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Abstract

Previous approaches to investigating strategic social interaction in

game theory have predominantly used games with clearly-de�ned turns

and limited choices. However, most real-world social behaviors involve
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dynamic, coevolving decisions by interacting agents, which pose chal-

lenges for creating tractable models of behavior. Here, using a com-

petitive game in which human participants control the dynamics of

an on-screen avatar against either another human or a computer op-

ponent, we show that it is possible to quantify the dynamic coupling

between agents using nonparametric models. We use Gaussian Pro-

cesses to model the joint distributions of players' actions and identities

(human or computer) as a function of game state. Borrowing from a

reinforcement learning framework, we successfully approximated both

the policy and the value functions used by each human player in this

competitive context. This approach o�ers a natural set of metrics for

facilitating analysis at multiple timescales and suggests new classes of

tractable paradigms for assessing human behavior.

Over the last �fteen years, game theory has been foundational in es-
tablishing cognitive and biological mechanisms of strategic decision mak-
ing [1�4]. Paradigms like Matching Pennies, the Trust/Ultimatum Games,
and Prisoner's Dilemma have used simple choices in highly standardized
contexts to rigorously characterize the psychological processes underlying
social concepts such as trust, altruism, and inequity aversion. The grow-
ing adoption of paradigms from game theory has yielded key insights into
social decision-making in humans [4�8] and animals [9�11]. These game the-
ory paradigms draw upon a vast literature detailing how rational players
would behave [1, 4, 12�14], yet studies comparing human behavior to these
normative solutions have found that humans often violate rational predic-
tions [1, 4, 12,15].

While a central aim of game theory is to describe how people should

make decisions, describing how humans actually make decisions is of partic-
ular interest to social scientists. Indeed, many of the features that have made
game theory paradigms analytically attractive�discrete choices, turn-taking,
known payouts�are abstractions away from real-world social interactions.
For instance, when buyers haggle over the price of a good, they respond to
one another in real time, using a combination of nonverbal cues, strategic
planning, perspective taking, and value judgment. Their continuous, dy-
namic interaction thus forms a challenge to any computational framework
for the study of social decisions [4, 16, 17]. Moreover, while game theory has
proven highly successful in analyzing various sorts of equilibria players might
settle into, considerably less is known about the processes by which these
equilibria are reached [18, 19]. As a result, it is desirable to develop ana-
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lytical tools capable of quantifying strategic dynamics while maintaining the
mathematical rigor that has made game theory such a productive framework.

Here, we introduce a computational modeling framework that borrows
heavily from recent advances in reinforcement learning [20�27] and nonpara-
metric Bayesian modeling [28�30] to capture these social dynamics. Our
approach produces models of behavior that are both �exible enough to cap-
ture the variability present in a continuously evolving strategic setting and
powerful enough to quantify strategic di�erences across participants, trials,
and even individual moments within trials. Our testbed for these ideas is
a competitive task in which human participants played against both a hu-
man opponent and a computer opponent in a real-time, movement-based
game. This paradigm generates a rich complexity in individuals' behavior
that can be succinctly described by individualized, instantaneous policy and
value functions, facilitating analysis at multiple timescales of interest. This
approach serves to quantify complex interactions between multiple agents in
a parsimonious manner and so suggests new classes of tractable paradigms
for studying human behavior and strategic decision making.

Results

Penalty Shot Task

We adapted a zero-sum dynamic control task, inspired by a penalty shot in
hockey [17]. The task was viewed on a computer screen and played by two
players: an experimental participant (n = 82) who controlled an on-screen
circle, or �puck,� and another long-term participant who controlled an on-
screen bar, acting as the �goalie.� Hereafter, we will refer to these players as
the participant and the opponent, respectively. The puck began each trial
at the left of the screen and moved rightward at a constant horizontal speed.
The task of the participant was to score by crossing a goal line located at
the right end of the screen behind the opponent. The opponent's task was
to block the puck from reaching the goal line. Each player moved his or her
avatar using a joystick. Both players were only able to control the vertical
velocities of their respective avatars, though the puck and bar had distinct
game physics (see Methods and Supplement Methods 1). See Fig 1 for task
progression and sample trajectories, as well as the Supplement Video 1 for a
video demonstrating real game play.
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Figure 1: Strategic heterogeneity in dynamic decision-making. A: Task

progression: Following a jittered �xation cue, text indicated the identity of the op-

ponent on the upcoming trial for 2 seconds. Play commenced after a variable delay

during which the screen displayed a �xation cue. At the conclusion of each trial,

which lasted roughly 1.5 seconds, colored text indicated the winner (green �Win�

if the participant won; red �Loss� if the participant lost) for 1.5 seconds. B: Game

play on a single trial. The puck moves from left to right at constant horizontal

velocity. The bar was only allowed to move vertically, but is depicted as mov-

ing from the right side of the screen inward toward the goal line for visualization

purposes. C and D: All of the trajectories for Participant 3 (C) and Participant

4 (D), demonstrating the heterogeneity observed across participants. Note vari-

ability in both on screen positions' visited and trajectory shape: Participant 3 is

much more consistent in game play, while Participant 4 was more variable. Trials

played against the human opponent are displayed in blue. Trials played against

the computer opponent are in green.

