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Abstract 
The catalog of cancer driver mutations in protein-coding genes has greatly expanded in the past               

decade. However, non-coding cancer driver mutations are less well-characterized and only a            

handful of recurrent non-coding mutations, most notably TERT promoter mutations, have been            

reported. Motivated by the success of pathway and network analyses in prioritizing rare             

mutations in protein-coding genes, we performed multi-faceted pathway and network analyses           

of non-coding mutations across 2,583 whole cancer genomes from 27 tumor types compiled by              

the ICGC/TCGA PCAWG project. While few non-coding genomic elements were recurrently           

mutated in this cohort, we identified 93 genes harboring non-coding mutations that cluster into              

several modules of interacting proteins. Among these are promoter mutations associated with            

reduced mRNA expression in TP53, TLE4, and TCF4 . We found that biological processes had              

variable proportions of coding and non-coding mutations, with chromatin remodeling and           

proliferation pathways altered primarily by coding mutations, while developmental pathways,          

including Wnt and Notch, altered by both coding and non-coding mutations. RNA splicing was              

primarily targeted by non-coding mutations in this cohort, with samples containing non-coding            

mutations exhibiting similar gene expression signatures as coding mutations in well-known RNA            

splicing factors. These analyses contribute a new repertoire of possible cancer genes and             

mechanisms that are altered by non-coding mutations and offer insights into additional cancer             

vulnerabilities that can be investigated for potential therapeutic treatments. 

Introduction 
Over the past decade, cancer genome sequencing efforts such as The Cancer Genome             

Atlas (TCGA) have identified millions of somatic genetic aberrations; however, the annotation            

and interpretation of these aberrations remains a major challenge 1. Specifically, while some            

aberrations occur frequently in specific cancer types, there is a “long tail” of rare aberrations that                

are difficult to distinguish from random passenger aberrations in modestly sized patient            

cohorts2,3. In many cancers, a significant proportion of patients do not have known coding driver               

mutations4, suggesting that additional driver mutations remain undiscovered. To date, the vast            

majority of known driver mutations affect protein-coding regions; only a few non-coding driver             
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mutations, most notably mutations in the TERT promoter5–7, have been identified. Recent            

studies from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International             

Cancer Genome Consortium (ICGC) reveal few recurrent non-coding drivers in analyses of            

individual genes and regulatory regions7. 

 

Cancer driver mutations unlock oncogenic properties of cells by altering the activity of             

hallmark pathways8. Accordingly, cancer genes are known to cluster in small number of cellular              

pathways and interacting subnetworks3,9. Previously, pathway and network analysis has proven           

useful for implicating infrequently mutated genes as cancer genes based on their pathway             

membership and physical/regulatory interactions with recurrently mutated genes10–14. However,         

the interactions between coding and non-coding driver mutations have not been systematically            

explored. 

 

We performed pathway and network analysis of coding and non-coding somatic           

mutations from 2,583 tumors from 27 tumor types compiled by the Pan-Cancer Analysis of              

Whole Genomes (PCAWG) project of the International Cancer Genome Consortium (ICGC)15,           

the largest collection of uniformly processed cancer genomes to date. We derive a consensus              

set of 93 high-confidence pathway-implicated driver genes with non-coding variants (PID-N) and            

a consensus set of 87 pathway-implicated driver genes with coding variants (PID-C) using             

seven pathway and network analysis methods. Both sets of PID genes, particularly the PID-N              

set, contain rarely mutated genes that were not identified by individual recurrence tests but              

interact with other well-known cancer genes. In total, 121 novel PID-N and PID-C genes are               

revealed as promising candidates, expanding the landscape of driver mutations in cancer. 

 

Furthermore, we examined the contribution of coding and non-coding mutations in           

altering biological processes, finding that while chromatin remodeling and some well-known           

signaling and proliferation pathways are altered primarily by coding mutations, other important            

cancer pathways, including developmental pathways such as Wnt and Notch pathways, are            

altered by both coding and non-coding mutations in PID genes. Intriguingly, we find many              

non-coding mutations in PID-N genes with roles in RNA splicing, and samples with these              

non-coding mutations exhibit similar gene expression signatures as samples with well-known           

coding mutations in RNA splicing factors. Our analysis demonstrates that somatic non-coding            

mutations in untranslated and cis-regulatory regions constitute a complementary set of genetic            
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perturbations with respect to coding mutations, affect several biological pathways and molecular            

interaction networks, and should be further investigated for their role in the onset and              

progression of cancer..  

Results 

The long tail of coding and non-coding cancer mutations         

highlights opportunities for pathway and network analysis 

We analyzed the genes targeted by single nucleotide variants (SNVs) and short            

insertions and deletions (indels) identified by whole genome sequencing in the 2,583 ICGC             

PCAWG tumor samples from 27 tumor types. Our pathway and network analyses focused on a               

subset of 2,252 tumors that excluded melanomas and lymphomas due to their atypical             

distributions of mutations in regulatory regions16. We analyzed the pan-cancer driver p-values of             

single protein-coding and non-coding elements predicted by the PCAWG consensus driver           

analysis7 including exons, promoters, untranslated regions (5’ UTR and 3’ UTR), and            

enhancers. This PCAWG consensus driver analysis integrates p-values from 16 driver discovery            

methods, resulting in consensus driver p-values for coding and non-coding elements. Among            

protein-coding driver p-values of the pan-cancer cohort, 75 genes were highly significant (FDR <              

0.1; Supplemental Figure S1 ) and an additional 7 genes were observed at near-significant             

levels (0.1 ≤ FDR < 0.25). These numbers are consistent with previous reports of a “long tail” of                  

driver genes with few highly-mutated genes and many genes with infrequent mutations across             

cancer types2,17. Non-coding mutations exhibit a similar long-tail distribution with even fewer            

significant genes (8 genes at FDR < 0.1 and 2 genes at 0.1 ≤ FDR < 0.25). No single gene has                     

both significant or near-significant coding and non-coding driver p-values (FDR < 0.25),            

suggesting that non-coding mutations target a complementary set of genes as coding            

mutations. 

 

Earlier studies have demonstrated that proteins harboring coding driver mutations          

interact with each other in molecular pathways and networks significantly more frequently than             

expected by chance 2,3,9–11,13. We observed significant numbers of interactions between both           

coding and/or non-coding elements with more mutations than expected by chance, suggesting            
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that pathway and network methods may be able to identify rare driver events that are not                

prioritized by single-element analyses (Supplemental Figure S2; Coding and non-coding          

mutations cluster on networks  in Supplement). 

Consensus pathway and network analysis reveals possible       

non-coding driver mutations  

We performed a comprehensive pathway and network analysis of cancer drivers using            

the results of the single-element driver discovery study of the PCAWG project7 as input. Our               

methods leveraged prior pathway and network knowledge to amplify the results of this             

single-element analysis. We performed a consensus analysis from seven distinct methods           

(ActivePathways [Paczkowska, Barenboim et al., in submission], CanIsoNet [Kahraman et al., in            

preparation], Hierarchical HotNet18, a hypergeometric analysis [Vazquez], an induced         

subnetwork analysis [Reyna and Raphael, in preparation], NBDI19, and SSA-ME20) that utilized            

information from molecular pathways or protein interaction networks (Figure 1 , Methods ). Each            

method nominated genes, and consensus sets of genes with possible coding and non-coding             

driver mutations were defined as the genes found by at least four of the seven methods                

(Supplemental Tables S1-S4 ). All methods were calibrated on randomized data (Individual           

pathway and network algorithms  in Supplement).  
 

When using non-coding mutations alone, a consensus of pathway and network analysis            

results on non-coding data identified 62 genes. In contrast, and as one might expect, the coding                

analysis resulted in substantially more genes, producing a set of 87 pathway-implicated driver             

genes with coding variants (PID-C). To increase the sensitivity for detecting contributions            

provided by non-coding mutations, we devised a “non-coding value-added” (NCVA) procedure           

(Figure 1 , Supplemental Figure S3 ; Non-coding value-added (NCVA) procedure in          
Methods ). Our NCVA procedure asks if the coding mutations enhance the discovery of potential              

non-coding driver genes beyond what is found with only the non-coding mutations. This             

procedure identified an additional set of 31 genes that, when merged with the 62 genes found                

with non-coding mutations alone, resulted in a set of 93 pathway-implicated driver genes with              

non-coding variants (PID-N) (Supplemental Figure S4, Consensus results in Methods ).          

PID-N genes appear as a robust and biologically relevant set, unbiased by any particular              
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mutational process reflecting a particular carcinogen or DNA damage processes (Supplemental           
Figure S5, Mutational signatures  in Methods ). 

  

The 87 PID-C genes (Supplementary Table 1, Supplemental Figure S6A) include 68            

previously identified cancer genes as catalogued by the COSMIC Cancer Gene Census (CGC)             

database (v83, 699 genes from Tier 1 and Tier 2)21 (2.98 genes expected; Fisher’s exact test p                 

= 3.57 ⨉ 10 -83; Figures 2A and 2C, Supplemental Figure S7A). The PID-C genes have               

significantly higher coding gene scores than non-PID-C genes (rank sum test p = 1.72 ⨉ 10 -58;                

median rank 48 of PID-C genes), and each of the 87 PID-C genes improves the score of its                  

network neighborhood (19.7 genes expected; p < 10 -6; Supplemental Table S5 ). This network             

neighborhood analysis shows that PID-C genes are not implicated solely by their network             

neighbors14 but themselves contribute significantly to their discovery by pathway and network            

methods. The 87 PID-C genes also include 31 genes that are not statistically significant (FDR >                

0.1) in the PCAWG single-element driver analysis; Figures 2A and 2C; Supplemental Figures             
S8A and S9 ), illustrating that the network neighborhoods can nominate genes with infrequent             

mutations, i.e., those in the “long tail”, as possible driver genes. Interestingly, 13 of these 31                

genes with FDR > 0.1 are also known drivers according to the CGC database (3.0 genes                

expected; Fisher’s exact test p = 2.1 ⨉ 10 -14). Thus, the consensus pathway and network               

analysis recovers many known protein-coding driver mutations and identifies additional possible           

drivers that are infrequently mutated and thus remain below the statistical significance threshold             

of gene-specific driver analyses.  

