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Abstract

Schizophrenia and autism share some genotipic and phenotypic aspects as
connectome miswiring and common cognitive deficits. Currently, there are
no medical tests available for either disorders, and diagnostics for both of
them include direct reports of relatives and clinical evaluation by a psychi-
atrist. Despite several medical imaging biomarkers have been proposed in
the past, novel effective biomarkers or improvements of the existing ones is
still need. This work proposes a dynamic functional connectome analysis
combined with machine learning techniques to complement the present di-
agnostic procedure. We used the moving window technique to locate a set
of dynamic functional connectivity states, and then use them as features to
classify subjects as autism/schizophrenia or control. Moreover, by using dy-
namic functional connectivity measures we investigate the question whether
those two disorders overlap, namely whether schizophrenia is part of the
autism spectrum and which brain region could be involved in both disorders.
The results reveal that both static and dynamic functional connectivity can
be used to classify subjects with schizophrenia or autism. Lastly, some brain
regions show similar functional flexibility in both autism and schizophrenia
cohorts giving further possible proofs of their overlaps.
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1. Introduction

Schizophrenia and autism spectrum disorder (ASD) are neurological dis-
orders. Individuals who are affected by any of these disorders have difficul-
ties with communication and with what is usually considered normal social
behavior. Schizophrenia is a psychiatric disorder characterized by so-called
positive symptoms as having delusion, hallucination, disordered thinking and
speech and disorganized behavior [1]. Accompanying those, negative symp-
toms as reduced speaking, and reduced expression of emotions via facial
expression or voice tone can occur [2]. ASD is a set of neuro-developmental
disorders characterized by impaired social interaction and repetitive behav-
iors [3]. Among the expressed traits, deficits in nonverbal communicative
behaviors used for social interaction can appear, as poor verbal and nonver-
bal communication, eye contact and body language deficits. In many cases
subjects have also deficits in developing, maintaining, and understanding re-
lationships, and social contexts [4]. Besides, the majority of ASD subjects
fulfill diagnostic criteria for an anxiety disorder [5]. ASD severity is classified
according to the level of support required by the ASD subject. [4].

Those disorders have been also studied by using magnetic resonance imag-
ing (MRI) [6, 7]. Among the recent advances, connectomics is the most
promising. A connectome is a comprehensive representation of the brain
as a graph, where nodes are the brain regions, and edges represent con-
nections either structural or functional among those brain regions [8]. The
general spread miswiring in connectomes of subjects with either disorders
has led the hypothesis that schizophrenia is part of the autism spectrum as
the two disorders clearly overlap at some aspects [9]. Overall, schizophrenia
is found to cause misconnections among brain regions [10] and ASD is iden-
tified with patterns of both high and low connectivity among brain regions
[11, 3]. Both disorders are associated with decreases in inter-hemispheric con-
nectivity. Particularly between frontal and posterior regions in the parietal
lobe and occipital cortex [12, 13], and the corpus callous [14]. Recently, Ya-
hata et al. identified a small number of connections which can discriminate
ASD subjects from healthy control [15]. Mastrovito et al. compared atyp-
ical functional connectivity between ASD to typically developing children
and schizophrenia to normal control, highlighting also common connectivity
features between ASD and schizophrenia [16].
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A new method is gaining attention in the study of brain activity: dy-
namic functional connectivity (dFC), an approach to analyze the functional
connectivity from subsets of functional MRI (fMRI). This technique instead
of using time series at once it uses parts of them defined by overlapping or
non-overlapping windows of the overall series [17]. In this paper we focus
on using dFC features with machine learning tools and novel graph metrics.
More specifically we use support vector machine (SVM) for distinguishing
either ASD or schizophrenia from control subjects. Moreover we quantify
local dynamic differences and how they overlap between the two pathologies
using the flexibility index of brain regions. Flexibility of each node/area
corresponds to the number of times that it changes module allegiance (mod-
ularity) on time while we move across the dFC representation. A way to
quantify changes in modularity, in such a dynamic network, is to perform
clustering for each time-point independently and to count changes from one
time point to another. However, computing cluster independently for indi-
vidual time points has limitations as not taking into account the fact that
same elements exist at different time points. Moreover, identifying the same
labeling for each run can be cumbersome as many algorithms assign randomly
labels at each run. Therefore, most common clustering approaches have not
been available for time-dependent or multilayer networks, and ad hoc meth-
ods have been introduced to overcome those limitation [18, 19]. Mucha et
al. developed a methodology, generalizing the determination of community
structure via quality functions to multislice networks, which are defined by
coupling multiple adjacency matrices as a generalized Louvain modularity
[20]. For this reason this technique appears appropriate to cluster time de-
pendent multilayer networks as dynamic FC matrices.