Participants played the penalty shot task in an fMRI scanner. Here,
we report only the behavioral data from this experiment. On half of the
trials, the experimental participant played against the human opponent, lo-
cated outside the scanner. On the other half of trials, the participant played
against a computer-controlled opponent. The computer opponent followed
a �track-then-guess� heuristic in which it attempted to match the puck's
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vertical position (with a variable reaction time) before randomly choosing a
direction to move at maximal speed near the end of the trial. This choice was
motivated not only by pilot data that showed such a strategy was di�cult
for participants to exploit, but also by past work analyzing the anticipatory
strategies of goalkeepers [31�33]. Opponent identity was randomly selected
on each trial. Our task was incentive-compatible: both the experimental par-
ticipant and the human opponent were rewarded in monetary bonuses that
were dependent on how frequently each player won.

As expected, participants exhibited considerable variability in game play.
Figure 1shows all trajectories for a representative pair of subjects. Clearly, a
salient feature of our paradigm is its accommodation of widely varying indi-
vidual strategies. (As a result, for each of our main analyses, we only display
�ndings for a subset of participants. Plots for all representative subjects for
all analyses are available in Supplementary Figures 1-8. Trajectories varied
widely both within and across participants, despite the fact that players each
only had one continuous degree of freedom (position along the y-axis). For ex-
ample, Participant 3 (Figure 1C) demonstrated highly stereotyped play, with
most trials exhibiting a �down-up-guess� approach. By contrast, Participant
4's (Figure 1D) trajectories were dispersed throughout the screen, perhaps re-
sulting in less predictable play. Participants also experienced highly variable
win rates, which ranged from 43-76% (against human: 34-83%; computer
42-73%).

Gaussian Process Models

Our observed data for each trial were movement trajectories for the puck
and the bar, each spanning approximately 1.5 seconds (94�96 discrete time
points). While it is possible to model these time series directly [17], we
observed that for many participants, puck trajectories could be characterized
as comprising a series of straight-line segments of maximal or near-maximal
velocity separated by change points (Fig 2A). That is, we could rede�ne
the decision available to the participant at each moment as whether or not
to switch direction. This transforms a time series modeling problem into a
more tractable change point prediction problem, for which our predictors are
a small number of game state variables.

Viewed through the lens of reinforcement learning, the decision of whether
to switch direction at time t is an action, at, and the probability of this action
given a state of the world st is given by the policy function: Π(at, st, ω) =
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p(at|st, ω), where we let st denote a vector of predictors at each time point
and ω is a binary variable indicating the opponent's identity (computer =
0, human = 1) [20]. In principle, both states and actions can be contin-
uous, though in practice, they are often discretized [20, 34]. In our case,
we de�ne the action space as a single binary variable, with 1 indicating a
change in direction and a 0 indicating continuation along the current tra-
jectory. However, the state s remains continuous and includes a total of 7
predictor variables: the x and y positions of the puck, the y position of the
bar, their respective vertical velocities, the time since the occurrence of the
last change point (normalized to 1 by dividing by total trial length), and an
opponent experience variable that ranged from 0 (�rst trial) to 1 (last trial)
that was speci�c to each opponent and re�ected potential strategic adapta-
tion over the course of the experiment. Finally, we simplify our notation,
de�ning π(st, ω) = p(at = 1|st, ω). Because our input space is of moderate
dimension, a model for π(s, ω) will be a continuous function of s instead of
a large matrix, as it would be for a model with a discrete state space. Our
contribution is to show that nonparametric methods allow us to address the
challenge of modeling π using only sparsely sampled data.

Our decision to model change point probabilities as a function only of
states and opponents means that the data at each time are independent of
each other given these variables. Thus, our approach is also equivalent to
a binary classi�cation problem. Binary classi�cation is well-studied, with
many methods available, including logistic regression, support vector ma-
chines, and neural networks [35]. Our selection of model was guided by three
requirements: First, the model should be �exible enough to capture the rich
diversity of player behavior. Second, the model should appropriately handle
a small number of change points (≈ 4.6%) with an input space of moderate
dimension. And third, the model should avoid over�tting while providing a
principled estimate of uncertainty. For these reasons, we �t each participant's
data using a Gaussian Process (GP) classi�cation model.

A Gaussian Process (GP) is a distribution over functions. GPs are widely
used in spatial and time series modeling for their combination of �exibility
and ability to generalize from even modest data [28, 36]. In the same way
that a sample from a normal distribution is a real number and a sample
from a Bernoulli distribution is a binary variable, a sample from a GP is
an entire function (e.g., a univariate time series (d = 1) or spatial density
(d = 2)). Gaussian Processes have the advantage of providing a principled,
Bayesian measure of uncertainty over functions while remaining resistant to
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over�tting and generalizing to unseen data [28]. They are also equivalent
to single-layer, fully-connected, in�nitely wide neural networks, and have
been shown to outperform neural networks in avoiding over�tting on small
to moderate datasets [37�39]. Moreover, they are the method of choice when
modeling time courses based on sparse or irregularly-sampled data [40, 41].
Thus, GPs o�er competitive modeling performance with the added bene�ts
of uncertainty estimation and di�erentiability.