 

The 93 PID-N genes (Supplementary Table 2, Supplemental Figure S6B) include 19            

previously identified cancer genes according to the COSMIC Cancer Gene Census (CGC)            

database (3.2 genes expected; Fisher’s exact test p = 5.3 ⨉ 10 -11; Figures 2B and 2D;                
Supplemental Figures S7B and S7C). Excluding the eight genes with individually significant            

non-coding elements from the PCAWG consensus drivers analysis7, 19 genes are both PID-N             

genes and CGC genes (3.1 genes expected; Fisher’s exact test p = 5.3 ⨉ 10 -11), suggesting that                 

non-coding mutations may alter genes with recurrent coding or structural variants in some             

samples. The PID-N genes have significantly higher non-coding gene scores than non-PID-N            

genes (rank sum test p = 1.47 ⨉ 10 -58; median rank 165 of PID-N genes), and 92/93 PID-N                  

(except for HIST1H2BO) genes improve the scores of their network neighborhoods (28.5 genes             

expected; p < 10 -6; Supplemental Table S6 ). This network neighborhood analysis shows that             
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PID-N genes are not implicated solely by their network neighbors14. The vast majority of PID-N               

genes (90 out of the 93, including the 19 CGC genes) are distinct from the PCAWG                

single-element driver analysis (Figure 2B, Supplemental Figures S8B and S9 ), with only three             

genes in common: TERT, HES1, and TOB1. Of these three, only TERT is recognized as a                

known driver according to the CGC database. Moreover, the 93 PID-N genes are more strongly               

enriched (Fisher’s exact test p = 5.3 ⨉ 10 -11) for COSMIC CGC genes than the 93 genes with                  

the smallest non-coding driver p-values of promoters, 5’ UTRs, or 3’ UTRs (Fisher’s exact test p                

= 4.8 ⨉ 10 -3). Thus, our consensus procedure of the pathway and network analyses appreciably               

augments the PCAWG set of non-coding driver candidates. 

 

Taken together, the PID-C and PID-N results identified an additional 121 genes over             

what was found in the element-focused PCAWG driver analysis, including 90 new possible             

non-coding drivers (Consensus Results in Methods ). In total, non-coding mutations in PID-N            

genes cover an additional 151 samples (9.1% of samples) than PID-C genes. In addition, the               

overwhelming majority of the PID-N genes were distinct from PID-C genes (88 out of 93;               

Supplemental Figure S4 ). While this suggests that coding and non-coding driver mutations            

have largely distinct gene targets, we show below that both types of mutations affect distinct               

sets of cancer genes underlying many of the same hallmark cancer processes. 

Impact of non-coding mutations on gene expression 

As most PID-N genes have little support from previous studies to corroborate their roles              

in tumorigenesis, we sought to evaluate the biological relevance of the PID-N genes by testing               

whether non-coding mutations in a PID-N genes were associated with expression changes in             

that gene. Such in cis expression effects may be a result of the mutation located in transcription                 

factor binding sites or other types of regulatory sites. We found that 5 PID-N genes (FDR < 0.3)                  

showed statistically significant in cis correlations out of the 90 that could be tested using               

RNA-Seq data (Figure 3; Supplemental Figure S10; Supplemental Tables S8-10, S12-14 ). In            

contrast, 34 out of 87 PID-C genes with statistically significant or near statistically significant in               

cis expression changes (FDR < 0.3) (Supplemental Tables S7, S11 ). 
 

Unsurprisingly, the most significant association between mutation and expression for          

PID-N genes is the correlation between TERT promoter mutations and increased expression,            
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which we find in 11 Thy-AdenoCA tumors (Wilcoxon rank-sum test p = 1.3 ⨉ 10 -10, FDR = 3.2 ⨉                   

10 -9), 11 CNS-Oligo tumors (Wilcoxon rank-sum test p = 6.8 ⨉ 10 -3, FDR = 9.7 ⨉ 10 -2), and 22                   

CNS-GBM tumors (Wilcoxon rank-sum test p = 2.3 ⨉ 10 -2, FDR = 0.19) (Supplemental Figure               
S8 ), consistent with previous reports5,6,22. More evidence of significant correlations between           

TERT promoter mutations and increased expression may have been expected, but only a             

subset of samples with TERT mutations have expression data. In addition, low sequencing             

coverage in promoter regions limits the power of this analysis. The PCAWG drivers analysis              

investigated this issue specifically for two hotspot mutations in TERT, estimating that 216             

mutations in these sites were likely not called 7 in comparison to a total of 97 samples with TERT                  

promoter mutations (71 samples with expression data).  

 

Four other PID-N genes were found to have significant in cis regulatory correlations:             

TP53, TLE4, TCF4 , and DUSP22 (Figure 3, Supplemental Figure S10 ). TP53 shows            

significantly reduced expression (Wilcoxon rank-sum test p = 1.0 ⨉ 10 -3; FDR = 8.7 ⨉ 10 -2)                

across 6 tumors with TP53 promoter mutations from six different tumor types (FIgure 3A,              
Supplemental Figure S10 ). The under-expression of mutated samples is consistent with           

TP53’s well known role as a tumor suppressor gene, and links between TP53 promoter              

methylation and expression have been investigated 23. This expression change was also           

described by the PCAWG single-element driver discovery study7. TLE4 shows significantly           

reduced expression in three Liver-HCC tumors (Wilcoxon rank-sum test p = 1.7 ⨉ 10 -2; FDR =                

0.20) with TLE4 promoter mutations (FIgure 3B, Supplemental Figure S10 ). TLE4 is a             

transcriptional co-repressor that binds to several transcription factors24, and TLE4 functions as a             

tumor suppressor gene in acute myeloid lymphoma through its interactions with Wnt signaling 25.             

Furthermore, in an acute myeloid lymphoma cell line, TLE4 knockdown increased cell division             

rates while forced TLE4 expression induced apoptosis26. However, the role of TLE4 in solid              

tumors is not as well understood. TCF4 shows significantly reduced expression in three             

Lung-SCC tumors (Wilcoxon rank-sum test p = 3.4 ⨉ 10 -2; FDR = 0.27) with TCF4 promoter                

mutations (FIgure 3C, Supplemental Figure S10 ). Part of the TCF4/β-catenin complex, TCF4            

encodes a transcription factor that is downstream of the Wnt signaling pathway, and low TCF4               

expression has been observed in Lung-SCC tumors27. DUSP22 is significantly under-expressed           

in five Lung-AdenoCA patients (Wilcoxon rank-sum test p = 6.3 ⨉ 10 -3; FDR = 0.024) with                

DUSP22 3’ UTR mutations and significantly over-expressed in 3 Lung-AdenoCA patients           

(Wilcoxon rank-sum test p = 7.8 ⨉ 10 -4; FDR = 0.075) with DUSP22 5’ UTR mutations. These                 
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UTR mutations were mutually exclusive, and we find no support for opposing in cis effects in                

these regions. DUSP22 encodes a phosphatase signalling protein and was recently proposed to             

be a tumor suppressor in lymphoma 28.  

 

These analyses provide additional support for a subset of PID-N genes. The small             

number of PID-N genes with associated gene expression changes is explained by the low              

number of samples with mutations in PID-N genes, the uneven availability of expression data              

across the tumor types, and issues of reduced coverage in non-coding regions of the genome,               

which may decrease the number of mutated samples and limit the ability to detect rare               

non-coding variants.  

The modular organization of genes impacted by coding and non-coding          

mutations 

We identified specific protein-protein interaction subnetworks and biological pathways that were           

altered by coding mutations, non-coding mutations, or a combination of both types of mutations.              

We found significantly more interactions between PID-C genes that expected by chance using a              

node-degree preserving permutation test (64 interactions observed vs. 40 interactions expected,           

p < 10 -6), a near significant number of interactions between PID-N genes (18 vs. 12 expected, p                 

= 6.8 ⨉ 10 -2), and significantly more interactions between both PID-C and PID-N genes (67 vs.                

40 expected, p = 6 ⨉ 10 -4), demonstrating an interplay between coding and non-coding              

mutations on physical protein-protein interaction networks (Network annotation in Methods ).          

Overall, we organized the interactions between PID-C and PID-N genes into five biological             

processes: core drivers, chromatin organization, cell proliferation, development, and RNA          

splicing (Figure 4A). While the high frequency of molecular interactions between PID-C and             

PID-N genes is expected since such interactions were used as a signal in pathway and network                

methods, the specific structure of these interactions illustrates the relative contributions of            

coding and non-coding mutations in individual subnetworks. 

 

We further characterized the molecular pathways enriched among our PID-C and PID-N            

using the g:Profiler web server29 (Figure 4B, Supplemental Figure S9, Supplemental Tables            
S15-S18, Pathway annotation in Methods ). Since our methods use pathway databases and            

interaction networks as prior knowledge, enrichment with known pathways is expected.           
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However, the enrichment results provide clues about the modular organization of the pathways             

and allow us to assess the relative contributions of coding and non-coding mutations in each               

pathway. Overall, 63 pathways were enriched for PID-C genes and 13 pathways were enriched              

for PID-N genes (FDR < 10 -6).  

 

We further grouped these pathways into 29 modules using overlaps between annotated            

pathways recorded in the pathway enrichment map (Supplemental Figure S11 ).For each           

enriched module, we examined whether PID-C, PID-N, or both types of genes were responsible              

for the observed enrichment. This produced a clustering of modules and PID genes into four               

biological processes: chromatin organization, cell proliferation, development and RNA splicing          

(Figure 4B). 

 

We found that pathways in the chromatin and cell proliferation processes — including             

chromatin remodeling and organization, histone modification, apoptotic signaling, signal         

transduction, Ras signaling, and cell growth — were altered primarily by coding mutations in              

PID-C genes. This is not surprising as these pathways contain many well-known cancer genes,              

such as TP53, KRAS , BRAF , cyclin dependent kinase inhibitors, EGFR, PTEN , and RB1. 

