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Abstract. The anatomy of many neural circuits is
being characterized with increasing resolution, but their
molecular properties remain mostly unknown. Here, we
characterize gene expression patterns in distinct neural
cell types of the Drosophila visual system using genetic
lines to access individual cell types, the TAPIN-seq
method to measure their transcriptomes, and a prob-
abilistic method to interpret these measurements. We
used these tools to build a resource of high-resolution
transcriptomes for 100 driver lines covering 67 cell
types. Combining these transcriptomes with recently
reported connectomes helps characterize how infor-
mation is transmitted and processed across a range of
scales, from individual synapses to circuit pathways.
We describe examples that include identifying neuro-
transmitters, including cases of co-release, generating
functional hypotheses based on receptor expression,
as well as identifying strong commonalities between
different cell types.

Keywords: neural circuit, gene expression, visual
system

Highlights

1. Transcriptomes reveal transmitters and receptors
expressed in Drosophila visual neurons

2. Tandem affinity purification of intact nuclei (TAPIN)
enables neuronal genomics

3. TAPIN-seq and genetic drivers establish transcrip-
tomes of 67 Drosophila cell types

4. Probabilistic modeling simplifies interpretation of
large transcriptome catalogs

Introduction

The anatomy of neural circuits is being characterized with
increasing resolution and throughput, in part following a
dramatic increase in the size of circuits amenable to de-
tailed electron microscopy reconstruction (Swanson and
Lichtman, 2016) and the development of genetic tools
to access individual cell types (Luo et al., 2018). These
efforts reveal anatomy at unprecedented detail, but not
the molecular properties of cells. In principle, the genes
expressed in each cell of a neural circuit should serve
as a molecular proxy for cell physiology. However, most
genomic efforts have focused on surveying neuronal di-
versity rather than characterizing circuit function (Ecker
et al., 2017). To develop a resource exploring molec-
ular correlates of circuit function, here we use an ap-
proach that genetically targets cell types within a well-
characterized brain region to measure high-quality tran-
scriptomes that can be integrated with connectomes.
Drosophila affords an ideal system to study neural cir-

cuits in detail, as both excellent genetic tools and high
resolution connectomes are available. Here we focus
on the repeating, columnar circuits of the visual system,
found in the optic lobes, a widely used model for study-
ing circuit development and function with an extensive
genetic toolbox and well-described anatomy (Nériec and
Desplan, 2016; Silies et al., 2014; Apitz and Salecker,
2014). This network begins with photoreceptor neurons
and contains several layers of connected neurons which
process incoming luminance signals into multiple parallel
streams of visual information. Many of its cellular compo-
nents have been described by light microscopy, including
classical Golgi studies (Fischbach andDittrich, 1989) and
recent analyses using genetic methods (Morante and De-
splan, 2008; Otsuna and Ito, 2006; Nern et al., 2015; Wu
et al., 2016). Electron microscopy reconstruction work

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385476doi: bioRxiv preprint 

mailto:fred.davis@nih.gov
mailto:henry@cshl.edu
https://doi.org/10.1101/385476


has characterized the synaptic connections of many op-
tic lobe neurons (Meinertzhagen and O’Neil, 1991; Mein-
ertzhagen and Sorra, 2001; Rivera-Alba et al., 2011;
Takemura et al., 2013; Takemura et al., 2015; Takemura
et al., 2017). Comparative studies have also explored
the evolution of this ancient brain structure (Strausfeld,
2009). However, many of its fundamental properties re-
main unknown, including the neurotransmitters used at
many of its synapses. As we show later, knowing these
fundamental properties is critical for understanding the
mechanisms behindmore complex circuit functions, such
as motion detection in the visual system.
Measuring the genes expressed in specific cells of the

brain is challenging due to its compact and complex or-
ganization. RNA sequencing (RNA-seq) addresses this
challenge by profiling either single cells or genetically la-
beled populations of cells (Ecker et al., 2017). The lat-
ter approach requires genetic tools to access individual
cell types but provides more direct access to cells of in-
terest than sampling of unmarked single cells, especially
for sparse cell types. Profiling identified cell types pro-
vides a direct link to previous work on the anatomy and
physiology of those cell types. Cell type-specific drivers
also facilitate follow-up experiments, for example evalu-
ating the role of individual genes in individual cells. In
Drosophila, large collections of GAL4 driver lines (Jenett
et al., 2012; Tirian and Dickson, 2017) and the possibility
to further refine these patterns with intersectional meth-
ods such as split-GAL4 (Luan et al., 2006; Dionne et al.,
2018) enable genetic access to many neuronal popula-
tions (see, for example, Tuthill et al., 2013; Aso et al.,
2014; Wu et al., 2016). We therefore chose the genetic,
rather than single cell, approach to build a genomics re-
source to explore circuit function. This approach also
complements single cell efforts by providing reference
transcriptomes upon which unidentified single cell data
can be mapped. These reference landmarks are critical
for interpreting single cell data, which is made challeng-
ing by measurement noise and sparsity (Kolodziejczyk et
al., 2015).
We previously developed an Isolation of Nuclei

Tagged in a specific Cell Type (INTACT) method (Deal
and Henikoff, 2010) to measure transcriptomes and
epigenomes of genetically-marked neuronal populations
in Drosophila (Henry et al., 2012) and mouse (Mo et al.,
2015). Here, we develop a tandem affinity purification
of INTACT nuclei (TAPIN) method with increased speci-
ficity, sensitivity, and throughput. By combining this
method with an extensive set of new driver lines with
predominant expression in specific cell types and a new
probabilistic method to interpret transcript abundance,
we build a resource of high-quality transcriptomes for one
hundred driver lines. These data provide expression in-
formation for 67 Drosophila cell types as well as sev-
eral broader cell populations. Through validation experi-
ments and comparisons to the literature we demonstrate
that this resource is useful both for identifying individual

genes expressed in specific cell types and for revealing
broader patterns such as the expression of all members
of a gene family across many cell types. As an exam-
ple, we provide details of the expression of neurotrans-
mitters and their receptors. We show how this informa-
tion, when combined with connectomes, leads to specific
hypotheses about circuit mechanisms in the Drosophila
visual system.

Results

Genetic tools for labeling the visual system

To enable transcriptome analyses of defined cell popula-
tions, we first assembled a collection of genetic drivers to
access them. We focused on cell types in the optic lobes,
the fly’s visual system, but also included neuronal popu-
lations in two central brain regions, the mushroom body
and central complex, primarily to serve as informative
outgroups (Figure 1A). The optic lobe contains anatom-
ically diverse neurons and glia arranged in a series of
neuropil layers: the lamina, medulla, and lobula com-
plex (consisting of lobula and lobula plate) (Figure 1B,C).
Each neuropile region can be further divided into sub-
layers (which largely represent regions of synaptic con-
tacts). The optic lobes have a repetitive structure of ~750
retinotopically arranged visual columns of similar cellu-
lar composition. Some optic lobe cell types are present
at one cell per column, others are less numerous with
cells that each contribute to several columns. For exam-
ple, the main synaptic region of the first optic lobe layer,
the lamina, contains processes of some 13,000 cells but
these belong to only 17 main cell types: 14 neuronal and
3 glial (Figure 1C, top row). A small number of additional
neurons (lamina tangential cells, Lat) project to a region
just distal to the main lamina neuropile. A few additional
glial types, not specifically targeted in this study, are lo-
cated in the space between the lamina and compound
eye. Outside the lamina, we sought to include represen-
tatives of neurons of different major types (such as local
interneurons and projection neurons that connect optic
lobe regions or the optic lobe with the central brain). Our
driver lines were selected to include the major cell types
of the circuits that compute the direction of visual motion
(Mauss et al., 2017).
To characterize new driver lines, we imaged expres-

sion patterns across the entire fly brain to determine
overall driver specificity (Figure 1D, S1) and examined
anatomical features such as layer patterns in higher reso-
lution images to identify specific cell types (Table S1, Fig-
ure S2). For most lines, we further confirmed the identity
of labeled cells by examining the morphology of individ-
ual cells using stochastic labeling (Figure S2). We noted
that a few patterns also include some additional contam-
inating cells (Table S1).
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FIGURE 1

Figure 1: Genetic tools to access
cell types in the visual system. A.
Major brain regions profiled in this
study (brain image from Jenett et
al., 2012). B. Left, subregions of
the early visual system. Right, ex-
amples of layers and neuropil pat-
terns of various classes of visual
system neurons. C. We profiled
cell types arborizing in the lamina
(blue), medulla (purple) and lobula
complex (green) of the visual sys-
tem. Many cells contribute to mul-
tiple neuropiles so other groupings
are possible. D. Representative ex-
pression patterns of driver lines that
target specific cell types. Each im-
age is a maximum intensity projec-
tion of a whole brain confocal stack
(only one optic lobe is shown). In
each image the brain is counter-
stained (magenta) with a neuropil
marker and both the targeted cell
type and the driver are indicated in
the lower left and right corner, re-
spectively. Additional images (fo-
cusing on drivers first described in
this study) are shown in Figures S1
and S2. Imaging parameters and
brightness and contrast were ad-
justed individually for each image.
For genotypes and image details
see Table S5.
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Purifying nuclei with INTACT and TAPIN
Next, we employed an improved INTACTmethod to mea-
sure nuclear transcriptomes in genetically defined cell
populations (Henry et al., 2012), andwe also developed a
new variant of the method that permits higher throughput
with increased purity and sensitivity. In both approaches,
nuclei are purified using a nuclear tag whose expres-
sion is driven in a cell population of interest by either a
standard or split GAL4 driver (Figure 2A). The INTACT
protocol adapts a method we previously described in the
mouse (Mo et al., 2015) in which we purify nuclei by dif-
ferential centrifugation, and then bead capture tagged
nuclei (Figure S3A). The new variant protocol, tandem
affinity purification of INTACT nuclei (TAPIN), uses a bac-
terial protease (IdeZ) to specifically cleave antibodies in
the hinge region separating their Fc and antigen binding
F(ab’)2 fragments (Figure 2B, S3B). Treating protein A
magnetic bead-bound nuclei with this protease generates
both nucleus-F(ab’)2 and bead-Fc complexes. Soluble
nucleus-F(ab’)2 is then recaptured on protein Gmagnetic
beads, removing non-specifically bound material from
the first capture. INTACT successfully profiled many of
the abundant cell types in the optic lobe (> 1000 cells per
brain), but failed for sparser cell types and those whose
nuclei were difficult to purify by differential centrifugation
(photoreceptors, glia, T4, T5). We solved these prob-
lems with TAPIN, which does not purify nuclei prior to
bead capture.
The greatest advantage of TAPIN is its ability to pu-

rify nuclei from sparse cell types (< 50 cells/brain) (Ta-
ble S1). INTACT is not suitable for these lines because
of loss during differential centrifugation. This difficulty
cannot be overcome by processing more brains per ex-
periment because differential centrifugation is difficult to
scale. TAPIN solves this problem by running a first cap-
ture on crude extracts generated from hundreds to thou-
sands of fly heads. The substantial background in this
first capture is reduced 5- to 6- fold in a second capture
with only a modest decline in both the yield of nuclei and
amplified cDNA (Figure 2C).

Measuring transcriptomeswith INTACT- and
TAPIN-seq
We applied INTACT and TAPIN to the cell populations
defined by the genetic drivers we described above (Ta-
ble S2). Most drivers express in a single anatomically
defined cell type or a small group of related cell types.
Others target more heterogeneous cell populations shar-
ing a common property (e.g., driver lines aimed at reca-
pitulating the expression of a neurotransmitter marker).
Altogether, we built 250 RNA-seq libraries from 242 sam-
ples of purified nuclei (46 using INTACT and 196 using
TAPIN) and 8 manually dissected samples (Table S2).
We estimated relative transcript abundance in each li-
brary using kallisto (Bray et al., 2016). Libraries built from

more nuclei yielded more cDNA (Figure 2D), had greater
numbers of detected genes (Figure 2E), were estimated
to have greater physical numbers of transcripts (Fig-
ure S3C), had more reproducible transcript abundance
(Figure 2F), and exhibited less bias in coverage across
gene bodies (Figure S3D,E). We focused on 203 libraries
that had at least 8,500 genes detected, 3µg cDNA yield,
and 0.85 Pearson’s correlation of transcript abundances
in two biological replicates. These 203 libraries consist
of at least two biological replicates built from 100 drivers
that covered 67 cell types (53 visual system, 7 mushroom
body, 5 central complex, 2 muscle), 6 broader cell popu-
lations (ChAT, Gad1, VGlut, Kdm2, Crz, and NPF), and
2 manually dissected tissues (the lamina and remainder
of the optic lobe) (Methods). We provide the read and
abundance data for the remaining sub-optimal libraries
(47 libraries covering 24 cell types) in the event they may
be informative, but we do not consider these to be of suf-
ficient quality and do not consider them further here.

We did not sort the sex of flies when preparing our
RNA-seq libraries, as we did not expect large differences
between sexes. As a test of this assumption, we pre-
pared libraries for the T4.T5 combination driver using ex-
clusively female or male flies. These two transcriptomes
were largely similar, except for differential expression of
a small number of genes with known sex-specific regu-
lation including the noncoding genes RNA on X 1 (roX1)
and roX2 in males (Amrein and Axel, 1997) and yolk pro-
teins 1 and 3 (Yp1, Yp3) in females (Belote et al., 1985)
(Figure 2G).

We were encouraged by the clear enrichment of pre-
viously identified markers in cell types where they were
expected. For example, we recovered transcription fac-
tors (TFs) previously found in the developing monopolar
interneurons and inner photoreceptors (Tan et al., 2015;
Figure 2H). While some of these genes showed great
separation between the most highly expressed and next
highest expressing cell (e.g. svp: 1244 TPM in L1 ver-
sus 8 TPM in R7), others showed a more continuous
spectrum of abundance (e.g. bab2: 186 TPM in L2 ver-
sus 47 TPM in R7). We further confirmed our measure-
ments by comparing TAPIN-seq results for twelve cell
types that were also recently profiled by FACS-seq (Kon-
stantinides et al., 2018; Figure S3G) and found concor-
dant expression of cell type-enriched genes. This con-
cordance also argues against major differences between
nuclear and cytoplasmic transcriptomes. In combination
with the technical quality of our libraries, this confirma-
tion by independent gene expression measurements val-
idated our approach, and also motivated us to explore
how to best interpret a large dataset of relative abun-
dances.

