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Introduction 

Polymers can be mathematically represented by 
the Cartesian coordinates of their atoms, or by a 
sequence of bond lengths, angles, and torsions 
of adjacent bonded atoms (internal 
coordinates).[1] Each parameterization has its 
own advantages and disadvantages. In Cartesian 
space, spatially proximal atoms that are distant 
along the polymer chain can be readily detected, 
facilitating distance-based computations 
involving e.g. electrostatics. When sampling 
changes in polymer conformations however, the 
Cartesian parameterization can be brittle, 
leading to non-physical clashes which the 
internal coordinates parameterization avoids by 
explicitly modeling bonded interactions.[2] 
Consequently, rapid interchanging between the 
two parameterizations is critical for many 
established molecular modeling applications, 
including molecular dynamics and Monte Carlo-
based sampling.[3] Certain force fields, such as 

the Rosetta[4] energy function for biomolecules, 
explicitly encode Cartesian and internal energy 
terms and therefore require simultaneous use of 
both parameterizations. Emerging applications 
using machine learning-based (ML) molecular 
modeling, in which force fields[5], [6] or 
molecules[7] are optimized by backpropagating 
partial derivatives through the internal and 
Cartesian coordinates of polymers, further 
necessitate computing the derivatives of the 
internal-to-Cartesian transformation equations. 

A widely used method for performing this 
computationally-demanding transformation is 
the Natural Extension Reference Frame (NeRF) 
algorithm.[1] When transforming multiple 
independent chains, NeRF is embarrassingly 
parallelizable, linearly scaling in parallelization 
capacity with the number of polymers. However 
for a single polymer, NeRF runs sequentially. 
While not a bottleneck for CPUs with limited 
core counts, modern CPUs and GPUs provide 
massive parallelism that is seldom saturated by 
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NeRF in conventional molecular modeling 
pipelines. Additionally for ML-based workflows, 
there are limits on the number of polymers that 
can be processed simultaneously, as the 
generalization quality of learned models is often 
inversely related to the batch size (number of 
data points used to estimate the gradient) used 
in training them.[8] Combined with the fact that 
ML workflows perform a large number of 
evaluations during model training, the 
computational cost of NeRF evaluations can be 
substantial. 

We derive a new algorithm, pNeRF, that is 
mathematically equivalent to NeRF but is 
parallelizable even for a single polymer chain, 
with a total computational cost equal to NeRF 
plus 𝑀 additional affine transformations, where 
𝑀 is the number of parallel threads used. We 
empirically show that on both modern CPUs and 
GPUs, pNeRF can be over an order-of-magnitude 
faster than NeRF. We further demonstrate that 
on realistic ML-based workflows, use of pNeRF 
reduces the fractional cost of internal-to-
Cartesian coordinate conversion from 67% to 
13%. Finally we provide an empirical analysis of 
optimal usage criteria based on polymer lengths, 
number of independent polymers processed, 
and CPU vs. GPU parallelism. 

Methods 

NeRF 

We begin with a summary of the standard NeRF 
algorithm. Given a sequence of bond lengths, 
angles, and torsions of adjacent bonded atoms, 
NeRF sequentially constructs a linear polymer 
from one end of the molecule to the other 
(extensions for branched polymers are 
straightforward.) First the coordinates of each 
atom, encoded by a triplet of length, angle, and 
torsion, are computed in a special reference 
frame (SRF), possibly in parallel. The algorithm 
then sequentially moves each atom from the SRF 
to its actual position using an affine 
transformation derived from the coordinates of 

the three previously computed atoms. Formally, 
let 𝑟, 𝜃, 𝜑 be the bond length, angle, and torsion 
of an atom with respect to its preceding 
neighbors, then 

 �̃� = )
𝑟	𝑐𝑜𝑠(𝜃)

𝑟	𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛(𝜃)
𝑟	𝑠𝑖𝑛(𝜑)𝑠𝑖𝑛(𝜃)

