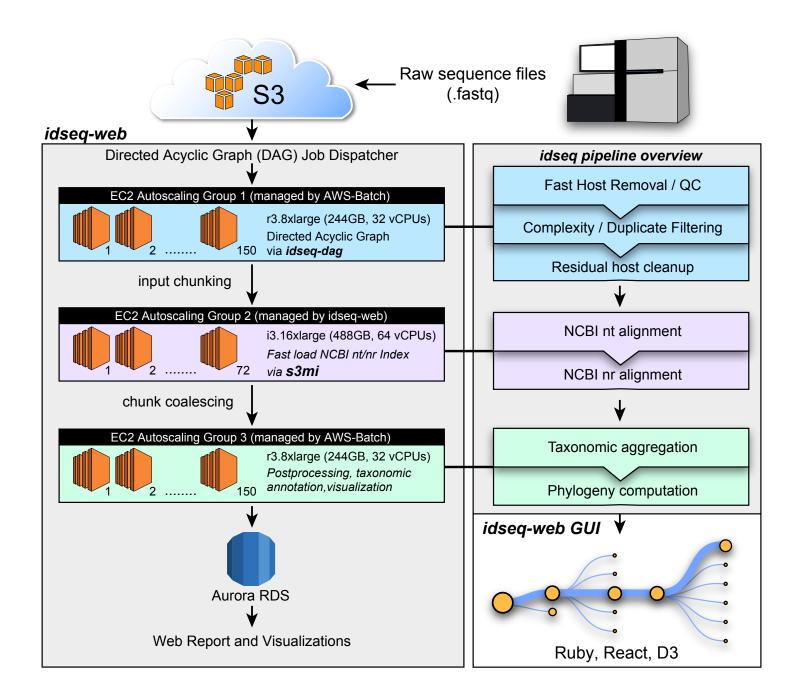
701	41.	Smuts HE, Workman LJ, Zar HJ. Human rhinovirus infection in young African children
702		with acute wheezing. BMC Infect Dis. 2011;11(1):65. doi:10.1186/1471-2334-11-65.
703	42.	Jain S, Self WH, Wunderink RG, et al. Community-Acquired Pneumonia Requiring
704		Hospitalization among U.S. Adults. N Engl J Med. 2015;373(5):415-427.
705		doi:10.1056/NEJMoa1500245.
706	43.	Scully EJ, Basnet S, Wrangham RW, et al. Lethal Respiratory Disease Associated with
707		Human Rhinovirus C in Wild Chimpanzees, Uganda, 2013. Emerg Infect Dis. 2018;24(2).
708		doi:10.3201/eid2402.170778.
709	44.	Diarrhoeal Disease. World Health Organization. 2017. http://www.who.int/news-
710		room/fact-sheets/detail/diarrhoeal-disease. Accessed 20 June 2018.
711	45.	Mwenda JM, Burke RM, Shaba K, et al. Implementation of Rotavirus Surveillance and
712		Vaccine Introduction - World Health Organization African Region, 2007-2016. MMWR
713		Morb Mortal Wkly Rep. 2017;66(43):1192-1196. doi:10.15585/mmwr.mm6643a7.
714	46.	Calisher CH, Monath TP, Sabattini MS, et al. A newly recognized vesiculovirus,
715		Calchaqui virus, and subtypes of Melao and Maguari viruses from Argentina, with
716		serologic evidence for infections of humans and horses. Am J Trop Med Hyg.
717		1987;36(1):114-119.
718	47.	Mohamed M, McLees A, Elliott RM. Viruses in the Anopheles A, Anopheles B, and Tete
719		Serogroups in the Orthobunyavirus Genus (Family Bunyaviridae) Do Not Encode an NSs
720		Protein. J Virol. 2009;83(15):7612-7618. doi:10.1128/JVI.02080-08.
721	48.	Williams JE, Imlarp S, Top FH, Cavanaugh DC, Russell PK. Kaeng Khoi virus from
722		naturally infected bedbugs (Cimicidae) and immature free tailed bats. Bull World Health
723		Organ. 1976;53(4):365-369.