4 of 40

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385476doi: bioRxiv preprint 

https://doi.org/10.1101/385476


A

C

B

D E F

G H I

FIGURE 2

Harvest
nuclei

Bind
antibody

Capture 1

IdeZ
cleavage

Capture 2

Y

YA

A

G

G

v

v

v

v

Y

Y

R1-6
photoreceptor

appendage
muscle

T4T5 male expr (TPM+1)

T4
T5

 fe
m

al
e 

ex
pr

(T
PM

+1
)

1 10 100 10000

1

10

100

1000

10000 Pearson r = 0.97

roX2

Yp3

roX1

Yp1

●
●

●
●

●

●

●

●

●
● ●●

●●

●
●

●
●

●
●

●

●

●
●

●●
●
●

●
●

●●

●●

●●

●●
● ●

● ●

●●

●
●

●●

●●

●● ●●

●●

●
●

●●
●●

●
●

●
●

● ●
●

●

●

●
●
●

●

●
●●
●

●

●
●

●●

● ●

●●

● ●
●
● ●

●

●
●

●●

●

●
●
●

●
●●

●
●
●

●
●

●●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●

●
●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
● ●

● ●

●
●

●
●

●

●●

●

●
●

●

●●●●

●
●

●●

●

●
●

●
●●

●
●●●

●
●

● ●

●

●

●●

●
●
●

●

●
●

●●

●●

●●

●
●

●
●●●

●●

●●
●

● ●●

●●

●
●

●●●
●

●

●

●

●

●
●

●
●●
●

●●

nuclear yield (thousands)

ni
na

E 
ab

un
da

nc
e 

(T
PM

+1
)

10

50
100

500
1000

5000
10000

2 5 10 50 200

INTACT
TAPIN

L4_d1    SS00789 Lai_d1          SS55442

Lawf1_d2        SS00689 LC6_d2  OL00218B

Pm4_d1    SS00317

(mock)

Capture 2

(mock)

Capture 1

Input

0 1 2 3 4 5 6 7

●●

●●

●●

●●

●●

cDNA yield (ug)

●● ●
●
●●

●

●

●● ●
●

●●
●●

●
●

● ●
●
●

●
●

●
●●● ●●

●●

●
●

●
●

●
●

●●

●
●

●● ●
●

●●

●●

●●
●●●●

●
●●

●

●●

●● ●●

● ●

●●●
● ●●●

●
●●
●●

●●
●
●●

●

●●

●●

●●

●●

●●
●

●

●

●

●

●
●●●

●

●●●●●

●

●

●

●●
●●
●●●●

● ●
●●

●
●

●

●

●

●

●●

●●●●

●
●

●

●

●● ●●●●●●

●●

●

●●
●

●
●
●

●
●

●

●

●
●●

●

● ●
●

●
●

●●
●

● ●
●●
●

●●●●

●●

●●

● ●●
●

●

●●●
●

● ●● ●●

●
●

●●
●●

●●●●
●●●●

●

●
●●

●
●

●●

●●

● ●

●●●
●

●
●

●●●●
●
●

nuclear yield (thousands)

cD
N

A 
yi

el
d 

(u
g)

1

5

10

mock
control 1 5 50 200

INTACT
TAPIN

●
●
●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●
●●

●

●

●

●

●

●

●
●

●● ●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●

●

●●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●
●
●●●●

●
●

●●

●●●
●

●

●

●●

●●

●●

●●

●
●●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●
● ●●

●

●●

●

●

●

●●

●
●

●●
● ●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●●
●●●●

●

●

●●

●●
●

●

●

●
●●

●
●

●

●●
●●●

●●

●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●
●●

●●

●●

●●

●
●
●

●

●
●

●
●●
●●

●

6000

8000

10000

12000

0.5 1.0 2.0 5.0 10.0

cDNA yield (ug)

ge
ne

s 
de

te
ct

ed

●●●● ●●

● ●

●●

●●
●●

●●
● ●

●●

●●

● ●

● ●

●●●● ●●

●●

● ●
●●

●●

●●●●

● ●●●

●●

●●●●

●●● ●

●●

●●
●●

●●

●●

●●
●●

●●●●●●●● ●●●●
●●●●

●●

●●

●●
●●

●●

●●

● ●

● ●

● ●

●●

●● ●●●●

●●

● ●

●●●●
●●

●●
●●

●●

● ●

●●

● ●

●●
●●●● ● ●

●●

●●

●●

●●

●●

●●

●

●

●●●●

●● ●●

●●
● ●

● ●
●●

● ●
● ●

●●

●●

●●
●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

● ●

●●
●●

●●

●●
●●

●●
●●

●●

●●

● ●

●●

●● ●●●●
●●

●●
●●

●●●●●●

●●

cDNA yield (ug)

R
ep

lic
at

e 
co

rre
la

tio
n

(m
ax

 p
ea

rs
on

 R
)

0.5 1.0 2.0 5.0 10.0

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1244

44

7

6

4

16

0

2

186

3

2

1

5

1

3

7

2175

3

1

6

0

1

23

27

532

9

11

1

1

12

0

7

1356

21

0

8

47

1

8

23

610

11

4

14

1

9

5

40

127

7

27

0

5

3

36

150

L1 L2 L3 L4 L5 R
7

R
8_R

h5
R

8_R
h6

svp

bab2

erm

ap

pdm3

pros

sens

Relative transcript abundance
(Transcripts Per Million)

0

0.2

0.4

0.6

0.8

1

fra
ct

io
n 

of
 m

ax
 a

bu
nd

an
ce

Figure 2: Tandem-affinity purification of INTACT nuclei (TAPIN) enables neuronal genomics. A. Cell type-specific drivers enable expression of the
UNC84-2XGFP nuclear tag (green) in specific populations of cells. Both the targeted cell type and driver are indicated in the lower left and right
corner, respectively. B. Following nuclei harvest, two rounds of magnetic bead capture serially purify target nuclei. After the first round of protein
A bead capture, bacterial protease IdeZ cleaves the anti-GFP antibody in the flexible hinge region, allowing a second round of bead capture with
protein G, which recognizes the F(ab’)2 region. Protein G, unlike Protein A, can bind both the Fc and F(ab’)2 regions of an immunoglobulin. C.
Two capture rounds reduce the level of non-specific background (grey bars, mock IgG control) while maintaining the cDNA yield from the captured
target nuclei (green bars). Bars represent the mean of two replicates (shown as points). D. RNA-seq libraries created with more nuclei yield more
cDNA (circles). TAPIN libraries had lower non-specific background than INTACT (blue vs orange triangles). E. Libraries with more cDNA detect
more genes. F. Libraries with more cDNA have more reproducible transcript abundances. G. T4.T5 transcriptomes of female (y-axis) and male
(x-axis) flies are well correlated, but also recover known sex-specific genes including RNA on X 1 (roX1) and roX2 and yolk protein 1 (Yp1) and
Yp3. H. Previously identified markers of lamina monopolar and inner photoreceptor neurons (Tan et al., 2015) are enriched in the expected cells. I.
Libraries with fewer nuclei had greater carry-over of ninaE transcript, which encodes the abundant rhodopsin in the fly eye. The upper outliers are
libraries made from R1-6 photoreceptors, the only cells that express ninaE. The lower outliers are appendage muscle libraries created after heads
are removed from the fly bodies, effectively eliminating ninaE carry-over from photoreceptors. See also Figure S3.
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Interpreting transcript abundance with mix-
ture modeling

Deriving biological insights from a matrix of transcript
abundances is not straightforward. Two main complica-
tions arise: (1) cross-contamination between cells dur-
ing cell separation and library construction; and (2) de-
termining when a low level of expression is biologically
meaningful. To address these issues, we developed a
statistical model to account for transcript carry-over and
to discretize the expression calls. First, we observed
expression of photoreceptor marker genes, such as ni-
naE, in unexpected samples, and in inverse correlation
with the number of nuclei used to build each library (Fig-
ure 2I), suggesting that these transcripts resulted from
contamination. ninaE is also unexpectedly detected in
non-photoreceptor cells in a recent single cell RNA-seq
study of the brain (Davie et al., 2018). Other reports have
also described unexpected photoreceptor transcripts in
both bulk and single cell profiling of the mouse retina
(Siegert et al., 2012; Macosko et al., 2015), and attributed
them to photoreceptors lysing during tissue homogeniza-
tion. We optimized our biochemical protocols to mini-
mize such carry-over and then turned to a computational
method to address it further. Second, while a cell’s ex-
pression of a gene can be used to infer a specific func-
tional property of that cell, the level of expression that is
needed to establish confidence in such an inference is
much less clear. For example, expressing the vesicular
acetylcholine transporter (VAChT) implies that a neuron
is cholinergic. However, VAChT transcript abundance
exhibits a wide distribution and it is not clear, a priori,
what level is necessary to conclude that a cell is cholin-
ergic (Figure 3A). Addressing these two issues requires
a principled way of deciding which genes are expressed
in each sample.
We used mixture modeling to address this challenge

by describing the expression levels of each gene as aris-
ing from a mixture of two log-normal distributions repre-
senting binary ’on’ and ’off’ states (Figure 3A; Methods).
Genes can of course express in more than two states, but
we show through extensive validation that this simplifying
assumption is a useful one. For example, we modeled
VAChT expression in the high-quality TAPIN/INTACT-seq
libraries to estimate the probability that the gene was ex-
pressed in each driver (Figure 3B). Themodel unambigu-
ously inferred VAChT states for all drivers. The most
ambiguous call was for the broad and heterogeneous
Kdm2 driver, which we estimated to express VAChT with
a probability (confidence) of 0.95. The model also cor-
rectly inferred that only R1-6 photoreceptors expressed
ninaE, although ninaE abundance in other cells reached
as high as 2,702 TPM (PAM_1) (Figure 3C,D). Gene-
specific models are critical because of differences in dy-
namic range: 1,000 TPM reflects the off state for genes
like ninaE, but the on state for more modestly expressed
genes like VAChT (Figure 3B,D). We used this method to

transform our catalog of transcript abundances to proba-
bilities of expression (Figure 3E). To further simplify these
probabilities, we discretized them into on (p ≥ 0.8) and
off (p ≤ 0.2) states, and otherwise considered them to
be ambiguous (0.2 < p < 0.8). The expression states
inferred for replicates had a median 95% concordance
(Figure S4A). We combined information from replicates
to infer expression at the driver and cell type levels (Meth-
ods).
We found many genes that express in all cell types,

and many that express in only one, with a range in be-
tween (Figure 3F,G). As expected given their roles in
specifying identity, homeobox transcription factors (TF)
expressed more specifically than transcription factors
in general (Figure 3G). Neuropeptides also expressed
specifically, while genes with the more general function
of synaptic vesicle endocytosis were broadly expressed.
We explore these functional properties in more detail
later (Figure 4C). Across all genes, we observed a wide
spectrum of transcriptional output with a median on-state
abundance of 10 TPM and dynamic range of 5-fold be-
tween on and off states (Figure 3H,I).

Evaluating accuracy of TAPIN-seq measure-
ments
To validate our TAPIN-seq measurements, we first com-
pared our inferred expression states to FlyBase cu-
rated reports of protein expression (n=197 data points
of gene/cell pairs; 4 negative points, 193 positive points;
n=22 cells; n=69 genes, Table S3) and found 93%
concordance (183 matches; 14 mismatches from six
genes; 0 mismatches for negative benchmark points;
Figure S4B). The benchmark mismatches fell into three
categories: expression levels near the transition between
inferred on and off components (Figure S4C-E), genes
with a wide dynamic range of expression (Syx, Rab11;
Figure S4F-G), and genes with undetected transcript but
previously detected protein (Myo61F; Figure S4H). The
first two categories likely arise from imprecision in the
model’s fitted components and its inability to describe
continuous, rather than, bimodal expression. The third
category (conflicting transcript and protein levels) could
reflect either technical issues (low sensitivity in our mea-
surements, or false positives in the prior work due to
antibody cross-reaction) or biological complexities (e.g.,
long-lived transcripts, subcellular localization).
To further evaluate our results for genes expressed

across a wide range of levels, we compared the model
output to protein expression patterns for two transcription
factors: Forkhead (fkh) and Ets65A. We visualized each
protein using a C-terminal GFP tag; the tagged proteins
were expressed from BAC transgenes with large flank-
ing sequences to ensure a near native genomic context
(Kudron et al., 2018). From the transcript data, we in-
ferred fkh gene expression in 14 cell types across a 35-
fold range of abundance (60 to 2,103 TPM). Of 28 cell

6 of 40

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385476doi: bioRxiv preprint 

https://doi.org/10.1101/385476


FIGURE 3
CA

B D

lo
g2

( T
P

M
/m

ea
n 

)

E Relative abundance

Probability of expression

mixture modeling

ge
ne

s

drivers

p(
z gd

 =
 o

n)

2.5 =
enriched

-2.5 =
depleted

0 = mean

1 = on

0 = off

0.5 =
uncertain

G H I

LPLC1 Dm12  Lai  LC4  

Dm9  Dm10 Pm4  Tm4 

T4T5
fkh-GFP fkh-GFP

fkh-GFP fkh-GFP fkh-GFP fkh-GFP

fkh-GFP fkh-GFP fkh-GFP fkh-GFP

 Dm8  

J

F

K

L

fkh-GFP detected: ●● YesNo

Ets65A-GFP detected: ●● YesNo

5 20 50 200 1000

0

2

4

6

8

VAChT abundance (TPM+1)

# 
dr

ive
rs

on
off

●●●

●

● ●● ●●● ●●● ● ●●●●●● ●

●●● ●●●
●

●●

●● ●●● ●

●

● ●● ●●●● ●● ●●●●

●

●●●●●

●● ●● ●

●

●●●●

● ●●●●

●
● ●

●

● ●

●

●●●●●● ●● ●●●

●

●●● ●

● ●

VAChT abundance (TPM+1)

0.0

0.2

0.4

0.6

0.8

1.0

5 20 50 200 1000

P(
ex

pr
es

si
on

)

●

Kdm2_d1

10 50 200 2000 50000

0
2
4
6
8

10
12

ninaE abundance (TPM+1)

# 
dr

ive
rs

on

off

●● ● ●● ●● ● ●● ● ●● ●● ●●●●● ●●● ●● ●● ●●●●●● ●● ● ●●●●● ●●●● ●●●● ● ● ●●●●● ●● ●● ●● ●●●● ●●●● ● ●●

●

●●●● ● ●●●● ●● ●● ●●● ● ●●●● ●

ninaE abundance (TPM+1)