1 (1) 

is its SRF coordinates. Given a previously 
computed sequence of coordinates 𝑐2, … , 𝑐452, 
the next set of coordinates is 𝑐4 =
𝐴 7𝑐48 , 9𝑐45:,…,452;< where 𝑐48  is the SRF set of 
coordinates and 𝐴:ℝ: × ℝ:×: → ℝ: is a 
function mapping the SRF coordinates to the 
actual position using a rigid transformation 
determined by the last three coordinates. 
Specifically, letting 𝑚4 = 𝑐452 − 𝑐45C and 𝑛4 =
𝑚452 × 𝑚4D  where 𝑚E  is the unit-normalized 
version of 𝑚 and ×	is the cross product, then 

𝐴 7𝑐48 , 9𝑐45:,…,452;< = 𝑅9𝑐45:,…,452;	𝑐48 + 𝑐452 (2) 

𝑅9𝑐45:,…,452; = [𝑚4,D 𝑛4D ×𝑚4D ,𝑛4D] (3) 

where 𝑅:ℝ:×: → SO(3) is a function mapping 
the previous three coordinates to a rotation 
matrix.[1] By sequentially applying 𝐴 to the 
sequence of SRF coordinates 𝑐28 ,… , 𝑐MN of a 
length 𝐾 polymer, NeRF converts internal 
coordinates into Cartesian coordinates. The 
choice of the initial three coordinates used to 
transform 𝑐28  is arbitrary, which we term the 
initialization coordinates. 

pNeRF 

Because NeRF requires the coordinates of the 
last three atoms to position the next atom, it 
does not permit parallelization along the 
polymer length. The basic idea behind pNeRF is 
to fragment the polymer into 𝑀 equal-sized 
fragments, independently convert each into 
Cartesian space, and then reassemble the 
fragments into the final polymer (Figure 1). A 
naïve implementation of this idea would involve 
four affine transformations and a matrix 
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inversion for each of the 𝑀 fragments. We 
derive a formulation that adds only one affine 
transformation per fragment. 

Algorithm 

Let 𝑐28 ,… , 𝑐MN be the SRF coordinates of a polymer 
of length 𝐾, and without loss of generality 
assume that 𝑀 divides 𝐾. Partition the 
coordinates into 𝑀 subsets 𝑐(2)P ,… , 𝑐(Q)R such 
that 𝑐(2)P = S𝑐2,N … , 𝑐M/QUV, 𝑐(C)P =
S𝑐M/QW2,U …, 𝑐CM/QU V, …. Using these initialization 
coordinates (columns are coordinates): 

 

⎣
⎢
⎢
⎢
⎡−[1 2̂ −√2 0

[3 2̂ 0 0

0 0 0⎦
⎥
⎥
⎥
⎤

 (4) 

apply NeRF independently to each subset. Once 
complete, apply 𝐴 7	∙	, 9𝑐eM/Q5C,…,eM/Q;< to 

every entry in 𝑐(e)R for 𝑚 = 1, … ,𝑀, then 
concatenate the subsets. The resulting sequence 
is equivalent (up to a rigid transformation) to a 
sequential coordinate conversion using NeRF. 

Proof of correctness 

Proposition 1 

Given initialization coordinates 𝒙 = (𝑥2, 𝑥C, 𝑥:), 
applied sequentially to a sequence of SRF 
coordinates 9𝛼i, 𝛽k, 𝛾i; (e.g. the beginning of a 
new fragment), i.e. 

 𝛼m = 𝐴9𝛼i, (𝑥2, 𝑥C, 𝑥:); = 𝐴𝒙(𝛼i) 
 𝛽m = 𝐴 7𝛽k, (𝑥C, 𝑥:, 𝛼m)< (5) 

 𝛾m = 𝐴9𝛾i, (𝑥:, 𝛼m, 𝛽m);  

and a previously computed sequence of 
coordinates 𝒄 = {… , 𝑐45C, 𝑐452, 𝑐4} used to 
transform 9𝛼i, 𝛽k, 𝛾i; to their final location, i.e. 

