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Abstract

The catalog of cancer driver mutations in protein-coding genes has greatly expanded in the past
decade. However, non-coding cancer driver mutations are less well-characterized and only a
handful of recurrent non-coding mutations, most notably TERT promoter mutations, have been
reported. Motivated by the success of pathway and network analyses in prioritizing rare
mutations in protein-coding genes, we performed multi-faceted pathway and network analyses
of non-coding mutations across 2,583 whole cancer genomes from 27 tumor types compiled by
the ICGC/TCGA PCAWG project. While few non-coding genomic elements were recurrently
mutated in this cohort, we identified 93 genes harboring non-coding mutations that cluster into
several modules of interacting proteins. Among these are promoter mutations associated with
reduced mRNA expression in TP53, TLE4, and TCF4. We found that biological processes had
variable proportions of coding and non-coding mutations, with chromatin remodeling and
proliferation pathways altered primarily by coding mutations, while developmental pathways,
including Wnt and Notch, altered by both coding and non-coding mutations. RNA splicing was
primarily targeted by non-coding mutations in this cohort, with samples containing non-coding
mutations exhibiting similar gene expression signatures as coding mutations in well-known RNA
splicing factors. These analyses contribute a new repertoire of possible cancer genes and
mechanisms that are altered by non-coding mutations and offer insights into additional cancer

vulnerabilities that can be investigated for potential therapeutic treatments.

Introduction

Over the past decade, cancer genome sequencing efforts such as The Cancer Genome
Atlas (TCGA) have identified millions of somatic genetic aberrations; however, the annotation
and interpretation of these aberrations remains a major challenge'. Specifically, while some
aberrations occur frequently in specific cancer types, there is a “long tail” of rare aberrations that
are difficult to distinguish from random passenger aberrations in modestly sized patient
cohorts?®. In many cancers, a significant proportion of patients do not have known coding driver
mutations®, suggesting that additional driver mutations remain undiscovered. To date, the vast

majority of known driver mutations affect protein-coding regions; only a few non-coding driver
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mutations, most notably mutations in the TERT promoter®”’, have been identified. Recent
studies from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International
Cancer Genome Consortium (ICGC) reveal few recurrent non-coding drivers in analyses of

individual genes and regulatory regions’.

Cancer driver mutations unlock oncogenic properties of cells by altering the activity of
hallmark pathways®. Accordingly, cancer genes are known to cluster in small number of cellular
pathways and interacting subnetworks®®. Previously, pathway and network analysis has proven
useful for implicating infrequently mutated genes as cancer genes based on their pathway
membership and physical/regulatory interactions with recurrently mutated genes'®"'*. However,
the interactions between coding and non-coding driver mutations have not been systematically

explored.

We performed pathway and network analysis of coding and non-coding somatic
mutations from 2,583 tumors from 27 tumor types compiled by the Pan-Cancer Analysis of
Whole Genomes (PCAWG) project of the International Cancer Genome Consortium (ICGC)",
the largest collection of uniformly processed cancer genomes to date. We derive a consensus
set of 93 high-confidence pathway-implicated driver genes with non-coding variants (PID-N) and
a consensus set of 87 pathway-implicated driver genes with coding variants (PID-C) using
seven pathway and network analysis methods. Both sets of PID genes, particularly the PID-N
set, contain rarely mutated genes that were not identified by individual recurrence tests but
interact with other well-known cancer genes. In total, 121 novel PID-N and PID-C genes are

revealed as promising candidates, expanding the landscape of driver mutations in cancer.

Furthermore, we examined the contribution of coding and non-coding mutations in
altering biological processes, finding that while chromatin remodeling and some well-known
signaling and proliferation pathways are altered primarily by coding mutations, other important
cancer pathways, including developmental pathways such as Wnt and Notch pathways, are
altered by both coding and non-coding mutations in PID genes. Intriguingly, we find many
non-coding mutations in PID-N genes with roles in RNA splicing, and samples with these
non-coding mutations exhibit similar gene expression signatures as samples with well-known
coding mutations in RNA splicing factors. Our analysis demonstrates that somatic non-coding

mutations in untranslated and cis-regulatory regions constitute a complementary set of genetic
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perturbations with respect to coding mutations, affect several biological pathways and molecular
interaction networks, and should be further investigated for their role in the onset and

progression of cancer..

Results

The long tail of coding and non-coding cancer mutations

highlights opportunities for pathway and network analysis

We analyzed the genes targeted by single nucleotide variants (SNVs) and short
insertions and deletions (indels) identified by whole genome sequencing in the 2,583 ICGC
PCAWG tumor samples from 27 tumor types. Our pathway and network analyses focused on a
subset of 2,252 tumors that excluded melanomas and lymphomas due to their atypical
distributions of mutations in regulatory regions'®. We analyzed the pan-cancer driver p-values of
single protein-coding and non-coding elements predicted by the PCAWG consensus driver
analysis’ including exons, promoters, untranslated regions (5° UTR and 3 UTR), and
enhancers. This PCAWG consensus driver analysis integrates p-values from 16 driver discovery
methods, resulting in consensus driver p-values for coding and non-coding elements. Among
protein-coding driver p-values of the pan-cancer cohort, 75 genes were highly significant (FDR <
0.1; Supplemental Figure S1) and an additional 7 genes were observed at near-significant
levels (0.1 < FDR < 0.25). These numbers are consistent with previous reports of a “long tail” of
driver genes with few highly-mutated genes and many genes with infrequent mutations across
cancer types®'’. Non-coding mutations exhibit a similar long-tail distribution with even fewer
significant genes (8 genes at FDR < 0.1 and 2 genes at 0.1 < FDR < 0.25). No single gene has
both significant or near-significant coding and non-coding driver p-values (FDR < 0.25),
suggesting that non-coding mutations target a complementary set of genes as coding

mutations.

Earlier studies have demonstrated that proteins harboring coding driver mutations
interact with each other in molecular pathways and networks significantly more frequently than
expected by chance?** '3, We observed significant numbers of interactions between both

coding and/or non-coding elements with more mutations than expected by chance, suggesting
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that pathway and network methods may be able to identify rare driver events that are not
prioritized by single-element analyses (Supplemental Figure S2; Coding and non-coding

mutations cluster on networks in Supplement).

Consensus pathway and network analysis reveals possible

non-coding driver mutations

We performed a comprehensive pathway and network analysis of cancer drivers using
the results of the single-element driver discovery study of the PCAWG project’” as input. Our
methods leveraged prior pathway and network knowledge to amplify the results of this
single-element analysis. We performed a consensus analysis from seven distinct methods
(ActivePathways [Paczkowska, Barenboim et al., in submission], CanlsoNet [Kahraman et al., in
preparation], Hierarchical HotNet'®, a hypergeometric analysis [Vazquez], an induced
subnetwork analysis [Reyna and Raphael, in preparation], NBDI'®, and SSA-ME?) that utilized
information from molecular pathways or protein interaction networks (Figure 1, Methods). Each
method nominated genes, and consensus sets of genes with possible coding and non-coding
driver mutations were defined as the genes found by at least four of the seven methods
(Supplemental Tables S1-S4). All methods were calibrated on randomized data (Individual

pathway and network algorithms in Supplement).