0.0

0.2

0.4

0.6

0.8

1.0

10 50 200 2000 50000

P(
ex

pr
es

si
on

)
●

R1−6_d1

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Number of expressing cells

C
um

ul
at

ive
 fr

ac
tio

n

0 20 40 60

0.0

0.2

0.4

0.6

0.8

1.0

all

TF

homeodomain

synaptic vesicle endocytosis

neuropeptide

1 10 100 1000

0
100
200
300
400
500
600

# 
ge

ne
s

On−state abundance
(TPM + 1)

1 5 20 100 500

0
200
400
600
800

1000
1200

# 
ge

ne
s

On/Off dynamic range
(TPM/TPM)

1 5 20 100 500

0

5

10

15

fkh abundance (TPM+1)

# 
ce

lls

0.0

0.2

0.4

0.6

0.8

1.0

P(
ex

pr
es

si
on

)

● ●●● ●● ●●●●● ●●

●●●●● ●● ●● ●●●●● ●

Pm
4

D
m

10
L1

L2
L3

L4
L5

G
lia

_E
g

G
lia

_M
g

G
lia

_P
sg

T1
LC

10
a

D
m

3
C

3

LC
6

LC
4

LP
LC

1 T4
T5 D

m
8

D
m

9

D
m

12La
i

LP
LC

2
D

m
11D

m
1

D
m

4

Tm
4

1 5 20 100 500

0
1
2
3
4
5
6
7

Ets65A abundance (TPM+1)

# 
ce

lls

0.0

0.2

0.4

0.6

0.8

1.0

P(
ex

pr
es

si
on

)

●● ●●●

●● ●●

●●

M
i1

LP
LC

2
La

i
Tm

9

M
i1

5
T1 C

2
C

3

D
m

3
G

lia
_E

g

Tm
20

*

Mismatch*

*
*

Mismatch*

0 20 40 60

0

500

1000

1500

# 
ge

ne
s

Number of expressing cells

7 of 40

made available for use under a CC0 license. 
certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also 

The copyright holder for this preprint (which was notthis version posted August 5, 2018. ; https://doi.org/10.1101/385476doi: bioRxiv preprint 

https://doi.org/10.1101/385476


Figure 3: Mixture modeling accurately interprets TAPIN-seq measurements. A. The distribution of Vesicular acetylcholine transporter (VAChT)
abundance fit with a mixture of two log-normal components. B. Interpreting these components as “off” and “on” states unambiguously infers
expression state in essentially all drivers. C,D. Modeling the distribution of ninaE correctly distinguishes true expression by R1-6 from transcript
carry-over in the remaining samples. E. Mixture modeling transforms our catalog of relative transcript abundances (top) to discretized expression
states (bottom). F. Histogram of expression breadth per gene. G. Cumulative distributions of expression breadth for all genes (gray), transcription
factors (black), homeobox TFs (orange; InterPro domain IPR001356), neuropeptides (red), and genes involved in synaptic vesicle endocytosis
(blue). H. Distribution of mean on-state transcript abundance across all modeled genes. I. Distribution of dynamic range across all modeled genes.
J,K. Evaluating fkh modeling results at the protein level with a BAC transgenic (See Figure S4I). J. Histogram bars represent raw abundance of
all cells in our catalog. Blue and orange curves represent the inferred off and on components, respectively. Points represent the cells tested for
transgene expression showing either detectable GFP (Green) or no signal (Black). The points’ vertical position reflect the estimated probability of
gene expression. K. Forkhead-GFP expression in selected cell types. Fkh-GFP (mainly nuclear, in green) and cell type-specific expression of a
membrane marker (in magenta) are shown. Because of the wide range of fkh expression levels, imaging parameters and brightness and contrast
adjustments are not identical for different panels. Cells with detectable nuclear GFP signal above the background in the same image were scored
as expressing fkh. L. As in J, to evaluate Ets65A modeling results (See Figure S4J). See also Figure S4.

types that we visualized at the protein level, fkh was de-
tected in all but one that we expected from TAPIN-seq
(Figure 3J,K, S4I). The sole exception, Tm4, has a fkh
abundance (60 TPM) near the border between the in-
ferred off and on states (Figure 3J). However, we did de-
tect protein in Dm9, which had a near identical raw tran-
script abundance (61 TPM). Similarly evaluating Ets65A
expression identified two mismatches out of 11 tested
cells (Figure 3L, S4J). Ets65a protein was not detected
in Tm20 (70 TPM) and epithelial glia (161 TPM), while
it was weakly detected in Dm3 (77 TPM). These results
further support the accuracy of TAPIN-seq and our sta-
tistical model even for genes with a wide dynamic range.
The agreement between our transcript on/off calls and
protein expression encouraged us to use the discretized
on/off calls for all further analyses; the unprocessed rela-
tive abundances in TPM are reserved for deeper analysis
when needed.

Identifying genes that mark cell types and
groups
Examining the relation between cell types using tran-
scriptomes

To study the relation between cell types, we built a den-
drogram based on inferred expression states and esti-
mated the support for each branch point with bootstrap
resampling (Figure 4A). The broad groupings were well
supported and mostly intuitive: muscle were outgroups,
followed by amushroom body cell type (PAM_4), the glia,
the photoreceptors, and the remaining neurons. Sev-
eral fine groupings of anatomically closely related neu-
rons were also well supported (e.g., Kenyon cells; C2,C3;
Lawf1, Lawf2; T4, T5; LPLC1, LPLC2). However, mid-
level branchings were not well supported, indicating the
lack of a simple hierarchical relationship. Neurons were
generally grouped by region: central complex, mush-
room body, and optic lobe. One surprise was the group-
ing of Tm20 and Dm1, away from all other optic lobe cell
types. Upon closer examination, the identity of genes
expressed exclusively in these two lines (lz, Pdh, bw)
suggest that this grouping is driven by shared pigment
cell contamination in the GAL4-tagged patterns of these

driver lines. Similarly, the unusual position of PAM_4 is
likely due to some unidentified non-neuronal cells in the
driver. These are examples of imperfections in the GAL4
driver lines. While they can lead to some false positives
for the main target cell types, they can also provide ad-
ditional information. For example, analyzing the over-
lap between Tm1 and Dm20 allowed us to infer marker
genes expressed in the pigment cell population.

Transcriptomes identify genes enriched in individual
cell types and groups

We next identified genes that marked cell groups in the
tree, using three criteria: genes that expressed in all the
cells within a group, at most two cells outside this group,
and with transcript abundance higher than all cells out-
side the group (For simplicity, we will hereon refer to
cell type as just cell). We used these criteria to iden-
tify markers for photoreceptors (n=108), glia (n=60), and
muscle (n = 76) (Figure 4B, Table S4). These genes in-
cluded many known as well as new markers. For ex-
ample, genes enriched in photoreceptors include signal-
ing components (Arr2, Galphaq) and transporters (trpl,
Eaat2) with known physiological roles as well as unchar-
acterized orphan transporters (e.g., CG8468). We also
identified 18 markers for pigment cells using the Tm20
and Dm1 profiles. In addition to the three types of lam-
ina glia we profiled, several other glia types are present
in both the lamina and the medulla. Genes expressed
exclusively in the dissected samples (lamina, remain-
der of optic lobe) and not in the TAPIN libraries identi-
fied marker genes for optic lobe cells that we did not di-
rectly profile, such as glia. Indeed, the genes identified in
this way included several known markers for astrocytes
(alrm, wun2, Obp44a) (Huang et al., 2015).
We examined the breadth of expression of different

functional groups of genes, as defined by FlyBase gene
group curation. HOX-like homeobox TFs were among
the most specifically expressed group, while groups
of core cellular machinery (e.g., beta importins, mito-
chondrial complexes) were among the most broadly ex-
pressed groups (Figure 4C). Some groups included both
broadly and very specifically expressed genes. For ex-
ample, among cell adhesion molecules, we noted an
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DPR-interacting proteins

Figure 4: TAPIN-seq profiles identify genes enriched in cell types and groups. A. Cells grouped by a minimum evolution tree of their inferred
expression states. B. Heatmap of marker genes enriched in photoreceptors, glia, muscle, and pigment cells. C. Distribution of expression breadth
for genes in terminal FlyBase gene groups with more than 10 members in our expression probability matrix. The least- and most- broadly expressed
gene groups are labeled, along with the DPR-interacting, beat and DPR family of extracellular proteins. D. TfAP-2 transcription factor distinguishes
closely related cell types T4 and T5. E,F. TfAP-2 protein is specifically expressed in T4 and not in T5, confirming TAPIN-seq. GFP-tagged Tfap-2
(mainly nuclear, in green; see Table S5 and Methods) is shown together with a membrane marker (magenta) expressed in T4 (F) or T5 (G) cells.
G. Identification of genes with differential expression in very closely related cell types probed by driver lines for T5 that differentially label layers of
the lobula plate (corresponding to different subtypes of T5 cells). H. Confirming our TAPIN-seq data, klg protein (detected using a GFP tag (green);
see Table S5 and Methods) is expressed in T4/T5 cells with the expected layer specificity (layers 3 and 4) in the lobula plate (LP). A neuropil marker
is shown in magenta. See also Figure S5.
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interesting distribution for three gene groups proposed
to be involved in protein-protein interactions that un-
derlie synaptic connectivity (Özkan et al., 2013; Tan et
al., 2015). While the 11 DPR-interacting proteins (DIP)
were among the most specifically expressed genes (ex-
pressed in a median of 6 cells), beat (median, 25.5 cells)
and DPR (median, 51 cells) genes were more broadly ex-
pressed (Figure S5A-D). As physical interactions among
these and other extracellular proteins have been system-
atically characterized (Özkan et al., 2013), we combined
their expression and interaction patterns to estimate the
number of potential interaction between cells in the lam-
ina (Figure S5E), many of which are in actual contact
(Figure S5F). We found that every pair of lamina cells
expressed tens of interacting protein pairs, highlighting
the broad potential for cell-cell interactions not only in the
developing (Tan et al., 2015) but also adult optic lobe.
However, except for a clear paucity of interacting protein
pairs expressed by glia, these global expression-based
patterns did not correlate well with connectivity in the lam-
ina.

Transcriptomes can distinguish closely related cell
types and subtypes

We asked if we could identify genes distinguishing
closely related cell types. For example, T4 and T5 had
similar transcriptomes and were neighbors in the phylo-
genetic tree, but we found one transcription factor, TfAP-
2, that was expressed nearly two orders of magnitude
higher in T4 (390 TPM) than T5 (6 TPM) (Figure 4D). We
confirmed this pattern at the protein level (Figure 4E,F).
T4 and T5 cells can each be further divided into four

subtypes that preferentially respond to motion in one
of four cardinal directions and differ in anatomical de-
tails such as the lobula plate layer to which they project
axons. While our split-GAL4 lines do not isolate sin-
gle T4/T5 subtypes, the T5_d1 and T5_d2 drivers show
differences in subtype expression (Figure S1B,B’,C,C’).
Comparing the transcriptomes of these two drivers con-
firmed previously described markers (Con, bi, dac; Apitz
and Salecker, 2018) that distinguish T4/T5 cells of lob-
ula plate layers 1/2 and 3/4, and indicated additional
genes, including a transcription factor (dysf) and cell ad-
hesion molecules (klg, Dscam3) with selective expres-
sion in these subtypes (Figure 4G). As a further confir-
mation of this finding, we verified that klg shows a layer-
specific protein pattern (Figure 4H).

Reference bulk transcriptomes are necessary to in-
terpret single cell transcriptomes

While preparing our paper, single cell RNA-seq (scRNA-
seq) maps of the brain (Davie et al., 2018) and optic lobe
(Konstantinides et al., 2018) were reported. scRNA-seq
is commonly used to survey cellular diversity, however
(as also noted by Konstantinides et al.) the 52 single cell

clusters (7 of which are glia) found in the optic lobe far
under-estimates its over one hundred anatomically dis-
tinct neuronal cell types. This result suggests that either
scRNA-seq misses some cell types or that multiple cell
types can be clustered together. To discern these possi-
bilities, we compared the single cell map to our transcrip-
tome catalog (Figure S7C). Using the reported marker
genes, we found that only a few single cell clusters had
markers clearly enriched in one or two cell types (e.g.,
C3, Lawf1, Lai, T1, T4/T5), and that most clusters had
markers either enriched in multiple cell types, or with-
out clear enrichment in our data. Although this result
could also arise from major errors in our TAPIN-seq pro-
files, this possibility is unlikely given our earlier valida-
tion results and the concordance between our TAPIN-
seq profiles and cell type-enriched genes identified from
independent FACS-seq measurements (Figure S3G). A
more likely explanation is that noisy scRNA-seq mea-
surements make it challenging to accurately identify clus-
ters and marker genes, and subsequently assign cell
types. Highlighting the challenge of assigning cell types,
we found that the number of cells in each single cell clus-
ter often under-represented or over-represented the true
abundance of the reported cell type labels (ranging from
3.4 times fewer T4/T5 cells to 7.9 times more Pm3 cells
than expected), indicating differential representation in
the scRNA-seq map or inaccurate cell type assignments
(Figure S7D). Altogether, these results suggest that cell
type-identified data is critical for interpreting single cell
maps, as these maps may not proportionally represent
every cell type in a tissue, and the inferred cell clusters
can each correspond to multiple cell types.