More formally, a GP f is de�ned by a mean function m(x) (usually as-
sumed to be 0 a priori) and a covariance function k(x, x′) that de�nes the
correlation between values of f at di�erent input points [28]:

f(x) ∼ GP(m(x), k(x, x′)) (1)

m(x) = E[f(x)] (2)

k(x, x′) = cov[f(x)f(x′)]. (3)

By de�nition, the joint distribution of the observed data setD = {f(xi)|i = 1 . . . d}
is multivariate normal with dimension d, mean µi = m(xi), and covariance
Σij = k(xi, xj).

As stated above, we chose to model players' policies via a GP classi�-
cation model that attempted to predict an upcoming change in the puck's
direction from the current state s and opponent identity ω. Following stan-
dard techniques [28, 42], we assumed that binary change point observations
ai were Bernoulli distributed according to the policy π(s, ω) and that the
policy itself was related to an underlying GP:

a ∼ Bernoulli(π(s, ω)) (4)

Φ−1(π) ≡ f(s, ω) ∼ GP(0, k) (5)

where Φ−1 is the inverse cumulative normal distribution (also called the pro-
bit or quantile function) and GP(0, k) is a GP prior on f with mean 0 and
kernel function k. Because we assume that f is a smooth function of its
inputs, we choose the common radial basis function (RBF) kernel [28]:

k(x, x′) = σ2 exp

(∑
i=1

(xi − x′i)2

λ2i

)
(6)

with i indexing input variables and σi and λi hyperparameters setting the
overall magnitude of the covariance and the length scale of correlations along
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each dimension, respectively. Here, x includes both s and ω. Even though
ω is a discrete parameter, we approximate it as a continuous variable, as is
often done in Bayesian modeling using GPs [43].

Figure 2: A change point classi�cation model captures variability in player

strategy. A: Observed data from a single subject (Participant 3) in the penalty

shot task. Blue trajectories correspond to trials played against the human oppo-

nent. Green trajectories are from trials played against the computer. Black dots

represent change points, or switches in joystick direction by the participant. B:

Same trajectories from A, but overlaid with black shaded regions indicating lo-

cations in which the model-predicted probability of a change points exceeded the

participant's base rate. C: Histogram of participants' area under the curve (AUC)

scores on held-out data (20% of each participant's dataset). D: Probability of a

change point as a function of time, averaged across trials, for Participant 3. Shaded

regions indicate 95% Bayesian credible intervals. Probabilities are shown and av-

eraged in quantiles (z) of the normal distribution. Blue indicates trials against the

human opponent, green against the computer.

We found that our GP classi�cation model accurately captured the diverse
patterns present in participants' data (Fig 2A,B). That is, the model had
a higher probability of predicting a change point in regions of the screen
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where change points actually occurred. This is a direct result both of the
nonparametric nature of the GP�the model adapts its complexity to the
data�as well as the smoothing e�ects of the prior. Held-out test data from
each participant yielded a median area under the curve (AUC) score of 94%
(Fig 2C). For comparison, we also �t a logistic regression to each subject,
but for no subject did it outperform our GP model (see Supplement Figure
9).

Disentangling identity and context e�ects in play

We next wanted to investigate how player strategy di�ered based on the
identity of the opponent (human or computer). As Figure 2D illustrates
some participants evinced minimal di�erences in switch probability between
the two opponents. However, this contrast elides an important distinction
between what might be termed �opponent identity e�ects� and �opponent
context e�ects�. That is, we might ask whether observed di�erences in switch
probability between the two opponents are due to intrinsic di�erences in
the way participants perceive each opponent or the fact that each opponent
simply plays a di�erent strategy. In typical social games, these e�ects are all
but impossible to disentangle, but because we model the joint distribution
of both states and opponent identity, f(s, ω), we can perform the following
�counterfactual� experiment: For every state s visited in play against the
computer (ω = 0), we can ask how f(s, 0) compares to f(s, 1). This is
equivalent to freezing game play at a single moment, switching the identity
of the opponent while holding all other variables �xed, and asking how play
in the next instant di�ers. Such a pure identity e�ect quanti�es how much
participants' strategies would di�er between human and computer opponents
who used the same strategy.

In fact, the observed contrast between the two curves in Figure 2D can
be fully decomposed into an e�ect due to opponent identity and an e�ect
due to di�erences in the distributions of visited states (see Methods). As
indicated in Figure 3A, the observed contrast plotted in Figure 2D corre-
sponds to the di�erence along the diagonal, while the identity and context
e�ects correspond to di�erences taken along the vertical and horizontal di-
rections, respectively. Figures 3B and C illustrate this decomposition for two
representative participants. These �gures show both the observed contrast
(di�erence between the two curves in Figure 2D and its constituent pieces
due to opponent identity and context. While the latter are typically larger,
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indicating a predominance of game state e�ects on switch probability, there
is considerable heterogeneity across both participants and time in trial. Fig-
ure 3D illustrates this by considering the average identity e�ects for each
participant during the early and late stages of each trial. There, a positive
value indicates higher switch probability for a human opponent, while a neg-
ative value indicates higher switch probability against the computer. While
some participants consistently exhibit higher switch probabilities against the
human opponent (upper right) or against the computer (lower left), others
switch more against one early and the other late (upper left, lower right).
Thus, players can be distinguished not only by which opponent elicits more
switching behavior, but also by the periods of the trial in which these ten-
dencies occur.