- 49. Patroca da Silva S, Chiang JO, Marciel de Souza W, et al. Characterization of the Gamboa
- 725 Virus Serogroup (Orthobunyavirus Genus, Peribunyaviridae Family). Am J Trop Med
- 726 Hyg. 2018;98(5):tpmd170810. doi:10.4269/ajtmh.17-0810.
- 727 50. Plyusnin A, Elliott RM. Bunyaviridae: Molecular and Cellular Biology.; 2011.
- 51. Lutwama JJ, Rwaguma EB, Nawanga PL, Mukuye A. Isolations of Bwamba virus from
- south central Uganda and north eastern Tanzania. Afr Health Sci. 2002;2(1):24-28.
- 730 52. WHO Model List of Essential Medicines. Edition 14, 2017
- 731 53. UGANDA CLINICAL GUIDELINES. Ministry of Health. 2012.
- 54. Stenglein MD, Sanchez-Migallon Guzman D, Garcia VE, et al. Differential Disease
- 733 Susceptibilities in Experimentally Reptarenavirus-Infected Boa Constrictors and Ball

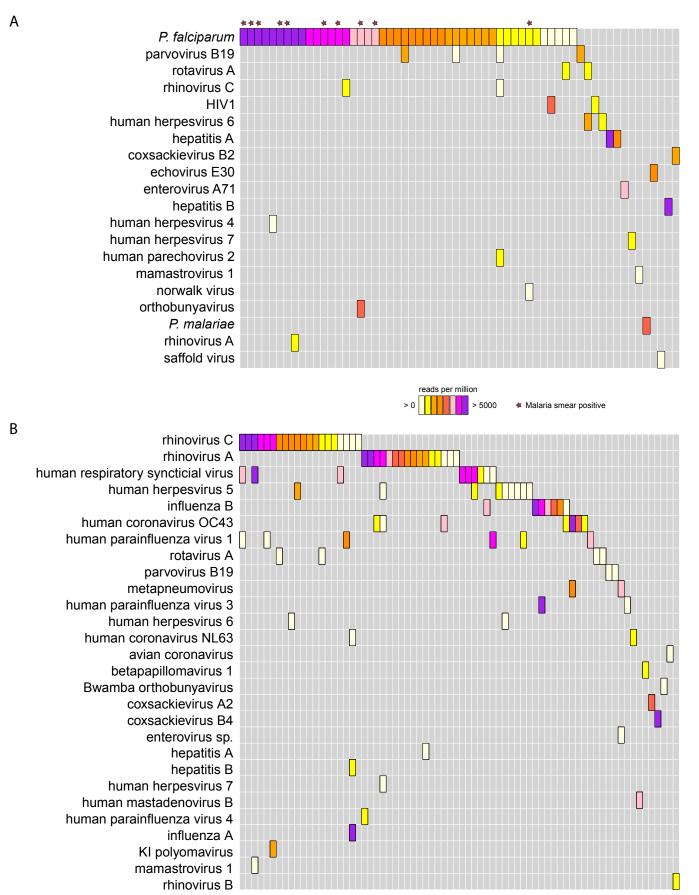
734 Pythons. J Virol. 2017;91(15):e00451-17. doi:10.1128/JVI.00451-17.

735 55. Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast universal RNA-seq aligner.

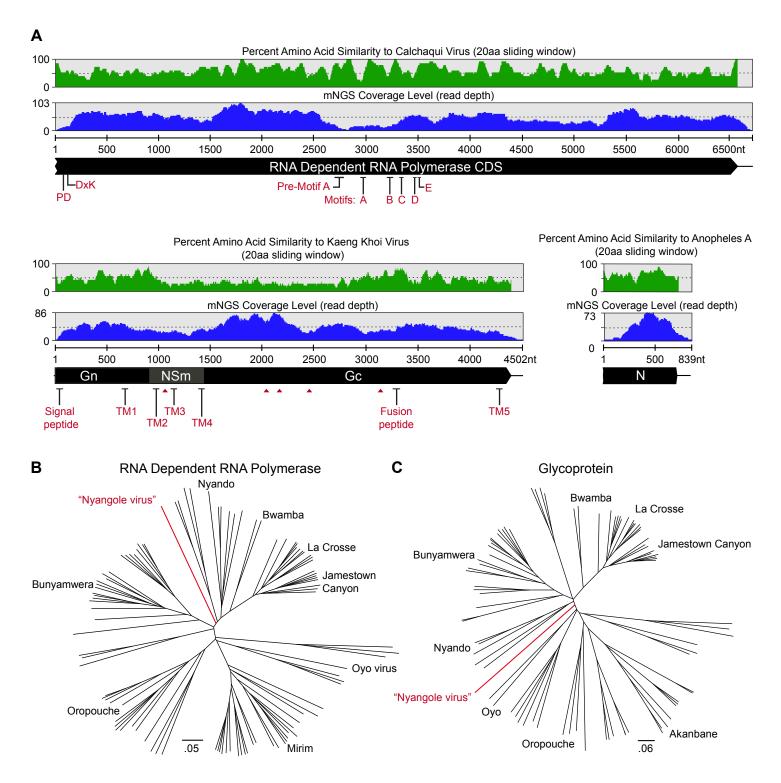
736 Bioinformatics. 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635.