Profiles reveal neurotransmitter output for
most neuron types
The proteins that synthesize and transport neurotrans-
mitters are well known, enabling us to use their ex-
pression to predict neurotransmitter phenotype. We
used histamine decarboxylase (Hdc), glutamate decar-
boxylase (Gad1), the vesicular acetylcholine transporter
(VAChT), and the vesicular glutamate transporter (VG-
lut) to identify potential histaminergic, GABAergic, cholin-
ergic, and glutamatergic cell types, respectively (Fig-
ure 5A-D). Ourmodel unambiguously inferred expression
states for these genes and indicated a single transmit-
ter (from this group) for nearly all neurons we profiled.
A second cholinergic marker, choline acetyltransferase
(ChaT), matchedVAChT expression almost perfectly (the
two genes also share an exon). The sole exception, ap-
parent expression of ChAT but not VAChT in R7 pho-
toreceptors, likely results from a subset of dorsal rim R8
cells labeled by the R7 driver line (further discussed be-
low, also see Table S1). In contrast to Gad1, we found
that the vesicular GABA transporter (VGAT; Fei et al.,
2010) expressed in nearly all cells (except R-cells, glia
and muscles), making it an unreliable marker of GABAer-
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gic neurons; it may have additional functions, or it may
be post-transcriptionally regulated, which would be con-
sistent with observed restricted VGAT immunostaining
(Enell et al., 2007; Fei et al., 2010).
Besides these four neurotransmitters that we identified

by one or two marker genes, we also identified candi-
date dopaminergic neurons based on the combined ex-
pression of tyrosine hydroxylase (ple), dopa decarboxy-
lase (ddc), vesicular monoamine transporter (Vmat) and
dopamine transporter (DAT). While DAT, ple, and ddc
were also expressed individually in several cell types
that did not express Vmat, only known dopaminergic cell
types and one medulla neuron (Mi15) expressed this
combination (Figure 5A).
Transmitters for nearly half of our cell types have been

previously proposed and generally agree with our re-
sults. For example, VAChT/ChaT expression in Kenyon
cells supports recent reports showing they are choliner-
gic (Barnstedt et al., 2016; Crocker et al., 2016). Fluo-
rescence in situ hybridization and immunolabeling guided
by our measurements confirmed the expression of ChaT,
Gad1, and VGlut in Mi1, Mi4, and Mi9, respectively (Long
et al., 2017; Takemura et al., 2017). However, we see
considerable differences between our assignments and
some previous work that used reporter transgenes (Var-
ija Raghu et al., 2011; Raghu and Borst, 2011; Raghu
et al., 2013), which we generally attribute to unfaithful
transgene expression patterns. We believe our assign-
ments to be more reliable, however they are not without
problems. For example, one assignment we made that
seems unlikely and is not supported by other available
data is the presence of Gad1 in Mi9, which was not de-
tected in the FISH or antibody experiments mentioned
above. Given the presence of some contaminating Mi4
cells in at least one Mi9 driver and the lower Gad1 abun-
dance (mean 276 TPM in Mi9; 2165 TPM in Mi4; 1870
mean TPM in predicted GABAergic cells), we attribute
the Mi9 Gad1 signal to contaminating contributions from
other GABAergic cells such as Mi4.

Transcriptional regulation of neurotransmitter out-
put

We next tried to identify transcriptional regulators of
neurotransmitter output, by searching for TF genes ex-
pressed in strong correlation with transmitter phenotype.
However, we only found such TFs for histaminergic out-
put (Figure S6A). This observation agrees with work on
neuronal identity showing that single TFs rarely encode
transmitter identity, but rather different TF and TF com-
binations are used to specify the same neurotransmitter
output (Hobert, 2016). We thus expanded our search to
TFs whose expression was informative about transmit-
ter phenotype (i.e., cells expressing TF A are likely to
produce neurotransmitter B; even if not all cells produc-
ing neurotransmitter B express TF A; Figure S6A). This
search identified candidate TFs for nearly all neurotrans-

mitter types. For example, the 19 neuronal types (in-
cluding the broad chat-GAL4 line) expressing apterous
(ap) are cholinergic. Its worm ortholog, ttx-3, regulates
the cholinergic phenotype of the AIY neuron (Wenick
and Hobert, 2004). Several other TFs we identified also
have worm or mouse orthologs implicated in neuronal
identity (Figure S6B). Several TFs appeared to iden-
tify a transmitter phenotype within a group of cell types
but not across the entire dataset. For example, Lim3
distinguishes the GABAergic Dm10 from the other Dm
cell types in our dataset and is also expressed in sev-
eral other GABAergic cells (Mi4, Pm3, Pm4) but was
also detected in the cholinergic LC4 and the glutamater-
gic TmY5a and Tm29. We confirmed the differential
Lim3 protein expression in Dm10 and Dm12 cells (Fig-
ure S6C). Several of the transcription factors that we
found to be informative of neurotransmitter output were
also implicated by single cell RNA-seq data, including
ap (cholinergic), tj (glutamatergic), and Lim3 (GABAer-
gic) (Konstantinides et al., 2018). Our data also indicate
exceptions to these patterns (i.e., neurons expressing tj
and Lim3 but with a different neurotransmitter phenotype;
Figure S6A). These observations indicate that neuronal
features are likely regulated in a context-dependent and
combinatorial manner, and that transcriptomes can iden-
tify putative regulators.

Examples of non-canonical transmission

Although the transcriptomes implicated a single canon-
ical neurotransmitter for most neuron types, there were
a handful of interesting exceptions that suggest either
no canonical neurotransmitters or co-transmission. We
also see examples of expression of neurotransmitter-
associated genes by cells that do not themselves release
transmitter, such as glia, which likely provide evidence for
transmitter recycling mechanisms (Figure 5D).
One neuronal cell type, T1, expressed none of the

neurotransmitter markers VGlut, VAChT, Vmat, and
Gad1 (Figure 5A). Although T1 does express most pan-
neuronal genes, it does not express bruchpilot (brp), a
key component of presynaptic active zones. Consistent
with this result, EM reconstruction has identified very few
T1 presynaptic specializations (Takemura et al., 2008).
Co-release of multiple neurotransmitters can enhance

the signaling capacity of neurons and neural circuits. For
example, the same cell type might release different trans-
mitters under distinct conditions or use them to elicit dis-
tinct responses in different target cells. In addition to Mi9
(discussed above as being likely due to contamination),
we observed two cases of potential co-transmission in-
volving the canonical small molecule neurotransmitters.
Both Mi15 drivers express dopaminergic and choliner-
gic markers, and both R8 drivers expressed cholinergic
and histaminergic markers. We confirmed expression
of Vmat protein in Mi15 (Figure 5E), the first identified
dopaminergic cell type within the optic lobe, and further
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Figure 5: Expression of synthesis and transport genes establish neurotransmitter phenotypes. A. Expression of neurotransmitter marker genes
indicate the neurotransmitters produced in nearly all profiled cells. B, C. Example of marker genes for canonical small molecule transmitter GABA
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below we confirm the unexpected VAChT expression in
R8 (Figure 7A).
Evidence for co-transmission involving additional

molecules, such as neuropeptides or nitric oxide, ap-
pears frequently in our data set. Nitric oxide is a widely
conserved signaling molecule that can act on many kinds
of cells, including neurons (Lowenstein and Snyder,
1992). We observed very specific expression of its syn-
thesizing enzyme, nitric oxide synthase (Nos), in the lam-
ina (C2, C3, and Lawf2) andmedulla (Mi4, Pm4, Tm4 and
Mi15). To further validate these results, we confirmed
Nos expression at the protein level in C3 neurons (Fig-
ure 5F). Nitric oxide can be released extra-synaptically,
potentially enabling signaling between neurons that are
not synaptic partners.
Several neuropeptides and their receptors were also

expressed quite specifically, suggesting widespread pep-
tidergic signaling in the visual system (Figure 5G). In
some cases, expression of neuropeptides and their re-
ceptors aligned with specific known synaptic connections
(Takemura et al., 2013), for example the AstC neuropep-
tide in L4 and the AstC-R1 receptor in TmY3. Other
cases suggest volume transmission or peptide release
from cell types not in our dataset. AstA is only clearly ex-
pressed in the Pm3 cells of the medulla, while the AstA-
R1 receptor expressed in Mi1, Tm2, Mi15, and Dm9.
Consistent with transcript levels, published AstA expres-
sion patterns (Hergarden et al., 2012) include Pm3-like
cells in the medulla; we confirmed this AstA protein ex-
pression in Pm3 cells (530 TPM, p(on) = 1) but did not de-
tect expression in Tm2 cells (26 TPM, p(on) = 0.22) (Fig-
ure 5H). As expected, pigment-dispersing factor (Pdf)
was not detected in any of the high quality libraries (but
is present in the Pdf neuron and lLNv samples). By con-
trast, we observed broad (though not ubiquitous) expres-
sion of the pigment-dispersing factor receptor (Pdfr) in
the optic lobe, consistent with the extensive arborizations
of Pdf-expressing neurons at the surface of the medulla.
Previous work has reported Pdfr expression in several
clock neuron types but not in optic lobe neurons (Im and
Taghert, 2010).
While we focused on genes with well known functions,

our expression patterns can also suggest new functions
for poorly characterized genes (Figure 5A,D). For exam-
ple, photoreceptors specifically expressed CG8468, an
orphan transporter in the solute carrier 16 (SLC16) fam-
ily. This gene might represent a candidate vesicular or
plasma membrane transporter of histamine, which re-
mains unidentified in any species.

Broad and patterned expression of neurotransmitter
receptors

Since the functional consequences of the release of
a neurotransmitter depend on which receptors for this
transmitter are expressed in the receiving cell, measuring
the expression of both neurotransmitter input and output

genes is necessary to assign potential synaptic signs to
connectomes. For example, glutamatergic transmission
in Drosophila may be either inhibitory or excitatory, de-
pending on the receptors.
In general, neurotransmitter receptors are broadly ex-

pressed, qualifying each cell type to detect multiple neu-
rotransmitters (Figure 6A). Patterns for individual recep-
tors (or receptor subunits) varied widely. Some recep-
tors, such as the GluClalpha glutamate-gated chloride
channel, were expressed in most but not all cell types
(Figure 6A,B). Expression of others was much more re-
stricted, such as the EKAR glutamate receptor subunit
only detected in photoreceptor neurons. Nearly all cells
expressed receptors for acetylcholine, GABA, and glu-
tamate, as expected from the combination of predicted
transmitter phenotypes and connectomics data. Recep-
tors for neuromodulators such as serotonin, dopamine,
octopamine, and neuropeptides in general were also
widespread. For example, octopamine receptors were
expressed in broad, yet gene- and cell-type specific pat-
terns, consistent with widespread octopaminergic mod-
ulation of visual processing (for example, Arenz et al.,
2017; Strother et al., 2018; Tuthill et al., 2014). We con-
firmed Oamb expression at the protein level in specific
lamina neurons and glia, including Lawf2 cells previously
shown to be octopamine sensitive (Tuthill et al., 2014)
(Figure 6C).

Combining transcriptomes and connec-
tomes
A principal goal of our work is to provide a foundation
for combining neurotransmitter and receptor expression
patterns with anatomical or functional connectivity data.
One application of expression information is to constrain
mechanistic models of neural circuits such as the exten-
sively studied motion detection circuit in the fly eye (re-
viewed in Mauss et al., 2017). For example, for the ON
and OFF motion detection pathways that supply inputs
to directionally sensitive T4 and T5 neurons, respectively
(Takemura et al., 2017), our results show that all of the
inputs to T5 (Tm1, Tm2, Tm4, and Tm9) are choliner-
gic, whereas the inputs to T4 are a mixture of GABAer-
gic (C3, Mi4), cholinergic (Mi1, Tm3), and glutamatergic
(Mi9), suggesting different input signs (Figure S7A). Dis-
covering the functional signs of inputs to the directionally
selective neurons is an essential step in understanding
the mechanism of this long-studied neuronal computa-
tion (Strother et al., 2017). In addition, our data reveals
aspects of the motion pathway that have not yet been
functionally examined, such as the identification of other
signaling components (e.g. Nos; Figure S7B).
The combined availability of expression and connec-

tomics data for many cell types in a brain region also
makes it possible to systematically identify and further
explore unusual patterns of receptor or transmitter ex-
pression; for example, cell types in which an otherwise
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Figure 6: Patterns of neurotransmitter receptor expression. A. Neurotransmitter receptors are widely expressed in specific patterns. With the
exception of histamine, most cells express receptors or receptor subunits for nearly all neurotransmitters. B. Expression of the glutamate-gated
chloride channel (GluClalpha), detected using a GFP-tag (green), in the optic lobe. The lamina pattern includes L5 neurons and proximal satellite,
epithelial and marginal glia. A glia-specific nuclear marker (anti-repo) is shown in magenta. C. Octopamine receptor (Oamb) expressing cells in
the optic lobe detected with a protein-trap GAL4 driving expression of a membrane targeted GFP (green). Anti-repo (magenta). In the lamina (to
the top and left of the image), Lawf1/2 and L5 neurons and marginal glia are recognizable.
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widely expressed receptor is absent or cells with unusual
combinations of receptor subunits. Below we discuss
three examples, focused on potential signs of synap-
tic transmission, of how such patterns can lead to spe-
cific, unexpected hypothesis about circuit function. The
first, focused on photoreceptor output, originated from
a global search for mismatches between neurotransmit-
ter expression and the presence of appropriate receptors
in postsynaptic partners identified by EM. The second
uses expression patterns of GABA-A receptor subunits to
suggest sites and molecular indicators of non-canonical
depolarizing GABA-ergic transmission. The third uses
differential expression of glutamate receptor subunits to
draw inferences about the similarity of two neuron types.

i. R8 photoreceptors are cholinergic as well as his-
taminergic

Fly photoreceptors have long been known to release
histamine (Hardie, 1987; Sarthy, 1991). Our data indi-
cate that inner (color vision) R8 photoreceptors also ex-
press the cholinergic markers ChAT and VAChT, sug-
gesting an unexpected additional cholinergic phenotype
(Figure 5A). We independently confirmed these results
by using a genetic approach (Pankova and Borst, 2017)
that allowed us to visualize a tagged VAChT protein
(VAChT-HA), expressed from the endogenous locus,
selectively in photoreceptor cells. These experiments
showed VAChT-HA labeling in medulla terminals of R8
cells (Figure 7A), including the specialized polarized
light-responsive R8-cells in the dorsal rim of the medulla.
The latter express the rhodopsin Rh3 (which is otherwise
expressed in R7s; Fortini and Rubin, 1990), consistent
with the presence of Cha and VAChT transcripts in the
R7 driver line (for which the model inferred expression
for VAChT but not ChaT). By contrast, we did not detect
VAChT-HA in R1-6 and R7 photoreceptors outside the
dorsal rim using this method.
We asked whether the apparent co-transmitter pheno-

type of R8 neurons was reflected in the expression of
neurotransmitter receptors in their different postsynap-
tic partners. Histaminergic transmission by photorecep-
tors occurs via the histamine-gated chloride channels ort
and HisCl1 (Pantazis et al., 2008). Postsynaptic partners
of R8 cells identified by electron microscopy reconstruc-
tions (at least 5 synapses in Takemura et al., 2013) in-
clude seven cell types in our dataset: Dm9, Mi1, Mi4,
Mi15, R7, L1 and Tm20 (Figure 7B) (Takemura et al.,
2013; Takemura et al., 2015). All of these express one
or more nAChR subunits (Figure 6A). HisCl1 and ort ex-
pression was more selective (Figure 7B,C): L1, Tm20
and Dm9 express ort, consistent with previous reports
(Gao et al., 2008), whileHisCl1 transcripts were detected
in the R7 as well as R8 driver lines, in agreement with an-
other recent report (Schnaitmann et al., 2018; Tan et al.,
2015). However, we did not find evidence of expression
of ort or HisCl1 in Mi4, Mi1 and Mi15, consistent with R8

signaling via a transmitter other than histamine.
We were interested in whether release of ACh and

histamine might occur at spatially distinct locations or
whether the two transmitters could potentially be co-
released. Insects synapses often consist of multiple
postsynaptic sites apposed to the same presynapse (Fig-
ure 7D). We used EM reconstruction data (Takemura et
al., 2013) to map the predicted expression of histamine
receptors in postsynaptic cells at the single synapse level
for all presynaptic sites of one reconstructed R8 cell (Fig-
ure 7E). The resulting pattern indicates that processes
of cell types with and without histamine receptor expres-
sion are often grouped at the same R8 presynapse (Fig-
ure 7E), whereas this is not the case for a reconstructed
R7 cell (Figure 7F). This is consistent with the VAChT-
HA labeling observed throughout the medulla terminals
of R8s (but not in the axons of these cells in the lamina)
(Figure 7A).
A combined cholinergic and histaminergic phenotype

has been reported for a small group of extraretinal pho-
toreceptors (the Hofbauer-Buchner eyelet) located near
the lamina (Yasuyama and Meinertzhagen, 1999) but
was unexpected for R-cells of the compound eye. Es-
tablishing the functional significance of potential acetyl-
choline release by R8 cells will require further exper-
iments. However, we note that double mutants lack-
ing both histamine receptors are not completely blind
(Gao et al., 2008), consistent with histamine-independent
transmission by photoreceptor neurons. In view of the
widespread acetylcholine receptor expression and the
grouping of postsynaptic processes described above
(Figure 7D,E), acetylcholine co-release could also in-
fluence the response of R8 targets that express ort or
HisCl1.