Sensitivity to opponent actions di�ers between human

and computer play

We next sought to quantify how much participants' switching behavior changed
as a function of the opponent's actions. Because our change point policy
model is based on a smooth Gaussian Process, we could naturally quantify
this sensitivity using gradients of the GP f = Φ−1(π) with respect to the
opponent's position and velocity (see Methods). We then used these gradi-
ents to de�ne a moment-by-moment sensitivity index. Since the gradients
of the GP measure the degree to which small changes in the current game
state a�ect the participant's probability of changing course, gradients with
respect to the opponent's position and velocity capture the degree to which
the participant's current behavior is sensitive to the opponent's actions at
each time.

As Fig 4A illustrates, like the probability of switching, sensitivity to op-
ponent action varied throughout the trial. Even when opponent e�ects are
disambiguated from context (Fig 4B, C), clear e�ects remain for most par-
ticipants. In fact, repeating the analysis of Fig 3D for our sensitivity met-
ric reveals an even greater diversity in strategic variation (Fig 4D). Just as
we saw with the behavioral trajectory and the likelihood of switching, par-
ticipants exhibit signi�cant variation in both the magnitude and timing of
opponent-related di�erences in sensitivity.
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Figure 3: Disentangling identity and context e�ects. A. Schematic of the

identity versus context decomposition. Di�erences in the expected values of model

variables between human and computer opponents can be decomposed into a sum of

identity and context e�ects (see Methods). B. Decomposition as a function of time

in trial for Participant 12. The di�erence between human and computer switch

probabilities (in quantiles; purple) is the sum of opponent (green) and context

(orange) e�ects. C. Same decomposition as in B, for Participant 56. D. Population

variability in opponent e�ect. Scatter plot of trial-averaged switch probabilities

for the �rst and second half of the trial for each participant. Participants in the

upper right consistently switch more against the human opponent, participants in

the lower left against the computer. Participants in the other two quadrants switch

more frequently against one opponent in the early half of the trial and reverse this

behavior in the latter half.

Sensitivity metrics characterize behavior across multiple time scales

The sensitivity metric de�ned above represents a particular moment-by-
moment measure of the degree to which one player (the participant) is cou-
pled to the actions of the other (the opponent). Based on our prior ex-
pectation, we chose a combination of sensitivities to opponent position and
velocity, but other combinations are equally plausible. In fact, one could
de�ne a sensitivity metric to each input variable individually. Here, we show
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a b

c d

Figure 4: A gradient-based measure of sensitivity to opponent action re-

veals distinct information about player strategies. A: Observed sensitivity

to opponent actions in both opponent conditions, for Participant 12. Shaded re-

gions indicate 95% credible intervals. Blue line and shaded region correspond to the

human opponent condition, green to the computer opponent. B: Same participant

as in A, with the observed contrast decomposed into identity and context e�ects,

similar to Fig 3B. C: Same as B, but for Participant 56. D: Population variability

in sensitivity to opponent actions. Conventions are as in Fig 3D, but sensitivities

have been cube-root transformed for visualization purposes.

that such an approach is not only feasible, it produces a principled charac-
terization of participants' behavior across multiple timescales. Indeed, when
aggregated at the participant level, these indices fully characterize the policy
model.

By analogy with the approach described in the last section, we de�ned one
sensitivity for each input variable, equal to the square of the gradient along
each input direction (see Methods). This yielded eight new sensitivity indices
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(seven for state plus one for opponent identity) in addition to the opponent
action sensitivity de�ned above. However, our previous index can be de�ned
in terms of these new indices, so there are only eight unique values in the set.
The most important feature of these new indices is that, like the policy, they
are de�ned moment-by-moment, but can be aggregated across multiple levels
of granularity, including trial and participant averages. We have already
taken advantage of this in Fig 3D and Fig 4D to illustrate variance in switch
probability and sensitivity across our population, but one can also approach
this more systematically. As in classic analysis of variance (ANOVA), we
can consider each index value at each data point as the sum of three terms:
a participant-level mean, a trial-level o�set from this mean, and a residual
speci�c to the data point. Likewise, we can use the data to estimate variances
within trial (residual), across trials, and across our participant population.
As in ANOVA, the sum of these variances, appropriately weighted, equals
the total variance in the data. Normalizing by this total variance yields a set
of three positive terms that sums to 1:

σ2
participants

σ2
total

+
σ2
trials

σ2
total

+
σ2
residual

σ2
total

= 1 (7)

Points following Eq 7 lie inside the triangle shown in Fig 5A. Points close
to the lower left corner represent variables whose variance is almost entirely
accounted for at the within-trial level, while points nearer the lower right and
apex represent variables with relatively more variance across trials and par-
ticipants, respectively. Unsurprisingly, points are skewed toward the lower
left, since most variance is at the time point level. This stems from the fact
that points early and late in the trial are much less like each other than points
near the same time across trials. Nonetheless, the actual strategy, as sum-
marized by the baseline probability of switching, exhibits a sizable variance
across participants, indicating that the di�erences in change point frequency
apparent in Fig 1C and D are relatively more �trait-like� than our sensitivity
measures. Perhaps surprisingly, while the sensitivities to opponent position
and velocity are almost entirely characterized by within-trial variance, the
aggregated metric de�ning opponent action sensitivity has more variance ac-
counted for within participants, suggesting it to be more trait-like than the
opponent position and velocity sensitivities alone.
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Trait-like

State-like

Participant Level

Across TrialsWithin Trial

a

b c

Instantaneous

Figure 5: Proportion of variance of task variables across multiple time

scales. A: Variance decomposition of model metrics. Points inside the trian-

gle represent di�erent allocations of variance within-trial, across-trial, and across-

participant. Points near the apex represent more �trait-like� variables, while vari-

ables near the lower left are more �state-like.� Our metrics, place most of their vari-

ance within trial, since data points vary more across time than across participants.