- 737 56. Ruby JG, Bellare P, Derisi JL. PRICE: software for the targeted assembly of components
- of (Meta) genomic sequence data. G3 (Bethesda). 2013;3(5):865-880.
- 739 doi:10.1534/g3.113.005967.
- 57. Li W, Godzik A. Cd-hit: A fast program for clustering and comparing large sets of protein
 or nucleotide sequences. Bioinformatics. 2006;22(13):1658-1659.
- 742 doi:10.1093/bioinformatics/btl158.
- 58. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods.
- 744 2012;9(4):357-359. doi:10.1038/nmeth.1923.
- 745 59. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short
- 746 reads. Bioinformatics. 2010;26(7):873-881. doi:10.1093/bioinformatics/btq057.

- 747 60. Ye Y, Choi J-H, Tang H. RAPSearch: a fast protein similarity search tool for short reads.
- 748 BMC Bioinformatics. 2011;12(1):159. doi:10.1186/1471-2105-12-159.
- 749 61. Wilson MR, Fedewa G, Stenglein MD, et al. Multiplexed Metagenomic Deep Sequencing
- 750 To Analyze the Composition of High-Priority Pathogen Reagents. mSystems.
- 751 2016;1(4):e00058-16. doi:10.1128/mSystems.00058-16.
- 752 62. Bogaert D, Keijser B, Huse S, et al. Variability and diversity of nasopharyngeal
- 753 microbiota in children: A metagenomic analysis. PLoS One. 2011;6(2).
- 754 doi:10.1371/journal.pone.0017035.
- 755 63. Pérez-Losada M, Alamri L, Crandall KA, Freishtat RJ. Nasopharyngeal microbiome
- diversity changes over time in children with asthma. PLoS One. 2017;12(1):1-13.
- 757 doi:10.1371/journal.pone.0170543.
- 758 64. Hooper L V, Gordon JI. Commensal Host-Bacterial Relationships in the Gut. Science (80-
- 759). 2001;1115(10):1-7. doi:10.1126/science.1058709.
- 760 65. Sekirov I, Russell S, Antunes L. Gut microbiota in health and disease. Physiol Rev.
- 761 2010;90(3):859-904. doi:10.1152/physrev.00045.2009.
- 762 66. Bankevich A, Nurk S, Antipov D, et al. SPAdes: A New Genome Assembly Algorithm
- and Its Applications to Single-Cell Sequencing. J Comput Biol. 2012;19(5):455-477.
- 764 doi:10.1089/cmb.2012.0021.
- 765 67. Mitchell A, Chang HY, Daugherty L, et al. The InterPro protein families database: The
- 766 classification resource after 15 years. Nucleic Acids Res. 2015;43(D1):D213-D221.
- 767 doi:10.1093/nar/gku1243.
- 768 68. Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. The TOPCONS web server for
- consensus prediction of membrane protein topology and signal peptides. Nucleic Acids


- 770 Res. 2015;43(W1):W401-W407. doi:10.1093/nar/gkv485.
- 771 69. Giske CG, Cornaglia G. Supranational surveillance of antimicrobial resistance: The legacy
- of the last decade and proposals for the future. Drug Resist Updat. 2010;13(4-5):93-98.
- 773 doi:10.1016/j.drup.2010.08.002.