1.1. Functional Connectivity

Functional Connectivity (FC) is a measure of how temporally dependent
processes interact. In the context of fMRI, these dependences is related to
brain regions anatomically separated and their neuronal activation interact.
In a functional connectome, edges are defined by the degree of association
between regions during periods. Those associations can be determined by
methods such as cross-correlations in the time or frequency domain, mu-
tual information or spectral coherence [21]. Static Functional Connectiv-
ity is a global measure of functional connectivity of brain activity for the
whole BOLD fMRI time series. Dynamic Functional Connectivity refers to
the observed phenomenon that functional connectivity changes over time [22]
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even for resting-state acquisitions. It is sometimes referred as ”time-varying”
connectivity. Contrary to the previous notion that resting-state functional
connectivity are stationary over time, studies revealed that when a brain is
scanned over a period of time, it reveals a number of functional connectivity
states which are susceptible to variations. Those have been also investigated
with emphasis on matrix decompositions such as principal component anal-
ysis and independent component analysis [23]. Moreover, the nature of
dynamic functional connectivity can be used to distinguish between healthy
and afflicted brain [17, 24]. This technique has already been used in combi-
nation with SVM to classify subjects with traumatic brain injuries with high
precision [25].

1.2. Moving Window Technique

Moving window analysis is a tool for analyzing the dynamic functional
connectivity of brain activity detected from fMRI scan [26]. The concept of
windowing is based on taking a time-window of fixed length and computing
the functional connectivity of the data point inside of this time-window. After
that, the window is moved with a fixed step, until the end of the time-series.
Those steps can be defined to give overlapping or consecutive windows. The
main parameters of window analysis are the window length and the window
step. The results of any window analysis can largely influenced by the choice
of these parameters [27]. However, there are no universally recognized values
for these parameters and results can be just the consequence of over-fitting.
The general rule is that the choice of window’s size should be large enough
to permit robust estimation of functional connectivity and to resolve the
lowest frequencies of interest in the signal, and yet small enough to detect
potentially interesting transients [28, 27]. The choice of window length may
depend on whether the time series changes rapidly. Most researchers use
window length between 8 and 240s [24].

2. Method and Data

The present study seeks to use SVM to diagnose ASD/Schizophrenia and
to look for overlaps between the two disorders. To achieve the first objective,
for each subject the fMRI brain data was preprocessed and converted into
FC matrix(matrices) by using windowing (fixed window for static or moving
window for dynamic functional connectivity) and the Pearson correlation.
The second objective is reached by using the flexibility score for different
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brain regions comparing either ASD or schizophrenia against control subjects,
and then comparing the statistically significant results for between ASD and
schizophrenia.

2.1. Data and Experimental Settings

We used two different datasets to perform the experiments. The ASD
dataset is obtained from the publicly available ABIDE-II dataset [29]. More
specifically the San Diego State University cohort comprising 54 subjects (31
ASD and 23 control), of age between 7 and 50 years, 72% male. For each
subject, blood-oxygenation level dependent (BOLD) volumes were acquired
in one 6 : 10 minute resting state scan consisting of 185 whole brain volumes
(TR = 2, 000 milliseconds, TE = 30 milliseconds, flip angle = 90o, matrix size
= 64× 64 matrix, 3.4× 3.4× 3.4mm3 resolution, 42 axial slices covering the
whole brain). The schizophrenia dataset is obtained from the the Center for
Biomedical Research Excellence (COBRE) dataset [30]. The dataset included
146 subjects (2 discarded due to artifacts) ranging in age between 18 and 65
(70 with schizophrenia and 74 controls, 70% male). Practically, the two
cohorts were matching per gender but only slightly per age as the COBRE
cohort has a mean age of 36.5 years while the ABIDE cohort has a mean age
of 22.65 years. BOLD volumes were obtained using TR = 2s, TE = 29ms,
flip angle = 75o, 32 slices, voxel size = 3× 3× 4 mm3, matrix size = 64× 64.
Throughout the resting state scan, participants were instructed to relax, and
to keep their eyes open and centered on a white fixation cross displayed on
black background in the center of a screen, using a rear projection display.