B: Relationship between mean probability of switching and GP noise parameter

across participants. Each dot represents one participant. C: Relationship between

sensitivity to opponent identity and GP opponent identity hyperparameter.

Finally, we note an important relationship between participant-level sensi-
tivities and model hyperparameters. Because Gaussian Processes, like Gaus-
sian distributions, are completely characterized by their mean and covariance,
summaries of a Gaussian Process taken over the data can only be functions
of the hyperparameters that de�ne the mean and covariance. That is, we
expect on mathematical grounds that our sensitivities, when averaged across
an entire participant's data, should be simply related to the model's hy-
perparameters (see Supplementary Note 2). Fig 5B and C illustrate this
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relationship for two hyperparameter-sensitivity pairs. Fig 5B shows that the
noise parameter of our Gaussian Process model, σ2 is indeed correlated with
the variance in probability of switching across time points for each participant
(R = 0.56, t = 6.09, p < 0.0001). Likewise, Fig 5C shows that the logged hy-
perparameter controlling opponent identity e�ects in the GP correlates neg-
atively with each participant's sensitivity to the same variable (R = −0.64,
t = 7.43, p < 0.0001). In both cases, this is exactly what we expect: the noise
hyperparameter for a classi�cation model is related to the variance in its pre-
dictions, while low sensitivities correspond to long correlation length scales.
Thus, our gradient-based sensitivity metrics straightforwardly and naturally
extend GP hyperparameters to the time point level, providing a principled
characterization of strategy suitable for analysis at multiple timescales.

Action Value Model

We have shown that we can use nonparametric methods to estimate the
policy participants use when playing a dynamic, strategic game. Yet this
analysis says nothing about how e�ective these policies are. So how do
participants' choices at each moment translate to wins and losses? To answer
this, we separately modeled each participant's action value Qπ(a|s, ω): the
expected value of taking action a in state s against opponent ω and playing
according to policy π thereafter. As indicated by notation, this value is
policy-dependent. That is, each policy π uniquely determines a value function
Qπ. In typical reinforcement learning models, policies are likewise dependent
on action values: Given action values, Q, policies choose actions based on a
softmax function or other rule [20]. Thus, there is a mapping in the reverse
direction from action values to policies. The Bellman Equation stipulates
that for optimal learners, the optimal policy and action values determine one
another [20], but this need not hold for nonoptimal learners.

Figure 6A illustrates these concepts. While the optimal policy π∗ and Q∗
are mapped onto each other by the processes of value calculation and action
selection, respectively, for non-optimal learners, the observed policy πobs leads
to a value function Qobs, but softmax action selection based on Qobs may not
be equivalent to the original policy: πQ 6= πobs, so the mappings in Figure 6A
are not inverses except for optimal policies. In other words, learners may not
necessarily be choosing based on the expected values of their actions. As a
result, we took an approach in which the action value function Q(a|s, ω) was
modeled independently of π: This model took as inputs the instantaneous
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state, opponent, and observed action at that time and attempted to predict
from those data whether the participant subsequently won the trial. We used
the same Gaussian Process classi�cation approach as before, only this time
predicting the trial outcome and using the participant's observed action as
an additional input.

Figure 6: A Gaussian Process action value model captures variability

in player e�cacy. A: Relationship between policies and action values in rein-

forcement learning. Each policy determines an action value (rightward arrow).

Conversely, a set of action values, coupled with an action selection mechanism like

softmax or greedy methods, determines a policy (leftward arrow). For optimal

learners, the connection between the optimal policy π∗ and its resulting action

values Q∗ is given by the Bellman Equation, which states that the leftward and

rightward arrows are inverses of one another. For non-optimal agents, however, the

observed policy πobs determines Qobs, but action selection based on Qobs may not

be the same as πobs. B: Expected values (win probabilities) at each moment for

a single trajectory from one participant. Horizontal and vertical axes correspond

to position on the computer screen. Color indicates expected value. C: All trajec-

tories for a single participant against the human opponent. D: Trials against the

computer opponent for the same participant as in C. Note the increased intensity

of colors late in the trial, after the opponent has made its last move.
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The results of this model are shown in Figure 6. As Figure 6B illus-
trates, there are �uctuations in expected value even within a single trial as
players move and counter move. Here, we have plotted the predicted ex-
pected value, which is equal to the value function of reinforcement learning:
Vπ(s, ω) =

∑
a π(a|s, ω)Qπ(a|s, ω), an undiscounted, weighted sum of action

values according to their probability under the current policy. Quantifying
expected value at the time point level, rather than the trial level, allows us
to see how �uctuations in game state impact likelihood of winning. For ref-
erence, we �t a logistic regression using the same set of input features and
targets. Once again, the GP model outperforms logistic regression for each
participant in our cohort (see Supplement Figure 10).