When using non-coding mutations alone, a consensus of pathway and network analysis
results on non-coding data identified 62 genes. In contrast, and as one might expect, the coding
analysis resulted in substantially more genes, producing a set of 87 pathway-implicated driver
genes with coding variants (PID-C). To increase the sensitivity for detecting contributions
provided by non-coding mutations, we devised a “non-coding value-added” (NCVA) procedure
(Figure 1, Supplemental Figure S3; Non-coding value-added (NCVA) procedure in
Methods). Our NCVA procedure asks if the coding mutations enhance the discovery of potential
non-coding driver genes beyond what is found with only the non-coding mutations. This
procedure identified an additional set of 31 genes that, when merged with the 62 genes found
with non-coding mutations alone, resulted in a set of 93 pathway-implicated driver genes with
non-coding variants (PID-N) (Supplemental Figure S4, Consensus results in Methods).

PID-N genes appear as a robust and biologically relevant set, unbiased by any particular
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mutational process reflecting a particular carcinogen or DNA damage processes (Supplemental

Figure S5, Mutational signatures in Methods).

The 87 PID-C genes (Supplementary Table 1, Supplemental Figure S6A) include 68
previously identified cancer genes as catalogued by the COSMIC Cancer Gene Census (CGC)
database (v83, 699 genes from Tier 1 and Tier 2)*' (2.98 genes expected; Fisher's exact test p
= 3.57 X 10®; Figures 2A and 2C, Supplemental Figure S7A). The PID-C genes have
significantly higher coding gene scores than non-PID-C genes (rank sum test p = 1.72 X 10,
median rank 48 of PID-C genes), and each of the 87 PID-C genes improves the score of its
network neighborhood (19.7 genes expected; p < 105 Supplemental Table S5). This network
neighborhood analysis shows that PID-C genes are not implicated solely by their network
neighbors™ but themselves contribute significantly to their discovery by pathway and network
methods. The 87 PID-C genes also include 31 genes that are not statistically significant (FDR >
0.1) in the PCAWG single-element driver analysis; Figures 2A and 2C; Supplemental Figures
S8A and S9), illustrating that the network neighborhoods can nominate genes with infrequent
mutations, i.e., those in the “long tail’, as possible driver genes. Interestingly, 13 of these 31
genes with FDR > 0.1 are also known drivers according to the CGC database (3.0 genes
expected; Fisher's exact test p = 2.1 X 10™). Thus, the consensus pathway and network
analysis recovers many known protein-coding driver mutations and identifies additional possible
drivers that are infrequently mutated and thus remain below the statistical significance threshold

of gene-specific driver analyses.

The 93 PID-N genes (Supplementary Table 2, Supplemental Figure S6B) include 19
previously identified cancer genes according to the COSMIC Cancer Gene Census (CGC)
database (3.2 genes expected; Fisher's exact test p = 5.3 X 10™""; Figures 2B and 2D;
Supplemental Figures S7B and S7C). Excluding the eight genes with individually significant
non-coding elements from the PCAWG consensus drivers analysis’, 19 genes are both PID-N
genes and CGC genes (3.1 genes expected; Fisher’s exact test p = 5.3 X 10""), suggesting that
non-coding mutations may alter genes with recurrent coding or structural variants in some
samples. The PID-N genes have significantly higher non-coding gene scores than non-PID-N
genes (rank sum test p = 1.47 X 10°%, median rank 165 of PID-N genes), and 92/93 PID-N
(except for HIST1H2BO) genes improve the scores of their network neighborhoods (28.5 genes

expected; p < 10°;, Supplemental Table S6). This network neighborhood analysis shows that
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PID-N genes are not implicated solely by their network neighbors™. The vast majority of PID-N
genes (90 out of the 93, including the 19 CGC genes) are distinct from the PCAWG
single-element driver analysis (Figure 2B, Supplemental Figures S8B and S9), with only three
genes in common: TERT, HES1, and TOB1. Of these three, only TERT is recognized as a
known driver according to the CGC database. Moreover, the 93 PID-N genes are more strongly
enriched (Fisher's exact test p = 5.3 X 10"") for COSMIC CGC genes than the 93 genes with
the smallest non-coding driver p-values of promoters, 5 UTRs, or 3’ UTRs (Fisher’'s exact test p
= 4.8 X 10%). Thus, our consensus procedure of the pathway and network analyses appreciably

augments the PCAWG set of non-coding driver candidates.

Taken together, the PID-C and PID-N results identified an additional 121 genes over
what was found in the element-focused PCAWG driver analysis, including 90 new possible
non-coding drivers (Consensus Results in Methods). In total, non-coding mutations in PID-N
genes cover an additional 151 samples (9.1% of samples) than PID-C genes. In addition, the
overwhelming majority of the PID-N genes were distinct from PID-C genes (88 out of 93;
Supplemental Figure S4). While this suggests that coding and non-coding driver mutations
have largely distinct gene targets, we show below that both types of mutations affect distinct

sets of cancer genes underlying many of the same hallmark cancer processes.

Impact of non-coding mutations on gene expression

As most PID-N genes have little support from previous studies to corroborate their roles
in tumorigenesis, we sought to evaluate the biological relevance of the PID-N genes by testing
whether non-coding mutations in a PID-N genes were associated with expression changes in
that gene. Such in cis expression effects may be a result of the mutation located in transcription
factor binding sites or other types of regulatory sites. We found that 5 PID-N genes (FDR < 0.3)
showed statistically significant in cis correlations out of the 90 that could be tested using
RNA-Seq data (Figure 3; Supplemental Figure S10; Supplemental Tables S$S8-10, $12-14). In
contrast, 34 out of 87 PID-C genes with statistically significant or near statistically significant in

cis expression changes (FDR < 0.3) (Supplemental Tables S7, $11).

Unsurprisingly, the most significant association between mutation and expression for

PID-N genes is the correlation between TERT promoter mutations and increased expression,
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which we find in 11 Thy-AdenoCA tumors (Wilcoxon rank-sum test p = 1.3 X 10™"°, FDR = 3.2 X
10°), 11 CNS-Oligo tumors (Wilcoxon rank-sum test p = 6.8 X 10°, FDR = 9.7 X 10?), and 22
CNS-GBM tumors (Wilcoxon rank-sum test p = 2.3 X 10?, FDR = 0.19) (Supplemental Figure
S8), consistent with previous reports®®??. More evidence of significant correlations between
TERT promoter mutations and increased expression may have been expected, but only a
subset of samples with TERT mutations have expression data. In addition, low sequencing
coverage in promoter regions limits the power of this analysis. The PCAWG drivers analysis
investigated this issue specifically for two hotspot mutations in TERT, estimating that 216
mutations in these sites were likely not called’ in comparison to a total of 97 samples with TERT

promoter mutations (71 samples with expression data).