2.2. Pre-processing and Connectome Construction

For both fMRI datasets data have been pre-processed according to a
standard pipeline: motion correction, mean intensity subtraction, pass-band
filtering with cutoff frequencies of [0.005-0.1 Hz] and skull removal. To ac-
count for potential noise from physiological processes such as cardiac and
respiratory fluctuations, nine covariates of no interest have been identified
for inclusion in our analyses [31]. To further reduce the effects of motion,
compensation for frame-wise displacement has been carried out [32]. Linear
registration has been applied between the Harvard-Oxford atlas [33] and the
reference volume by using linear registration with 12 degrees of freedom. This
atlas has been used during the experiments due to its small number of regions
of interest (r=96) considering that the features used in the classification are
the correlation matrices. In fact, the brain dataset produced a single 96× 96
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correlation matrix for each subject with rows and columns representing brain
regions and the elements of the measures of association between the brain
regions defined by the atlas. Due to the symmetry of correlation matrices,
only the upper triangular parts were considered and flattened into 1D vectors
for subsequent use as feature vector xi. For any given symmetric matrix of
dimension N×N , the upper triangular gives a total of N(N−1)/2 elements,
which for the static FC means a feature vector of 4560 elements. The length
of the windows has been chosen in nested cross-validation manner identify-
ing the the shape leading the highest classification but simpler configuration
given by less windows used. Namely 30 time points and non-overlapping
windows, generating 5 time-windows. This values have been used for both
dataset for consistency. As all the time series of the schizophrenia dataset
were 150 time points, and the time series for the ASD dataset were 180 time
points (the last 30 times points were discarded for consistency).

2.3. Case-Control Classification

The used features for the SVM-based classification are the dFC matrices.
In our experiments, functional connectivity is defined by using the Pearson
correlation between variables A and B being brain region as

ρ =
cov(A,B)√

V ar(A)
√
V ar(B)

. (1)

In windowing analysis, we define correlation time series ρ̂ = (ρ̂1, . . . , ρ̂L) over
a functional brain data by successively moving, at a constant rate, a win-
dow of predetermined length and shape over the data. We compared results
obtained using one static FC matrix per subject with results using several
dFC matrices per subject. Dynamic functional analysis was performed using
using the concatenation of the 1D vectors. The dataset were labeled accord-
ingly and used to train and test the selected SVM model. The validity of
the model was evaluated using leave-one-out cross validation and Receiver
Operating Characteristic (ROC) curve.

Here we review the main concept of SVM [34]. SVM is a supervised learn-
ing method which constructs a hyperplane or set of hyperplanes in a high-
or infinite-dimensional space used for classification. Considering the problem
for binary classification, such as ASD versus control, we have two classes of
subjects (samples) and we want to separate (classify) them. The data are
given as x1, x2, ..., xm ∈ X, y1, y2, ..., ym{±1}. Such that X is a non-empty
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set in the domain of xi features, and yi are the targets or labels. We assume
that the data are into the Hilbert product space H to allow us to measure
the distance of the vectors in that space. Among all hyperplanes we seek for
the optimal separable hyperplane that maximize the distance between the
data points (vectors). This can be achieved by using the hyperplane decision
function

f(x) = sgn

(
m∑
i=1

yiαi < xi, xj > +b

)
(2)

where αi are Lagranger multiplier and b is a threshold which can be computed
by convex optimization [34].

