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Abstract

Microbial communities are most commonly described mathematically using MacArthur’s consumer-
resource model. One characteristic of such model is that the so-called “metabolic strategies”, the
rates at which species uptake and metabolize resources, are constant parameters. However, microbes
can adapt their metabolic strategies to the availability of different resources in the environment:
when exposed to different sugars they often consume them sequentially resulting in population
growth curves with distinct phases of growth rates, a phenomenon known as “diauxic shift”. In
this work, we introduce adaptive metabolic strategies to consumer-resource models. We show that
if the dynamics of metabolic strategies maximizes each species’ relative fitness, consumer-resource
models can reproduce diauxic shifts in agreement with experimental observations. Furthermore we
gain new insights on the coexistence of multiple species on a finite pool of resources. Introducing
adaptive metabolic strategies allows consumer-resource models to violate the “Competitive Exclu-
sion Principle”, a controversial theoretical argument according to which the number of coexisting
species is limited by the number of available resources.

Introduction. One of the most fascinating aspects
of nature is biodiversity: from microbial to continen-
tal scales we observe complex communities of hundreds
or thousands of species competing yet coexisting. The
scientific community has long tried to explain such an
amazing complexity, but this task requires the solution
of many challenging problems. In particular, the sur-
vival of a species depends on the availability of resources
in the environment, but this environment is not static
as it includes all other organisms in the community, and
the competition among them determines how the con-
centrations of nutrients evolve. The flourishing field
of microbial ecology [1–4] calls for theoretical develop-
ments capable of describing the dynamics of such com-
plex ecosystems. There is a growing effort from the statis-
tical physics community to develop such a framework [5–
10] using MacArthur’s consumer-resource model [11, 12].
In this context, an ecosystem composed of m microbial
species competing for p resources evolves in time accord-
ing to the following equations:

ṅσ = nσ

(
p∑
i=1

viασiri(ci)− δσ

)
, (1)

ċi = si −
m∑
σ=1

nσασiri(ci)− µici , (2)

where nσ(t) describes the population density of species
σ. We omit for simplicity the time-dependence of both
nσ(t) and ci(t). Here, ci is the concentration of resource i
and δσ is the death rate of species σ. The quantity ri(ci)
is a function of the concentration ci accounting for the
fact that the dependence of a species’ growth rate on a
given resource saturates as ci is increased [13]. Without
loss of generality, we assume that ri(ci) has the form of
a Monod function [13], i.e. ri(ci) = ci/(Ki + ci) with
Ki > 0, and so ri(ci) < 1 ∀ ci > 0. The quantity ασi is
a “metabolic strategy”, i.e. the maximum rate at which
species σ uptakes resource i. The parameter vi is often
called “resource value” and is related to the resource-to-
biomass conversion efficiency: the larger vi, the larger
the population growth rate that is achieved for unit re-
source, and thus the more “favorable” resource i is. The
quantity si is a constant nutrient supply rate, and the
sum in Eq. (2) represents the action of all consumers
on resource i. Such an action depends of course on the
metabolic strategies ασi. Finally, µi is the degradation
rate of resource i.
An implicit assumption adopted systematically in the lit-
erature is that the metabolic strategies ασi are fixed pa-
rameters instead of dynamic variables [14]. Such an as-
sumption is in contrast with the experimental evidence
that microbes’ metabolic strategies can and do change
over time according to the availability of resources in the
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environment. In fact, as early as in the ’40s, Jacques
Monod [13, 15] observed that Escherichia coli and Bacil-
lus subtilis exhibit a bi-phasic growth curve, which he
called “diauxie”, when grown in a culture medium con-
taining two different sugars. Instead of metabolizing the
two sugars simultaneously, it turned out that bacteria
consumed them sequentially using first the favorable one
(i.e., the one that conferred the highest growth rate) and
once it had been depleted, following a lag phase, they
resumed growth using the other sugar. Since then, di-
auxic growth has been the subject of thorough empirical
study [16–19] with experiments that generally involved
the growth of one microbe on two resources, and has
been documented to occur widely across different micro-
bial species [20–22]. Many models have been proposed
to describe this phenomenon, but all are focused on spe-
cific gene regulation and expression mechanisms (gener-
ally involving specific representations of the gene network
responsible for carbon catabolite repression in a given
species [23, 24]), and are generally tailored to describe
the growth of a particular microbial strain on a specific
set of resources [25–27]. Furthermore, as highlighted by
Chu and Barnes [27], it is generally thought that the ex-
istence of diauxic shifts is “adaptive”, and the central
idea of related modeling frameworks is that regulatory
processes behind diauxic shifts may be considered as the
outcome of some optimization strategy [28]. Overall, it
is clear that microbes are capable of changing the gene
expression level of different metabolic pathways in re-
sponse to environmental cues, but a connection between
this phenomenon and consumer-resource ecological mod-
eling , which transcends the specificities of any particular
microbial strain and set of resources, is still missing.
An important feature of MacArthur’s consumer-resource
model is the fact that it reproduces the so-called “Com-
petitive Exclusion Principle” (CEP) [29][30], a controver-
sial theoretical argument [31] that poses an upper bound
to the number of species that can coexist in a commu-
nity given by the number of available resources in the
system. Many different mechanisms have been proposed
to explain the violation of the CEP, ranging from non-
equilibrium phenomena (e.g., when an equilibrium can-
not be reached because of spatio-temporal effects) [32],
to the existence of additional limiting factors like the
presence of predators [33], cross-feeding relationships [4],
toxin production [34, 35], and complex or higher-order in-
teractions [36–38]; see [39, 40] for comprehensive reviews.
However, none of the current mathematical models used
to describe consumer-resource population dynamics can
explain the violation of the CEP without an a priori fine-
tuning of the parameters [6]. From a theoretical point
of view, however, we still completely lack an unifying
framework capable of reproducing both the existence of
diauxic shifts and the coexistence of a large number of
species competing for a limited number of resources. In
this letter, we show that these two phenomena can both