 𝛼 = 𝐴9𝛼i, (𝑐45C, 𝑐452, 𝑐4); = 𝐴𝒄(𝛼i) 
 𝛽 = 𝐴7𝛽k, (𝑐452, 𝑐4, 𝛼)< (6) 
 𝛾 = 𝐴9𝛾i, (𝑐4, 𝛼, 𝛽); 

the following relationships hold true: 

 𝛼 = 𝐴𝒄9𝐴𝒙52(𝛼m); (7) 
 𝛽 = 𝐴𝒄9𝐴𝒙52(𝛽m); (8) 
 𝛾 = 𝐴𝒄9𝐴𝒙52(𝛾m); (9) 

Where  𝐴529𝛿, (𝛼, 𝛽, 𝛾); = 𝑅−1(𝛼, 𝛽, 𝛾)	(𝛿 − 𝛾) 
and 𝑅52 is always defined as 𝑅 is a rotation 
matrix. We abbreviate 𝐴9	∙	, (𝑥2, 𝑥C, 𝑥:); and 𝐴9	∙
	, (𝑐45C, 𝑐452, 𝑐4); using 𝐴𝒙 and 𝐴𝒄, respectively, and 
similarly for 𝑅𝒙 and 𝑅𝒄. 

Note that 𝐴𝒙52 is fixed and independent of the 
coordinates, and hence can be pre-computed.       
Note also that since 𝐴𝒄 ∘ 𝐴𝒙52 is a rigid affine 
transformation that brings 9𝛼′, 𝛽′, 𝛾′; into 
alignment with (𝛼, 𝛽, 𝛾), then for an arbitrary 
new coordinate 𝛿m = 𝐴 7𝛿t, 9𝛼′, 𝛽′, 𝛾′;<, the 
following must hold true: 

NeRF

pNeRF

Figure 1: In the standard NeRF algorithm, internal 
coordinates (angles and bond lengths, shown as dots 
on a circle) are converted to Cartesian coordinates 
(shown as sticks) sequentially, starting from one end 
of the polymer and finishing at the opposite end. In 
pNeRF, multiple fragments are reconstructed 
independently and in parallel, and then the final 
coordinates are obtained by reorienting entire 
fragments, sequentially, in the opposite direction. 
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 𝛿 = 𝐴 7𝛿t, (𝛼, 𝛽, 𝛾)< = 𝐴𝒄9𝐴𝒙52(𝛿m); (10) 

and by induction, all subsequent coordinates 
must be similarly transformed. Thus if 
proposition 1 is true, we can independently 
compute 𝑀 fragments 𝑐(2), … , 𝑐(Q) and 
sequentially transform them using 𝐴u(v) ∘
𝐴𝒙52, … , 𝐴u(wxv) ∘ 𝐴𝒙52 to their final correct 
positions. We can further simplify the procedure 
by choosing (𝑥2, 𝑥C, 𝑥:) such that 𝐴𝒙52 = 𝐼 (this 
computation is provided after the proof).  

Before we proceed with the proof, we first 
introduce a lemma and some corollaries. 

Lemma 1 

Let 𝑅 be a function as defined in equation 3 and 
𝑅m be any rotation matrix, then 

 𝑅m𝑅(𝛼, 𝛽, 𝛾) = 𝑅(𝑅m𝛼, 𝑅m𝛽, 𝑅m𝛾) (11) 

To prove this we will consider each column 
vector of 𝑅(𝛼, 𝛽, 𝛾) separately, starting with the 
first column: 

𝑅(𝑅m𝛼, 𝑅m𝛽, 𝑅m𝛾)2z =
{|}5{|~
|{|}5{|~|

= 𝑅m }5~|}5~|
 (12) 

where we used the fact that rotations do not 
alter vector magnitude. For the third column: 

𝑅(𝑅m𝛼, 𝑅m𝛽, 𝑅m𝛾):z =
{|(~5�)×{|(}5~)�

�{|(~5�)×{|(}5~)� �
= 𝑅m �(~5�)×(}5~)

� �
�(~5�)×(}5~)� �

 (13) 

where we used the fact that rotations are 
distributive over cross products. The same 
arguments apply for the second column, and 
thus we obtain the lemma. 