2.4. Functional Connectivity Differences

As we are mostly interested in dynamic functional connectivity, we used
a metric quantifying changes in it. The flexibility index for each node of a
connectome defined at different time points is defined as the number of times
that it changes community allegiance, normalized by the total possible num-
ber of changes. We consider changes in functional connectivity possible only
between consecutive time points. The flexibility index has been introduced
by Bassett et al. [35] to quantify changes in connectomes related to learning
at different time points. Biologically, network flexibility could be driven by
physiological processes that facilitate the participation of cortical regions in
multiple functional communities (clusters) [35]. As communities organization
change smoothly with time, the flexibility index displays coherent temporal
dependence also in dynamic functional changes within the same session. Fig.
1 gives a schematic representation of a multilayer graph with two nodes that
change community allegiance twice along time. Our rationale is that ASD
and schizophrenia subjects have some brain regions with different flexibility
from healthy control subjects due to their connectome miswiring. Moreover,
we are interested in seeing if some of these differences are shared between
ASD and schizophrenia subjects. To validate this, we assessed initially the
number of clusters in all our dFC connectomes using the eigengap techniques
related to spectral clustering [36] as a mean eigengap for all connectomes.
The eigengap of a linear operator is the the difference between two successive
eigenvalues, where eigenvalues are sorted in ascending order. In the context of
spectral clustering, we define a Laplacian matrix L = D−A with D the di-
agonal matrix containing the degrees of each node in the graph/connectome,
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and A the adjacency matrix of the graph in our case defined by the Pear-
son correlation. Then, we perform an eigendecomposition, and we denote
the ordered eigenvalues of L matrix as λ0 ≥ λ1 ≥ · · · ≥ λr. The eigengap is
largest difference in absolute value of two consecutive eigenvalues as λi−λi+1.
Therefore, we computed the number of clusters as a mean µ across all the
connectomes for those largest value

k = µ

[
argmax

i
(λi − λi+1)

]
,∀i ∈ [1, r − 1]. (3)

Nevertheless, to avoid clustering techniques which do not take into account
the multi-layer nature of dynamic FC matrices, we resorted to the generalized
Louvain modularity which also include the cluster number discovery in its
implementation [20]. More specifically, for an undirected weighted or binary
graph the multislice modularity can be defined as

Qmultislice =
1

2m

∑
ij

[(
Aijt − γt

kitkjt
2mt

)
δt + δijω

]
δ(cit, cjt), (4)

where Aijt is the weight of the edge connecting between nodes i and j at time
t from the adjacency matrix A, kit and kjt are the sums of weights of the
edges connected to node i and j at t respectively, 2mt and 2m are the sum
of all of the edge weights in the graph at time/slice t and for all time/slice
respectively, cit and cjt are the communities of nodes i and j at t, δs are
delta functions, ω is the interslice coupling which represents the direct count
of the intracommunity edge weights, and γt is the spatial resolution [37]. In
our experiments we set ω = 0.1 and γt = 1 following the suggested used
parameters by Mucha et al. [20] without optimizing them.

Once clustering has been carried out and module allegiance for each brain
region across time is known. Changes across time can be defined by the flex-
ibility of a node fi normalized by the total number of changes that were
possible. Given all fi index for each brain region and subjects, a statis-
tical framework based on two-tail t-test was used to find statistical differ-
ence between groups (ASD vs control, schizophrenia vs control, and ASD
vs schizophrenia). T-test values were then converted into p-values to check
which are statistically significant under the threshold α = 0.005. Afterwards
the Benjamini & Hochberg procedure for controlling the false discovery rate
[38] has been conducted and the adjusted p-values are reported in Table 1
and Table 2.
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Figure 1: Schematic representation of multilayer graph with two nodes which change
community across time twice. The dashed lines highlight the corresponding brain regions,
which are also intracommunity edges. Each time point is a slice/layer of the multilayer
network.

Moreover, we looked at static and dynamic FC differences using the net-
work based statistics (NBS) [10]. NBS is a nonparametric statistical test used
to identify connections within connectivity matrices which are statistically
significant different between two distinct populations [10]. In practice, the
NBS checks the family-wise error rate, where the null hypothesis is tested
independently at each of the edges. This is achieved performing a two-sample
t-test at each edge independently using the values of connectivity. The tests
are repeated h times, each time randomly permuting members of the two
populations. In our experiments we set h = 1000.

As noticed empirically that the NBS was producing about 300 connection
using a p-value threshold related to the t-test of α = 0.05 (proportionally
in agreement with Mastrovito et al. [16]), we lowered the NBS threshold to
α = 0.01 to allow visual inspection of those results.