Figures 6C and D show these predictions across all trials for a pair of
representative participants. Interestingly, while the types of trajectories gen-
erated by Participant 3 in both the human and computer opponent conditions
look remarkably similar, expected values for these collections of trials evolve
quite di�erently. Evidently this participant, while playing essentially the
same strategy in both cases, experienced much di�erent win rates against
the two opponents. In particular, against the computer opponent, we see a
more abrupt transition in expected value between the �rst and second half
of the trial. This can be explained as a byproduct of the computer's �track-
then-guess� heuristic, in which it attempts to follow the player in the early
and middle stages of the trial and then randomly guesses a direction to move
late in play. As a result, during the early and middle phases of the trial, the
puck and bar are closely aligned horizontally and expected values hover near
50%. Later, after a �point of no return� at which the computer makes its
last decision, expected values are bimodal and concentrated around 0 and 1,
re�ecting a nearly deterministic outcome.

In fact, this trend can also be visualized in terms of the density of value
as a function of time in trial (Fig 7). Against the human opponent (Fig 7A),
values start out concentrated around a player's mean win rate and evolve
gradually over the course of the trial toward the 0 and 1 outcomes. By
contrast, against the computer, values hold around 0.5 until abruptly di-
verging at the critical point. And indeed, this pattern holds in the average
across all participants (Fig 7C,D). Note that here, in the case of a computer
opponent de�ned by a simple heuristic, our model is easily able to recover
strong indications of that heuristic in an unbiased way. This indicates that
our approach is powerful enough to characterize a wide range of behavior.
Circumstantially, it also suggests that our participants are unlikely to have
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relied on simple heuristics alone to constructing their strategies.

a

dc

b

Figure 7: Evolution of expected value as a function of time in trial. A,

B: Density of expected value as a function of time in trial for a single participant.

Color indicates opponent (blue: human, green: Computer). Early in the trial,

value is concentrated around the participant's baseline win rate for each separate

opponent. Over the course of the trial, values grow increasingly bimodal as the

participant's prospects for winning diverge based on game state. C, D: Average

across all participants. Conventions are as in A, B. Here, the �track-then-guess�

heuristic of the computer opponent is apparent in the abrupt transition from a

50% unimodal distribution to a polarized bimodal distribution at the time of the

opponent's last move.

Finally, to investigate how well expected value predicts whether a given
trial will result in a win or loss, we conducted a series of univariate logistic
regressions. Given an opponent and an average expected value in the early,
middle, or late periods of each trial, we attempted to predict the trial's re-
sult. We found that regression coe�cients for the human opponent condition
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were higher than those for the computer opponent (t = 4.53, p < 0.0001),
suggesting that (unrealized) expected values better predict trial outcome in
the human opponent condition. Second, we found that regression coe�cients
increase as the trial progresses, such that the late coe�cients were signi�-
cantly higher than early coe�cients (t = 30.69, p < 0.0001). This matches
our intuition that trial outcomes are better predicted by expected values later
in the trial (see Supplement Figure 11).

Discussion

Increasing interest in dynamic social interactions has necessitated a com-
mensurate increase in the complexity of behavioral studies, but the methods
used to analyze these new paradigms often lack the �exibility to handle the
data produced. Here, we have shown that Gaussian Processes, a well-studied
class of Bayesian nonparametric models, make it possible both to �t complex
behavioral strategies and to forge links with the literature on reinforcement
learning. As a result, our work is related to ideas in inverse reinforcement
learning [44�46], which seeks to estimate, rather than learn, policies and
value functions capable of generating observed behavior. Moreover, it is in
keeping with a recent surge of interest in multi-agent reinforcement learn-
ing systems [47�50], though those contexts are typically cooperative rather
than competitive. Finally, our problem can be viewed as a limit of the game
theory context in which decisions take place simultaneously in continuous
time [14, 50]. Our work stands to complement those results by focusing on
the out-of-equilibrium dynamics that lead up to players' �nal moves. This
emphasis on the dynamic coupling of agents also works to bring us closer
to real-world social interactions, in which decisions are based on coevolving
exchanges.

There are several strengths to recommend our computational modeling
framework. First, Bayesian estimation of continuous policy and value func-
tions results in principled measures of uncertainty [28]. The resulting statisti-
cal inferences about individuals and populations are thus better indicators of
model �t than point estimates obtained from maximum likelihood methods.
Second, di�erentiability of policies and value functions allows us to derive
sensitivity estimates that quantify the coupling between agents, which we
have shown can characterize individual di�erences in play on a variety of
time scales. Third, modeling the joint distribution of both players allows us
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to perform �counterfactual� analyses that dissociate the e�ects of player iden-
tity from those of game context�an intractable problem for most competing
approaches [14]. Finally, dissociating policy and action value functions al-
lows us to consider observed behavior without either assuming optimality or
being able to calculate what optimal behavior should be [20,51].

Importantly, our approach is not limited to a speci�c task. It generalizes
readily to more than two agents, both cooperative and competitive contexts,
and a wide variety of reward structures. All of these variants can be captured
by simply enlarging the state space to accommodate the additional variables
characterizing each agent. Likewise, our data need not have been sampled
densely or even at regular intervals, since Gaussian Processes have proven
hugely in�uential in �elds like ecology [36] and health data [41] where sparse
observations are the norm. But our method is likely to prove most valuable
for examinations of decision making in natural settings like shopping, forag-
ing, or web browsing, where the number of covariates is large and the number
of events (purchases, food items, clicks) is comparatively small.