Four other PID-N genes were found to have significant in cis regulatory correlations:
TP53, TLE4, TCF4, and DUSP22 (Figure 3, Supplemental Figure S10). TP53 shows
significantly reduced expression (Wilcoxon rank-sum test p = 1.0 X 10% FDR = 8.7 X 107?)
across 6 tumors with TP53 promoter mutations from six different tumor types (Flgure 3A,
Supplemental Figure S$10). The under-expression of mutated samples is consistent with
TP53s well known role as a tumor suppressor gene, and links between TP53 promoter
methylation and expression have been investigated®®. This expression change was also
described by the PCAWG single-element driver discovery study’. TLE4 shows significantly
reduced expression in three Liver-HCC tumors (Wilcoxon rank-sum test p = 1.7 X 10% FDR =
0.20) with TLE4 promoter mutations (Flgure 3B, Supplemental Figure S10). TLE4 is a
transcriptional co-repressor that binds to several transcription factors?, and TLE4 functions as a
tumor suppressor gene in acute myeloid lymphoma through its interactions with Wnt signaling®.
Furthermore, in an acute myeloid lymphoma cell line, TLE4 knockdown increased cell division
rates while forced TLE4 expression induced apoptosis®®. However, the role of TLE4 in solid
tumors is not as well understood. TCF4 shows significantly reduced expression in three
Lung-SCC tumors (Wilcoxon rank-sum test p = 3.4 X 10% FDR = 0.27) with TCF4 promoter
mutations (Flgure 3C, Supplemental Figure S$10). Part of the TCF4/B-catenin complex, TCF4
encodes a transcription factor that is downstream of the Wnt signaling pathway, and low TCF4
expression has been observed in Lung-SCC tumors®. DUSP22 is significantly under-expressed
in five Lung-AdenoCA patients (Wilcoxon rank-sum test p = 6.3 X 10% FDR = 0.024) with
DUSP22 3 UTR mutations and significantly over-expressed in 3 Lung-AdenoCA patients
(Wilcoxon rank-sum test p = 7.8 X 10, FDR = 0.075) with DUSP22 5’ UTR mutations. These
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UTR mutations were mutually exclusive, and we find no support for opposing in cis effects in
these regions. DUSP22 encodes a phosphatase signalling protein and was recently proposed to

be a tumor suppressor in lymphoma?®.

These analyses provide additional support for a subset of PID-N genes. The small
number of PID-N genes with associated gene expression changes is explained by the low
number of samples with mutations in PID-N genes, the uneven availability of expression data
across the tumor types, and issues of reduced coverage in non-coding regions of the genome,
which may decrease the number of mutated samples and limit the ability to detect rare

non-coding variants.

The modular organization of genes impacted by coding and non-coding
mutations

We identified specific protein-protein interaction subnetworks and biological pathways that were
altered by coding mutations, non-coding mutations, or a combination of both types of mutations.
We found significantly more interactions between PID-C genes that expected by chance using a
node-degree preserving permutation test (64 interactions observed vs. 40 interactions expected,
p < 10%), a near significant number of interactions between PID-N genes (18 vs. 12 expected, p
= 6.8 X 10?), and significantly more interactions between both PID-C and PID-N genes (67 vs.
40 expected, p = 6 X 10, demonstrating an interplay between coding and non-coding
mutations on physical protein-protein interaction networks (Network annotation in Methods).
Overall, we organized the interactions between PID-C and PID-N genes into five biological
processes: core drivers, chromatin organization, cell proliferation, development, and RNA
splicing (Figure 4A). While the high frequency of molecular interactions between PID-C and
PID-N genes is expected since such interactions were used as a signal in pathway and network
methods, the specific structure of these interactions illustrates the relative contributions of

coding and non-coding mutations in individual subnetworks.

We further characterized the molecular pathways enriched among our PID-C and PID-N
using the g:Profiler web server® (Figure 4B, Supplemental Figure S9, Supplemental Tables
S$15-818, Pathway annotation in Methods). Since our methods use pathway databases and

interaction networks as prior knowledge, enrichment with known pathways is expected.
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However, the enrichment results provide clues about the modular organization of the pathways
and allow us to assess the relative contributions of coding and non-coding mutations in each
pathway. Overall, 63 pathways were enriched for PID-C genes and 13 pathways were enriched
for PID-N genes (FDR < 10).

We further grouped these pathways into 29 modules using overlaps between annotated
pathways recorded in the pathway enrichment map (Supplemental Figure S$11).For each
enriched module, we examined whether PID-C, PID-N, or both types of genes were responsible
for the observed enrichment. This produced a clustering of modules and PID genes into four
biological processes: chromatin organization, cell proliferation, development and RNA splicing
(Figure 4B).

We found that pathways in the chromatin and cell proliferation processes — including
chromatin remodeling and organization, histone modification, apoptotic signaling, signal
transduction, Ras signaling, and cell growth — were altered primarily by coding mutations in
PID-C genes. This is not surprising as these pathways contain many well-known cancer genes,
such as TP53, KRAS, BRAF, cyclin dependent kinase inhibitors, EGFR, PTEN, and RB1.

Several signaling pathways contain significant numbers of both PID-C and PID-N genes,
indicating that non-coding mutations provide additional avenues for disrupting key molecular
interactions. These pathways include the Wnt signaling pathway (FDR = 6.8 X 107"%), which was
predominantly targeted by coding mutations but was also targeted by non-coding mutations in
several PID-N genes, including TERT (103 mutations), HNF1A/B (24 mutations), TLE4 (32
mutations), TCF4 (93 mutations), and CTNNB1 (17 mutations) (Supplemental Figure S12A).
The Notch signaling pathway (FDR = 6.8 X 107) was associated with comparable numbers of
PID-C and PID-N genes, including the PID-N genes JAG1 and MIB1 that encode ligands and
the PID-N transcription factors ACL1, HES1, and HNF1B (66 non-coding mutations in total)
(Supplemental Figure S12B). The TGF-B signaling pathway (FDR = 3.2 X 10”) also contained
both PID-C and PID-N genes, including the PID-N genes HES1, HNF1A/B, HSPA5, MEF2C as
well as TGFBR2 and CTNNB1 (214 coding mutations and 166 non-coding mutations), which are
both PID-C and PID-N genes.
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We found that several developmental processes were altered by significant numbers of
both PID-C and PID-N genes. Cell fate determination (FDR = 2.0 X 107) was predominantly
affected by non-coding mutations in the PID-N genes DUSP6, MEF2C, JAG1, SOX2, HEST,
ACL1, ID2, SUFU, and KLF4 (total 191 non-coding mutations) but also includes PID-C genes
BRAF, GATA3, NOTCH1/2. Pathways related to nervous system development (FDR = 5.8 X
10®) were enriched for the PID-N genes ASCL1, CTNNB1, ID2, SUFU, and TERT that have
known roles in cancer®®?', complementing the PID-C genes NOTCH1, PTEN and RHOA that
also have known cancer roles. The pattern specification process (FDR = 8.8 X 10®) was also
affected by both coding and non-coding mutations, including the PID-N genes ASCL1, SUFU,
and RELN and the PID-C genes ATM and SMAD4. In these cases, non-coding mutations
complement coding mutations that disrupt these pathways, covering significant numbers of

additional patients.

Intriguingly, we find that RNA splicing pathways were affected primarily by non-coding
mutations (FDR = 7.6 X 10®). A total of 17 PID-N genes belonged to splicing-related pathways
(Supplemental Figure S12C), including several heterogeneous nuclear ribonucleoproteins
(hnNRP) and serine and arginine rich splicing factors (SRSFs). None of these PID-N genes
were significantly mutated according to single-element tests of the PCAWG driver discovery
analysis. We did not find any significant (FDR < 0.1) in cis associations between non-coding
mutations and altered expression of these genes. Thus, we explored potential in trans effects on
pathway expression changes. We found that non-coding mutations in splicing-related PID-N
genes largely recapitulate a recently published association by TCGA* between coding
mutations in several splicing factors and differential expression of 47 pathways (Figure 5).
Specifically, we identified three clusters of mutations (C1, C2, and C3 in Figure 5A and Figure
5B) from our differential expression analysis. Each of these clusters contained at least one
coding mutation in the splicing genes SF3B1, FUBP1, and RBM10 as reported in ¥, with
non-coding mutations in splicing-related PID-N genes showing similar gene expression
signatures. The joint analysis of coding and non-coding mutations in splicing factors also
recovered the two groups of enriched pathways (P1 and P2 in Figure 5A, Supplemental
Figure S13) reported in *. One group (P1) is characterized by immune cell signatures and the
other group (P2) reflects mostly cell-autonomous gene signatures of cell cycle, DDR, and
essential cellular machineries®. The similarity between the gene expression signatures for

non-coding mutations in several PID-N splicing factors and coding mutations in splicing factor
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genes® supports a functional role for splicing-related PID-N genes in altering similar gene

expression programs.