 

Several signaling pathways contain significant numbers of both PID-C and PID-N genes,            

indicating that non-coding mutations provide additional avenues for disrupting key molecular           

interactions. These pathways include the Wnt signaling pathway (FDR = 6.8 ⨉ 10 -13), which was               

predominantly targeted by coding mutations but was also targeted by non-coding mutations in             

several PID-N genes, including TERT (103 mutations), HNF1A/B (24 mutations), TLE4 (32            

mutations), TCF4 (93 mutations), and CTNNB1 (17 mutations) (Supplemental Figure S12A).           

The Notch signaling pathway (FDR = 6.8 ⨉ 10 -7) was associated with comparable numbers of               

PID-C and PID-N genes, including the PID-N genes JAG1 and MIB1 that encode ligands and               

the PID-N transcription factors ACL1, HES1, and HNF1B (66 non-coding mutations in total)             

(Supplemental Figure S12B). The TGF-β signaling pathway (FDR = 3.2 ⨉ 10 -7) also contained              

both PID-C and PID-N genes, including the PID-N genes HES1, HNF1A/B, HSPA5, MEF2C as              

well as TGFBR2 and CTNNB1 (214 coding mutations and 166 non-coding mutations), which are              

both PID-C and PID-N genes. 
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We found that several developmental processes were altered by significant numbers of            

both PID-C and PID-N genes. Cell fate determination (FDR = 2.0 ⨉ 10 -7) was predominantly               

affected by non-coding mutations in the PID-N genes DUSP6, MEF2C, JAG1 , SOX2 , HES1,             

ACL1, ID2, SUFU, and KLF4 (total 191 non-coding mutations) but also includes PID-C genes              

BRAF, GATA3 , NOTCH1/2. Pathways related to nervous system development (FDR = 5.8 ⨉             

10 -8) were enriched for the PID-N genes ASCL1, CTNNB1, ID2, SUFU, and TERT that have               

known roles in cancer30,31, complementing the PID-C genes NOTCH1, PTEN and RHOA that             

also have known cancer roles. The pattern specification process (FDR = 8.8 ⨉ 10 -8) was also                

affected by both coding and non-coding mutations, including the PID-N genes ASCL1, SUFU,             

and RELN and the PID-C genes ATM and SMAD4. In these cases, non-coding mutations              

complement coding mutations that disrupt these pathways, covering significant numbers of           

additional patients. 

 

Intriguingly, we find that RNA splicing pathways were affected primarily by non-coding            

mutations (FDR = 7.6 ⨉ 10 -9). A total of 17 PID-N genes belonged to splicing-related pathways                

(Supplemental Figure S12C), including several heterogeneous nuclear ribonucleoproteins        

(hnNRP) and serine and arginine rich splicing factors (SRSFs). None of these PID-N genes              

were significantly mutated according to single-element tests of the PCAWG driver discovery            

analysis. We did not find any significant (FDR < 0.1) in cis associations between non-coding               

mutations and altered expression of these genes. Thus, we explored potential in trans effects on               

pathway expression changes. We found that non-coding mutations in splicing-related PID-N           

genes largely recapitulate a recently published association by TCGA32 between coding           

mutations in several splicing factors and differential expression of 47 pathways (Figure 5 ).             

Specifically, we identified three clusters of mutations (C1, C2, and C3 in Figure 5A and Figure                
5B) from our differential expression analysis. Each of these clusters contained at least one              

coding mutation in the splicing genes SF3B1, FUBP1, and RBM10 as reported in 32, with               

non-coding mutations in splicing-related PID-N genes showing similar gene expression          

signatures. The joint analysis of coding and non-coding mutations in splicing factors also             

recovered the two groups of enriched pathways (P1 and P2 in Figure 5A, Supplemental              
Figure S13 ) reported in 32. One group (P1) is characterized by immune cell signatures and the                

other group (P2) reflects mostly cell-autonomous gene signatures of cell cycle, DDR, and             

essential cellular machineries32. The similarity between the gene expression signatures for           

non-coding mutations in several PID-N splicing factors and coding mutations in splicing factor             
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genes32 supports a functional role for splicing-related PID-N genes in altering similar gene             

expression programs. 

 

In addition to the above modules, we also found that transcription factors were well              

represented among both the PID-C and PID-N genes. In total, 9 PID-C genes are transcription               

factors (ARHGAP35, ARID2, FOXA1 , GATA3 , NFE2L2, SMAD4, SOX9 , TCF7L2, TP53; FDR =            

2.1 ⨉ 10 -10), while 19 PID-N genes are transcription factors (ASCL1, BHLHE40, ESRRG, HES1,              

HNF1A, HNF1B, HOXA10, HOXB5, KLF4, MEF2C, MYC, NFE2, NR2F1, SOX2 , SOX4 , TCF4 ,            

TP53, ZNF521 , ZNF595 ; FDR = 4.1 ⨉ 10 -20). 

Discussion 
While single-region tests in the PCAWG project identified only a few non-coding driver             

elements, our integrative pathway and network analysis further expands the list of genes with              

possible non-coding driver mutations, extending into the “long tail” of rare mutations. In             

particular, we find that genes with either coding or non-coding mutations are linked in pathways               

and networks, and that pathway databases and interaction networks can be leveraged as prior              

knowledge to identify additional possible non-coding drivers that are too infrequently mutated to             

be detected by single-element tests. In total, our integrative pathway analysis identified 87             

pathway-implicated driver genes with coding variants (PID-C) and 93 pathway-implicated driver           

genes with non-coding variants (PID-N). Importantly, 90 PID-N genes were not statistically            

significant (FDR > 0.1) by single-element tests on non-coding mutation data, and these genes              

are key candidates for future experimental characterization. Among them, we find that promoter             

mutations in TP53, TLE4 , and TCF4  are associated with reduced expression of these genes. 

 

We find that coding and non-coding driver mutations largely target different genes, and             

contribute differentially to pathways and networks perturbed in cancer. While some cancer            

pathways are targeted by both coding and non-coding mutations, such as the Wnt and Notch               

signaling pathways, other pathways appear to be predominately altered by one class of             

mutations. In particular, we find non-coding mutations in multiple genes in the RNA splicing              

pathway, and samples with these mutations exhibit gene expression signatures that are            

concordant with gene expression changes observed in samples with coding mutations splicing            

factors SF3B1, FUBP1, and RBM1032. Together these results demonstrate that rare non-coding            
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mutations may result in similar perturbations to both common and complementary biological            

processes.  

 

There are several caveats to the results reported in this study. First, there is relatively               

low power to detect non-coding mutations in the cohort, particularly in cancer types with small               

numbers of patients. Second, transcriptomic data was available for only a subset of samples,              

further reducing our ability to validate our predictions using gene expression data. Third, our              

pathway and network analysis relied on the driver p-values from the PCAWG consensus driver              

analysis7. This analysis accounts for regional variations in the background mutation rate across             

the genome. However, if these corrections are inadequate and the uncorrected confounding            

variables are correlated with gene membership in pathways and subnetworks, then the false             

positive rates in our analysis may be higher than estimated. All of these factors, plus other                

unknown confounding variables, make it difficult to assess the false discovery rate of our              

predictions, particularly for PID-N genes. Further experimental validation of these predictions is            

necessary to determine the true positives from false positives in our PID gene lists. 

 

While pathway and network analysis was successful in revealing potential new           

cancer-associated genes impacted by non-coding mutations, future investigations that consider          

the changing landscape of gene regulation and pathway interactions across tissues may offer a              

new perspective on the data. Specifically, each cell type has a different epigenetic wiring and               

regulatory machinery, and non-coding mutations may target cell type-specific vulnerabilities.          

Approaches that incorporate tissue-specific gene-gene regulatory logic may be successful in           

revealing new classes of drivers unexplored with our current approaches. 

 

In conclusion, our pathway- and network-driven strategies enable us to interpret the            

coding and non-coding landscape of tumor genomes to discover driver mechanisms in            

interconnected systems of genes. This approach has multiple benefits. First, by broadening our             

mutation analysis from single genomic elements to pathways and networks of multiple genes,             

we identify new components of known cancer pathways that are recurrently altered by both              

coding and non-coding mutations, and thus likely to be important in cancer. Second, we identify               

new pathways and subnetworks that would remain unseen in an analysis focusing on coding              

sequences. Investigation of the coding and non-coding mutations that perturb these pathways            
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and networks will enable more accurate patient-stratification strategies, pathway-focused         

biomarkers, and therapeutic approaches. 

  

14 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/385294doi: bioRxiv preprint 

https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 
B.J.R. received funding from NIH grants U24CA211000 and R01HG007069. J.M.S. 

received funding from NIH grants U24CA143858, R01CA180778, and U24CA210990. J.R. 

received funding from the Ontario Institute for Cancer Research (OICR) Investigator Award 

provided by the Government of Ontario, Operating Grant from Cancer Research Society (CRS) 

(#21089), and the Natural Sciences and Engineering Research Council of Canada (NSERC) 

Discovery Grant (#RGPIN-2016-06485). K.M. received funding from IWT/SBO NEMOA and 

FWO 3G046318 and G.0371.06 grants. J.M.G.I. received funding from from the Novo Nordisk 

Foundation (NNF17OC0027594 and NNF14CC0001) and the Innovation Fund Denmark 

(5184-00102B). S.B. received funding from the Novo Nordisk Foundation (NNF17OC0027594 

and NNF14CC0001). J.B. received funding from the BioTalent Canada Student Internship 

Program. A.V. and M.V. received funding from the Joint BSC-IRB-CRG Program in 

Computational Biology and the Severo Ochoa Award (SEV 2015-0493).  

We thank Esther Rheinbay and the rest of the PCAWG 2-5-9-14 group for their              

assistance with PCAWG consensus driver analysis data and Angela Brooks for her help with              

splicing analysis.  

15 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/385294doi: bioRxiv preprint 

https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 
1. Gonzalez-Perez, A. et al. Computational approaches to identify functional genetic variants 

in cancer genomes. Nat. Methods 10, 723–729 (2013). 

2. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013). 

3. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013). 

4. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour 

types. Nature 505, 495–501 (2014). 

5. Horn, S. et al.  TERT promoter mutations in familial and sporadic melanoma. Science 339, 

959–961 (2013). 

6. Huang, F. W. et al.  Highly recurrent TERT promoter mutations in human melanoma. 

Science 339, 957–959 (2013). 

7. Rheinbay, E. et al. Discovery and characterization of coding and non-coding driver 

mutations in more than 2,500 whole cancer genomes. bioRxiv 237313 (2017). 

doi:10.1101/237313 

8. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 

646–674 (2011). 

9. Creixell, P. et al. Pathway and network analysis of cancer genomes. Nat. Methods 12, 

615–621 (2015). 

10. Vandin, F., Upfal, E. & Raphael, B. J. Algorithms for detecting significantly mutated 

pathways in cancer. J. Comput. Biol. 18, 507–522 (2011). 

11. Paull, E. O. et al.  Discovering causal pathways linking genomic events to transcriptional 

states using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics 29, 

2757–2764 (2013). 

16 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/385294doi: bioRxiv preprint 

http://paperpile.com/b/61eHpf/RJ9r
http://paperpile.com/b/61eHpf/RJ9r
http://paperpile.com/b/61eHpf/RJ9r
http://paperpile.com/b/61eHpf/RJ9r
http://paperpile.com/b/61eHpf/RJ9r
http://paperpile.com/b/61eHpf/RJ9r
http://paperpile.com/b/61eHpf/RJ9r
http://paperpile.com/b/61eHpf/RJ9r
http://paperpile.com/b/61eHpf/x1Hl
http://paperpile.com/b/61eHpf/x1Hl
http://paperpile.com/b/61eHpf/x1Hl
http://paperpile.com/b/61eHpf/x1Hl
http://paperpile.com/b/61eHpf/x1Hl
http://paperpile.com/b/61eHpf/xAW7
http://paperpile.com/b/61eHpf/xAW7
http://paperpile.com/b/61eHpf/xAW7
http://paperpile.com/b/61eHpf/xAW7
http://paperpile.com/b/61eHpf/xAW7
http://paperpile.com/b/61eHpf/xAW7
http://paperpile.com/b/61eHpf/xAW7
http://paperpile.com/b/61eHpf/crdT
http://paperpile.com/b/61eHpf/crdT
http://paperpile.com/b/61eHpf/crdT
http://paperpile.com/b/61eHpf/crdT
http://paperpile.com/b/61eHpf/crdT
http://paperpile.com/b/61eHpf/crdT
http://paperpile.com/b/61eHpf/crdT
http://paperpile.com/b/61eHpf/crdT
http://paperpile.com/b/61eHpf/hCOk
http://paperpile.com/b/61eHpf/hCOk
http://paperpile.com/b/61eHpf/hCOk
http://paperpile.com/b/61eHpf/hCOk
http://paperpile.com/b/61eHpf/hCOk
http://paperpile.com/b/61eHpf/hCOk
http://paperpile.com/b/61eHpf/hCOk
http://paperpile.com/b/61eHpf/hCOk
http://paperpile.com/b/61eHpf/spXt
http://paperpile.com/b/61eHpf/spXt
http://paperpile.com/b/61eHpf/spXt
http://paperpile.com/b/61eHpf/spXt
http://paperpile.com/b/61eHpf/spXt
http://paperpile.com/b/61eHpf/spXt
http://paperpile.com/b/61eHpf/spXt
http://paperpile.com/b/61eHpf/r9nj
http://paperpile.com/b/61eHpf/r9nj
http://paperpile.com/b/61eHpf/r9nj
http://paperpile.com/b/61eHpf/r9nj
http://paperpile.com/b/61eHpf/r9nj
http://paperpile.com/b/61eHpf/r9nj
http://paperpile.com/b/61eHpf/r9nj
http://dx.doi.org/10.1101/237313
http://paperpile.com/b/61eHpf/DbQj
http://paperpile.com/b/61eHpf/DbQj
http://paperpile.com/b/61eHpf/DbQj
http://paperpile.com/b/61eHpf/DbQj
http://paperpile.com/b/61eHpf/DbQj
http://paperpile.com/b/61eHpf/DbQj
http://paperpile.com/b/61eHpf/CDQ6
http://paperpile.com/b/61eHpf/CDQ6
http://paperpile.com/b/61eHpf/CDQ6
http://paperpile.com/b/61eHpf/CDQ6
http://paperpile.com/b/61eHpf/CDQ6
http://paperpile.com/b/61eHpf/CDQ6
http://paperpile.com/b/61eHpf/CDQ6
http://paperpile.com/b/61eHpf/CDQ6
http://paperpile.com/b/61eHpf/24Gp
http://paperpile.com/b/61eHpf/24Gp
http://paperpile.com/b/61eHpf/24Gp
http://paperpile.com/b/61eHpf/24Gp
http://paperpile.com/b/61eHpf/24Gp
http://paperpile.com/b/61eHpf/24Gp
http://paperpile.com/b/61eHpf/9ahi
http://paperpile.com/b/61eHpf/9ahi
http://paperpile.com/b/61eHpf/9ahi
http://paperpile.com/b/61eHpf/9ahi
http://paperpile.com/b/61eHpf/9ahi
http://paperpile.com/b/61eHpf/9ahi
http://paperpile.com/b/61eHpf/9ahi
http://paperpile.com/b/61eHpf/9ahi
http://paperpile.com/b/61eHpf/9ahi
https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/


12. Reimand, J., Wagih, O. & Bader, G. D. The mutational landscape of phosphorylation 

signaling in cancer. Sci. Rep. 3, 2651 (2013). 

13. Leiserson, M. D. M. et al. Pan-cancer network analysis identifies combinations of rare 

somatic mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 

(2015). 

14. Horn, H. et al. NetSig: network-based discovery from cancer genomes. Nat. Methods 15, 

61–66 (2018). 

15. International Cancer Genome Consortium et al. International network of cancer genome 

projects. Nature 464, 993–998 (2010). 

16. Fredriksson, N. J. et al. Recurrent promoter mutations in melanoma are defined by an 

extended context-specific mutational signature. PLoS Genet. 13, e1006773 (2017). 

17. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new 

cancer-associated genes. Nature 499, 214–218 (2013). 

18. Matthew A. Reyna, Mark D.M. Leiserson, Benjamin J. Raphael. Identifying hierarchies of 

altered subnetworks. Bioinformatics (2018). 

19. Verbeke, L. P. C. et al.  Pathway Relevance Ranking for Tumor Samples through 

Network-Based Data Integration. PLoS One 10, e0133503 (2015). 

20. Pulido-Tamayo, S., Weytjens, B., De Maeyer, D. & Marchal, K. SSA-ME Detection of 

cancer driver genes using mutual exclusivity by small subnetwork analysis. Sci. Rep. 6, 

36257 (2016). 

21. Forbes, S. A. et al.  The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc. 

Hum. Genet. Chapter 10, Unit 10.11 (2008). 

22. Fredriksson, N. J., Ny, L., Nilsson, J. A. & Larsson, E. Systematic analysis of noncoding 

somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet. 46, 

17 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/385294doi: bioRxiv preprint 

http://paperpile.com/b/61eHpf/m0wq
http://paperpile.com/b/61eHpf/m0wq
http://paperpile.com/b/61eHpf/m0wq
http://paperpile.com/b/61eHpf/m0wq
http://paperpile.com/b/61eHpf/m0wq
http://paperpile.com/b/61eHpf/m0wq
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/rHxt
http://paperpile.com/b/61eHpf/W1hG
http://paperpile.com/b/61eHpf/W1hG
http://paperpile.com/b/61eHpf/W1hG
http://paperpile.com/b/61eHpf/W1hG
http://paperpile.com/b/61eHpf/W1hG
http://paperpile.com/b/61eHpf/W1hG
http://paperpile.com/b/61eHpf/W1hG
http://paperpile.com/b/61eHpf/W1hG
http://paperpile.com/b/61eHpf/ibBw
http://paperpile.com/b/61eHpf/ibBw
http://paperpile.com/b/61eHpf/ibBw
http://paperpile.com/b/61eHpf/ibBw
http://paperpile.com/b/61eHpf/ibBw
http://paperpile.com/b/61eHpf/ibBw
http://paperpile.com/b/61eHpf/ibBw
http://paperpile.com/b/61eHpf/ibBw
http://paperpile.com/b/61eHpf/qE5z
http://paperpile.com/b/61eHpf/qE5z
http://paperpile.com/b/61eHpf/qE5z
http://paperpile.com/b/61eHpf/qE5z
http://paperpile.com/b/61eHpf/qE5z
http://paperpile.com/b/61eHpf/qE5z
http://paperpile.com/b/61eHpf/qE5z
http://paperpile.com/b/61eHpf/qE5z
http://paperpile.com/b/61eHpf/HOf4
http://paperpile.com/b/61eHpf/HOf4
http://paperpile.com/b/61eHpf/HOf4
http://paperpile.com/b/61eHpf/HOf4
http://paperpile.com/b/61eHpf/HOf4
http://paperpile.com/b/61eHpf/HOf4
http://paperpile.com/b/61eHpf/HOf4
http://paperpile.com/b/61eHpf/HOf4
http://paperpile.com/b/61eHpf/hVVU
http://paperpile.com/b/61eHpf/hVVU
http://paperpile.com/b/61eHpf/hVVU
http://paperpile.com/b/61eHpf/hVVU
http://paperpile.com/b/61eHpf/njPv
http://paperpile.com/b/61eHpf/njPv
http://paperpile.com/b/61eHpf/njPv
http://paperpile.com/b/61eHpf/njPv
http://paperpile.com/b/61eHpf/njPv
http://paperpile.com/b/61eHpf/njPv
http://paperpile.com/b/61eHpf/njPv
http://paperpile.com/b/61eHpf/njPv
http://paperpile.com/b/61eHpf/cbWf
http://paperpile.com/b/61eHpf/cbWf
http://paperpile.com/b/61eHpf/cbWf
http://paperpile.com/b/61eHpf/cbWf
http://paperpile.com/b/61eHpf/cbWf
http://paperpile.com/b/61eHpf/cbWf
http://paperpile.com/b/61eHpf/cbWf
http://paperpile.com/b/61eHpf/siMN
http://paperpile.com/b/61eHpf/siMN
http://paperpile.com/b/61eHpf/siMN
http://paperpile.com/b/61eHpf/siMN
http://paperpile.com/b/61eHpf/siMN
http://paperpile.com/b/61eHpf/siMN
http://paperpile.com/b/61eHpf/siMN
http://paperpile.com/b/61eHpf/siMN
http://paperpile.com/b/61eHpf/hVZo
http://paperpile.com/b/61eHpf/hVZo
http://paperpile.com/b/61eHpf/hVZo
http://paperpile.com/b/61eHpf/hVZo
http://paperpile.com/b/61eHpf/hVZo
http://paperpile.com/b/61eHpf/hVZo
https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/


1258–1263 (2014). 