Yet our speci�c application does yield insights into humans' dynamic
strategic adjustments: We found that while participants exhibited a wide
variety of behavioral strategies, most di�erences in play between human and
computer opponents could be attributed to context e�ects, not opponent
identity. That is, to �rst order, participants used the same approach against
both opponents. Their resulting win rates depended primarily on how the
opponent's strategy interacted with their own. Nonetheless, opponent ef-
fects were present transiently at critical periods in each trial, during which
the probability of a switch increased, as did the sensitivity of participants'
strategies to the opponent's actions. In fact, comparing these opponent ef-
fects during the �rst and last half of each trial revealed a gradient of opponent
coupling across our participant population (Fig 3D, Fig 4D).

The importance of these policy-derived metrics, particularly the sensitiv-
ities, is consistent with the �ndings of many groups that an ability to model
the thoughts and intentions of another agent, particularly in competitive con-
texts, plays a central role in human social interaction [7,52�54]. For our task,
in which within-trial dynamics are more variable than across-trial changes
in strategy, an analysis of variance showed that most sensitivities were best
characterized as instantaneous measures, but a few, including the baseline
probability of switching and our sensitivity to opponent action metric, were
relatively more trait-like, consistent with the idea that the underlying vari-
ability in our participant population is not in strategic heuristics but in the
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degree to which players' actions are coupled to one another. This decomposi-
tion of variance for continuous, task-related predictors can be used in future
studies for systematically determining whether a given covariate character-
izes a trait-like or state-like process, which is particularly important when
investigating individual di�erences in the social sciences.

Finally, we showed that an analysis of participants' evolving prospects
of winning easily distinguished between the �track-then-guess� heuristic of
the computer opponent and the more complex human opponents. Such an
analysis allows us not only to assess the degree to which a given moment
in the trial is critical to a player's future prospects (the di�erence in action
values should be large in those cases), but how successful players are in seizing
these opportunities as they arise. In our case, we were unsurprised to �nd
that moves made early on had only a modest e�ect on eventual wins: failure
to exploit early opportunities did not necessarily ordain a loss. This is a
result of the fact that action values are functions of both players' strategies,
and so situations arose in which the opponent's strategy was so misguided
that any move by the participant increased expected value.

Perhaps most important for studies of social and decision neuroscience,
our models suggest a natural set of variables of interest at a hierarchy of
temporal scales. While the policies and action values we derive o�er instan-
taneous regressors at the tens of milliseconds resolution of electrophysiology,
including EEG, MEG, and ECoG, these metrics can also be averaged at the
trial and participant level for use with fMRI and PET. Providing compu-
tational frameworks for capturing complex temporal dynamics is crucial in
learning and decision making [20,55,56]. The key advantage of our approach
lies in an ability to identify both behavioral tipping points (high sensitivity
of policy) and reward tipping points (large di�erences in action value) and
distinguish between the two. This is particularly crucial in the analysis of
neural data, where one wishes to designate di�erent types of cognitive events
in addition to observational events (i.e. shifts in probability of winning with-
out changes in action, or changes of mind) [57, 58]. Thus, taken together,
our results and overall approach o�er a new path to the use of more complex
and naturalistic paradigms in the study and modeling of social interaction.
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Materials and methods

Participants

This study was approved by the Institutional Review Board of Duke Uni-
versity Medical Center. Data from 82 healthy volunteers (age range: 18-48
years; 46 females; 37 males) were included in the behavioral analyses. All
participants gave written informed consent to participate in this experiment
and were informed that no deception would be used throughout the experi-
ment. Two long-term participants played the role of the human opponent in
the penalty shot task, but each participant played against only one human
opponent. The human opponents were not members of the study team and
had no stake in the outcome of the study apart from maximizing their own
compensation.

Participants began the experiment with a 4 minute practice block followed
by three experimental blocks, each approximately 12 minutes long. Partic-
ipants played as many trials as they could within each 12 minute block,
resulting in roughly 200 trials in total for each participant (approximately
100 trials per opponent condition). At the beginning of each trial, each par-
ticipant was prompted to center the joystick in order for the next trial to
begin. A centered �xation cross was then presented for a jittered amount
of time, ranging from 1.0 to 7.5 seconds. Following the �xation cross, the
identity of the opponent on the upcoming trial (either �Computer� or the
name of the human opponent) was displayed in centered text for two sec-
onds. Following the end of a trial, centered text displaying �WIN� or �LOSS�
would appear on screen, indicating the previous trial's outcome.