In addition to the above modules, we also found that transcription factors were well
represented among both the PID-C and PID-N genes. In total, 9 PID-C genes are transcription
factors (ARHGAP35, ARID2, FOXA1, GATAS3, NFE2L2, SMAD4, SOX9, TCF7L2, TP53; FDR =
2.1 X 109, while 19 PID-N genes are transcription factors (ASCL1, BHLHE40, ESRRG, HEST1,
HNF1A, HNF1B, HOXA10, HOXB5, KLF4, MEF2C, MYC, NFE2, NR2F1, SOX2, SOX4, TCF4,
TP53, ZNF521, ZNF595; FDR = 4.1 X 10%).

Discussion

While single-region tests in the PCAWG project identified only a few non-coding driver
elements, our integrative pathway and network analysis further expands the list of genes with
possible non-coding driver mutations, extending into the “long tail” of rare mutations. In
particular, we find that genes with either coding or non-coding mutations are linked in pathways
and networks, and that pathway databases and interaction networks can be leveraged as prior
knowledge to identify additional possible non-coding drivers that are too infrequently mutated to
be detected by single-element tests. In total, our integrative pathway analysis identified 87
pathway-implicated driver genes with coding variants (PID-C) and 93 pathway-implicated driver
genes with non-coding variants (PID-N). Importantly, 90 PID-N genes were not statistically
significant (FDR > 0.1) by single-element tests on non-coding mutation data, and these genes
are key candidates for future experimental characterization. Among them, we find that promoter

mutations in TP53, TLE4, and TCF4 are associated with reduced expression of these genes.

We find that coding and non-coding driver mutations largely target different genes, and
contribute differentially to pathways and networks perturbed in cancer. While some cancer
pathways are targeted by both coding and non-coding mutations, such as the Wnt and Notch
signaling pathways, other pathways appear to be predominately altered by one class of
mutations. In particular, we find non-coding mutations in multiple genes in the RNA splicing
pathway, and samples with these mutations exhibit gene expression signatures that are
concordant with gene expression changes observed in samples with coding mutations splicing
factors SF3B1, FUBP1, and RBM10*. Together these results demonstrate that rare non-coding
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mutations may result in similar perturbations to both common and complementary biological

processes.

There are several caveats to the results reported in this study. First, there is relatively
low power to detect non-coding mutations in the cohort, particularly in cancer types with small
numbers of patients. Second, transcriptomic data was available for only a subset of samples,
further reducing our ability to validate our predictions using gene expression data. Third, our
pathway and network analysis relied on the driver p-values from the PCAWG consensus driver
analysis’. This analysis accounts for regional variations in the background mutation rate across
the genome. However, if these corrections are inadequate and the uncorrected confounding
variables are correlated with gene membership in pathways and subnetworks, then the false
positive rates in our analysis may be higher than estimated. All of these factors, plus other
unknown confounding variables, make it difficult to assess the false discovery rate of our
predictions, particularly for PID-N genes. Further experimental validation of these predictions is

necessary to determine the true positives from false positives in our PID gene lists.

While pathway and network analysis was successful in revealing potential new
cancer-associated genes impacted by non-coding mutations, future investigations that consider
the changing landscape of gene regulation and pathway interactions across tissues may offer a
new perspective on the data. Specifically, each cell type has a different epigenetic wiring and
regulatory machinery, and non-coding mutations may target cell type-specific vulnerabilities.
Approaches that incorporate tissue-specific gene-gene regulatory logic may be successful in

revealing new classes of drivers unexplored with our current approaches.

In conclusion, our pathway- and network-driven strategies enable us to interpret the
coding and non-coding landscape of tumor genomes to discover driver mechanisms in
interconnected systems of genes. This approach has multiple benefits. First, by broadening our
mutation analysis from single genomic elements to pathways and networks of multiple genes,
we identify new components of known cancer pathways that are recurrently altered by both
coding and non-coding mutations, and thus likely to be important in cancer. Second, we identify
new pathways and subnetworks that would remain unseen in an analysis focusing on coding

sequences. Investigation of the coding and non-coding mutations that perturb these pathways
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and networks will enable more accurate patient-stratification strategies, pathway-focused

biomarkers, and therapeutic approaches.
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Figure Legends

Figure 1: Overview of the pathway and network analysis approach. Coding, non-coding,
and combined gene scores were derived for each gene by aggregating driver p-values from the
PCAWG driver predictions in individual elements, including annotated coding and non-coding
elements (promoter, 5° UTR, 3’ UTR, and enhancer). These gene scores were input to five
network analysis algorithms, which utilize multiple protein-protein interaction networks, and to
two pathway analysis algorithms, which utilize multiple pathway/gene-set databases. We
defined a non-coding value-added (NCVA) procedure to determine genes whose non-coding
scores contribute significantly to the results of the combined coding and non-coding analysis,
where NCVA results for a method augment its results on non-coding data. We defined a
consensus procedure to combine significant pathways and networks identified by these seven
algorithms. The 87 pathway-implicated driver genes with coding variants (PID-C) are the set of
genes reported by a majority (= 4/7) of methods on coding data. The 93 pathway-implicated
driver genes with non-coding variants (PID-N) are the set of genes reported by a majority of

methods on non-coding data or in their NCVA results.

Figure 2: (A) Pathway and network methods identify significant coding driver mutations.
Driver p-values on protein-coding elements for the 250 genes with most significant coding driver
p-values; dashed and dotted lines indicate FDR = 0.1 and 0.25, respectively. Dark green bars
are PID-C genes, while light green bars are non-PID-C genes. Blue squares below the x-axis
indicate genes from the COSMIC Cancer Gene (CGC) Census. In total, 31 of 87 PID-C genes
have coding driver p-values with FDR > 0.1 and would not be reported as drivers using
single-gene tests with the typical FDR = 0.1 threshold*”'*. Several PID-C genes are labeled,
including all COSMIC CGC genes with coding FDR > 0.1. Genes that are both PID-C and PID-N
genes are indicated with asterisks. Note that 3 PID-C genes are not among the 250 most
significantly mutated genes shown in the figure. (B) Pathway and network methods identify
rare non-coding driver mutations. Driver p-values on non-coding elements (promoter, 5 UTR,
and 3’ UTR of gene) for 250 genes with most significant non-coding driver p-values; dashed and
dotted lines indicate FDR = 0.1 and 0.25, respectively. Dark yellow bars are PID-N genes, while
light yellow bars are non PID-N genes. Blue squares below the x-axis indicate genes from the
COSMIC CGC. In total, 3 (TERT, HES1, TOB1) of 93 PID-N genes have non-coding driver
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p-values with FDR < 0.1, while 90 have FDR > 0.1, and thus would generally not be reported as
drivers using single-gene tests. Several PID-N genes are labeled, including PID-N genes with
significant in cis gene expression changes (see Fig. 3) and all PID-N genes with non-coding
FDR > 0.25. Genes that are both PID-C and PID-N genes are indicated with asterisks. Note that
48 PID-N genes are not among the 250 most significantly mutated genes shown in figure. (C).
Statistical significance of overlap between top ranked genes according to coding driver p-values
and PID-C genes with COSMIC Cancer Gene Census (CGC) genes. Overlap p-values are
compute with Fisher's exact test and driver FDR thresholds of 0.1 and 0.25 are highlighted.
Green square indicates significance of overlap between PID-C genes and CGC genes. (D)
Statistical significance of overlap of genes ranked by driver p-values on non-coding (promoter,
5 UTR, 3’ UTR) elements and COSMIC CGC genes. Driver FDR thresholds of 0.1 and 0.25 are
highlighted. Yellow square indicates significance of overlap between PID-N genes and CGC

genes. Note the different scaling of y-axis compared to Fig. 2C.