774


Figure 1

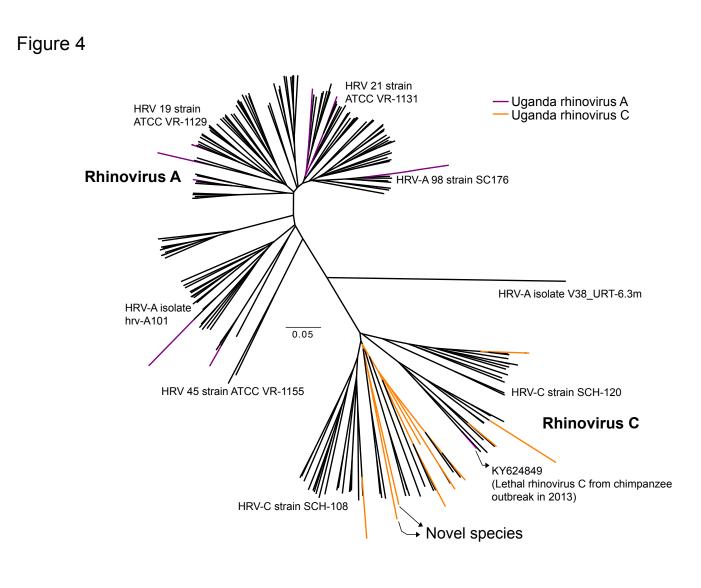
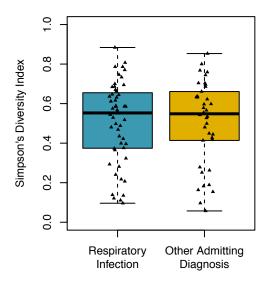
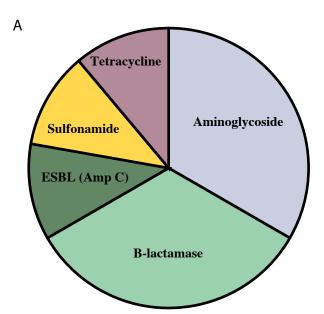
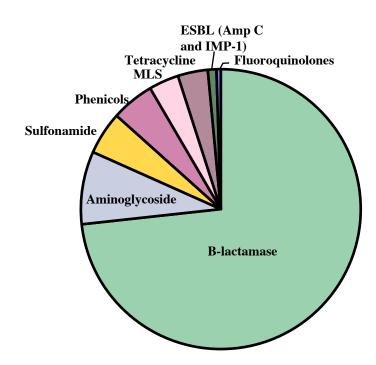
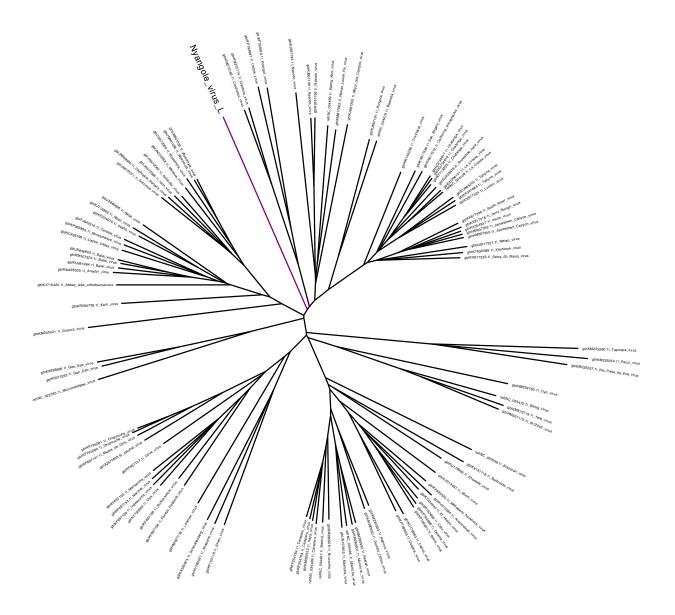


Figure 2




Figure 3


Figure S1


Category	AMR gene	Number
Aminoglycoside	StrA	3
B-lactamase	TEM-1D	3
ESBL	AmpC1	1
Sulfonamide	SulII	1
Tetracycline	TetO	1