23. Jesionek-Kupnicka, D. et al. TP53 promoter methylation in primary glioblastoma: 

relationship with TP53 mRNA and protein expression and mutation status. DNA Cell Biol. 

33, 217–226 (2014). 

24. Fisher, A. L. & Caudy, M. Groucho proteins: transcriptional corepressors for specific 

subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev. 

12, 1931–1940 (1998). 

25. Shin, T. H., Brynczka, C., Dayyani, F., Rivera, M. N. & Sweetser, D. A. TLE4 regulation of 

wnt-mediated inflammation underlies its role as a tumor suppressor in myeloid leukemia. 

Leuk. Res. 48, 46–56 (2016). 

26. Dayyani, F. et al. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML 

cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood 111, 

4338–4347 (2008). 

27. Cadigan, K. M. & Waterman, M. L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring 

Harb. Perspect. Biol. 4, (2012). 

28. Mélard, P. et al. Molecular alterations and tumor suppressive function of the DUSP22 (Dual 

Specificity Phosphatase 22) gene in peripheral T-cell lymphoma subtypes. Oncotarget 7, 

68734–68748 (2016). 

29. Reimand, J. et al. g:Profiler-a web server for functional interpretation of gene lists (2016 

update). Nucleic Acids Res. 44, W83–9 (2016). 

30. Augustyn, A. et al. ASCL1 is a lineage oncogene providing therapeutic targets for 

high-grade neuroendocrine lung cancers. Proc. Natl. Acad. Sci. U. S. A. 111, 14788–14793 

(2014). 

31. Lasorella, A., Benezra, R. & Iavarone, A. The ID proteins: master regulators of cancer stem 

18 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/385294doi: bioRxiv preprint 

http://paperpile.com/b/61eHpf/hVZo
http://paperpile.com/b/61eHpf/ZdWv
http://paperpile.com/b/61eHpf/ZdWv
http://paperpile.com/b/61eHpf/ZdWv
http://paperpile.com/b/61eHpf/ZdWv
http://paperpile.com/b/61eHpf/ZdWv
http://paperpile.com/b/61eHpf/ZdWv
http://paperpile.com/b/61eHpf/ZdWv
http://paperpile.com/b/61eHpf/ZdWv
http://paperpile.com/b/61eHpf/EJXh
http://paperpile.com/b/61eHpf/EJXh
http://paperpile.com/b/61eHpf/EJXh
http://paperpile.com/b/61eHpf/EJXh
http://paperpile.com/b/61eHpf/EJXh
http://paperpile.com/b/61eHpf/EJXh
http://paperpile.com/b/61eHpf/0VPE
http://paperpile.com/b/61eHpf/0VPE
http://paperpile.com/b/61eHpf/0VPE
http://paperpile.com/b/61eHpf/0VPE
http://paperpile.com/b/61eHpf/0VPE
http://paperpile.com/b/61eHpf/0VPE
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/gwDV
http://paperpile.com/b/61eHpf/XVfV
http://paperpile.com/b/61eHpf/XVfV
http://paperpile.com/b/61eHpf/XVfV
http://paperpile.com/b/61eHpf/XVfV
http://paperpile.com/b/61eHpf/XVfV
http://paperpile.com/b/61eHpf/XVfV
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/3YrS
http://paperpile.com/b/61eHpf/bPmB
http://paperpile.com/b/61eHpf/bPmB
http://paperpile.com/b/61eHpf/bPmB
http://paperpile.com/b/61eHpf/bPmB
http://paperpile.com/b/61eHpf/bPmB
http://paperpile.com/b/61eHpf/bPmB
http://paperpile.com/b/61eHpf/bPmB
http://paperpile.com/b/61eHpf/bPmB
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/VHDn
http://paperpile.com/b/61eHpf/i23M
https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/


cells and tumour aggressiveness. Nat. Rev. Cancer 14, 77–91 (2014). 

32. Seiler, M. et al. Somatic Mutational Landscape of Splicing Factor Genes and Their 

Functional Consequences across 33 Cancer Types. Cell Rep. 23, 282–296.e4 (2018). 

 

  

19 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/385294doi: bioRxiv preprint 

http://paperpile.com/b/61eHpf/i23M
http://paperpile.com/b/61eHpf/i23M
http://paperpile.com/b/61eHpf/i23M
http://paperpile.com/b/61eHpf/i23M
http://paperpile.com/b/61eHpf/i23M
http://paperpile.com/b/61eHpf/iqoa
http://paperpile.com/b/61eHpf/iqoa
http://paperpile.com/b/61eHpf/iqoa
http://paperpile.com/b/61eHpf/iqoa
http://paperpile.com/b/61eHpf/iqoa
http://paperpile.com/b/61eHpf/iqoa
http://paperpile.com/b/61eHpf/iqoa
http://paperpile.com/b/61eHpf/iqoa
https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Legends 
Figure 1: Overview of the pathway and network analysis approach. Coding, non-coding,            

and combined gene scores were derived for each gene by aggregating driver p-values from the               

PCAWG driver predictions in individual elements, including annotated coding and non-coding           

elements (promoter, 5’ UTR, 3’ UTR, and enhancer). These gene scores were input to five               

network analysis algorithms, which utilize multiple protein-protein interaction networks, and to           

two pathway analysis algorithms, which utilize multiple pathway/gene-set databases. We          

defined a non-coding value-added (NCVA) procedure to determine genes whose non-coding           

scores contribute significantly to the results of the combined coding and non-coding analysis,             

where NCVA results for a method augment its results on non-coding data. We defined a               

consensus procedure to combine significant pathways and networks identified by these seven            

algorithms. The 87 pathway-implicated driver genes with coding variants (PID-C) are the set of              

genes reported by a majority (≥ 4/7) of methods on coding data. The 93 pathway-implicated               

driver genes with non-coding variants (PID-N) are the set of genes reported by a majority of                

methods on non-coding data or in their NCVA results. 
 
Figure 2: (A) Pathway and network methods identify significant coding driver mutations.            
Driver p-values on protein-coding elements for the 250 genes with most significant coding driver              

p-values; dashed and dotted lines indicate FDR = 0.1 and 0.25, respectively. Dark green bars               

are PID-C genes, while light green bars are non-PID-C genes. Blue squares below the x-axis               

indicate genes from the COSMIC Cancer Gene (CGC) Census. In total, 31 of 87 PID-C genes                

have coding driver p-values with FDR > 0.1 and would not be reported as drivers using                

single-gene tests with the typical FDR = 0.1 threshold 4,7,14. Several PID-C genes are labeled,              

including all COSMIC CGC genes with coding FDR > 0.1. Genes that are both PID-C and PID-N                 

genes are indicated with asterisks. Note that 3 PID-C genes are not among the 250 most                

significantly mutated genes shown in the figure. (B) Pathway and network methods identify             
rare non-coding driver mutations. Driver p-values on non-coding elements (promoter, 5’ UTR,            

and 3’ UTR of gene) for 250 genes with most significant non-coding driver p-values; dashed and                

dotted lines indicate FDR = 0.1 and 0.25, respectively. Dark yellow bars are PID-N genes, while                

light yellow bars are non PID-N genes. Blue squares below the x-axis indicate genes from the                

COSMIC CGC. In total, 3 (TERT, HES1, TOB1 ) of 93 PID-N genes have non-coding driver               
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p-values with FDR ≤ 0.1, while 90 have FDR > 0.1, and thus would generally not be reported as                   

drivers using single-gene tests. Several PID-N genes are labeled, including PID-N genes with             

significant in cis gene expression changes (see Fig. 3) and all PID-N genes with non-coding               

FDR > 0.25. Genes that are both PID-C and PID-N genes are indicated with asterisks. Note that                 

48 PID-N genes are not among the 250 most significantly mutated genes shown in figure. (C).                

Statistical significance of overlap between top ranked genes according to coding driver p-values             

and PID-C genes with COSMIC Cancer Gene Census (CGC) genes. Overlap p-values are             

compute with Fisher’s exact test and driver FDR thresholds of 0.1 and 0.25 are highlighted.               

Green square indicates significance of overlap between PID-C genes and CGC genes. (D)             
Statistical significance of overlap of genes ranked by driver p-values on non-coding (promoter,             

5’ UTR, 3’ UTR) elements and COSMIC CGC genes. Driver FDR thresholds of 0.1 and 0.25 are                 

highlighted. Yellow square indicates significance of overlap between PID-N genes and CGC            

genes. Note the different scaling of y-axis compared to Fig. 2C. 
 