be reproduced by allowing the metabolic strategies ασi of
a consumer-resource model to be dynamic variables that
vary temporally to increase the relative fitness of each
species in the community.
Adaptive metabolic strategies. We now introduce
our adaptive framework: we require that each metabolic
strategy ~ασ evolves in time to maximize its own species’
relative fitness, measured [41, 42] by its growth rate
gσ =

∑p
i=1 viασiri(ci) − δσ. This can be achieved by

requiring that metabolic strategies follow a simple gradi-
ent ascent equation:

α̇σi =
1

τσ
· ∂gσ
∂ασi

, (3)

where in general τσ is the characteristic timescale over
which the metabolic strategy of species σ evolves. Since
δσ is the only characteristic timescale for each species, a
natural choice for τσ is to be proportional to the inverse
of its corresponding death rate, i.e. τσ = (dδσ)−1, where
d regulates the speed of adaptation.
However, Eq. (3) is missing an important biological con-
straint, which is related to intrinsic limitations to any
species’ resource uptake and metabolic rates. Microbes,
for example, have limited amounts of energy that they
can use to produce the metabolites necessary for resource
uptake [43], so we must introduce such a constraint in
Eq. (3). The choice of imposing a soft constraint in the
form of an inequality is not arbitrary, as it is rooted in
the experimental evidence that microbes cannot devote
an unbounded amount of energy to metabolize nutrients.
Some experiments [43] have shown, in fact, that intro-
ducing a constraint for metabolic fluxes in the form of
an upper bound [44] allows one to improve the agree-
ment between Flux Balance Analysis modeling and ex-
perimental data of the growth of E. coli on several differ-
ent substrates. Thus, we require that each species has a
maximum amount of energy available for metabolism, i.e.∑p
i=1 wiασi(t) := Eσ(t) ≤ E∗

σ where E∗
σ is the maximum

total resource uptake rate of species σ; the parameters
wi are called “resource costs” and take into account the
fact that each resource could require more or less energy
in order to be metabolized. Again, since E∗

σ is an uptake
rate, it is reasonable to require that it is proportional
to the death rate δσ, since it is the only characteristic
timescale of each species (and this is also in accordance
to the metabolic theory of ecology [45]). We therefore
set E∗