Most of the used code and the pre-processed time series are available
online at the URL https://github.com/alecrimi/dyfunconnclustering.

3. Results

We carried out the experiments in a nested leave-one-out fashion. It was
noted that varying the shape of the non-overlapping windows has an impact
on the classification performed. Generally, dynamic FC matrices led to bet-
ter classification than static FC. Figure 2 depicts all AUC values for both
datasets for both static FC (1 window), and different windows size (2 or more
windows) for the dynamic FC. We consider 13 windows as the lower limit
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as this setting requires windows of 10 time-points which is expected to be
the minimum considering the cut-off frequency defined in the preprocessing
of 0.1 Hz [27]. It can be noted that several windowing condition can lead to
similar results.

0 2 4 6 8 10 12 14 16

Windows

50

60

70

80

90

100

A
U

C
Schizophrenia

ASD

Figure 2: AUC varying according to the number of windows used and therefore the shape
of the windows. The static FC is represented by the value window=1.

Ultimately, for the ASD dataset the resulting area under the ROC (AU-
ROC) was 0.78 using the static FC matrix, while the AUROC value was 0.82
using the dynamic FC matrices as shown in Figure 5 (a).

For the schizophrenia dataset the AUC was 0.74 if the static FC features
were used, and 0.76 if the dynamic FC features with window size 30 were
used, as shown in Figure 5 (b).

Surprisingly both the eigengap and the optimization of the Louvain mod-
ularity identified the same number of clusters as k = 4. The statistically
significant areas (α = 0.005) according to the flexibility index are reported
for schizophrenia and ASD dataset respectively in Table 1 and Table 2. The
experiments with both datasets highlighted the posterior cingulate cortex,
and parts of the superior and middle temporal gyrus as different regions
from the flexibility point of view.

The static local differences detected by using NBS however were not di-
rectly comparable between the ASD and schizophrenia cohorts, apart the
presence of DMN related connections to the posterior cingulate gyrus (CGp)
and medial frontal cortex (FMC) as depicted in Figure 4. The dynamic lo-
cal differences detected by using NBS were different from the static ones.
Nevertheless, CGp and superior temporal gyrus left (T1p.L), paracingulate
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Table 1: ROIs found statistically significant comparing schizophrenia to healthy control
subjects and their p-values. The ROIs significant also using the ASD datasets are high-
lighted in italic.

# ROI p-value Schizophrenia-Control

1 Superior Frontal Gyrus Left < 0.001

2 Superior Temporal Gyrus, anterior division Left < 0.001

3 Superior Temporal Gyrus, posterior division Left 0.0013

4 Middle Temporal Gyrus, posterior division Right < 0.001

5 Frontal Medial Cortex Left < 0.001

6 Cingulate Cortex anterior Right 0.0013

7 Cingulate Cortex posterior Left 0.0010

gyrus right (PAC.R) and temporal occipital fusiform cortex (TOF.L) were
the main nodes with statistically different connections as shown in Figure 5.

4. Discussions

Several studies support the idea of continuum between schizophrenia and
ASD. Previous investigations showed that subjects with high-functioning
ASD shared similar but more severe impairments in verbal theory of mind
than schizophrenia patients [39]. More recently the analysis of the co-atrophy
network of schizophrenia, ASD, and obsessive compulsive disorder showed

(a) (b)

Figure 3: ROCs for static functional connectivity analysis. (a) ASD and schizophrenia (b)
.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Statistically significant connection detected on the static FC matrices respec-
tively for the schizophrenia (a) sagittal, (b) coronal, and (c) axial view. Statistically
significant connection of the ASD cohort against respective control (d) sagittal, (e) coro-
nal, and (f) axial view. The grey lines represents the discrininamt connections for the
static FC matrices.

that alterations in certain grey matter ROIs appear to be statistically re-
lated to alterations of other grey matter ROIs consistently in all three dis-
orders [40]. From a diagnostic point of view, it could be useful to identify
biomarkers for psychiatric disorders such as ASD and schizophrenia. It has
been already hypothesized that schizophrenia subjects present higher flexi-
bility indices than control in their connectomes probably due to mechanism
modulated by N-methyl-D-aspartate receptors [41]. In line with this work,
our experiments with both datasets highlighted the cingulate gyrus as a dif-
ferent region from the flexibility point of view. In other words, the cingulate
gyrus and middle temporal gyrus for both ASD and schizophrenia subjects
manifest an altered reconfiguration compared to control subjects. This can
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(a)