Figure 3: Gene expression changes are correlated with mutations in PID-N genes. (A)             
TP53 promoter. TP53 coding and non-coding genomic loci with zoomed-in view of TP53             

promoter region. TP53 promoter mutations (six mutations in Biliary-AdenoCA,         

ColoRect-AdenoCA, Kidney-ChRCC, Lung-SCC, Ovary-AdenoCA, and Panc-AdenoCA cancer       

types) correlate significantly (Wilcoxon rank-sum test p = 0.001, FDR = 0.087) with reduced              

TP53 gene expression. Samples with copy number gains and losses in the TP53 promoter              

region are annotated in red and blue, respectively. Two of the six TP53 promoter mutations               

overlap with transcription factor binding sites (with one mutation matching 3 motifs). (B) TLE4              

promoter. TLE4 coding and non-coding genomic loci with zoomed-in view of TLE4 promoter             

region. TLE4 promoter mutations in Liver-HCC samples (three mutations) correlate (Wilcoxon           

rank-sum test p = 0.02, FDR = 0.2) with lower TLE4 gene expression. Samples with copy                

number gains and losses annotated in red and blue, respectively. One of the three TLE4               

promoter mutations has a transcription factor binding site for ZNF263. (C) TCF4 promoter.             

TCF4 coding and non-coding genomic loci with zoomed-in view of TCF4 promoter region. TCF4              

promoter mutations in Lung-SCC samples (three mutations) correlate (Wilcoxon rank-sum test p            

= 0.03, FDR = 0.27) with lower TCF4 gene expression. Samples with copy number gains and                

losses annotated in red and blue, respectively. One of the the three TCF4 promoter mutations               

has a transcription factor binding site for ZEB1. 
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Figure 4: Pathway and network modules containing PID-C and PID-N genes. (A) Network             
of functional interactions between PID-C and PID-N genes. Nodes represent PID-C and            

PID-N genes and edges show functional interactions from the ReactomeFI network (grey),            

physical protein-protein interactions from the BioGRID network (blue), or interactions recorded           

in both networks (purple). Node color indicates PID-C genes (green), PID-N genes (yellow), or              

both PID-C and PID-N genes (orange);node size is proportional to the score of the              

corresponding gene; and the pie chart diagram in each node represents the relative proportions              

of coding and non-coding cancer mutations associated with the corresponding gene. Dotted            

outlines indicate clusters of genes with roles in chromatin organization and cell proliferation,             

which predominantly contain PID-C genes; development, which includes comparable amounts          

of PID-C and PID-N genes; and RNA splicing, which contains PID-N genes. A core cluster of                

genes with many known drivers are also indicated. (B) Pathway modules containing PID-C             
and PID-N genes. Each row in the matrix corresponds to a PID-C or PID-N gene, and each                 

column in the matrix corresponds to a pathway module enriched in PID-C and/or PID-N genes               

(see Methods ). A filled entry indicates a gene (row) that belongs to one or more pathways                

(column) colored according to gene membership in PID-C genes (green), PID-N genes (yellow),             

or both PID-C and PID-N genes (orange). A darkly colored entry indicates that a PID-C or PID-N                 

gene belongs to a pathway that is significantly enriched for PID-C or PID-N genes, respectively.               

A lightly colored entry indicates that a PID-C or PID-N gene belongs to a pathway that is                 

significantly enriched for the union of PID-C and PID-N genes but not for PID-C or PID-N genes                 

separately. Enrichments are summarized by circles adjacent each pathway module name and            

PID gene name. Boxed circles indicate that a pathway module contains a pathway that is               

significantly more enriched for the union of the PID-C and PID-N genes than the PID-C and                

PID-N results separately. The enriched modules and PID genes are clustered into four             

biological processes: chromatin, development, proliferation, and RNA splicing as indicated, with           

differing contributions of PID-C and PID-N genes. 

 

Figure 5: RNA splicing factors are targeted primarily by non-coding mutations and alter             
expression of similar pathways as coding mutations in splicing factors. (A) Heatmap of             
Gene Set Enrichment Analysis (GSEA) Normalized Enrichment Scores (NES). The          

columns of the matrix indicate non-coding mutations in splicing-related PID-N genes and coding             

mutations in splicing genes reported in 32 and the rows of the matrix indicate 47 curated gene                 

sets32. Red heatmap entries represent an upregulation of the pathway in the mutant samples              

22 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/385294doi: bioRxiv preprint 

https://paperpile.com/c/61eHpf/iqoa
https://paperpile.com/c/61eHpf/iqoa
https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/


with respect to the non-mutant samples and blue heatmap entries represent a downregulation.             

The first column annotation indicates mutation cluster membership according to common           

pathway regulation. The second column annotation indicates whether a mutation is a            

non-coding mutation in a PID-N gene or a coding mutation 32, with the third column annotation               

specifies the aberration type (promoter, 5’ UTR, 3’ UTR, missense, or truncating). The fourth              

column annotation indicates the cancer type for coding mutations from 32. The mutations cluster              

into 3 groups: C1, C2, and C3. The pathways cluster into two groups32: P1 and P2, where P1                  

contains an immune signature gene sets and P2 contains cell autonomous gene sets as              

reported in 32. (B) tSNE plot of mutated elements illustrates clustering of gene expression              
signatures for samples with non-coding mutations in splicing-related PID-N genes with           
gene expression signatures for coding mutations in previously published splicing          
factors. The shape of each point denotes the mutation cluster assignment (C1, C2, or C3), and                

the color represents whether the corresponding gene is a PID-N gene with non-coding             

mutations or a splicing factor gene with coding mutations32. 
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Supplemental Figure Legends 
Figure S1: Driver p-value distributions for coding and non-coding regions of the genome.             
(A) Distribution of driver p-values from single-element tests on coding and non-coding            

(promoter, 5’ UTR, 3’ UTR) regions of the genome. (B) Numbers of genes with driver p-values                

from single-element tests with q-values satisfying q < 0.01, 0.1, 0.25, 0.5 on coding and               

non-coding (promoter, 5’ UTR, 3’ UTR) regions of the genome. 

Figure S2: Statistically significant network interactions between genes with highest          
driver p-values. Genes in the BioGRID high-confidence functional interaction network with the            

highest coding and non-coding (promoter, 5’ UTR, 3’ UTR) driver p-values have statistically             

significant numbers of interactions compared to genes chosen uniformly at random from the             

network. We rank network genes by their coding or non-coding driver p-values (by single              

element q-values) and show the number of interactions between the genes with highest             

observed coding (green) and non-coding (yellow) p-values as well as random (gray) p-values             

using 1,000 permutations among network genes. 

 

Figure S3: Illustration of non-coding value-added (NCVA) procedure. 
Illustration of the NCVA procedure for identifying results on coding and non-coding data 
with with significant contributions from non-coding data. (A) Top left: The central gene has 

a high non-coding gene score, and the four neighboring genes have high coding gene scores. 

(B) Bottom left: All five genes have strong combined coding and non-coding gene scores. A 

pathway/network method identifies a subnetwork of all five genes. (C) Top right: After 

preserving coding gene scores and permuting non-coding gene scores, the central gene has a 

low non-coding gene score, and the four neighboring genes still have high coding gene scores. 

(D) Bottom right: Four of the five genes have strong combined coding and non-coding gene 

scores, but the central gene does not. A pathway/network method identifies two subnetworks of 

two genes, excluding the central gene, which becomes a potential NCVA gene 

If a gene identified by a pathway/network method using observed coding and observed 

non-coding gene scores and consistently omitted (p < 0.1) by the method using observed 

coding scores and permuted non-coding gene scores, then we identify it as a non-coding 

value-added (NCVA) gene for that method because the non-coding data makes a significant 

contribution to that gene’s discovery by a method on coding and non-coding data. 
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Figure S4: Overlap of consensus results for pathway and network methods. (A) PID-C             
and PID-N genes have negligible overlap. Only 5 genes (CTNNB1, DDX3X, SF3B1,            

TGFBR2 , TP53 are both PID-C and PID-N genes. (B) Overlap of all consensus results.              
Four-circle Venn diagram for the overlap of the consensus results on coding data, i.e., PID-C               

genes; consensus pathway/network results on non-coding data; consensus pathway/network         

results on coding and non-coding data; and the union of the consensus results on non-coding               

data and the non-coding value-added (NCVA) results, i.e., PID-N genes. 

 

Figure S5: Mutation signatures of SNVs in PID-C and PID-N genes. Bar plot shows              

predicted mutation signatures of observed mutations among PID-N genes (yellow) compared           

with randomly sampled mutations in all coding and non-coding elements (grey). Mutations in             

PID-C genes are shown as a positive control (green). p-values were computed with custom              

permutation tests and show enrichment of mutation signatures within PID-N genes (yellow)            

relative to all sampled mutations (grey). p-values with p < 0.05 are shown. 

 

Figure S6: Annotations of PID-C and PID-N genes. (A) Pathway and network method             
contributions to PID-C genes. The left matix (green entries) depicts method contributions to             

the PID-C genes. Each row is a PID-C gene, each column is a pathway or network method, and                  

each filled entry indicates that a method contains a PID-C gene. Both genes and methods are                

ordered by hierarchical clustering (Jaccard index, single-linkage clustering; hierarchies omitted)          

to show genes that are reported by similar methods and methods that report similar gene sets.                

(B) Pathway and network method contributions to PID-N genes. The right matrix (yellow             

entries) shows method contributions to the PID-N results. The matrix is similar to (A) except               

each filled entry indicates that a method contains a PID-N gene. 

 

Figure S7: Enrichment of genes with high driver p-values, pathway and network method             
results for COSMIC Cancer Gene Census (CGC) genes. (A) Precision and recall of coding              
driver p-values and PID-C genes for COSMIC CGC genes. Precision and recall of genes              

ranked by driver p-values on coding elements and PID-C genes with COSMIC CGC genes.              

Driver FDR thresholds of 0.1 and 0.25 are highlighted. (B, C) Precision and recall of of                
non-coding driver p-values and PID-N genes for COSMIC CGC genes. Precision and recall             

of genes ranked by driver p-values on non-coding (promoter, 5’ UTR, 3’ UTR) and PID-N genes                
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with COSMIC CGC genes. Driver FDR thresholds of 0.1 and 0.25 are highlighted. The left-most               

plot (B) shows the full y-axis, and right-most plot (C) shows a broken y-axis. 