Figure 3: Gene expression changes are correlated with mutations in PID-N genes. (A)
TP53 promoter. TP53 coding and non-coding genomic loci with zoomed-in view of TP53
promoter region. TP53 promoter mutations (six mutations in Biliary-AdenoCA,
ColoRect-AdenoCA, Kidney-ChRCC, Lung-SCC, Ovary-AdenoCA, and Panc-AdenoCA cancer
types) correlate significantly (Wilcoxon rank-sum test p = 0.001, FDR = 0.087) with reduced
TP53 gene expression. Samples with copy number gains and losses in the TP53 promoter
region are annotated in red and blue, respectively. Two of the six TP53 promoter mutations
overlap with transcription factor binding sites (with one mutation matching 3 motifs). (B) TLE4
promoter. TLE4 coding and non-coding genomic loci with zoomed-in view of TLE4 promoter
region. TLE4 promoter mutations in Liver-HCC samples (three mutations) correlate (Wilcoxon
rank-sum test p = 0.02, FDR = 0.2) with lower TLE4 gene expression. Samples with copy
number gains and losses annotated in red and blue, respectively. One of the three TLE4
promoter mutations has a transcription factor binding site for ZNF263. (C) TCF4 promoter.
TCF4 coding and non-coding genomic loci with zoomed-in view of TCF4 promoter region. TCF4
promoter mutations in Lung-SCC samples (three mutations) correlate (Wilcoxon rank-sum test p
= 0.03, FDR = 0.27) with lower TCF4 gene expression. Samples with copy number gains and
losses annotated in red and blue, respectively. One of the the three TCF4 promoter mutations

has a transcription factor binding site for ZEB1.
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Figure 4: Pathway and network modules containing PID-C and PID-N genes. (A) Network
of functional interactions between PID-C and PID-N genes. Nodes represent PID-C and
PID-N genes and edges show functional interactions from the ReactomeF| network (grey),
physical protein-protein interactions from the BioGRID network (blue), or interactions recorded
in both networks (purple). Node color indicates PID-C genes (green), PID-N genes (yellow), or
both PID-C and PID-N genes (orange);node size is proportional to the score of the
corresponding gene; and the pie chart diagram in each node represents the relative proportions
of coding and non-coding cancer mutations associated with the corresponding gene. Dotted
outlines indicate clusters of genes with roles in chromatin organization and cell proliferation,
which predominantly contain PID-C genes; development, which includes comparable amounts
of PID-C and PID-N genes; and RNA splicing, which contains PID-N genes. A core cluster of
genes with many known drivers are also indicated. (B) Pathway modules containing PID-C
and PID-N genes. Each row in the matrix corresponds to a PID-C or PID-N gene, and each
column in the matrix corresponds to a pathway module enriched in PID-C and/or PID-N genes
(see Methods). A filled entry indicates a gene (row) that belongs to one or more pathways
(column) colored according to gene membership in PID-C genes (green), PID-N genes (yellow),
or both PID-C and PID-N genes (orange). A darkly colored entry indicates that a PID-C or PID-N
gene belongs to a pathway that is significantly enriched for PID-C or PID-N genes, respectively.
A lightly colored entry indicates that a PID-C or PID-N gene belongs to a pathway that is
significantly enriched for the union of PID-C and PID-N genes but not for PID-C or PID-N genes
separately. Enrichments are summarized by circles adjacent each pathway module name and
PID gene name. Boxed circles indicate that a pathway module contains a pathway that is
significantly more enriched for the union of the PID-C and PID-N genes than the PID-C and
PID-N results separately. The enriched modules and PID genes are clustered into four
biological processes: chromatin, development, proliferation, and RNA splicing as indicated, with

differing contributions of PID-C and PID-N genes.

Figure 5: RNA splicing factors are targeted primarily by non-coding mutations and alter
expression of similar pathways as coding mutations in splicing factors. (A) Heatmap of
Gene Set Enrichment Analysis (GSEA) Normalized Enrichment Scores (NES). The
columns of the matrix indicate non-coding mutations in splicing-related PID-N genes and coding
mutations in splicing genes reported in ** and the rows of the matrix indicate 47 curated gene

sets®?. Red heatmap entries represent an upregulation of the pathway in the mutant samples
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with respect to the non-mutant samples and blue heatmap entries represent a downregulation.
The first column annotation indicates mutation cluster membership according to common
pathway regulation. The second column annotation indicates whether a mutation is a
non-coding mutation in a PID-N gene or a coding mutation®, with the third column annotation
specifies the aberration type (promoter, 5° UTR, 3° UTR, missense, or truncating). The fourth
column annotation indicates the cancer type for coding mutations from *2. The mutations cluster
into 3 groups: C1, C2, and C3. The pathways cluster into two groups®: P1 and P2, where P1
contains an immune signature gene sets and P2 contains cell autonomous gene sets as
reported in *2. (B) tSNE plot of mutated elements illustrates clustering of gene expression
signatures for samples with non-coding mutations in splicing-related PID-N genes with
gene expression signatures for coding mutations in previously published splicing
factors. The shape of each point denotes the mutation cluster assignment (C1, C2, or C3), and
the color represents whether the corresponding gene is a PID-N gene with non-coding

mutations or a splicing factor gene with coding mutations®.
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Supplemental Figure Legends

Figure S1: Driver p-value distributions for coding and non-coding regions of the genome.
(A) Distribution of driver p-values from single-element tests on coding and non-coding
(promoter, 5 UTR, 3’ UTR) regions of the genome. (B) Numbers of genes with driver p-values
from single-element tests with g-values satisfying g < 0.01, 0.1, 0.25, 0.5 on coding and
non-coding (promoter, 5’ UTR, 3’ UTR) regions of the genome.

Figure S2: Statistically significant network interactions between genes with highest
driver p-values. Genes in the BioGRID high-confidence functional interaction network with the
highest coding and non-coding (promoter, 5 UTR, 3" UTR) driver p-values have statistically
significant numbers of interactions compared to genes chosen uniformly at random from the
network. We rank network genes by their coding or non-coding driver p-values (by single
element g-values) and show the number of interactions between the genes with highest
observed coding (green) and non-coding (yellow) p-values as well as random (gray) p-values

using 1,000 permutations among network genes.