Corollary 1 

Let 𝐴 be a function as defined in equation 2, then  

𝐴𝒙 �𝐴7𝛿t, (𝛼, 𝛽, 𝛾)<� = 𝐴7𝛿t, 9𝐴𝒙(𝛼),𝐴𝒙(𝛽),𝐴𝒙(𝛾);< (14) 

To prove this corollary we work from the right-
hand side: 

 

𝐴7𝛿t, 9𝐴𝒙(𝛼), 𝐴𝒙(𝛽), 𝐴𝒙(𝛾);< 
= 𝑅9𝐴𝒙(𝛼), 𝐴𝒙(𝛽), 𝐴𝒙(𝛾);	𝛿t + 𝐴𝒙(𝛾) 
= 𝑅(𝑅𝒙𝛼 + 𝑥:, 𝑅𝒙𝛽 + 𝑥:, 𝑅𝒙𝛾 + 𝑥:)	𝛿t + 𝐴𝒙(𝛾) 
= 𝑅(𝑅𝒙𝛼, 𝑅𝒙𝛽, 𝑅𝒙𝛾)	𝛿t + 𝐴𝒙(𝛾) (15) 

where the last step used the fact that by 
construction, 𝑅 is invariant to a translation of its 
arguments. Applying lemma 1, we obtain: 

= 𝑅𝒙𝑅(𝛼, 𝛽, 𝛾)	𝛿t + 𝐴𝒙(𝛾) 
= 𝑅𝒙𝑅(𝛼, 𝛽, 𝛾)	𝛿t + 𝑅𝒙𝛾 + 𝑥: 
= 𝑅𝒙9𝑅(𝛼, 𝛽, 𝛾)	𝛿t + 𝛾; + 𝑥: 
= 𝐴𝒙9𝑅(𝛼, 𝛽, 𝛾)	𝛿t + 𝛾; 

= 𝐴𝒙 �𝐴 7𝛿t, (𝛼, 𝛽, 𝛾)<� (16) 

Note that (14) holds for inverses as well, i.e. 

𝐴𝒙52 �𝐴 7𝛿t, (𝛼, 𝛽, 𝛾)<� = 𝐴 7𝛿t, 9𝐴𝒙52(𝛼), 𝐴𝒙52(𝛽), 𝐴𝒙52(𝛾);< (17) 

since 𝐴𝒙52(𝛿) = 𝑅𝒙52(𝛿 − 𝑥:) = 𝑅𝒙z(𝛿 − 𝑥:) as  
𝑅𝒙52 is a rotation matrix and thus lemma 1 is 
applicable to 𝑅𝒙52. 

Corollary 2 

𝑅𝒄 = 𝑅(𝑅𝒄𝑅𝒙52𝑥2, 𝑅𝒄𝑅𝒙52𝑥C, 𝑅𝒄𝑅𝒙52𝑥:) (18) 

For any 𝒙, 𝒄 ∈ ℝ:×:. The result follows from 
applying lemma 1 to 𝑅𝒄 = 𝑅𝒄𝑅𝒙52𝑅𝒙. 

We are now ready to prove proposition 1. 

Proof for 𝛼 (eq. 7) 

Trivially follows from definitions (eqs. 5 and 6): 

𝐴𝒄9𝐴𝒙52(𝛼m); = 𝐴𝒄 7𝐴𝒙529𝐴𝒙(𝛼i);< = 𝐴𝒄(𝛼i) = 𝛼 (19) 

Proof for 𝛽 (eq. 8) 

By definition (eq. 5): 

𝐴𝒄9𝐴𝒙52(𝛽m); = 𝐴𝒄 �𝐴𝒙52 �𝐴7𝛽k, (𝑥C, 𝑥:, 𝛼m)<�� (20) 

Applying corollary 1 to innermost 𝐴 in rhs we get: 