(b)

Figure 5: Discriminant connections detected by NBS for different windows ordered tem-
porally from left to right. (a) Schizophreana and (b) ASD. The brown lines represent the
discriminant connections for the dynamic FC matrices.

be explained by the fact that those regions are among the main hubs of the
default mode network (DMN) which is known to be different for both ASD
and schizophrenia subjects compared to healthy controls [16]. Many studies
have identified the DMN as a collection of areas that are structural and func-
tional hubs related to supplementary motor-areas, frontal eye fields involved
in control of visual attention [42, 43]. Although the two disorders are known
to exhibit significant changes in connectivity in the DMN, the two disorders
display different connectivity alterations. ASD subjects exhibit a greater
proportion of within-network changes in the DMN and reduced connectiv-
ity between DMN and language areas. Conversely, schizophrenia changes
between DMN and language areas are increased in connectivity [44].

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/385146doi: bioRxiv preprint 

https://doi.org/10.1101/385146
http://creativecommons.org/licenses/by-nc-nd/4.0/


Despite the local differences identified by NBS were not directly compa-
rable between the ASD and schizophrenia cohorts, the detected discriminant
connections individually for ASD and schizophrenia are in line with connec-
tions detected by other works [15, 45, 16]. Nevertheless, the general spread
miswiring for both disorders yet suggests the hypothesis that schizophrenia
is part of the autism spectrum as the two disorders clearly overlap at some
aspects [9]. Further hypothesis also relate attention deficit hyperactivity dis-
order (ADHD) to the spectrum [46, 47]. Additional investigations relating
ADHD to ASD or schizophrenia could be interesting but they are beyond
the purpose of this paper.

Alternatively to Pearson correlation, partial correlation measure the strength
of the relationship between two variables, while after ruling out third-party
effects [48]. Despite partial correlation would be expected to be more reliable,
Smith et al. showed that both correlation methods provide reliable estimates
of functional connections, but Pearson correlation outperforms partial cor-
relation when the number of nodes in brain networks significantly increased
[49]. Moreover, in a comprehensive comparison Pearson correlation-based
brain networks had the most reliable topological properties compared to those
estimated by using partial correlation and an atlas with similar parcellation
to those used in our experiments [50].

A limitation of the study is given by the two cohorts (ASD/control and
schizophrenia/control) being acquired by different centers with slightly dif-
ferent protocols. Despite it remains unclear whether potential confounding
factors are introduced by using different scanners. Some studies showed that
data can be pooled from different scanners without corroding the results as
for certain measurement of Alzheimer [51], and in fact both datasets have
been used by Mastrovito et al. also pooling them [16]. However, we cannot
completely rule out confounding factors.

In our experiments the classification using the dynamic FC features out-
performed the classification using the static FC features, though this differ-
ence might not necessarily be statistically significant. Comparing the results
to state-of-art method, Yahatama et al. used static FC features and a sparse
logistic regression classifier to discriminate ASD from control subjects obtain-
ing an AUC = 0.93 on a Japanese cohort and AUC = 0.74 on the ABIDE
dataset, but lower results on an another schizophrenia dataset [15]. There-
fore, it seems that performances are strictly related to the cohort in use.
Furthermore, Mastrovito et al. using static FC features on similar datasets
to those used in the proposed approach, obtained accuracy ranging from
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33% to 83% on the ASD dataset, and from 35% to 80% for the schizophrenia
dataset varying the used features [16]. Therefore, this suggests that a further
improvement could be obtained using dimensionality reduction or indepen-
dent component analysis, as shown in [52]. The high dimensionality of the
features has also influenced the choice of the Harvard-Oxford atlas. Indeed,
atlases more specific for functional data exist [53]. However, those are gen-
erally with higher number of ROIs compared to the Harvard-Oxford leading
to even higher dimensional features. We have avoided the use of those highly
parcellated atlas as it would have complicated even more the framework but
it is nevertheless acknowledged as a limitation.