Figure S3: lllustration of non-coding value-added (NCVA) procedure.
lllustration of the NCVA procedure for identifying results on coding and non-coding data
with with significant contributions from non-coding data. (A) Top left: The central gene has
a high non-coding gene score, and the four neighboring genes have high coding gene scores.
(B) Bottom left: All five genes have strong combined coding and non-coding gene scores. A
pathway/network method identifies a subnetwork of all five genes. (C) Top right: After
preserving coding gene scores and permuting non-coding gene scores, the central gene has a
low non-coding gene score, and the four neighboring genes still have high coding gene scores.
(D) Bottom right: Four of the five genes have strong combined coding and non-coding gene
scores, but the central gene does not. A pathway/network method identifies two subnetworks of
two genes, excluding the central gene, which becomes a potential NCVA gene

If a gene identified by a pathway/network method using observed coding and observed
non-coding gene scores and consistently omitted (p < 0.1) by the method using observed
coding scores and permuted non-coding gene scores, then we identify it as a non-coding
value-added (NCVA) gene for that method because the non-coding data makes a significant

contribution to that gene’s discovery by a method on coding and non-coding data.
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Figure S4: Overlap of consensus results for pathway and network methods. (A) PID-C
and PID-N genes have negligible overlap. Only 5 genes (CTNNB1, DDX3X, SF3B1,
TGFBR2, TP53 are both PID-C and PID-N genes. (B) Overlap of all consensus results.
Four-circle Venn diagram for the overlap of the consensus results on coding data, i.e., PID-C
genes; consensus pathway/network results on non-coding data; consensus pathway/network
results on coding and non-coding data; and the union of the consensus results on non-coding

data and the non-coding value-added (NCVA) results, i.e., PID-N genes.

Figure S5: Mutation signatures of SNVs in PID-C and PID-N genes. Bar plot shows
predicted mutation signatures of observed mutations among PID-N genes (yellow) compared
with randomly sampled mutations in all coding and non-coding elements (grey). Mutations in
PID-C genes are shown as a positive control (green). p-values were computed with custom
permutation tests and show enrichment of mutation signatures within PID-N genes (yellow)

relative to all sampled mutations (grey). p-values with p < 0.05 are shown.

Figure S6: Annotations of PID-C and PID-N genes. (A) Pathway and network method
contributions to PID-C genes. The left matix (green entries) depicts method contributions to
the PID-C genes. Each row is a PID-C gene, each column is a pathway or network method, and
each filled entry indicates that a method contains a PID-C gene. Both genes and methods are
ordered by hierarchical clustering (Jaccard index, single-linkage clustering; hierarchies omitted)
to show genes that are reported by similar methods and methods that report similar gene sets.
(B) Pathway and network method contributions to PID-N genes. The right matrix (yellow
entries) shows method contributions to the PID-N results. The matrix is similar to (A) except

each filled entry indicates that a method contains a PID-N gene.

Figure S7: Enrichment of genes with high driver p-values, pathway and network method
results for COSMIC Cancer Gene Census (CGC) genes. (A) Precision and recall of coding
driver p-values and PID-C genes for COSMIC CGC genes. Precision and recall of genes
ranked by driver p-values on coding elements and PID-C genes with COSMIC CGC genes.
Driver FDR thresholds of 0.1 and 0.25 are highlighted. (B, C) Precision and recall of of
non-coding driver p-values and PID-N genes for COSMIC CGC genes. Precision and recall

of genes ranked by driver p-values on non-coding (promoter, 5 UTR, 3’ UTR) and PID-N genes
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with COSMIC CGC genes. Driver FDR thresholds of 0.1 and 0.25 are highlighted. The left-most

plot (B) shows the full y-axis, and right-most plot (C) shows a broken y-axis.

Figure S8: Overlap of genes with high driver p-values, pathway and network method
results with COSMIC Cancer Gene Census (CGC) genes. (A) Venn diagram for PID-C
genes. Overlap of genes with coding driver p-values with FDR < 0.1, genes with coding driver
p-values with FDR < 0.25, PID-C genes, and COSMIC CGC genes. (B) Venn diagram for
PID-N genes. Overlap of genes with non-coding (promoter, 5’ UTR, 3’ UTR) driver p-values with
FDR < 0.1, genes with non-coding p-values with FDR < 0.25, PID-N genes, and COSMIC CGC

genes.

Figure S9: Distribution of gene scores and pathway and network method results. (A)
Driver p-values of genes identified by pathway and network methods. Stacked bar chart
showing distribution of coding and non-coding (promoter, 5 UTR, 3’ UTR, enhancer) driver
p-values for genes identified by different numbers pathway and network methods, where genes
identified by a majority (= 4/7) of methods are PID genes. (B) Driver p-values of genes
identified by pathway and network methods. Bar chart showing distribution of number of
genes identified by pathway and network methods for genes with driver p-values with p < 0.001,
0.01, 0.1, 0.25, 1.

Figure S10: Gene expression changes are correlated with mutations in PID-N genes. All
non-coding mutations in PID-N genes that show significant expression changes (rank sum FDR
< 0.3): promoter mutations in TERT, TP53, TLE4, and TCF4 and 3’ UTR and 5 UTR mutations
in DUSP22. Each plot shows the expression (FPKM-UQ values on individual tissue types or
z-scores for FPKM-UQ values across tissue types) of a gene for patients with (left) and without
(right) mutations in that gene, where each point in the plot indicates the expression of each
patient. Copy number gains (numeric copy number gain of at least 1) and losses (numeric copy

number loss of at least 1) are highlighted in red and blue, respectively.

Figure S11: Pathways containing PID-C and PID-N genes. (A) Pathways containing PID-C
and PID-N genes. This figure shows the pathways in the pathway modules in Figure 4B. Each
row corresponds to a pathway that is enriched (see Methods) in PID-C and/or PID-N genes,

and each column is a PID-C or PID-N gene. A filled entry in the table indicates a gene (column)
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that belongs to a pathway (row), colored according to PID-C genes (green), PID-N genes
(yellow), or both (orange). Dark colors indicate that the corresponding module contains a
pathway that is significantly enriched (dark) or not (light) for) that include the corresponding
gene. Enrichments are summarized by circles adjacent each pathway name and consensus
gene name. Boxed circles indicate that a pathway contains a pathway that is significantly more
enriched for the union of the PID-C and PID-N than the PID-C and PID-N results separately. (B)
Pathway enrichment map. Nodes in the enrichment map represent pathways, and edges
indicate highly overlapping pathways. Node color shows if detected pathways are supported
(high pathway enrichment) by the PID-C gene set (green), PID-N gene set (yellow) or both

(orange). Node size indicates number of genes in the pathway.

Figure S12: Oncoprints for mutations in biological pathways and processes identified by
pathway and network methods. (A) Oncoprint for Wnt signaling pathway altered by both
coding and non-coding mutation. Coding mutations in PID-C genes in the Wnt signaling
pathway (GO:0016055) occur in 606 tumors, and non-coding mutations in PID-N genes in the
Whnt signaling cover an additional 169 tumors (additional 28% tumors). (B) Oncoprint for Notch
signaling pathways altered by both coding and non-coding mutations. Coding mutations in
PID-C genes in the Notch signaling pathway (GO:0007219) occur in 304 tumors, and
non-coding mutations in PID-N in the Notch signaling pathway genes cover an additional 85
tumors (additional 29% tumors). (C) Oncoprints for pathways enriched by non-coding
mutations in RNA Splicing. Coding mutations in the PID-C gene SF3B7 in the “mRNA splicing
via splicesome” (GO:0000398) pathway occur in 39 tumors, while non-coding mutations in 15

PID-N genes in the same pathway cover an additional 271 tumors.

Figure S13: tSNE plot of pathway enrichment scores. Clustering of 47 curated pathway*

into two distinct pathway clusters.
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Online Methods

Mutation and Pathway Data

We combined several pathways and interaction networks with gene scores derived from
the PCAWG drivers analysis’ for use by pathway and networks methods. Here, we use the term
“‘pathway methods” for those approaches that make use of sets of related genes for their
analysis while the term “network methods” are reserved for those that also incorporate the

interactions among the genes and/or their products.