𝐴�𝛽k, 7𝐴𝒄9𝐴𝒙52(𝑥C);,𝐴𝒄9𝐴𝒙52(𝑥:);,𝐴𝒄9𝐴𝒙52(𝛼m);<� (21) 
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From before 𝐴𝒄9𝐴𝒙52(𝛼m); = 𝛼. We will work out 
the other arguments to 𝐴: 

𝐴𝒄9𝐴𝒙52(𝑥:); 
= 𝐴𝒄9𝑅𝒙52(𝑥: − 𝑥:); = 𝐴𝒄(0) 
= 𝑅𝒄0 + 𝑐4 = 𝑐4 (22) 

Similarly we have (applying corollary 2 in the last 
step since eq. 23 is an argument to 𝐴): 

𝐴𝒄9𝐴𝒙52(𝑥C); 
= 𝑅𝒄𝑅𝒙52(𝑥C − 𝑥:) + 𝑐4 
= 𝑅𝒄𝑅𝒙52𝑥C − 𝑅𝒄𝑅𝒙52𝑥: + 𝑐4 
= 𝑐452 − 𝑐4 + 𝑐4 = 𝑐452 (23) 

This implies that eq. 21 is equal to 
𝐴 7𝛽k, (𝑐452, 𝑐4, 𝛼)< = 𝛽 which proves eq. 8. 

Proof for 𝛾 (eq. 9) 

Starting with the definitions and applying 
corollary 1 as we did for eq. 8 we obtain: 

𝐴𝒄9𝐴𝒙52(𝛾m); 

= 𝐴𝒄 �𝐴𝒙52 7𝐴9𝛾i, (𝑥:,𝛼m, 𝛽m);<� 

= 𝐴 �𝛾i, 7𝐴𝒄9𝐴𝒙52(𝑥:);,𝐴𝒄9𝐴𝒙52(𝛼m);,𝐴𝒄9𝐴𝒙52(𝛽m);<� (24) 

Applying eqs. 22, 19, and 20 to the first, second, 
and third arguments of eq. 24, respectively, we 
get 𝐴𝒄9𝐴𝒙52(𝛾m); = 𝐴9𝛾i, (𝑐4, 𝛼, 𝛽); = 𝛾. This 
proves proposition 1. 

Initialization coordinates 

In eqs. 7-9 the initialization coordinates 𝒙 =
(𝑥2, 𝑥C, 𝑥:) can be arbitrarily chosen. A judicious 
choice of 𝒙 can yield 𝐴𝒙52 = 𝐼, eliminating one 
extraneous affine transformation per fragment. 
We derive one such set of coordinates next. 

First note that 𝐴𝒙52 = 𝐼 if and only if 𝛼 = 𝐴𝒄(𝛼m). 
We start with eq. 6 and apply the above 
condition followed by corollary 1: 

𝐴9𝛼i, (𝑐45C, 𝑐452, 𝑐4); = 𝛼 = 𝐴𝒄(𝛼m) 
= 𝐴𝒄 7𝐴9𝛼i, (𝑥2, 𝑥C, 𝑥:);< 

= 𝐴7𝛼i, 9𝐴𝒄(𝑥2), 𝐴𝒄(𝑥C), 𝐴𝒄(𝑥:);< (25) 

This yields the following set of equations: 

 𝑐45C = 𝐴𝒄(𝑥2) 
 𝑐452 = 𝐴𝒄(𝑥C) (26) 
 𝑐4 = 𝐴𝒄(𝑥:)  

which we solve to obtain the desired 𝒙. For 𝑥: 
we obtain a unique solution: 

𝑥: = 𝐴𝒄52(𝑐4) = 𝑅𝒄52(𝑐4 − 𝑐4) = 0 (27) 

consistent with the fact that for an affine 
transformation to be the identity its translation 
component must be 0. 