5. Conclusions

This work confirm the potentiality of using machine learning techniques -
as SVM - jointly to dynamic functional connectivity features as a further tool
for discriminating both ASD and Schizophrenia from healthy subjects. Both
static and dynamic functional connectivity can be used as features for this
discrimination. Nevertheless, rather than proposing optimal classification for
those two disorders, the focus was on their similarities, where the fact that
classification by machine learning and functional connectivity is possible is
only one aspect. Indeed, flexibility index and NBS highlighted the impact
of the posterior cingulate gyrus and superior temporal gyrus left for both
disorders compared to healthy control. This can be a starting point to further
investigate similarities and overlaps between those and other disorders.
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R. Neufeld, J. Théberge, B. Schaefer, P. Williamson, Spontaneous
low-frequency fluctuations in the bold signal in schizophrenic patients:
anomalies in the default network, Schizophrenia bulletin 33 (2007) 1004–
1012.

[45] A. Crimi, L. Dodero, V. Murino, D. Sona, Case-control discrimina-
tion through effective brain connectivity, in: Biomedical Imaging (ISBI
2017), 2017 IEEE 14th International Symposium on, IEEE, pp. 970–973.

[46] S. D. Mayes, S. L. Calhoun, R. D. Mayes, S. Molitoris, Autism and
ADHD: Overlapping and discriminating symptoms, Research in Autism
Spectrum Disorders 6 (2012) 277–285.

[47] Y. Du, Z. Fu, V. D. Calhoun, Classification and prediction of brain disor-
ders using functional connectivity: Promising but challenging, Frontiers
in neuroscience 12 (2018).

[48] F. T. Sun, L. M. Miller, M. D’esposito, Measuring interregional func-
tional connectivity using coherence and partial coherence analyses of
fmri data, Neuroimage 21 (2004) 647–658.

[49] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beck-
mann, T. E. Nichols, J. D. Ramsey, M. W. Woolrich, Network modelling
methods for FMRI, Neuroimage 54 (2011) 875–891.

[50] X. Liang, J. Wang, C. Yan, N. Shu, K. Xu, G. Gong, Y. He, Effects
of different correlation metrics and preprocessing factors on small-world
brain functional networks: a resting-state functional MRI study, PloS
one 7 (2012) e32766.

20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/385146doi: bioRxiv preprint 

https://doi.org/10.1101/385146
http://creativecommons.org/licenses/by-nc-nd/4.0/


[51] C. M. Stonnington, G. Tan, S. Klöppel, C. Chu, B. Draganski, C. R.
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Table 2: ROIs found statistically significant comparing ASD to healthy control subjects
and their p-values. The ROIs significant also using the schizophrenia datasets are high-
lighted in italic.

# ROI p-value ASD-Control

1 Frontal Pole Left < 0.001

2 Middle Frontal Gyrus Left < 0.001

3 Inferior Frontal Gyrus, pars triangularis Left < 0.001

4 Inferior Frontal Gyrus, pars opercularis Right < 0.001

5 Temporal Pole Left < 0.001

6 Temporal Pole Right < 0.001

7 Superior Temporal Gyrus, anterior division Right < 0.001

8 Superior Temporal Gyrus, posterior division Left < 0.001

1 Middle Temporal Gyrus, posterior division Left < 0.001

2 Middle Temporal Gyrus, posterior division Right < 0.001

3 Inferior Temporal Gyrus, anterior division Left < 0.001

4 Inferior Temporal Gyrus, posterior division Right < 0.001

5 Inferior Temporal Gyrus, temporooccipital part Left < 0.001

6 Inferior Temporal Gyrus, temporooccipital part Right < 0.001

7 Superior Parietal Lobule Left < 0.001

8 Lateral Occipital Cortex, inferior division Left < 0.001

1 Cingulate Cortex posterior Left < 0.001

2 Cingulate Cortex posterior Right < 0.001

3 Frontal Orbital Cortex Right < 0.001

4 Parahippocampal Gyrus, anterior division Left < 0.001

5 Parahippocampal Gyrus, anterior division Right < 0.001

6 Parahippocampal Gyrus, posterio division Right < 0.001

7 Temporal Fusiform Cortex, anterior division Left < 0.001
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