Somatic mutation data

We obtained consensus driver p-values (syn8494939) from the PCAWG drivers
analysis’ for coding and non-coding (core promoter, 5 UTR, 3' UTR, enhancers) genomic
elements for the Pancan-no-skin-melanoma-lymph cohort. We removed driver p-values for
several elements (H3F3A and HIST1H4D coding; LEPROTL1, TBC1D12, and WDR74 5’ UTR;
and chr6:142705600-142706400 enhancer, which targets ADGRG6) that the PCAWG drivers
analysis had manually examined and discarded. We included enhancers with < 5 gene targets
(syn7188184), which covered 89% of enhancers elements from the PCAWG drivers analysis’.
In cases where the PCAWG drivers analysis reported multiple p-values for the same genomic

element, we used the smallest reported p-value for that element.

Derivation of gene scores

Pathway databases and gene interaction networks typically record information at the
level of individual genes. Thus, we formed coding and non-coding gene scores by combining
PCAWG driver p-values across coding and/or non-coding (core promoter, 5° UTR, 3’ UTR,
enhancer) genomic elements as follows. Let p, (g) be the driver p-value for element x of gene g
from the PCAWG drivers analysis’. We combined p-values from multiple elements using
Fisher's method, where we selected the minimum p-value min(p, .. (9), Psyr(g)) for
overlapping core promoter and 5" UTR elements on gene g and the minimum p-value p_;..ce(9)

of all enhancers targeting gene g. Using this approach, we defined the following gene scores on


https://paperpile.com/c/1KePhC/YV4s
http://synapse.org/#!Synapse:syn8494939
https://paperpile.com/c/1KePhC/YV4s
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coding (GS-C), non-coding, (GS-N), and combined coding and non-coding (GS-CN) genomic

elements:

1' GS-C pc(g) = pcoding(g)
2. GS-N: py(g) = fisher(min(p, ,mee(9): Psurr(9)): Paurr(9): Pennancer(9))
3. GS-CN: pCN(g) = ﬁSher(pcoding(g)’ min(ppromoter(g)’ pS’UTR(g))’ pS’UTR(g)’ penhancer(g))

Here, p = fisher(p,, ..., p,) is Fisher's method, i.e., -2 3*_, In(p,) ~ x>, for independently and
identically distributed p,, ..., p, ~ U(0, 1), where 2k is the degrees of freedom in the calculation.
Moreover, when the driver p-value for a genomic element was undefined, we omitted that

element from the calculation and reduced the number of degrees of freedom.

For the pathway and networks methods that analyze individual mutations, we used
mutations from the PCAWG MAF (syn7118450) on the same genomic elements (syn5259890)
as the PCAWG drivers analysis, i.e., coding, core promoter, 5 UTR, 3’ UTR, and enhancer. We
removed melanoma and lymphoma samples as well as 69 hypermutated samples with over 30

mutations/MB (syn7222520, syn7814911). We also removed mutations in elements that the

PCAWG drivers analysis had manually examined and discarded (see above), resulting in lists of

mutations used for later assessing biological relevance of our results (syn8103141,

syn9684700).

Pathway and network databases

Pathway methods used gene sets from six databases: CORUM? (syn11426307), GO**
(syn3164548), InterPro® (syn11426307), KEGG® (syn11426307), NCI Nature” (syn11426307),
and Reactome® (syn3164548), where small (< 3 genes) and large (> 1,000 genes) pathways

were removed.

Network methods used interactions from three interaction networks: the largest
connected subnetwork of the ReactomeFl 2015 interaction network® (syn3254781) with
high-confidence (= 0.75 confidence score) interactions, which we treated as undirected; the
largest connected subnetwork of the iReflndex14 interaction network'®, which we augmented

with interactions from the KEGG pathway database® (syn10903761); and the largest connected


https://www.synapse.org/#!Synapse:syn7118450
http://synapse.org/#!Synapse:syn5259890
http://synapse.org/#!Synapse:syn7222520
http://synapse.org/#!Synapse:syn7814911
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https://www.synapse.org/#!Synapse:syn9684700
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https://www.synapse.org/#!Synapse:syn11426307
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https://www.synapse.org/#!Synapse:syn3164548
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https://www.synapse.org/#!Synapse:syn11426307
https://paperpile.com/c/1KePhC/ZLS0
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subnetwork of the STRING v10 network'" (syn11712027) with high-confidence (> 9 confidence
score) interactions. The BioGRID interaction network'? (syn3164609) was also used to evaluate

and annotate results.

Pathway and Network Integration of Gene-Level
Scores

Individual pathway and network algorithms

We applied seven pathway and network methods to the gene scores and mutation data.
We used two pathway methods: ActivePathways [Paczkowska, Barenboim, et al., in
submission] and a hypergeometric analysis [Vazquez]. We also used five network methods:
CanlsoNet [Kahraman et al., in preparation], Hierarchical HotNet™, an induced subnetwork
analysis [Reyna and Raphael, in preparation], NBDI™, and SSA-ME". Table M1 shows pathway

databases and interaction networks used by each method:

Method Pathway databases or interaction networks

ActivePathways Gene Ontology (GO)** biological processes,

Reactome® pathways

CanlsoNet STRING v10'", DIMA'®, 3did"’
Hierarchical HotNet ReactomeF| 20158, iReflndex14+KEGG®°
Hypergeometric analysis GO biological processes; CORUM?, KEGG®,

InterPro®, Nature NCI” pathways

Induced subnetwork analysis ReactomeF| 20158, iReflndex14+KEGG®
NBDI ReactomeF| 20158
SSA-ME ReactomeF| 20158

Table M1: Summary of pathway database and interaction network data for each method.
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https://paperpile.com/c/1KePhC/IzehS
https://paperpile.com/c/1KePhC/u0t9
https://paperpile.com/c/1KePhC/PbVe
https://paperpile.com/c/1KePhC/ifXM+FXro
https://paperpile.com/c/1KePhC/74Mn
https://paperpile.com/c/1KePhC/5tsn
https://paperpile.com/c/1KePhC/uCEw
https://paperpile.com/c/1KePhC/LJoz
https://paperpile.com/c/1KePhC/74Mn
https://paperpile.com/c/1KePhC/iypB+ZLS0
https://paperpile.com/c/1KePhC/0gZG
https://paperpile.com/c/1KePhC/ZLS0
https://paperpile.com/c/1KePhC/ZLS0
https://paperpile.com/c/1KePhC/7wLe
https://paperpile.com/c/1KePhC/74Mn
https://paperpile.com/c/1KePhC/iypB+ZLS0
https://paperpile.com/c/1KePhC/74Mn
https://paperpile.com/c/1KePhC/74Mn
https://doi.org/10.1101/385294
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/385294; this version posted August 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Using these pathway and network databases, we ran each method on the GS-C, GS-N,
and GS-CN gene scores to identify three corresponding lists of genes. Each method evaluated

the statistical significance of its results on each dataset.

Non-coding value-added (NCVA) procedure

The GS-CN results leverage both coding and non-coding mutation data, improving the
detection of weaker pathway and network signals. We devised a non-coding value-added
(NCVA) procedure to separate the coding and non-coding signals in this combined analysis,
resulting in a set of NCVA genes for which the non-coding mutation data makes a statistically
significant contribution to their discovery in the GS-CN results. Specifically, we evaluated the
statistical significance of genes in the GS-CN results using a permutation test where the driver
p-values for coding elements were fixed and the driver p-values for non-coding elements were
permuted. This procedure identified the subset of the GS-CN results that were reported
infrequently (p < 0.1) on permuted data and thus more likely to be true positives. Each method’s

NCVA results were added to that method’s overall set of non-coding results (GS-N).