For 𝑥C, we left-multiply by an arbitrary 𝑅 of our 
choosing, then apply corollary 2 to obtain: 

𝑥C = 𝐴𝒄52(𝑐452) = 𝑅𝒄52(𝑐452 − 𝑐4) 
𝑅(𝛼, 𝛽, 𝛾)𝑥C = 𝑅(𝛼, 𝛽, 𝛾)𝑅𝒄52(𝑐452 − 𝑐4) 
𝑅(𝛼, 𝛽, 𝛾)𝑥C = 𝛽 − 𝛾 
𝑥C = 𝑅52(𝛼, 𝛽, 𝛾)(𝛽 − 𝛾) (28) 

The above provides an explicit solution for 𝑥C, 
and similarly for 𝑥2: 

𝑥2 = 𝑅52(𝛼, 𝛽, 𝛾)(𝛼 − 𝛽) (29) 

Since the choice of 𝛼, 𝛽, 𝛾 is arbitrary, we 
choose the standard basis, and obtain eq. 4 as 
the solution. 

Results and Discussion 

pNeRF is up to 13x faster than NeRF 

We implemented pNeRF using the TensorFlow[9] 
automatic differentiation[10] framework. This 
enables its use in both conventional applications 
in which internal coordinates are simply 
converted to Cartesian coordinates (“forward 
pass”), and machine learning-based applications 
in which the derivatives of such conversions are 
backpropagated from a loss function to the 
parameters of a learned model (“backward 
pass”).[11] Using the TensorFlow implementation, 
we assessed pNeRF’s performance on realistic 
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Figure 2: Fold speed up in computation time (pink intensity) when using pNeRF instead of NeRF for different 
combinations of batch sizes and sequence lengths. Computations were carried out on CPUs (Xeon E5-2643 v4) and 
GPUs (Titan Xp) and represent the averages of 100 independent runs, preceded by 10 burn-in runs.

settings—in terms of sequence lengths and 
batch sizes (number of simultaneous 
conversions)—using modern CPUs (Xeon E5-
2643 v4) and GPUs (Titan Xp). We considered 
batch sizes ranging in size from 1 to 512 in 
doubling increments, and sequence lengths 
ranging from 100 to 1,000 in increments of 100. 
For each combination of batch size and sequence 
length, we carried out the forward and backward 
passes of pNeRF 110 times, and averaged the 
timings of the last 100 passes (the first 10 are 

used to burn-in the process and minimize 
variability.) Experiments were done using 1, 5, 
15, and 25 fragments (𝑀), and the fastest option 
was chosen for each batch size / sequence length 
combination. 

Figure 2 shows the timings, where intensities 
correspond to fold speed up resulting from using 
pNeRF over NeRF. In general the same trends 
can be observed for CPUs and GPUs, and the 
forward and backward passes, with longer 
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Figure 3: Log ratio of pNeRF CPU over GPU compute time (>0 indicate GPUs are faster) for different combinations of 
batch sizes (number of simultaneous conversions) and sequence lengths. 

sequences and smaller batch sizes gaining more 
from pNeRF than shorter sequences and larger 
batch sizes. This is expected as longer sequences 
enable greater parallelism, while larger batch 
sizes saturate the computational throughput of 
CPUs and GPUs. We observe speed ups of up to 
13x in the configurations we considered, 
although in principle the speed up is not 
bounded, and future processors with greater 
capacity for parallelism will yield even larger 
benefits. We never observed slowdowns due to 
excessive parallelization by pNeRF. 

Optimal hardware choice is model-dependent 

pNeRF relies heavily on trigonometric 
operations, which do not necessarily exploit the 
computing capabilities of GPUs, particularly if 
the opportunities for parallelism are limited (e.g. 
short sequences.) This suggests that the choice 
of optimal hardware may depend on batch size 
and sequence length. To assess this, we 
computed the log ratio of processing times on 
CPUs versus GPUs, shown in Figure 3. Values 
above 0 correspond to configurations were GPUs 
are faster, and values below 0 indicate CPUs are 
faster. In general, we observe that GPUs 

outperform CPUs for batch sizes of 64 and larger, 
if the sequences are at least 200 – 300 steps long. 
For smaller batch sizes, CPUs dominate 
irrespective of sequence length. We also observe 
that for very large batch sizes during the forward 
pass, memory limitations on GPUs can result in 
poor performance relative to CPUs. 