σ = Qδσ, with Q a positive real number (one can
take Q = 1 without loss of generality, see the Supplemen-
tal Material [46]). A possible justification of this choice
is the following. E∗

σ is a rate so its dimensions are the
inverse of a time, and it refers to species σ, which is
characterized by the time scale given by 1/δσ. Using the
metabolic theory of ecology [45] we can assume that this
time scale is unique for this species, so we must have in-
deed E∗

σ = Qδσ
The constraint on species’ uptake rate capacities intro-
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duces a trade-off between the use of different resources.
In the Supplemental Material [46] we also present a ge-
ometrical interpretation of the maximization problem
given by Eq. (3), i.e. ~̇ασ = ~∇~ασ

gσ where ~∇~ασ
is the

gradient with respect to the components of ~ασ. In par-
ticular, if we want ~ασ to evolve so that ϕ(~ασ(t)) :=∑p
i=1 wiασi(t)−Qδσ ≤ 0, it is sufficient to remove from

~∇~ασ
gσ the component parallel to ~∇~ασ

ϕ(~ασ(t)) as soon as
ϕ(~ασ(t)) = 0. Moreover, we also prevent the metabolic
strategies from becoming negative. Eventually, the final
equation for the metabolic strategies’ dynamics is given
by Eq. (4) (see Supplemental Material [46] for the full
derivation), where Θ is the Heaviside’s step function, i.e.
Θ(x) = 1 when x ≥ 0 and Θ(x) = 0 otherwise.

α̇σi = ασidδσ

viri −Θ

(
1

δσ

p∑
i=1

wiασi −Q

)
wi∑p

k=1 w
2
kασk

p∑
j=1

vjrjwjασj

 (4)

For the moment being, we assume that all the degrada-
tion rates µi are null and for the sake of simplicity d = 1,
but we will later discuss a more general case.
Diauxic shifts. If Eq. (4) is used alongside Eqs. (1)
and (2), the model is capable of reproducing the growth
dynamics of microbial populations in the presence of mul-
tiple resources, and in particular the dynamics of diauxic
shifts. To show this, we measured growth curves of the
baker’s yeast, Saccharomyces cerevisiae, grown in the
presence of galactose as the primary carbon source. In
these growth conditions, S. cerevisiae partially respires
and partially ferments the sugar. As a byproduct of
fermentation, yeast cells release ethanol in the growth
medium, which can then be respired by the cells once
the concentration of galactose in the medium is reduced.
To model the growth of S. cerevisiae in these conditions,
we modified the equations to account for the fact that
the second resource, ethanol, is produced while the first
one, galactose, is consumed (see the Supplemental Ma-
terial [46] for further details on the experiment and on
the model equations). In Figure 1A, we show that our
adaptive consumer-resource model can reproduce the ex-
perimental data. Figure 1B shows that, instead, the
best-fit of the “classic” MacArthur’s consumer-resource
model with fixed metabolic strategies to the same data
is quite unsatisfactory. The purpose of this analysis
is to show that, introducing adaptive metabolic strate-
gies in the MacArthur’s consumer-resource model, one
can reproduce the experimental data. Neglecting the
dynamic nature of metabolic strategies leads to incon-
sistencies between the classical MacArthur’s consumer-
resource model and experimental data. We also note that
the best-fitting parameters for the model with adaptive
strategies are within a physiologically reasonable range
(see Table S.1 [46]). The Akaike Information Criterion,
used to compare the relative quality of the two fits dis-
counting the number of parameters, selects the model
with adaptive strategies as the best-fitting one (see the
Supplemental Material [46] for more information).
Species coexistence. We now show that incorporat-

ing adaptive strategies in our consumer-resource model is
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FIG. 1: Comparison between the fits of MacArthur’s
consumer-resource model (dashed lines) and experimental
measures of the growth of S. cerevisiae on galactose as the
primary carbon source and ethanol as a byproduct of fermen-
tation, in the case of adaptive (A) and fixed (B) metabolic
strategies. Shown are the mean (black lines) and 68% con-
fidence intervals (gray bands) across n = 8 replicate popu-
lations. See [46] for further details on the experiment, the
model equations and the best-fit parameters. Inset: Same
plots, shown in logarithmic scale on the y-axis.