Puck and Bar Dynamics

The puck was represented as a colored circle (of diameter 1
64

of the screen
width) and started each trial at normalized coordinate position (−0.75, 0).
The goal line was positioned at x = 0.77. The puck moved with constant
horizontal velocity vp and vertical velocity vput, where ut ∈ [−1, 1] was the
vertical joystick input at time t. The participant controlled only the vertical
velocity of the puck. The puck was constrained to remain onscreen. At each
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time t, the coordinates of the puck were updated according to:

xt+1 = xt + vp (8)

yt+1 = yt + vput . (9)

Both the human and computer opponents were identically represented on
screen by a vertical bar. The bar began each trial at (0.75, 0), immediately
to the left of the goal line, and could only move up or down. Unlike the puck,
the opponent was able to accelerate: If the opponent maintained direction
at near-maximal input (|u| ∈ [0.8, 1]) for three consecutive time steps, the
bar's maximal velocity began to increase on the third step. That is, at each
time step

vω ←
2

3
θvp (10)

θ ←

{
θ + 0.85, if accelerating

1, otherwise
(11)

yt+1 = yt + vωut . (12)

Gaussian Process Model Fitting

Traditionally, performing full Bayesian inference in Gaussian processes has
been prohibitive, with computation scaling as O(N3), with N the number
of training data points. However, recent advances in approximate inference
methods based on sparse collections of M � N inducing points have re-
duced this cost to O(NM2), making computation feasible for large data
sets [29, 30, 42]. Here, we used GPFlow, a Gaussian process package based
on the TensorFlow machine learning library, to �t separate Gaussian process
classi�cation models to data from each experimental participant [59]. Models
were �t using the Sparse Variational Gaussian Process algorithm coded in
GPFlow, using input variables as described in the text. We used 500 inducing
points and trained for 200,000 iterations using the Adam optimizer [42,59,60]
for both the policy and action value models. Altering these parameters did
not materially change either the �tted GPs or their sensitivities (see Supple-
ment Figure 12,13). Model hyperparameters were learned during the training
run, an empirical Bayes approach [35]. We used a train/test split of 80/20%
to evaluate each model's performance; test data were not used to select model
parameters.
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Identity and Context Decomposition

Because we use a generative model to predict change points as a function of
both game state and opponent, for any given game state, we are able to gen-
erate �counterfactual� predictions by providing data that were not directly
observed directly in our experiment. For example, by providing the actual
game state s for a particular moment but switching the opponent label from
computer to human, we are able to predict would have happened had the
participant been placed in the same game con�guration against a di�erent
opponent. This allows us to assess to what degree observed di�erences be-
tween opponents are due to the distribution of visited game states s and
which are due to the opponent identity ω. More formally, de�ne:

Xab ≡ Ep(s|ω=a)[X(s, ω = b)] (13)

be an expectation of some random variable X (for instance, a probability
of switching or sensitivity). Here again, s represents the game state and
ω the opponent identity (0 = computer, 1 = human), but we decouple the
opponent speci�ed in the random variable from the opponent that generated
the states over which we average. More concretely, X00 denotes the value
of X against the computer, averaged over states actually played against the
computer, while X10 again denotes the value of X against the computer, only
this time averaged over states played against the human. In this notation,
Fig 2D plots X00 and X11 with X = Φ−1(p), while Fig 4 shows the same two
variables with X equal to our opponent sensitivity metric.

What is most important, however, is that the observed contrast plotted
in purple in Fig 3B-C can be decomposed as a weighted sum of the identity
e�ect Cidentity and the context e�ect Cidentity, as follows:

Cidentity ≡ Ep(s) [X(s, 1)−X(s, 0)]

=
n0

N

(
X01 −X00

)
+
n1

N

(
X11 −X10

)
(14)

Ccontext ≡
1

2

[
Ep(s|ω=1)X(s, 1)− Ep(s|ω=0)X(s, 1)

+ Ep(s|ω=1)X(s, 0)− Ep(s|ω=0)X(s, 0)
]

=
1

2

(
X11 −X01

)
+

1

2

(
X10 −X00

)
(15)

Cobserved ≡ X11 −X00 ≈ Cidentity + Ccontext (16)
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with n0 and n1 the number of trials played against the computer and human
opponents, respectively, N = n0 + n1, and approximate equality holds in
Eq 16 because n0 ≈ n1 in our data.

Sensitivity metrics

To capture the e�ect of small changes of input variables on our latent Gaus-
sian Process f , we a de�ned sensitivity for each input variable as the (squared)
norm of the GP gradient along that direction:

νi(x) = ‖σ−1i (x)∇if(x)‖2 (17)

with i = 1 . . . 8 indexing each predictor variable in (s, ω) and σi the local
uncertainty in∇if . This can be motivated by noting that since f is a GP,∇f
is as well (see Supplement Note 2). Dividing a collection of squared Gaussian
variables (one per observation) by their standard deviations results in a set
of χ2 variables. Viewed another way, by normalizing by the uncertainty σi,
we are downweighting highly uncertain gradients in our sensitivity measure
(see Supplement Note 4).

When we consider a total sensitivity to opponent actions, we combine
sensitivities to opponent action and velocity into a single metric:

ς = ‖L−1∇x̃f(x)‖2 (18)

where ς is the opponent �sensitivity� metric, x̃ ≡ (yopponent, vopponent) and
L is the Cholesky factor of the covariance of ∇x̃f (LLT = Σx). This is
equivalent to combining the gradients for opponent position and velocity by
�rst performing a PCA on these two coordinates and weighting each principal
component equally in the calculation. As with the νi above, it can be shown
that this index has a known distribution (noncentral χ2), allowing us to
calculate uncertainty in the action sensitivity metric at each time point (see
Supplement Note 4).
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