Optimal number of fragments is model- and 
hardware-dependent 

pNeRF introduces a free parameter, 𝑀, which 
controls the number of fragments converted in 
parallel. To obtain maximum throughput, this 
parameter must be optimized for the given 
choice of batch size, sequence length, and 
hardware. Figure 4 illustrates pNeRF’s behavior 
for varying batch sizes and hardware platforms, 
assuming a fixed sequence length of 700 steps, 
as a function of 𝑀. Arrows indicate the best 
performing choice of 𝑀 for each configuration. 
Numbers were computed in the same way as in 
Fig. Figure 2 and Figure 3. Not surprisingly, 
smaller batch sizes permit higher numbers of 
fragments, as the processor is not yet saturated. 
Furthermore, the choice of optimal processor 
(and associated 𝑀) changes depending on the 
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batch size, with CPUs performing best for 
batches of size 1 and 8 and GPUs for batches of 
size 64 and 512. In general we see agreement 
between the forward and backward passes, 
simplifying implementation. 

pNeRF performance in machine learning-based 
workflows 

In practical applications the conversion between 
internal and Cartesian coordinates is not done in 
isolation but is instead part of a larger workflow. 
We sought to assess the impact of switching 
from NeRF to pNeRF in a real-world machine 
learning model that utilizes the forward and 
backward passes of pNeRF computations. 
Recurrent geometric networks[12] (RGNs), which 
differentiably learn a mapping from protein 
sequence to structure, are one such model. They 
integrate trainable computations, known as 
Long Short-Term Memory[13] (LSTM), with 
geometric operations including the conversion 

from internal to Cartesian coordinates. We 
assessed the batch processing time for different 
variants of the RGN architecture, using both 
NeRF and pNeRF. 

Figure 5 shows the results for two choices of 
architectures (top line on x-axis, denoting 
number of LSTM layers x layer size) and 
maximum sequence lengths (bottom line on x-
axis.) The LSTM contribution to compute time is 
shown in blue, while the (p)NeRF contribution is 
in pink. Left (pink) bars correspond to standard 
NeRF, and right bars are to pNeRF. All timings 
shown are for batch sizes of 32, which were 
comprised of real data from the Protein Data 
Bank.[14] We observe that while NeRF can 
account for a major portion of total RGN 
compute time, around 2/3 for the smaller LSTM 
architecture, it is reduced to a negligible level 
(~10%) when using pNeRF. This demonstrates 
practical utility in an emerging application, and it 
is likely that future workflows making more 
extensive use of pNeRF will see greater gains. 

Note that the lack of a major timing difference 
between maximum sequence lengths is due to 
the relatively short average sequence length of 
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Figure 5: Contribution to RGN batch processing time 
from LSTM and (p)NeRF components, computed 
using different choices of architectures and maximum 
sequence lengths. NeRF contributions are shown in 
the left bars, and pNeRF contributions are shown in 
the right bars. The first line of RGN configuration 
corresponds to number of bidirectional LSTM layers x 
layer size, while the second line indicates maximum 
sequence length. 
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proteins in the PDB (~300), which limits 
computational cost as longer sequences are not 
frequently encountered. 

Conclusions 

We derived pNeRF, a mathematically equivalent 
algorithm to NeRF that enables virtually 
unbounded parallelism subject to hardware 
restrictions. We characterized its behavior under 
different experimental conditions and showed 
that it can lead to substantial speed gains on 
real-world applications. While the use of 
geometric transformations—including internal-
to-Cartesian coordinate conversion—in machine 
learning applications is in its nascent stage, the 
rapid growth of deep learning models in the 
molecular sciences will likely lead to increased 
use of such transformations. Consequently we 
believe that pNeRF will find broad use in a variety 
of applications, particularly in polymer science. 
To facilitate further use and development of 
pNeRF we have made public a high-performance 
TensorFlow-based implementation, suitable for 
machine learning applications, on GitHub at 
https://github.com/aqlaboratory/pnerf. 
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