also a key factor that allows the coexistence of multiple
species, in violation of the CEP. Recently, Posfai et al. [6]
have studied MacArthur’s consumer-resource model with
static metabolic strategies and the “hard” constraint∑p
i=1 wiασi = Eσ. They found that an arbitrary number

of species can coexist only if Eσ/δσ = const and if the
rescaled nutrient supply rate vector ŝi := visi/

∑p
j=1 vjsj

belongs to the convex hull of the rescaled metabolic
strategies α̂σi := wiασi/

∑p
j=1 wjασj (see Supplemental

Material [46]); notice that since
∑p
i=1 ŝi =

∑p
i=1 α̂σi = 1

we have that ~̂s and ~̂ασ lie on a (p − 1)-dimensional
simplex. In general, any looser constraint (including∑p
i=1 wiασi ≤ Eσ) will lead to the extinction of at least

m− p species, i.e. the system will obey the CEP; in this
sense the system allows coexistence only when fine-tuned.
However, if we allow ασi to evolve following Eq. (4), the
system gains additional degrees of freedom which make it
possible to find steady states where an arbitrary number
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FIG. 2: Comparison between the initial (orange) and final
(purple) convex hull of the rescaled metabolic strategies (col-
ored dots) when they are allowed to evolve, using Eq. (4) for
the temporal evolution of ασi. These results have been ob-
tained for a system with m = 10 species and p = 3 resources,
so the rescaled metabolic strategies and nutrient supply rate
vector (black star) all lie on a 2-dimensional simplex (i.e. the
triangle in the figure), where each vertex corresponds to one
of the resources; for details on the parameters used, and for
the plots of the temporal evolution of the population densities
and metabolic strategies, see Figure S.3 in the Supplemental

Material [46]. In the final state, the ~̂ασs have incorporated ~̂s
in their convex hull.

of species can coexist, even when initial conditions are
such that ~̂s does not lie in the convex hull of the rescaled
metabolic strategies ~̂ασ, i.e. the system violates the CEP
without having fine-tuned parameters (see Supplemental
Material [46]). In Figure 2, we show the initial and fi-
nal states of a temporal evolution of the model (for more
information see Figure S.3 in the Supplemental Material
[46]); as we can see, in the final state ~̂s lies inside the con-
vex hull of the rescaled strategies: thus, the community
modeled by Eqs. (1-4) is capable of self-organization. In-
deed, during the temporal evolution of the system, the
metabolic strategies change and lead the community to-
wards the right conditions for coexistence even if these
conditions are not satisfied initially (see Supplemental
Material [46]).

An independent prediction of our model is that if one
of the available resources, e.g. resource j, is too “ex-
pensive”, then adaptation will bring all the j-th com-
ponents of the metabolic strategies to zero, i.e. species
will stop using that resource. The “expensiveness” of re-
source i can be measured by wi/vi, i.e. its cost-to-value
ratio, and an analytical analysis of the model with fixed
metabolic strategies leads to the conclusion that a non-
trivial stationary state is possible only if wi/vi < Q ∀i
(see Supplemental Material [46]). However, when we al-
low the strategies to evolve following Eq. (4), the sys-
tem reaches a non-trivial stationary state even if there
is one or more resource j for which wj/vj > Q. In this

case, in fact, resource j becomes too expensive, and it is
possible to show that the system “decouples” from this
resource, i.e. the j-th component of all the metabolic
strategies becomes null (see Figure S.4 [46]). Some-
thing analogous happens also when we let µi > 0: in
this case, at stationarity, the convex hull of the rescaled
metabolic strategies will include the vector with com-
ponents s̃i := vi(si − µic∗i )/