ii. Potentially excitatory GABA-A receptors in lamina
monopolar cells

Fast GABAergic transmission via GABA-A receptors is a
major source of inhibition in the nervous system. How-
ever, some GABA-A subunit combinations could medi-
ate depolarizing GABA-signaling: in vitro assays indi-
cate that homomeric Rdl or heteromeric Rdl/Lcch3 recep-
tors are typical GABA-gated chloride channels (Zhang
et al., 1995), while Lcch3/Grd form GABA-gated cation
channels (Gisselmann et al., 2004). However, the in
vivo significance of this difference is unknown. Rdl and
Lcch3were expressed in nearly all neurons in our dataset
(Figure 6A, Figure 7G,H), consistent with the general in-
hibitory nature of GABA signaling. By contrast, Grd and
another predicted GABA-A receptor subunit, CG8916,
were expressed in a minority of cell types (Figure 6A,
Figure 7G,H). Photoreceptor neurons, for which no major
GABAergic inputs have been identified by connectomics,
expressed none of the four transcripts (Figure 7H). Lam-
ina monopolar L1 and L2 were the only neurons other
than photoreceptors that did not express significant lev-
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Figure 7: Using gene expression to functionally interpret circuit structure. A. Expression of VAChT in R8 cells. Expression of a HA-tagged VAChT
was induced in R8 cells by recombinase-mediated excision of an interruption cassette from a modified genomic copy of the VAChT gene (Pankova
and Borst, 2017). Single confocal section shows R7 and R8 cells in magenta and anti-HA immunolabeling in green. B. Heatmap of receptor
expression probabilities (color) and relative abundance (numbers; transcripts per million) in R8 targets identified by EM (Takemura et al., 2013). C.
Connectivity network for R8 cells, overlaid with receptor expression. Only cells with five or more presynaptic inputs from R8 that are included in the
RNASeq dataset are shown. D. Individual R8 active zones can interact with multiple postsynaptic partners. E. Classification of postsynaptic cells at
individual R8 active zones based on histamine receptor expression. F. Same analysis as in E but for an R7 cell. G. Different properties of GABA-A
receptors in Drosophila observed in in vitro studies. GABA-A receptor subunits can form either cation or anion channels depending on subunit
composition. H. Expression of GABA-A subunits in selected cell types, as in B. I. L1 and two of its target cells form strong reciprocal connections
with C2 neurons. J. Distribution of Rdl and Grd expressing cells at individual C2 synapses. K. Glutamate receptors can also be excitatory or
inhibitory. L. Examples of expression patterns for selected glutamate receptors and transporters, as in B. M,N. Morphology of Lai (M) and Dm9 (N)
cells. Illustrations based on MCFO images of single cells. O, P. Input and output pathways of Lai (O) and Dm9 (P) neurons. See also Figure S7.
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els of Rdl. However, both express Grd, Lcch3 and also
CG8916. Together with the in vitro findings mentioned
above, this result suggests that some or all GABA-A re-
ceptors in L1 and L2 may be cation rather than chloride
channels. Remarkably, lamina monopolar cells in the
housefly Musca, which are thought to have very similar
functional properties to those in Drosophila, depolarize
in response to GABA (Hardie, 1987) but hyperpolarize in
response to histamine (via ort-containing chloride chan-
nels). Thus our data identify a potential link between in
vivo electrophysiology, in vitro receptor properties and
cell type differences in GABA-A subunit (Rdl or Grd) ex-
pression.

Based on synapse counts and our transmitter data,
the main GABAergic inputs to L1 and L2 are C2 and
C3 neurons (Meinertzhagen and O’Neil, 1991; Rivera-
Alba et al., 2011; Takemura et al., 2013; Takemura et al.,
2015). Conversely, L1 is the main input to both C2 and
C3 cells, followed by the cholinergic L1 targets L5 and
Mi1. These strong connections (illustrated for C2 in Fig-
ure 7I) indicate that the effective sign of GABA input to
L1 and L2 is almost certainly of functional significance.
In the illustrated circuit (Figure 7I), L1 cells hyperpolarize
in response to luminance increases (as histamine from
photoreceptors opens ort chloride channels). The result-
ing reduced secretion of glutamate is thought to depo-
larize L1 targets such as Mi1 (via closing of GluClalpha
channels). One plausible, though speculative, scenario,
is that, similar toMi1, C2 cells also depolarize in response
to light. In this case, GABA-gated cation channels in L1
(formed by Grd and Lcch3) would enable negative feed-
back (counter-acting) from C2 to L1, which for example
could return the membrane potential closer to resting lev-
els – speeding up the response to subsequent luminance
changes. By contrast, opening of conventional GABA-A
receptors (GABA-gated chloride channels) in L1 would
resemble a light response (opening of histamine-gated
chloride channels), and thus provide positive (reinforc-
ing) feedback in this case. The latter possibility appears
less consistent with the transient nature of the L1 (and L2)
response to light (Järvilehto and Zettler, 1971; Laughlin
and Hardie, 1978). Distinguishing these and other pos-
sibilities will of course require future experimental work.

Similar to the findings for histamine receptors de-
scribed above (Figure 7E), we observed that cells with
different GABA-A profiles can be postsynaptic at the
same synapse (Figure 7J). In addition to L1 and L2, Grd
expression indicated several other candidates for cells
with unusual GABA responses (Figure 6A, 7H). In these
neurons (e.g., Dm8 or Mi4), Rdl and Grd were detected
together, raising questions such as whether their sub-
cellular distribution is synapse-specific or whether these
subunits might co-assemble into channels with yet unex-
plored properties.

iii. Similarities between glutamatergic interneurons
Lai in lamina and Dm9 in medulla

The glutamate gated chloride channel GluClalpha,
thought to be the main mediator of inhibitory glutamater-
gic transmission in flies, was broadly expressed but pre-
dicted to be absent from some neurons, including pho-
toreceptor cells (Figure 6A, 7K). Another glutamate re-
ceptor subunit, EKAR (CG9935), was only detected in
photoreceptors, consistent with previous work (Hu et
al., 2015). These unusual receptor expression patterns
prompted us to explore cellular sources of and potential
functions for glutamatergic signaling to photoreceptors.
Photoreceptor neurons function over an extremely

wide range of light levels, from moonlight to bright sun-
light. One potential mechanism enabling this behavior
has been proposed whereby a depolarizing feedback sig-
nal from photoreceptor targets increases photoreceptor
output under low light conditions, but is reduced at higher
light intensities (Zheng et al., 2009). As Lai cells express
ort, and thus, like other ort-expressing photoreceptor tar-
gets, are thought to hyperpolarize in response to light,
increased glutamate release from Lai could provide such
light-dependent feedback via EKAR in R-cells, consistent
with reduced photoreceptor responses at low light inten-
sities after reduction of Lai output or EKAR function (Hu
et al., 2015). Lai is the only source of vesicular glutamate
release in the lamina, although T1 and L3might also influ-
ence glutamate levels in the lamina via the Eaat1 plasma
membrane glutamate transporter. (The strong expres-
sion of this transporter in T1 rather than glia is another
unusual feature of this cell type that is probably a clue to
its enigmatic function; Tuthill et al., 2013.) Other Lai tar-
gets in the lamina differ from photoreceptors in their gluta-
mate receptor profiles: e.g., epithelial glia highly express
GluClalpha, which is absent from photoreceptor neurons,
but not EKAR (Figure 7L). Lai itself also expresses sev-
eral glutamate receptors, in particular the glutamate re-
ceptor subunit CG3822. Since Lai is not postsynaptic to
any glutamatergic cells, these receptors must be pre- or
extrasynaptic. Indeed, CG3822 was recently reported to
function presynaptically in homeostatic control of signal-
ing at the neuromuscular junction (Kiragasi et al., 2017).
These examples highlight the diversity of glutamatergic
signaling in the lamina and add to the list of examples
in which transmitter released by a neuron is predicted to
have very different effects on target cells depending on
the receptors they express.
Connectomic data identify Dm9 as a potential counter-

part of Lai, serving a similar role in the medulla. Dm9
expresses ort and is both a major pre- and postsynaptic
partner of R7 and R8; it is the only identified R7/R8 tar-
get with these properties (other known R7 or R8 targets
appear to form few if any feedback synapses on these
cells). The overall anatomy of Dm9 cells is also similar
to Lai (Figure 7M,N): Both Lai and Dm9 cells span mul-
tiple visual columns but the precise number and distribu-
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tion of columns innervated by each individual cell is vari-
able. Based on connectivity and gene expression (Fig-
ure 7L,P), Dm9 cells are predicted to receive hyperpolar-
izing R7 and R8 input via ort and excitatory input from the
photoreceptor targets L3 and Dm8. Thus, similar to Lai
(Figure 7O), Dm9 appears qualified to increase photore-
ceptor output in the medulla under low light conditions,
similar to the proposed function of Lai in the lamina.
However, there are also notable differences between

Lai and Dm9 associated circuits. For example, there are
no obvious counterparts of the interactions of Lai with T1
and glia in the medulla, though this could be partly due to
less complete anatomical and expression data (i.e., we
did not profile medulla glia, and they are also not included
in current connectomes). In contrast to Lai, Dm9 cells
receive input from photoreceptor neurons with different
spectral tuning. This input involves direct (R7, R8) and
indirect pathways (R7 via Dm8, R1-6 via L3) (Figure 7P).
This integration of multiple spectral inputs could support
a role of Dm9 in color processing. Indeed, Dm9 matches
the anatomical and predicted functional properties of an
as yet unidentified ort expressing cell type proposed to
contribute to color opponent signaling between R7 and
R8 cells (Schnaitmann et al., 2018).

Discussion
We present an approach to characterize the function of
neural circuits by combining genetic tools to access their
component cells, TAPIN-seq to measure their transcrip-
tomes, and a probabilistic model to interpret these mea-
surements. We used this approach to establish an exten-
sive resource of the genes expressed in 67 Drosophila
cell types, including 53 in the visual system, cover-
ing photoreceptors, lamina, and components of the mo-
tion detection circuit. Our approach enables an exten-
sive analysis of neurotransmission in the Drosophila vi-
sual system, including the neurotransmitters sent and re-
ceived across the network as well as transcription factors
that potentially regulate neurotransmitter identity. We
also provide specific examples of integrating transcrip-
tomes and connectomes to illuminate circuit function.
Many recent studies have explored gene expression

in neurons. However, only a few of these were aimed
at neurons in genetically tractable organisms and brain
regions for which detailed anatomical data, especially at
the level of synaptic connections, are available. Previous
work in the mouse retina has used both genetic (Siegert
et al., 2012) and single cell approaches (Macosko et al.,
2015) to characterize transcriptional regulators as well
as classify cell types. More recent work in Drosophila
used single cell RNA-sequencing to characterize hetero-
geneity in olfactory projection neurons (Li et al., 2017),
the midbrain (Croset et al., 2018), the optic lobe (Kon-
stantinides et al., 2018), and the whole brain (Davie et
al., 2018). The expression patterns of many genes have

also been mapped in worm neurons, whose connectiv-
ity has long been known, although these studies typically
focus on individual genes rather than genome-wide cata-
logs (Hobert, 2016). The unique combination of an exten-
sive genetic toolbox to access individual cell types in the
Drosophila visual system, and systematic efforts to map
its connectivity, make it well suited for exploring whether
a comprehensive catalog of gene expression is useful for
understanding circuit function. Towards this end, we pro-
filed a diverse array of cell types including all of the neu-
ronal cell types that populate the lamina and a subset of
cell types in the medulla and lobula complex including
those known to play a central role in the detection of mo-
tion. We also analyzed a number of cell types residing in
deeper brain structures such as the mushroom body and
central complex.
Our approach requires genetic driver lines to obtain

transcriptomes of specific cell populations. For this
study, we combined drivers from existing collections for
cell types in the lamina (Tuthill et al., 2013), the mush-
room body (Aso et al., 2014), and the lobula (Wu et al.,
2016) with new driver lines for many additional optic lobe
cell types and also some neurons of the central complex
(Wolff et al., 2015; Wolff and Rubin, 2018; T. Wolff, per-
sonal communication). Nearly all of these drivers were
generated using an intersectional method, split-GAL4, to
refine expression patterns of GAL4 driver lines. The re-
cent availability of large collections of reagents for split-
GAL4 intersections (Dionne et al., 2018; Tirian and Dick-
son, 2017) make it possible to obtain such lines for vir-
tually any cell type of interest. This expanding genetic
toolbox works well with our TAPIN-seq method to profile
transcriptomes.
In some cases, available driver lines, including some