Consensus results for pathway and network methods

We defined a consensus set of genes for each set of results: GS-C results, GS-N
results, GS-CN results, and GS-N combined with NCVA results, across our seven pathway and
network methods. Specifically, we defined a gene to be a consensus gene if it was found by a
majority (= 4/7) of the pathway and network methods. For our analysis, we focused on the
consensus GS-C results, which we call the pathway-implicated driver genes with coding variants
(PID-C), and the consensus from the GS-N results combined with NCVA results, which we call
the pathway-implicated driver genes with non-coding variants (PID-N). We defined PID-C genes
as the 87 genes in the consensus of the GS-C results, and we defined PID-N genes as the 93

genes in the consensus of each method’s GS-N results combined with its NCVA results.
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Downstream Interpretation of Pathway-Implicated

Drivers

We performed several analyses to assess the biological relevance of PID-C and PID-N

genes.

Identification of mutational signatures of PID genes

We performed a permutation-based enrichment test for mutation signatures from
PCAWG mutation signatures analysis'®. We identified the most likely mutation signature for
each non-coding mutation in PID-N genes and compared them to randomly chosen non-coding

mutations in non-PID-N genes.

Gene scores improve network neighborhood scores of PID genes

To assess the extent to which gene scores on PID genes contribute to their detection by
pathway and network methods, we considered the contribution of each PID gene’s score to the

score of its network neighborhood in the BioGRID interaction network.
For each PID gene g, we used Fisher's method to combine the gene scores of the

first-order network neighbors of g both with and without the score of g itself. In particular, for

gene g, let p(g) be the gene score for g and N(g) be the network neighborhood of g. Then
Pug™" = fisher(p(v) : v € N(g) U {g})
is a score for the network neighborhood of g when including gene g and
Pug™™" = fisher(p(v) : v € N(g))

is a score for the network neighborhood of g when excluding gene g.
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If the network neighborhood of g has a smaller p-value with g than without g, i.e., pN(g)W””

< Py, then gene g improves the score of the network neighborhood, suggesting that the
gene score of g plays a role in its detection by pathway and network methods. Alternatively, if
the network neighborhood of g has a larger p-value with g than without g, i.e., py)"™" > Py,
then gene g worsens the score of the network neighborhood, suggesting that the gene scores of
the network neighbors of g are predominantly responsible for the detection of g by pathway and

network methods.

We performed this test for every PID-C gene with GS-C gene scores and every PID-N
gene with GS-N gene scores. We also sampled genes uniformly at random from the network (87
for PID-C genes and 93 for PID-N genes; 10° trials) to ascertain whether significantly more PID

genes that improved the scores of their network neighborhoods than expected by chance.

Expression analysis of PID genes

We evaluated whether mutation status of each PID gene was correlated with RNA
expression. We used PCAWG-3 gene expression data (syn5553991), which was averaged from
TopHat2 and STAR-based alignments, with FPKM-UQ normalization. Tumor type and
copy-number aberrations are known to be covariates for gene expression, so we conditioned on

tumor types and annotated copy-number aberrations.

We used the following procedure to assess expression correlations on individual tumor
types. We only considered cases with at least 3 mutated samples and 3 non-mutated samples
to restrict our analysis to cases with sufficient statistical power. For each PID-C gene or each
non-coding element in a PID-N gene, we partitioned the samples with expression data into a set
A of samples with mutation(s) in the element and a set B of samples without mutations in the
element. We performed the Wilcoxon rank-sum test for the expression of the gene in sets A and
B and performed the Benjamini-Hochberg correction on each coding or non-coding element to

provide FDRs.

We used the following procedure to assess expression correlations across tumor types.
We only considered cases with at least 1 mutated sample and 1 non-mutated sample to restrict

our analysis to cases with sufficient statistical power. For each PID-C gene and each
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non-coding element in a PID-N gene, we partitioned the samples with expression data into sets
A_ of samples in cohort ¢ with mutation(s) in the element and sets B, of samples in cohort ¢
without mutations in the element. We converted the expression values into z-scores using the
expression from non-mutated samples in cohort ¢, and we computed the Wilcoxon rank-sum
test on the expression of the gene in sets from A=U,. A, and B=U, . .B, where C is the set of
all cohorts containing samples with mutation(s) in the element. We then performed the

Benjamini-Hochberg correction on each coding or non-coding element to provide FDRs.

Network annotation of PID genes

We performed a permutation test to evaluate the statistical significance of the number of
interactions in the BioGRID high-confidence interaction network between PID-C genes, the
number of interactions between PID-N genes, and the number of interactions between PID-C
and PID-N genes, i.e., when a PID-C gene interacts with a PID-N gene. To compute the
permutation p-value we sampled random networks uniformly at random from the collection of

networks with the same degree sequence as the BioGRID network.

We found connected subnetworks of 46 PID-C genes (31 genes expected, p =9 X 10™)
and 16 PID-N genes (10 genes expected, p = 6.1 X 107?) in the high-confidence BioGRID"
protein-protein interaction (PPI) network. The union of the PID-C and PID-N genes formed a
larger connected subnetwork of 73 genes (Figure 4A). These connected subnetworks were
significantly larger than expected by chance according to this permutation test (57 genes
expected, p = 2.2 X 10°). Further, we observed statistically significant numbers of
protein-protein interactions between PID-C and PID-N genes (67 interactions observed vs. 45
expected, p = 6 X 10™), suggesting that the associated mutations may target an overlapping set
of underlying pathways. The PID-C genes were connected by significantly more interactions
than expected (64 vs. 40 expected, p < 10*) and the PID-N genes were interconnected at a
sub-significant level (18 vs 12 expected, p = 6.8 X 10?). Thus certain pathways are affected by
either coding or non-coding mutations, but some pathways are affected by a complement of

both coding and non-coding mutations.
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Pathway annotation of PID genes

Using g:Profiler®, we performed a pathway enrichment analysis for PID genes and
12,061 gene sets representing GO biological processes and Reactome pathways. We used the

Benjamini-Hochberg correction to control the FDR of the results.

Characterization of PID genes in RNA splicing

GSEA enrichment analysis was performed with the default parameters using the curated
pathway gene lists?' for samples harboring non-synonymous coding mutations in 5 genes
(FUBP1, RBM10, SF3B1, SRSF2, and U2AF1) with confirmed on-target splicing deregulation.
Due to limited number of samples with RNA-seq data in individual tumor types, we restricted our
analysis to missense mutations in SF3B1, truncating mutations in RBM10, and truncating
mutations in FUBP1 for tumor types contained at least 3 samples with these classes of

mutations. Each tumor type containing such mutations was considered separately?'.

We performed the same GSEA analysis for non-coding mutations in 17 PID-N genes
that were annotated as involved in RNA splicing. Due to limited number of samples from
individual tumor types containing mutations in these genes (often there was only 1 per tumor
type), we performed GSEA analysis jointly on all tumor types containing mutations in an
individual PID-N gene, restricting the non-mutated group to samples from the same tumor types
as the mutant samples. The GSEA Normalized Enrichment Scores (NES) were clustered using
hierarchical complete linkage clustering on the Euclidean distance between the NES scores.
Separately, we computed a 2D projection of NES scores using t-Distributed Stochastic Neighbor
Embedding (tSNE).

Additional Information

See Supplement for more information about data processing and details of individual

network and pathway methods.
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