В

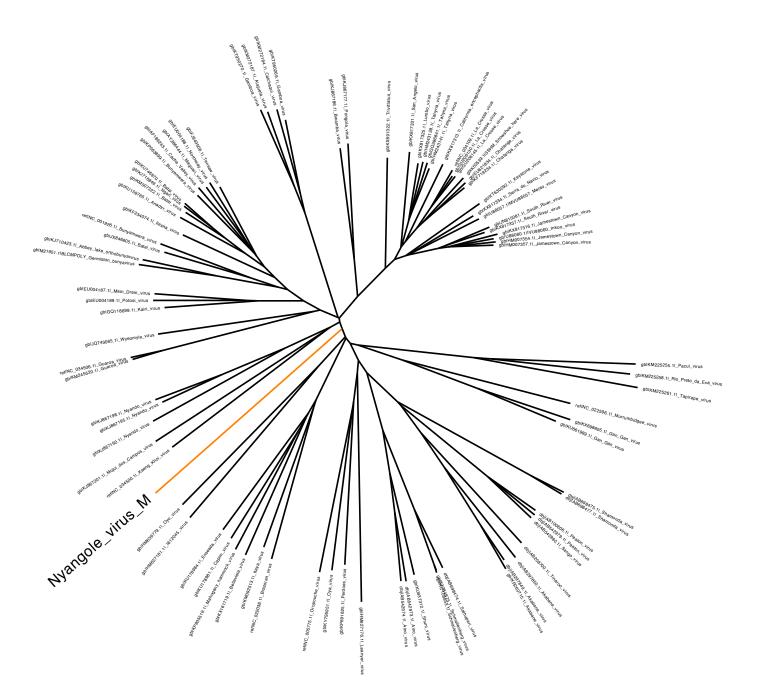

Category	AMR gene	Number
Aminoglycoside	StrA	8
Aminoglycoside	APH(3')-Ia	4
Aminoglycoside	StrB	3
Aminoglycoside	APH-Stph	1
Aminoglycoside	AacAad	1
B-lactamase	BRO	49
B-lactamase	PBP1b	46
B-lactamase	PBP1a	41
B-lactamase	TEM-1D	9
B-lactamase	CfxA	2
ESBL	AmpC1	1
ESBL	IMP-1	1
Fluoroquinolones	NorA	1
MLS	ErmX	4
MLS	MsrD	2
MLS	MphC	1
Phenicols	Cmr	4
Phenicols	CatA2	3
Phenicols	CatA9	1
Phenicols	CatBx	1
Sulfonamide	Sull	5
Sulfonamide	SulII	5
Tetracycline	TetB	3
Tetracycline	Tet-38	1
Tetracycline	TetC	1
Tetracycline	TetK	1
Tetracycline	TetM	1

Figure S3a

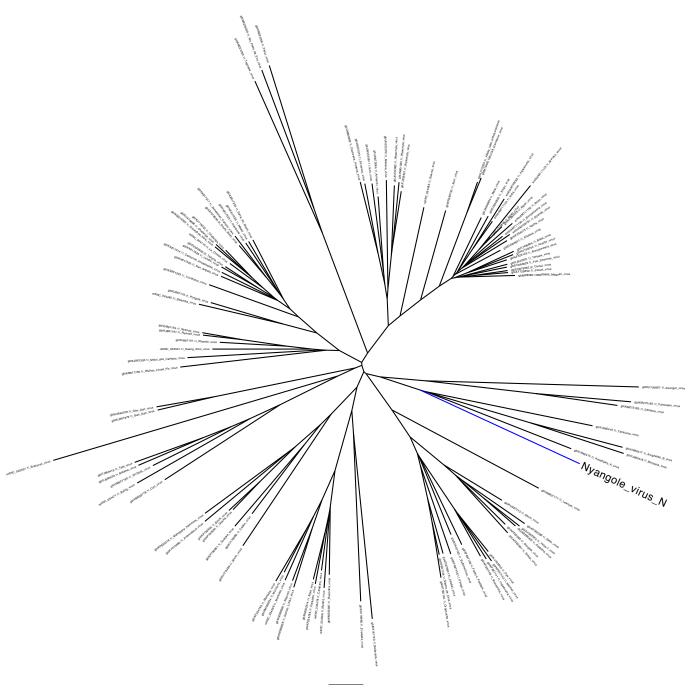

0.05

Figure S3b

0.06

Figure S3c

0.07