used in this study, may label some additional cell types.
While drivers with even higher specificity could be ob-
tained through testing of additional split-GAL4 intersec-
tions or perhaps triple intersections (Dolan et al., 2017),
we did not find the contributions of small numbers of “off-
target” cells to be a major limitation for many applications
of expression data. Our results indicate that employing
multiple drivers for a cell type, a common strategy used
in behavioral studies, may also be a viable approach for
refining expression data. In general, the transcriptomes
support the high specificity of the intersectional lines we
used to access visual system cells (Figure 1). For exam-
ple, we found specific expression of knownmarker genes
(Figure 2H, 4B) and also that most neurons only express
genes for a single neurotransmitter type (Figure 5A). The
availability of these genetic tools alsomakes it possible to
validate our transcriptome measurements in a way that is
otherwise difficult for single cell RNA-seq studies. Driver
lines also permit repeated access to the same cell type
in multiple animals at defined time points, enabling the
study of behavioral or circadian conditions in individual
cell types without having to sequence the whole brain or
dissected brain regions.
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Modifying the one-step affinity capture in the original
INTACT method to a two-step capture in TAPIN-seq in-
creased its specificity, sensitivity, and throughput without
the need for time-consuming and labor-intensive centrifu-
gation steps (Figure 1). We initially tried improving the
original INTACT method by using density gradient cen-
trifugation to purify nuclei prior to the bead capture step,
but this was cumbersome, low throughput, and ineffec-
tive for sparse cell types. In addition, for reasons that
remain unclear, both photoreceptors and T4 cells con-
sistently yielded few nuclei with this approach. Even with
TAPIN, the libraries obtained with some sparser driver
lines did not meet the quality control standards we ap-
plied. We suspect that the quality of these sub-optimal li-
braries can be improved by starting with more flies, which
is simplified by TAPIN-seq’s ability to use frozen material,
enabling the collection of many flies on multiple days at
defined time points. In contrast, manual or FACS sort-
ing of dissociated cells is more challenging to scale up,
because these more labor-intensive tissue procurement
schemes cannot be simplified in the same way. It is
also worth noting that our tandem affinity purification ap-
proach can improve the specificity of any immunopurifi-
cation method that uses a capture antibody that is cleav-
able by IdeZ (all IgG subclasses), without requiring ex-
pression of a traditional TAP tag (Rigaut et al., 1999).
TAPIN-seq complements single-cell RNA-seq studies

of neurons in several ways (Ecker et al., 2017; Konstan-
tinides et al., 2018). First, our high-resolution transcrip-
tomes will serve as a reference for interpreting single-
cell measurements. In particular, comparing our expres-
sion catalog to a recent single cell map of the optic lobe
highlights the challenges in interpreting single cell mea-
surements. Several cell types that we profiled don’t ap-
pear as clusters in the single cell map, while others are
grouped into the same cluster. Having both deep bulk
transcriptomes and single cell maps of the same tissue
provides an opportunity for developing new analytical
tools that can harness available cell type-identified infor-
mation while clustering single cell data. Second, com-
bining our approach with single-cell profiling could more
efficiently profile heterogeneity within a brain region or
genetically defined cell population. Finally, the comple-
mentarity between bulk and single-cell measurements
extends to other genomic features that can be measured
in TAPIN-seq purified nuclei, including accessible chro-
matin andmodified histones. We expect this combination
of genomic tools to help decipher the transcriptional and
epigenetic regulation of neuronal expression programs.
Transcriptome measurements can be of limited utility

because it is challenging to interpret relative transcript
abundance. In this study we developed a probabilis-
tic mixture modeling approach to classify relative abun-
dances into binary on and off states. Although the ex-
pression of some genes are not accurately described with
a simplified two-state model (e.g., Rab11; Figure S4G),
this model was a useful guide for interpreting our ex-

pression measurements. Even for specific genes where
expression is more continuous than bimodal (e.g., DPR
family members; Figure S5D), the results still offer a
useful family-wide summary of expression patterns (e.g.,
DPR genes are more broadly expressed than DIP genes;
Figure 4C). Despite our model’s utility, it is important to
remember the many potential sources of error (minor cell
types in driver line patterns, transcript carry over dur-
ing TAPIN, biases in RNA-seq library construction and
sequencing, etc) that can affect measurements of rela-
tive transcript abundance and the resulting model infer-
ences. Having observed most discrepancies between
our modeling results and protein-level expression near
the boundary between on and off states, it is prudent
to treat these cases more carefully. Our bimodal model
could also help interpret other genomic measurements,
such as chromatin accessibility or histone modification,
that capture inherently binary genomic processes.
The resource provides additional foundation for

systematic functional and molecular studies of the
Drosophila visual system. We illustrated how the re-
source can characterize neurotransmission in the net-
work, particularly when combined with connectome in-
formation detailing connectivity between cell types as
well as the grouping of post-synaptic partner cell types.
We determined neurotransmitters used by every cell we
profiled and found two likely cases of co-transmission
(Figure 5A). The expression patterns of the major fast-
acting transmitters histamine, acetylcholine, glutamate
and GABA were comparatively simple: Nearly all neu-
ronal cell types in our catalogue appear to express ex-
actly one of these three transmitters. However, the tran-
scriptomes suggest that many cells also have the po-
tential to release specific neuropeptides, other chemical
messengers such as nitric oxide, or form gap junctions
with other cells.
While selected transmitter markers (e.g. Gad1 or VG-

lut) could also be assigned to cell types using methods
such as immunolabeling or in FISH, these approaches
are not practical for comprehensive sampling of mark-
ers across these different modes of cell-cell communica-
tion. This is particularly clear when the expression pat-
terns of neurotransmitter receptors are also considered
(Figure 6A). Our results suggest that, for canonical small
molecule transmitters, neurotransmitter output space is
tightly tuned while input space is not: neurons typically
speak just one main language but can understand many
(Figures 5 and 6). The expression patterns of neuro-
transmitter receptors provide further context for deter-
mining circuit mechanisms (Figure 7). Our results also
implicate transcription factors involved in regulating neu-
rotransmitter phenotype, including several that appear to
have conserved roles in specifying neuronal identity in
other species (Figure S6).
The availability of connectivity data for many neurons

in the visual system allowed us to interpret neurotrans-
mitter use and receptor distribution in the context of cir-
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cuit architecture (Takemura et al., 2013; Takemura et al.,
2015; Rivera-Alba et al., 2011). For example, the co-
transmission suggested by expression of both histamin-
ergic and cholinergic markers in R8 photoreceptors was
corroborated by receptor expression in its synaptic tar-
gets identified by electron microscopy (Figure 7E). In
contrast, R7 only expresses the histaminergic marker
Hdc, and all of its targets express a histamine receptor
(Figure 7F).
Finally, our approach especially complements ongoing

efforts to map circuit connectivity, which is complete for
C. elegans, and is becoming accessible on a whole brain
level for Drosophila (Zheng et al., 2018), and for portions
of the mouse brain such as the retina. Methods to ob-
tain and interpret serial electron micrographs, array to-
mography and other methods for mapping connectivity
are rapidly progressing (Swanson and Lichtman, 2016;
Micheva and Smith, 2007; Kebschull et al., 2016). All
told, we are entering a period in neuroscience where con-
nectomics will become pivotal. We expect that genomic
approaches, such as the methods for data collection and
analysis that we describe here, will enhance these efforts
by using transcriptomes to provide, at high-throughput, a
molecular proxy for physiological features that are other-
wise inaccessible to connectomic methods.

Methods

Contact for reagent and resource sharing
Further information and requests for resources and
reagents should be directed to the Lead Contact, Gilbert
L. Henry (henry@cshl.edu). A detailed description
of split-GAL4 hemidrivers (https://bdsc.indiana.edu/
stocks/gal4/split_intro.html) and cell-type specific
split-GAl4 lines is also available (https://www.janelia.
org/split-GAL4).

Experimental models and subject details
Flies were reared on standard cornmeal/molasses food
at 25◦C. For profiling experiments adults, 4-7 days of
age, were entrained to a 12:12 light:dark cycle and anes-
thetized by CO2 at ZT8 - ZT12. Samples can be stored
indefinitely at -80◦C after flash freezing in liquid N2. We
used female flies for all anatomical characterizations.

Method details
Anatomical analyses

Details of individual genotypes and labeling methods
used in the characterization of the driver lines and other
anatomical experiments are summarized in Table S5.
Details of the driver lines are provided in Table S1. For
the naming of RNA-seq samples, we identified all drivers

with a main cell type or cell types (e.g. Mi9_d1). Most of
these cell types have been described in detail and were
identified based on prior descriptions (see references in
Table S1). The driver names do not attempt to include
additional cells present in some drivers. A few of our cell
types are strictly groups of related cell types (for exam-
ple, the muscle cells or, at a different level of a cell type
hierarchy, the T4 and T5 cells, with four subtypes each,
or R7 photoreceptor neurons, which include R7s of pale
and yellow ommatidia).

Generation and characterization of new driver lines

Split-GAL4 and GAL4 driver lines (Table S1) were used
to express UNC84-2XGFP in defined cell populations.
New split-GAl4 lines were generated as in previous work
(Tuthill et al., 2013; Wu et al., 2016). Briefly, we first iden-
tified GAL4 lines with expression in the cell type of in-
terest by screening images of the expression patterns of
large collections of such lines (Jenett et al., 2012; Tirian
and Dickson, 2017). Typically, several candidate combi-
nations of AD- and DBD-hemidrivers were tested to iden-
tify lines with sufficient specificity.
To characterize new driver lines, we examined both

overall expression pattern in the brain and optic lobe and,
for most lines, confirmed the identity of the main cell type
or types using MultiColor FlpOut (MCFO)-labeled single
cells (Nern et al., 2015). Since details of the expression
patterns of GAL4 or split-GAL4 driver lines can depend
on the particular UAS reporter used, we re-imaged 20
drivers with the TAPIN nuclear marker used for the profil-
ing experiments (Figure 2A). In general, the distribution of
labeled nuclei in these images appeared to match the ex-
pression patterns and specificity expected from the driver
line’s original characterization using amembranemarker.
As expected, a small number of off-target cells were de-
tectable (often more weakly labeled) in many driver lines.

Validation experiments

For validation experiments, we examined expression pat-
terns of tagged proteins expressed in a near native
genomic context using either large BAC-transgenes or
modifications of the endogenous loci (Nagarkar-Jaiswal
et al., 2015; Diao et al., 2015; Kudron et al., 2018).
We classified fkh-GFP and Ets65A-GFP as expressed

or not expressed by comparing nuclear GFP signal in
cells of interest (identified using a split-GAL4 driver) to
background labeling in surrounding cells. Because of
considerable differences in the GFP signal for different
cell types, confocal settings and post-imaging adjust-
ments were done individually for different cell types for
these experiments.
The following transgenes were used (also see Table
S5): PBac{y[+mDint2]
w[+mC]=fkh-GFP.FPTB}VK00037
(RRID:BDSC_43951), PBac{y[+mDint2]
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w[+mC]=Ets65A-GFP.FLAG}VK00037
(RRID:BDSC_38640),
Mi{PT-GFSTF.0}Nos[MI09718-GFSTF.0]
(RRID:BDSC_60278),
Mi{Trojan-GAL4.1}Oamb[MI12417-TG4.1]
(RRID:BDSC_67506),
Mi{Trojan-GAL4.1}Lim3[MI03817-TG4.1]
(RRID:BDSC_67450),
Mi{PT-GFSTF.1}klg[MI02135-GFSTF.1]
(RRID:BDSC_59787),
Mi{PT-GFSTF.2}GluClalpha[MI02890-GFSTF.2]
(RRID:BDSC_60533),
Mi{PT-GFSTF.0}TfAP-2[MI04611-GFSTF.0]
(RRID:BDSC_61776),
pJFRC12-10XUAS-IVS-myr::GFP in attP2
(RRID:BDSC_32197),
pJFRC19-13XLexAop2-IVS-myr::GFP in su(Hw)attP8
(RRID:BDSC_32211), and
pJFRC21-10XUAS-IVS-mCD8::RFP in attP18.
The VAChT-FRT-STOP-FRT-HA trans-
gene (TI{TI}VAChT[FRT-STOP-FRT.HA]
(RRID:BDSC_76021) described in (Pankova and
Borst, 2017) was used to examine VAChT expres-
sion in photoreceptor neurons. Flp-recombinase,
either sens-FLP (expressed in R8 cells; Chen et
al., 2014) ( fly stock w[*] P{y[+t7.7] w[+mC]=sens-
FLPG5.C}attP18; wg[Sp-1]/CyO; sens[Ly-1]/TM6B,
Tb[1] (RRID:BDSC_55768) or ey3.5FLP (expressed in all
R-cells; Bazigou et al., 2007) (fly stock P{w[+mC]=ey3.5-
FLP.B}1, y[1] w[*]; CyO/In(2LR)Gla, wg[Gla-1] PPO1[Bc]
(RRID:BDSC_35542) was used to induce VAChT
stop-cassette excision.