∑p
j=1 vj(sj − µjc∗j ) with c∗i

the stationary value of ci(t) (see Supplemental Material
[46]), and if one of the µi is sufficiently large this vec-
tor will lie on one of the sides of the (p− 1)-dimensional
simplex where our system can be represented. This re-
sult means that if the degradation rate µj of resource j
becomes too large, then again all the j-th components
of the metabolic strategies will become null (see Figures
S.5 and S.6 [46]). Therefore, we have that species in our
model will not waste energy metabolizing resources that
are unfavorable (either because they are too expensive or
volatile) and will focus their efforts on the more conve-
nient ones.
Variable environmental conditions. Having adap-
tive metabolic strategies also allows the system to better
respond to variable environmental conditions, i.e. when ~s
is a function of time ~s(t). Let us consider a scenario where
the nutrient supply rates change periodically; this can be
implemented by shifting ~s between two different values at
regular time intervals: one inside the convex hull of the
initial (rescaled) metabolic strategies and one outside of
it. We found that when ~ασ are allowed to evolve, then
the species’ populations oscillate between two values and
manage to coexist, while when the metabolic strategies
are fixed in time species go extinct and the CEP is re-
covered – see Figure 3. When we let ~s(t) lie outside of
the convex hull for a short period of time, coexistence is
again possible, but species population abundances fluc-
tuate strongly (for more details see Figure S.7 in Sup-
plemental Material [46]) and would be vulnerable to de-
mographic noise. Also in the case of environments that
vary with time, we find that when we introduce non-null
resource degradation rates that are sufficiently large with
respect to wi/vi, all the i-th components of the metabolic
strategies vanish (Figure S.8 [46]). Therefore, adaptive
metabolic strategies allow species in the community to
efficiently deal with variable environmental conditions, a
characteristic feature of natural ecosystems.
Adaptation velocity. A physically relevant parame-

ter characterizing the capacity of a species to adapt to a
new environment is d, which regulates the adaptation ve-
locity of the metabolic strategies. Increasing the value of
d leads to metabolic strategies that evolve more rapidly,
and as a consequence species’ growth rates will be op-
timized for longer periods of time. Therefore, when d
has larger values, stationary populations will be higher
(see Figure S.9 [46]) and less variable when ~s(t) changes
with time (see Figure S.10 [46]). On the other hand, if
d tends to zero we recover the case of fixed metabolic
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FIG. 3: Comparison between the temporal dynamics of the
population density of species σ = 14

in the consumer-resource models with fixed and adaptive
metabolic strategies, when the resource supply rate vector ~s
varies with time. Here, we simulated a system with m = 20
species, p = 3 resources, and with the nutrient supply rate
vector switching at regular intervals between two values.

Specifically, we made ~s(t) alternate periodically between ~sin
for a duration τin = 20 and ~sout for a duration τout = 20,

with ~sin chosen within the convex hull of the initial rescaled
metabolic strategies and ~sout chosen outside it (see Figure

S.7 [46] for more information on the parameters used).
Inset: Evolution of the population of the same species, with

the same parameters and initial conditions, but with
τin = 20 and τout = 5.

strategies and thus the CEP will determine the fate of
the community. In other words, the distribution of sta-
tionary species’ populations can change sensibly with the
adaptation velocity d, and if d is small enough the CEP
is recovered also in our model.
Conclusions. If we introduce adaptive metabolic strate-
gies in MacArthur’s consumer-resource model , with the
strategies evolving to maximize each species’ growth
rate, we can explain experimentally observed phenomena
ranging from the single-species to the community level
within the same theoretical framework. In particular, we
have shown that classic consumer-resource models (i.e.
without adaptive metabolic strategies) are not capable
to fully reproduce experimental data, while consumer-
resource models with adaptive metabolic strategies can.
Furthermore, by allowing metabolic strategies to vary
with time we can naturally violate the CEP without any
strong assumption on the model parameters, but at the
same time we can explain why competitive exclusion still
happens in some cases. We have therefore shown that
having adaptive metabolic strategies is indeed a deter-
mining factor in microbial communities. Recently, an in-
creasing amount of attention is being drawn on the study
of cross-feeding relationships between microbial species
[4, 9, 47]. A future development of our work is to gener-
alize the approach used here to include also cross-feeding
relationships in the model.
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