 
Figure S8: Overlap of genes with high driver p-values, pathway and network method             
results with COSMIC Cancer Gene Census (CGC) genes. (A) Venn diagram for PID-C             
genes. Overlap of genes with coding driver p-values with FDR < 0.1, genes with coding driver                

p-values with FDR < 0.25, PID-C genes, and COSMIC CGC genes. (B) Venn diagram for               
PID-N genes. Overlap of genes with non-coding (promoter, 5’ UTR, 3’ UTR) driver p-values with               

FDR < 0.1, genes with non-coding p-values with FDR < 0.25, PID-N genes, and COSMIC CGC                

genes. 

 

Figure S9: Distribution of gene scores and pathway and network method results. (A)             

Driver p-values of genes identified by pathway and network methods. Stacked bar chart             

showing distribution of coding and non-coding (promoter, 5’ UTR, 3’ UTR, enhancer) driver             

p-values for genes identified by different numbers pathway and network methods, where genes             

identified by a majority (≥ 4/7) of methods are PID genes. (B) Driver p-values of genes                
identified by pathway and network methods. Bar chart showing distribution of number of             

genes identified by pathway and network methods for genes with driver p-values with p < 0.001,                

0.01, 0.1, 0.25, 1. 
 

Figure S10: Gene expression changes are correlated with mutations in PID-N genes. All             

non-coding mutations in PID-N genes that show significant expression changes (rank sum FDR             

< 0.3): promoter mutations in TERT, TP53, TLE4, and TCF4 and 3’ UTR and 5’ UTR mutations                 

in DUSP22. Each plot shows the expression (FPKM-UQ values on individual tissue types or              

z-scores for FPKM-UQ values across tissue types) of a gene for patients with (left) and without                

(right) mutations in that gene, where each point in the plot indicates the expression of each                

patient. Copy number gains (numeric copy number gain of at least 1) and losses (numeric copy                

number loss of at least 1) are highlighted in red and blue, respectively. 

 

Figure S11: Pathways containing PID-C and PID-N genes. (A) Pathways containing PID-C            
and PID-N genes. This figure shows the pathways in the pathway modules in Figure 4B. Each                

row corresponds to a pathway that is enriched (see Methods ) in PID-C and/or PID-N genes,               

and each column is a PID-C or PID-N gene. A filled entry in the table indicates a gene (column)                   
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that belongs to a pathway (row), colored according to PID-C genes (green), PID-N genes              

(yellow), or both (orange). Dark colors indicate that the corresponding module contains a             

pathway that is significantly enriched (dark) or not (light) for) that include the corresponding              

gene. Enrichments are summarized by circles adjacent each pathway name and consensus            

gene name. Boxed circles indicate that a pathway contains a pathway that is significantly more               

enriched for the union of the PID-C and PID-N than the PID-C and PID-N results separately. (B)                 
Pathway enrichment map. Nodes in the enrichment map represent pathways, and edges            

indicate highly overlapping pathways. Node color shows if detected pathways are supported            

(high pathway enrichment) by the PID-C gene set (green), PID-N gene set (yellow) or both               

(orange). Node size indicates number of genes in the pathway. 

 

Figure S12: Oncoprints for mutations in biological pathways and processes identified by            
pathway and network methods. (A) Oncoprint for Wnt signaling pathway altered by both             
coding and non-coding mutation. Coding mutations in PID-C genes in the Wnt signaling             

pathway (GO:0016055) occur in 606 tumors, and non-coding mutations in PID-N genes in the              

Wnt signaling cover an additional 169 tumors (additional 28% tumors). (B) Oncoprint for Notch              
signaling pathways altered by both coding and non-coding mutations. Coding mutations in            

PID-C genes in the Notch signaling pathway (GO:0007219) occur in 304 tumors, and             

non-coding mutations in PID-N in the Notch signaling pathway genes cover an additional 85              

tumors (additional 29% tumors). (C) Oncoprints for pathways enriched by non-coding           
mutations in RNA Splicing. Coding mutations in the PID-C gene SF3B1 in the “mRNA splicing               

via splicesome” (GO:0000398) pathway occur in 39 tumors, while non-coding mutations in 15             

PID-N genes in the same pathway cover an additional 271 tumors.  
 
Figure S13: tSNE plot of pathway enrichment scores. Clustering of 47 curated pathway32             

into two distinct pathway clusters. 
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Online Methods 

Mutation and Pathway Data 
We combined several pathways and interaction networks with gene scores derived from            

the PCAWG drivers analysis1 for use by pathway and networks methods. Here, we use the term                

“pathway methods” for those approaches that make use of sets of related genes for their               

analysis while the term “network methods” are reserved for those that also incorporate the              

interactions among the genes and/or their products. 

Somatic mutation data 

We obtained consensus driver p-values (syn8494939 ) from the PCAWG drivers          

analysis1 for coding and non-coding (core promoter, 5’ UTR, 3’ UTR, enhancers) genomic             

elements for the Pancan-no-skin-melanoma-lymph cohort. We removed driver p-values for          

several elements (H3F3A and HIST1H4D coding; LEPROTL1, TBC1D12, and WDR74 5’ UTR;            

and chr6:142705600-142706400 enhancer, which targets ADGRG6) that the PCAWG drivers          

analysis had manually examined and discarded. We included enhancers with ≤ 5 gene targets              

(syn7188184 ), which covered 89% of enhancers elements from the PCAWG drivers analysis1.            

In cases where the PCAWG drivers analysis reported multiple p-values for the same genomic              

element, we used the smallest reported p-value for that element. 

Derivation of gene scores 

Pathway databases and gene interaction networks typically record information at the           

level of individual genes. Thus, we formed coding and non-coding gene scores by combining              

PCAWG driver p-values across coding and/or non-coding (core promoter, 5’ UTR, 3’ UTR,             

enhancer) genomic elements as follows. Let px(g) be the driver p-value for element x of gene g                 

from the PCAWG drivers analysis1. We combined p-values from multiple elements using            

Fisher’s method, where we selected the minimum p-value min(ppromoter(g), p5’UTR(g)) for           

overlapping core promoter and 5’ UTR elements on gene g and the minimum p-value penhancer(g)               

of all enhancers targeting gene g. Using this approach, we defined the following gene scores on                
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coding (GS-C), non-coding, (GS-N), and combined coding and non-coding (GS-CN) genomic           

elements: 

 

1. GS-C: p C(g) = p coding(g) 

2. GS-N: p N(g) = fisher(min(ppromoter(g), p 5’UTR(g)), p 3’UTR(g), p enhancer(g)) 

3. GS-CN: p CN(g) = fisher(pcoding(g), min(ppromoter(g), p 5’UTR(g)), p 3’UTR(g), p enhancer(g)) 

 

Here, p = fisher(p1, …, pk) is Fisher’s method, i.e., -2 ∑ki=1 ln(pi) ~ 𝜒22k, for independently and                  

identically distributed p1, …, pk ~ U(0, 1), where 2k is the degrees of freedom in the calculation.                  

Moreover, when the driver p-value for a genomic element was undefined, we omitted that              

element from the calculation and reduced the number of degrees of freedom. 

 

For the pathway and networks methods that analyze individual mutations, we used            

mutations from the PCAWG MAF (syn7118450 ) on the same genomic elements (syn5259890 )            

as the PCAWG drivers analysis, i.e., coding, core promoter, 5’ UTR, 3’ UTR, and enhancer. We                

removed melanoma and lymphoma samples as well as 69 hypermutated samples with over 30              

mutations/MB (syn7222520 , syn7814911 ). We also removed mutations in elements that the           

PCAWG drivers analysis had manually examined and discarded (see above), resulting in lists of              

mutations used for later assessing biological relevance of our results (syn8103141 ,           

syn9684700 ). 

Pathway and network databases 

Pathway methods used gene sets from six databases: CORUM2 (syn11426307 ), GO3,4           

(syn3164548 ), InterPro 5 (syn11426307 ), KEGG6 (syn11426307 ), NCI Nature 7 (syn11426307 ),        

and Reactome 8 (syn3164548 ), where small (< 3 genes) and large (> 1,000 genes) pathways              

were removed. 

 

Network methods used interactions from three interaction networks: the largest          

connected subnetwork of the ReactomeFI 2015 interaction network9 (syn3254781 ) with          

high-confidence (≥ 0.75 confidence score) interactions, which we treated as undirected; the            

largest connected subnetwork of the iRefIndex14 interaction network10, which we augmented           

with interactions from the KEGG pathway database 6 (syn10903761 ); and the largest connected            
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subnetwork of the STRING v10 network11 (syn11712027 ) with high-confidence (> 9 confidence            

score) interactions. The BioGRID interaction network12 (syn3164609 ) was also used to evaluate            

and annotate results. 

Pathway and Network Integration of Gene-Level 

Scores 

Individual pathway and network algorithms 
We applied seven pathway and network methods to the gene scores and mutation data.              

We used two pathway methods: ActivePathways [Paczkowska, Barenboim, et al., in           

submission] and a hypergeometric analysis [Vazquez]. We also used five network methods:            

CanIsoNet [Kahraman et al., in preparation], Hierarchical HotNet13, an induced subnetwork           

analysis [Reyna and Raphael, in preparation], NBDI14, and SSA-ME15. Table M1 shows pathway             

databases and interaction networks used by each method: 

 

Method Pathway databases or interaction networks 

ActivePathways Gene Ontology (GO)3,4 biological processes, 

Reactome 8 pathways 

CanIsoNet STRING v10 11, DIMA16, 3did 17 

Hierarchical HotNet ReactomeFI 2015 8, iRefIndex14+KEGG6,10 

Hypergeometric analysis GO biological processes; CORUM2, KEGG6, 

InterPro 6, Nature NCI7 pathways 

Induced subnetwork analysis ReactomeFI 2015 8, iRefIndex14+KEGG6,10 

NBDI ReactomeFI 2015 8 

SSA-ME ReactomeFI 2015 8 

Table M1: Summary of pathway database and interaction network data for each method. 