Histology

Visualization of split-GAL4 driver line expression patterns
with pJFRC51-3XUAS-IVS-Syt::smHA in su(Hw)attP1
and pJFRC225-5XUAS-IVS-myr::smFLAG in VK00005
(Nern et al., 2015) or, in a few cases, 20XUAS-
CsChrimson-mVenus in attP18 (Klapoetke et al., 2014)
as reporters was performed as described (Aso et al.,
2014; Wu et al., 2016). Detailed protocols are also avail-
able online (https://www.janelia.org/project-team/
flylight/protocols under “IHC - Anti-GFP”, “IHC -
Polarity Sequential” and “DPX mounting”). Multicolor
Flp-out (MCFO) markers were detected by immunola-
beling with antibodies against HA, FLAG and V5 epi-
topes as described (Nern et al., 2015). Detailed pro-
tocols are also available online (https://www.janelia.
org/project-team/flylight/protocols under “IHC -
MCFO”).
For other experiments, brains of female flies were dis-

sected in insect cell culture medium (Schneider’s Insect
Medium, Sigma Aldrich, #S0146) and fixed with 2% PFA
(w/v) (prepared from a 20% stock solution, Electron Mi-
croscopy Sciences: 15713) also in cell culture medium
for 1 h at room temperature. Brains were washed with

0.5 % (v/v) TX-100 (Sigma Aldrich: X100) in PBS and in-
cubated in PBT-NGS (5% Goat Serum [ThermoFisher:
16210-064] in PBT) for at least 30 min. Incubations
with primary antibodies and subsequently, after addi-
tional PBT washes, secondary antibodies, were in PBT-
NGS at 4◦C overnight. After additional washes with PBT
and then PBS, brains were mounted in SlowFadeGold
(ThermoFisher: S36937) and imaged on a Zeiss LSM
710 confocal microscope using 20x 0.8 NA, 40x NA 1.3 or
63x 1.4 NA objectives. A few specimens were mounted
in DPX following the protocol described in Nern et al.,
2015. For experiments using only native fluorescence,
brains were fixed as above and mounted and imaged af-
ter the initial post-fixation washes.
Primary antibodies used in each experiment are

indicated in Table S5. Primary antibodies were
anti-GFP rabbit polyclonal (ThermoFisher: A-11122,
RRID:AB_221569; used at 1:1000 dilution), anti-GFP
mouse monoclonal 3E6 (ThermoFisher: A-11120,
RRID:AB_221568; dilution 1:100), anti-dsRed rab-
bit polyclonal (Clontech Laboratories, Inc.: 632496,
RRID:AB_10013483; dilution 1:1000), anti-HA rab-
bit monoclonal C29F4 (Cell Signaling Technologies:
3724S, RRID:AB_1549585; dilution 1:300), anti-
FLAG rat monoclonal (DYKDDDDK Epitope Tag
Antibody [L5], Novus Biologicals: NBP1-06712,
RRID:AB_1625981; 1:200), DyLight 549 or DyLight
550 conjugated anti-V5 mouse monoclonals (AbD
Serotec: MCA1360D549GA or MCA1360D550GA,
RRID:AB_10850329 or RRID:AB_2687576; 1:500
dilution), anti-cockroach allatostatin (Ast7) mouse mon-
oclonal 5F10 (Stay et al., 1992) (also detects Drosophila
AstA Hergarden et al., 2012; Developmental Studies
Hybridoma Bank (DSHB): RRID:AB_528076; dilution
1:5), anti-CadN rat monoclonal DN-Ex #8 (DSHB:
RRID:AB_528121; dilution 1:20) (Iwai et al., 1997) and
anti-Brp mouse monoclonal nc82 (Wagh et al., 2006)
(DSHB: RRID:AB_2314866; dilution1:30).
Secondary antibodies (all from Jackson ImmunoRe-

search Laboratories, Inc) were DyLight 488-AffiniPure
Donkey Anti-Mouse IgG (H+L): 715-485-151, 1:500 di-
lution; DyLight 594 AffiniPure Donkey anti Rabbit IgG
(H+L): 711-515-152, 1:300 dilution; Alexa Fluor 647
AffiniPure Donkey Anti-Rat IgG (H+L): 712-605-153,
1:300 dilution; Alexa Fluor 594 AffiniPure Donkey Anti-
Mouse IgG (H+L): 715-585-151,1:300 dilution; Alexa
Fluor 647 AffiniPure Donkey Anti-Mouse IgG (H+L): 715-
605-151, 1:300 dilution and Alexa Fluor 488 AffiniPure
Donkey Anti-Rabbit IgG (H+L): 711-545-152, 1:1000 di-
lution.

Image processing

Image analyses and processing were mainly done us-
ing Fiji (http://fiji.sc) and Vaa3D (Peng et al., 2010).
Brightness and contrast were adjusted separately for in-
dividual images and channels. Figure panels were as-
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sembled using Adobe Indesign. This included selection
of fields of view and adjustments of image size. Some
images were rotated or mirrored. In some panels with
rotated images, empty space outside the original image
was filled in with zero pixels. Most of the images in Fig-
ure S1C,C’ and S2 show resampled views that were gen-
erated from three dimensional image stacks using the
Neuronannotator mode of Vaa3D and exported as TIFF
format screenshots.

INTACT purification of nuclei

Frozen adult flies were decapitated by vigorous vortex-
ing. Heads or wings/appendages were then collected
on cooled metal sieves (H&C Sieving Systems: 1296,
1297, 1298, 1301). Both flies and purified frozen ma-
terial can be stored indefinitely at -80◦C. In a typical
experiment 100-500 frozen heads were added to 5ml
of 20mM β-glycerophosphate pH7, 200mM NaCl, 2mM
EDTA, 0.5% NP40, 0.5mM spermidine, 0.15mM sper-
mine, 1mM DTT, 1X complete protease inhibitor (Sigma:
5056489001), 3mg/ml BSA (ThermoFisher: AM2618),
1mg/ml torula yeast RNA (ThermoFisher: AM7118),
0.6mg/ml carboxyl coated Dynabeads (ThermoFisher:
14306D) and 2µg anti-GFP antibody (ThermoFisher:
G10362, RRID:AB_2536526). Homogenization was car-
ried out on ice by 50 tractions in a Dounce homoge-
nizer using the tight pestle followed by filtration over
a 10µm cup filter (Partec: 0400422314). Released
chromatin and broken nuclei were adsorbed to carboxyl
coated magnetic beads for 30 minutes at 4◦C with con-
stant rotation. Beads were removed on a magnetic
stand and the supernatant was diluted to 50ml with
20mM β-glycerophosphate pH7, 200mM NaCl, 2mM
EDTA, 0.5% NP40, 0.5mM spermidine, 0.15mM sper-
mine, 1mM DTT and 1X complete protease inhibitor
(Sigma: 5056489001), filtered over a 1µm cup filter
(Pluriselect: 435000103) and split into two equal vol-
umes. A 40% Optiprep (Sigma: D1556), 20mM β-
glycerophosphate pH7, 2mM EDTA and 0.5% NP40 so-
lution was then gently placed under each aliquot, fol-
lowed by a lower layer of 50% Optiprep, 20mM β-
glycerophosphate pH7, 2mMEDTA and 0.5% NP40. Nu-
clei were then pelleted on to the 50% layer for 30 minutes
at 2300Xg. Purified nuclei were passed over a 10µm
cup filter, diluted to 10ml with 20mM β-glycerophosphate
pH7, 200mM NaCl, 2mM EDTA, 0.5% NP40, 0.5mM
spermidine, 0.15mM spermine, 1mM DTT and 1X com-
plete protease inhibitor and incubated with 30µl of protein
G Dynabeads (ThermoFisher: 10004D) for 40 minutes
on ice with occasional agitation. Bead-bound nuclei were
recovered on a magnet stand followed by a 20 minute
incubation on ice in 9mls of 20mM β-glycerophosphate
pH7, 300mM NaCl, 1M urea, 0.5% NP40, 2mM EDTA,
0.5mM spermidine, 0.15mM spermine, 1mM DTT, 1X
complete protease inhibitor, 0.075mg/ml torula RNA and
0.05U/ml Superasin (ThermoFisher: AM2696). Nuclei

were then recovered on a magnet stand, resuspended
in 1ml of the previous buffer, passed over a 10µm cup fil-
ter, a 5µl aliquot was withdrawn for quantitation and the
remainder of the sample solubilized in Arcturus Picopure
RNA extraction buffer (ThermoFisher: KIT0204).

TAPIN purification of nuclei

100-3000 frozen heads were added to 5ml of sodium
acetate pH8.5, 2.5mM MgCl2, 250mM sucrose, 0.5%
NP-40, 0.6mM spermidine, 0.2mM spermine, 1mM DTT,
1X complete protease inhibitor, 0.5mg/ml torula RNA,
0.6mg/ml carboxyl coated Dynabeads and 2µg anti-GFP
antibody. Homogenization was carried out on ice by 50
tractions in a Dounce homogenizer using the tight pes-
tle followed by filtration over either a 10 or 20µm cup
filter (Partec: 0400422314 or 040042315). Released
chromatin and broken nuclei were adsorbed to carboxyl
coated magnetic beads for 30 minutes at 4◦C with con-
stant rotation. Unbound antibody was removed by in-
cubating the sample on ice for 20 minutes with 100µl
of washed UNOsphere SUPra resin (Biorad: 1560218).
After the resin was removed on a 10µm cup filter and
the carboxyl beads on a magnet stand, the nuclei-
containing supernatant was mixed with an equal vol-
ume of 500mM sodium acetate pH8.5, 250mM sucrose,
6mM EGTA, 6mM EDTA, 0.6mM spermidine, 0.2mM
spermine, 1mM DTT, 1X complete protease inhibitor,
0.25mg/ml torula yeast RNA and 30µl Protein A Dyn-
abeads (ThermoFisher: 10002D). A 2 hour incubation on
ice with occasional agitation was used to recover tagged
nuclei. Bead-bound nuclei were then recovered on a
magnet stand and washed twice with 250mM sodium
acetate ph8.5, 250mM sucrose and 0.1% NP40. Nu-
clei were then released at 37◦C for 1 hour by incuba-
tion in 50µl of 10mM Tris pH7.5, 2.5mM MgCl2, 0.5mM
CaCl2, 250mM sucrose, 0.1%NP40, 1mg/ml torula RNA,
40 units RNAsin (Promega: N2515), 2 units DNAseI
(NEB: M0303L), 320 units IdeZ protease (NEB: P0770S).
The sample was diluted to 100µl with 10mM Tris pH7.5,
2.5mMMgCl2, 0.5mM CaCl2, 250mM sucrose and 0.1%
NP40, EGTAwas added to 1mM and the suspension was
rapidly triturated 100 times. After returning the sample
to a magnet stand, 90µls of buffer containing released
nuclei was removed and added to 1.5µl of Protein G
Dynabeads that were previously resuspended in 10µl of
10mM Tris pH7.5, 2.5mM MgCl2, 0.5mM CaCl2, 250mM
sucrose and 0.1% NP40. The second binding reaction
was run for 1-3 hours on ice with occasional agitation, fol-
lowed by two 250µl washes in 10mM Tris pH7.5, 2.5mM
MgCl2, 0.5mM CaCl2, 250mM sucrose and 0.1% NP40.
Prior to the last wash a 5µl aliquot was removed for quan-
titation and the remainder of the sample was solubilized
in Arcturus Picopure RNA extraction buffer.
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RNA-seq library construction

Nuclear RNA was DNAseI (Qiagen: 79254) treated
and purified using the Arcturus PicoPure (ThermoFisher:
KIT0204) system as instructed by the supplier. Purified
RNA was mixed with a 1:100,000 dilution of ERCC stan-
dard RNA mix #1 (ThermoFisher: 4456740) and ampli-
fied using the Nugen Ovation v2 system (Nugen: 7102-
32). cDNA was then blunted, ligated to barcoded linkers
(Nugen: 0319-32, 0320-32) and sequenced on an Illu-
mina Hiseq 2500 to 50bp read length using Rapid Run
flow cells.
In total we built 266 RNA-seq libraries, including 46

INTACT-seq, 196 TAPIN-seq, 8 total RNA libraries from
dissected tissues, and 16 control libraries that we used to
characterize each INTACT/TAPIN-seq step (Figure 2C,
Table S1).

RNA-seq data processing

We trimmed five nucleotides from the 5’ end of reads us-
ing seqtk (https://github.com/lh3/seqtk) to remove
potential contaminating adapter sequence from the Nu-
Gen Ovation kit. We estimated the abundance of an-
notated genes using kallisto (v0.43.1; Bray et al., 2016)
to pseudo-align trimmed reads to the fly transcriptome
(cDNA and ncRNA transcript sequences from ENSEMBL
release 91, based on FlyBase release 2017_04), ERCC
spike-ins, and the INTACT construct sequences GAL4-
DBD, p65-AD, and UNC84_2XGFP. ERCC, INTACT tag
constructs, and rRNA genes were removed from the
abundance tables and the estimated abundances of the
remaining genes were renormalized to one million total
transcripts. The ERCC spike-ins and nuclear yield val-
ues allowed us to convert relative transcript abundance
(in Transcripts Per Million, TPM) to absolute abundance
(Figure S3C). However, we only used relative abundance
for our analyses. We also aligned the trimmed reads to
the genome using STAR (v2.5.3c; Dobin et al., 2013) and
evaluated gene body coverage bias using Picard (v 1.9.1;
http://broadinstitute.github.io/picard).
We used three criteria to quantify the quality of each li-

brary: the number of genes detected, the pearson corre-
lation between transcript abundances measured in repli-
cates, and the cDNA yield. We used only high-quality
libraries (at least 8,500 genes detected, 3µg cDNA yield,
and 0.85 Pearson’s correlation of transcript abundances
in two biological replicates) as input to the model de-
scribed below.

Comparison to published single cell and FACS-seq
datasets

We obtained genes reported to mark the single cell clus-
ters in a recent scRNA-seq study of the optic lobe (Kon-
stantinides et al., 2018). We also obtained the cluster
assignments for each single cell in this dataset from the

SCope database (Davie et al., 2018), using Seurat clus-
tering resolution 4.0, as reported by the authors. We an-
alyzed FACS-sorted RNA-seq samples reported by Kon-
stantinides et al. by downloading the raw sequencing
reads from the NCBI Sequence Read Archive (https://
www.ncbi.nlm.nih.gov/sra) and estimating transcript
abundance using kallisto and the same transcriptome in-
dex as above.