 

3 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2018. ; https://doi.org/10.1101/385294doi: bioRxiv preprint 

https://paperpile.com/c/1KePhC/5tsn
https://www.synapse.org/#!Synapse:syn11712027
https://paperpile.com/c/1KePhC/ymbJ
https://www.synapse.org/#!Synapse:syn3164609
https://paperpile.com/c/1KePhC/IzehS
https://paperpile.com/c/1KePhC/u0t9
https://paperpile.com/c/1KePhC/PbVe
https://paperpile.com/c/1KePhC/ifXM+FXro
https://paperpile.com/c/1KePhC/74Mn
https://paperpile.com/c/1KePhC/5tsn
https://paperpile.com/c/1KePhC/uCEw
https://paperpile.com/c/1KePhC/LJoz
https://paperpile.com/c/1KePhC/74Mn
https://paperpile.com/c/1KePhC/iypB+ZLS0
https://paperpile.com/c/1KePhC/0gZG
https://paperpile.com/c/1KePhC/ZLS0
https://paperpile.com/c/1KePhC/ZLS0
https://paperpile.com/c/1KePhC/7wLe
https://paperpile.com/c/1KePhC/74Mn
https://paperpile.com/c/1KePhC/iypB+ZLS0
https://paperpile.com/c/1KePhC/74Mn
https://paperpile.com/c/1KePhC/74Mn
https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/


Using these pathway and network databases, we ran each method on the GS-C, GS-N,              

and GS-CN gene scores to identify three corresponding lists of genes. Each method evaluated              

the statistical significance of its results on each dataset. 

Non-coding value-added (NCVA) procedure 

The GS-CN results leverage both coding and non-coding mutation data, improving the            

detection of weaker pathway and network signals. We devised a non-coding value-added            

(NCVA) procedure to separate the coding and non-coding signals in this combined analysis,             

resulting in a set of NCVA genes for which the non-coding mutation data makes a statistically                

significant contribution to their discovery in the GS-CN results. Specifically, we evaluated the             

statistical significance of genes in the GS-CN results using a permutation test where the driver               

p-values for coding elements were fixed and the driver p-values for non-coding elements were              

permuted. This procedure identified the subset of the GS-CN results that were reported             

infrequently (p < 0.1) on permuted data and thus more likely to be true positives. Each method’s                 

NCVA results were added to that method’s overall set of non-coding results (GS-N). 

Consensus results for pathway and network methods 

We defined a consensus set of genes for each set of results: GS-C results, GS-N               

results, GS-CN results, and GS-N combined with NCVA results, across our seven pathway and              

network methods. Specifically, we defined a gene to be a consensus gene if it was found by a                  

majority (≥ 4/7) of the pathway and network methods. For our analysis, we focused on the                

consensus GS-C results, which we call the pathway-implicated driver genes with coding variants             

(PID-C), and the consensus from the GS-N results combined with NCVA results, which we call               

the pathway-implicated driver genes with non-coding variants (PID-N). We defined PID-C genes            

as the 87 genes in the consensus of the GS-C results, and we defined PID-N genes as the 93                   

genes in the consensus of each method’s GS-N results combined with its NCVA results. 
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Downstream Interpretation of Pathway-Implicated 

Drivers 
We performed several analyses to assess the biological relevance of PID-C and PID-N             

genes. 

Identification of mutational signatures of PID genes 

We performed a permutation-based enrichment test for mutation signatures from          

PCAWG mutation signatures analysis18. We identified the most likely mutation signature for            

each non-coding mutation in PID-N genes and compared them to randomly chosen non-coding             

mutations in non-PID-N genes. 

Gene scores improve network neighborhood scores of PID genes 

To assess the extent to which gene scores on PID genes contribute to their detection by                

pathway and network methods, we considered the contribution of each PID gene’s score to the               

score of its network neighborhood in the BioGRID interaction network. 

 

For each PID gene g, we used Fisher’s method to combine the gene scores of the                

first-order network neighbors of g both with and without the score of g itself. In particular, for                 

gene g, let p (g) be the gene score for g and N(g) be the network neighborhood of g. Then 

 

pN(g)
with = fisher(p(v) : v ∊ N(g) ⋃ {g }) 

 

is a score for the network neighborhood of g when including gene g and 

 

pN(g)
without = fisher(p(v) : v ∊ N(g)) 

 

is a score for the network neighborhood of g when excluding gene g. 
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If the network neighborhood of g has a smaller p-value with g than without g, i.e., pN(g)
with                 

< pN(g)
without, then gene g improves the score of the network neighborhood, suggesting that the               

gene score of g plays a role in its detection by pathway and network methods. Alternatively, if                 

the network neighborhood of g has a larger p-value with g than without g, i.e., pN(g)
with > pN(g)

without,                  

then gene g worsens the score of the network neighborhood, suggesting that the gene scores of                

the network neighbors of g are predominantly responsible for the detection of g by pathway and                

network methods. 

 

We performed this test for every PID-C gene with GS-C gene scores and every PID-N               

gene with GS-N gene scores. We also sampled genes uniformly at random from the network (87                

for PID-C genes and 93 for PID-N genes; 10 6 trials) to ascertain whether significantly more PID                

genes that improved the scores of their network neighborhoods than expected by chance. 

Expression analysis of PID genes 

We evaluated whether mutation status of each PID gene was correlated with RNA             

expression. We used PCAWG-3 gene expression data (syn5553991 ), which was averaged from            

TopHat2 and STAR-based alignments, with FPKM-UQ normalization. Tumor type and          

copy-number aberrations are known to be covariates for gene expression, so we conditioned on              

tumor types and annotated copy-number aberrations. 

 

We used the following procedure to assess expression correlations on individual tumor            

types. We only considered cases with at least 3 mutated samples and 3 non-mutated samples               

to restrict our analysis to cases with sufficient statistical power. For each PID-C gene or each                

non-coding element in a PID-N gene, we partitioned the samples with expression data into a set                

A of samples with mutation(s) in the element and a set B of samples without mutations in the                  

element. We performed the Wilcoxon rank-sum test for the expression of the gene in sets A and                 

B and performed the Benjamini-Hochberg correction on each coding or non-coding element to             

provide FDRs. 

 

We used the following procedure to assess expression correlations across tumor types.            

We only considered cases with at least 1 mutated sample and 1 non-mutated sample to restrict                

our analysis to cases with sufficient statistical power. For each PID-C gene and each              
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non-coding element in a PID-N gene, we partitioned the samples with expression data into sets               

Ac of samples in cohort c with mutation(s) in the element and sets Bc of samples in cohort c                   

without mutations in the element. We converted the expression values into z-scores using the              

expression from non-mutated samples in cohort c, and we computed the Wilcoxon rank-sum             

test on the expression of the gene in sets from A = ⋃c ∊ C Ac and B = ⋃c ∊ C Bc, where C is the set of                             

all cohorts containing samples with mutation(s) in the element. We then performed the             

Benjamini-Hochberg correction on each coding or non-coding element to provide FDRs. 

Network annotation of PID genes 

We performed a permutation test to evaluate the statistical significance of the number of              

interactions in the BioGRID high-confidence interaction network between PID-C genes, the           

number of interactions between PID-N genes, and the number of interactions between PID-C             

and PID-N genes, i.e., when a PID-C gene interacts with a PID-N gene. To compute the                

permutation p-value we sampled random networks uniformly at random from the collection of             

networks with the same degree sequence as the BioGRID network. 

 

We found connected subnetworks of 46 PID-C genes (31 genes expected, p = 9 ⨉ 10 -4)                

and 16 PID-N genes (10 genes expected, p = 6.1 ⨉ 10 -2) in the high-confidence BioGRID19                

protein-protein interaction (PPI) network. The union of the PID-C and PID-N genes formed a              

larger connected subnetwork of 73 genes (Figure 4A). These connected subnetworks were            

significantly larger than expected by chance according to this permutation test (57 genes             

expected, p = 2.2 ⨉ 10 -3). Further, we observed statistically significant numbers of             

protein-protein interactions between PID-C and PID-N genes (67 interactions observed vs. 45            

expected, p = 6 ⨉ 10 -4), suggesting that the associated mutations may target an overlapping set                

of underlying pathways. The PID-C genes were connected by significantly more interactions            

than expected (64 vs. 40 expected, p < 10 -4) and the PID-N genes were interconnected at a                 

sub-significant level (18 vs 12 expected, p = 6.8 ⨉ 10 -2). Thus certain pathways are affected by                 

either coding or non-coding mutations, but some pathways are affected by a complement of              

both coding and non-coding mutations. 
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Pathway annotation of PID genes  

Using g:Profiler20, we performed a pathway enrichment analysis for PID genes and            

12,061 gene sets representing GO biological processes and Reactome pathways. We used the             

Benjamini-Hochberg correction to control the FDR of the results. 

Characterization of PID genes in RNA splicing 

GSEA enrichment analysis was performed with the default parameters using the curated            

pathway gene lists21 for samples harboring non-synonymous coding mutations in 5 genes            

(FUBP1, RBM10, SF3B1, SRSF2, and U2AF1) with confirmed on-target splicing deregulation.           

Due to limited number of samples with RNA-seq data in individual tumor types, we restricted our                

analysis to missense mutations in SF3B1, truncating mutations in RBM10, and truncating            

mutations in FUBP1 for tumor types contained at least 3 samples with these classes of               

mutations. Each tumor type containing such mutations was considered separately21. 

 

We performed the same GSEA analysis for non-coding mutations in 17 PID-N genes             

that were annotated as involved in RNA splicing. Due to limited number of samples from               

individual tumor types containing mutations in these genes (often there was only 1 per tumor               

type), we performed GSEA analysis jointly on all tumor types containing mutations in an              

individual PID-N gene, restricting the non-mutated group to samples from the same tumor types              

as the mutant samples. The GSEA Normalized Enrichment Scores (NES) were clustered using             

hierarchical complete linkage clustering on the Euclidean distance between the NES scores.            

Separately, we computed a 2D projection of NES scores using t-Distributed Stochastic Neighbor             

Embedding (tSNE). 

Additional Information 
See Supplement for more information about data processing and details of individual            

network and pathway methods. 
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