Inferring expression state from transcript abundance

We begin with a catalog of S RNA-seq samples gener-
ated from nuclei isolated from cell type cell(s) and the
estimated abundance (in TPM), Egs of transcripts from
gene g in each sample s. We consider only protein-
coding genes with at least 10 TPM abundance in at least
one sample (n=12,377 of 13,931 total coding genes).
To interpret Egs, we assume that all genes express in

either an ’on’ or an ’off’ state. Our goal is to infer from
these abundances the probability that each gene is ex-
pressed in each cell type, P (zgc = on). Depending on
the cell types in our catalog, we will observe some genes
in both on and off states (bimodal), while others are ex-
clusively off (unimodal-off) or on (unimodal-on). We deal
with these scenarios in turn below.
Assuming that a gene is bimodal, we model its expres-

sion as arising from a mixture of two gene-specific log-
normal distributions describing expression in cells where
the gene is off, P (Eg|z = off), and those where the gene
is on, P (Eg|z = on), combined with a mixing weight,
πg. We use the same standard deviation for both on and
off distributions to ensure a monotonic relationship be-
tween transcript abundance and the posterior probability
of the on state. If we use different standard deviations
for each component distribution, the wider one would be-
come more probable than the narrower one at both low
and high expression levels.

logEg|z ∼ N (µgz, σg)

We estimate the posterior probability of the on state
(assuming bimodal expression):

P (zgs = on|bimodal) =
πgp(Egs|z = on)

πgp(Egs|z = on) + (1− πg)p(Egs|z = off)

We treated each replicate sample of the same driver
as an independent probe of the same underlying driver-
line expression state. To combine replicates of the same
driver we sum over their likelihoods:

P (zgd = on|bimodal) =
πg

∏
s p(Egs|z = on)

πg

∏
s p(Egs|z = on) + (1− πg)

∏
s p(Egs|z = off)
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Similarly, to combine samples from the same cell type
we sum over their likelihoods:

P (zgc = on|bimodal) =
πg

∏
s p(Egs|z = on)

πg

∏
s p(Egs|z = on) + (1− πg)

∏
s p(Egs|z = off)

We estimated parameters for each gene-specific mix-
ture model by maximizing the likelihood for the observed
sample-level data:

L =
∏
g

∏
s

(πgP (Egs|z = on, µgz, σg)+

(1− πg)P (Egs|z = off, µgz, σg))

Because we assume independence of genes, we sep-
arately optimized the model parameters for each gene.
To model the possibility that a gene is unimodally ex-
pressed across the cell types we analyzed, we also
model the data using a single log-normal distribution, es-
timating the distribution parameters µ and σ and estimat-
ing the data likelihood as:

L =
∏
g

∏
s

P (Egs|µg, σg)

Deciding whether a gene is bimodally or unimodally
expressed is an example of the model selection prob-
lem in statistics. To compare the quality of the unimodal
and bimodal models for each gene, we used a recently
developed approach to leave-one-out cross-validation
that uses Pareto-smoothed importance sampling (PSIS-
LOO; Vehtari et al., 2016). Specifically, we performed
10-fold cross validation, by randomly holding out 1/10 of
the samples as a “test” set (requiring that at least one
replicate of each driver exist in the remaining “training”
set), fitting the models using only the training data, and
then evaluating the likelihood of the test data using the
fitted parameters. Each of the ten cross-validation fits, i,
returns an ensemble of S=500 draws from the posterior
distribution of the model parameters. We estimated the
expected log pointwise predictive density (elpd) of each
cross-validation fit by evaluating the likelihood of each
held-out dataset i using each parameter draw s :

êlpdi = log(
1

draws

draws∑
s

p(yi|θs,k))

We then combined the pointwise log-likelihoods for
each cross-validation fit to calculate a single estimate for
each model:

êlpd =
∑

êlpdi

To compare the unimodal (u) and bimodal (b) models,
we calculated the difference in elpd aswell as its standard
error:

∆êlpd = êlpd
b
− êlpd

u

se(∆êlpd) =

√
nV n

i (êlpd
b
i − êlpd

u
i )

We then picked the model with the higher elpd, unless
the difference in elpd was within two multiples of its stan-
dard error (abs(∆êlpd) ≤ 2 · se(∆êlpd)), corresponding
approximately to the half-width of a 95% confidence in-
terval in a normal sampling distribution) in which case we
considered the two models’ performance to be indistin-
guishable and chose the simpler unimodal model.
If we decide a gene is unimodal, we must still decide

if it is expressed or not. To model the expression state
of unimodal genes, we created two separate log-normal
distributions of abundances of confidently bimodal genes
(∆êlpd > 10) using samples where they were either esti-
mated to be on according to the bimodal model (p(zgs =
on|bimodal) > 0.9) and where they were estimated to be
off (p(zgs = on|bimodal) < 0.1), combined with a mix-
ing weight, π, set to the fraction of datapoints that were
estimated to be ’on’ according to the bimodal model.

logEg|z ∼ N (µz, σz)

We estimate the posterior probability of the on state
assuming unimodal expression as:

P (zg = on|unimodal, µg) =

πp(µg|z = on)
πp(µg|z = on) + (1− π)p(µg|z = off)

To build the final matrix of P (zgs = on) calls, we used
bimodal estimates for genes where the bimodal model
was a better fit than the unimodal model, and the uni-
modal estimates for the remaining genes.

P (zgs = on) =P (zgs = on|bimodal), if êlpd
b
(g) > êlpd

u
(g)

and ∆êlpd > 2 · se(∆êlpd),

P (zg = on|unimodal), otherwise

We did not include the transcriptomes of the dissected
samples in the mixture models because we were con-
cerned that their cellular heterogeneity would violate our
assumption of binary gene expression in each sample.
That is, genes expressed in a subset of the cells of a dis-
sected sample would give rise to transcript abundance in-
termediate between the off and on states, and thus make
it more difficult to accurately infer the component distri-
butions. However, in some cases the dissected sam-
ples could be useful for interpreting transcript levels in
the cells that we profiled, by providing examples that ex-
tend the observed dynamic range. For example, in the
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case of a gene expressed in a dissected tissue, but not
in the cells that we specifically profiled, the dissected lev-
els would add “on” examples that would make it easier to
interpret the levels in the cell types as “off”. To use the
dissected samples to better model dynamic range, we
added two “dummy” samples to each model: the mini-
mum and maximum observed level across both the cell
catalog and the dissected samples. This choice allowed
us to use the dissected levels if they in fact outflanked the
cell type-specific levels, while not confusing the model
with intermediate abundance levels. Once the models
were fit, we could use the inferred parameters to esti-
mate expression probabilities for samples that were not
used in the model fit. For example, we estimated the
probabilities of expression in the dissected samples to
search for genes expressed exclusively in the dissected
samples and not in the anatomically defined cell type li-
braries, indicating potential markers for cells that we did
not specifically profile.
We implemented all models using RStan (Stan De-

velopment Team, 2016) to infer the posterior distribution
of unknown parameters using hamiltonian Markov chain
Monte Carlo. We used the same weak prior (N(7,5)) for
the mean log-expression levels of both on and off com-
ponents, allowing us to use Stan’s positive_ordered data
type to describe the location of the two components.

Evaluating model accuracy

To evaluate the accuracy of the mixture modeling ap-
proach we created a benchmark set of expression data
extracted from FlyBase. Specifically, we queried the
FlyBase website (http://flybase.org) for genes ex-
pressed in the optic lobe or the photoreceptor. The result-
ing benchmark set included 193 positive and 4 negative
expression datapoints. We quantified the model’s accu-
racy on this benchmark in two ways. First, we quantified
concordance between the benchmark expression state
and our model’s inferred state. Second, we computed
the cumulative distribution function of the inferred prob-
abilities of expression for the positive benchmark data-
points.

Expression-based tree of cell types

To study cell relationships, we used phylogenetic tree-
building to compare their expression profiles. We first
selected a subset of genes with on-component means
of at least exp(3) ~21 TPM and difference between on
and off components of at least exp(1.5) ~4.5 fold. We
then encoded the expression profile of each cell as a “se-
quence” of expression states, where each position rep-
resents a gene, and the character indicates the gene is
expressed (‘A’, P (zgc = on) > 0.8), not expressed (‘C’,
P (zgc = on) < 0.2), or its expression is uncertain (‘N’;
0.2 < P (zgc = on) < 0.8). We computed the Hamming

distance between pairs of expression ‘sequences’ con-
sidering only unambiguous positions, using the dist.dna()
routine in the ape R package (Paradis et al., 2004). We
then used the minimum evolution approach to estimate
the ‘phylogeny’ of the cells, using the balanced weighting
scheme (Desper and Gascuel, 2002), as implemented in
the ape fastme.bal() routine. We then built trees from
1000 bootstrapped replicates and quantified the support
for each branch on the original tree. We visualized the
tree using the phytools R package (Revell, 2012).

Identifying marker genes

We identified marker genes specifically enriched in indi-
vidual cell types and groups of cells (photoreceptor, glia,
muscle, neuron) by searching for genes inferred to be
almost exclusively expressed in a single cell type or cell
group (p(on) ≥ 0.9 for all cells within a group, and at most
two cells outside a group) and with transcript abundance
higher than all cells outside the group.

Evaluating expression patterns for genes with differ-
ent functions

We used FlyBase Gene Groups (release 2018_02) to as-
sign functions to genes, and considered the most termi-
nal groups in the hierarchy that had at least 10 genes.

Mapping receptor expression onto synapses

To map receptor expression onto synaptic connectivity,
we first obtained synapse pairs from Takemura et al., to
identify synaptic targets of R8 (cell #111), R7 (cell #205),
and C2 (cell #214) cells in the medulla (Takemura et
al., 2013). When multiple instances of a cell type were
available in the synaptic table, we chose the one with
the greatest number of synaptic partners. For target cell
types that we profiled with TAPIN/INTACT-seq, we dis-
cretized their expression as either on (p(on) ≥ 0.8) or off
(p(on) < 0.8). For cell types that we did not profile, we
classified them as unknown receptor expression.

Data and software availability
All raw and processed transcriptome data is available
from NCBI GEO (accession GSE116969). The shell
scripts used to process the raw RNA-seq data, and the R
and Stan programs that implement the mixture model as
well as generate all figures and tables in this paper are
available at github (http://github.com/fredpdavis/
opticlobe).
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Figure S1: Related to Figure 1. Whole brain expression patterns of new driver lines generated in this study. A. Maximum intensity projection of
confocal stacks taken from whole fly brains (only one optic lobe is shown). Expression patterns of the driver lines (myristoylated-GFP) are in green
and magenta is a neuropil marker. Imaging parameters and brightness and contrast were individually adjusted for each sample. B, B’. T4 and T5
cells comprise four subtypes (a,b,c,d) each of which project to specific layers of the lobula plate (B’). C, C’. Individual T4 and T5 driver lines label
combinations of subtypes but show preferential expression in some subtypes. Subtypes were identified by their projections to specific layers in the
lobula plate (C,C’). For example, T5_d2 mainly labels lobula plate layers one and two, indicating expression in T5a and T5b. Each of the lower
panels is a higher magnification view of the lobula plate region (C’). In (C) both the driver and the split identifier are indicated in the lower left and
right corner respectively. Driver lines SS00078, SS00090 and S02255 are from Wolff and Rubin, 2018.
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Figure S2: Related to Figure 1. Optic lobe patterns of driver lines. A. Optic lobe expression patterns of new driver lines used in this study. All
images orient the mediolateral axis of the brain vertically and are resampled substack projections generated from of high resolution (63x) confocal
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cells labeled by MultiColor FlpOut (MCFO). In all images the neuropil marker is in gray and both the targeted cell type and driver are indicated in
the lower left and right corner respectively. 31 of 40
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originally developed for mouse (Mo et al., 2015), that purifies nuclei by differential centrifugation. B. TAPIN-seq replaces the space- and time-
intensive centrifugation with a two-step capture enabled by antibody hinge cleavage with the bacterial protease IdeZ. Both protein A and protein
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Figure S4: Related to Figure 3. Overview of INTACT-seq and TAPIN-seq libraries. A. Concordance of inferred expression states between replicates.
Concordance was computed as the number of genes predicted to express (p(on) ≥ 0.8) or not (p(on) ≤ 0.2) in both replicates divided by the number
of genes predicted to express or not in either replicate. B. Cumulative distribution of inferred expression probabilities for gene/cell pairs reported
to express in FlyBase (n=193 positive benchmark points). Our mixture model correctly inferred expression of 179 of the 193 gene/cell pairs. The
14 discordant pairs involved six genes (labeled in black). C-H. Modeling results for the six genes with benchmark mismatches. The on and off
components are represented as orange and blue curves, respectively. Black points represent the inferred probabilities of expression for all drivers.
Red points highlight the drivers where the model results disagreed with the benchmark. The transcript abundance (x-axis) reflects the average of
all “high quality” replicates (minimum two per cell type). I, J. To evaluate our modeling results for fkh and Ets65A we evaluated protein expression
in several cell types (related to fig. 3J-L) using GFP-fusion proteins (Methods). The indicated cell types (lower left corner) were visualized with a
membrane marker (magenta). The second Mi15 panel includes examples of occasional cells without detectable Ets65-GFP expression (arrows).
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Figure S5: Related to Figure 4. TAPIN-seq profiles identify genes enriched in cell types and groups. A. Cell adhesion molecules specifically
expressed across our transcriptome catalog. B-D. The expression pattern of all beat, DIP, and Dpr family members depicted as either probabilities
of expression (left) or relative transcript abundance (right). E,F. The number of interacting pairs of extracellular protein pairs (Özkan et al., 2013)
expressed by pairs of cells in the lamina (E) is not sufficient to predict the synaptic connectivity of these cells (F. data from Rivera-Alba et al.,
2011). To match our expression data, we summed the synapse counts for the individual R1-R6 photoreceptors originally reported by Rivera-Alba
et al., 2011. For the same reason, we also duplicated the subtype-unidentified Lawf synapse counts as separate Lawf1 and Lawf2 entries in the
connectome matrix.
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Figure S6: Related to Figure 5. Transcriptional regulators of neurotransmitter identity. A. Transcription factors whose expression is predictive of
neurotransmitter phenotype (i.e., high P(neurotransmitter output | transcription factor expressed)). The ten most predictive transcription factors are
shown for each neurotransmitter output marker. B. Summary of orthologous transcription factors in worm and mouse and their association with
specific neurotransmitter types. C. The Gad1-associated gene Lim3 does not express in cholinergic Dm12 neurons, but does in the GABA-ergic
Dm10 neurons. Double labeling using LexA-markers for Dm12 and Dm10 (green) with a Lim3 protein-trap-GAL4 driving RFP (magenta).
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FIGURE S7

A. B.Motion detection pathway
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Figure S7: Related to Figure 7. Patterns of neurotransmitter receptor expression complement connectomics. A. Transcriptomes reveal the
neurotransmitters in core cell types of the ON and OFF components of the motion detection pathway. B. Examples of the expression of genes
involved in neuropeptide, non-canonical small molecule (nitric oxide), or gap junction communication in the cell types in (A). C. We evaluated
expression of marker genes for each single cell cluster (as reported in Konstantinides et al., 2018) in our TAPIN-seq profiles of visual system
neurons. If a single cell cluster marker corresponds to one of our identified cell types, we expect to see its marker genes highly enriched in the
corresponding cell type’s expression. Note that some of the single cell clusters with the best apparent cell type matches (e.g. cluster 15/TmY5a,
cluster 55/Mi15) were originally reported with a different annotation. D. We evaluated whether the single cell map proportionally represents cell
types found in the optic lobe. By comparing the single cell cluster sizes to the true abundance of each cell type we found that the scRNA-seq map
can both under- and over-estimate the abundance of each cell type (assuming accurate cell type labels), or that the cell type is incorrectly assigned
(i.e., contains different or additional cell types). Observed/expected ratio = ( (size of cluster labeled as cell type X / size of cluster labeled as T1) /
(true abundance of cell type X / true abundance of T1)).
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