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1. Abstract 

1.1. Objective 

Stratified medicine requires models of disease risk incorporating genetic and environmental 

factors.  These may combine estimates from different studies and models must be easily 

updatable when new estimates become available. The logit scale is often used in genetic and 

environmental association studies however the liability scale is used for polygenic risk scores and 

measures of heritability, but combining parameters across studies requires a common scale for 

the estimates.  

1.2. Methods  

We present equations to approximate the relationship between univariate effect size estimates 

on the logit scale and the liability scale, allowing model parameters to be translated between 

scales.  

1.3. Results  

These equations are used to build a risk score on the liability scale, using effect size estimates 

originally estimated on the logit scale. Such a score can then be used in a joint effects model to 

estimate the risk of disease, and this is demonstrated for schizophrenia using a polygenic risk 

score and environmental risk factors.  

1.4. Conclusion 

This straightforward method allows conversion of model parameters between the logit and 

liability scales, and may be a key tool to integrate risk estimates into a comprehensive risk 

model, particularly for joint models with environmental and genetic risk factors.    
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2. Introduction 

 Stratified medicine aims to improve health outcomes by developing targeted medical and 

public health interventions for individuals or subgroups of a population. A prerequisite of these 

strategies is the development of methodology to calculate the expected risk of developing a 

disease based on individual characteristics. Appropriate preventative strategies can then be 

applied, including enrolling participants in screening programmes or intervention therapies 

designed to modify lifestyle risk factors. Such strategies can improve disease outcomes for 

patients through earlier diagnosis and intervention and reduce the burden of disease in a 

population.   

 Statistical methods that appropriately model disease risk are therefore important. These 

models should be flexible, easily updated as new risk variables are found and pertinent across 

different populations [1]. To maximize the predictive power of these models, it is necessary to 

combine information on genetic and environmental risk factors, using existing risk estimates 

taken from studies with different designs and analysis methods. Crucially, a common scale 

across risks is required to combine the information of all disease associated variables. Here, 

scale refers to the function through which the risk variables relate to the risk of disease.  

 For environmental risk variables, the logit scale is most commonly used to model the 

relationship between the binary outcome of disease status and risk factor, in a logistic 

regression [2]. Similarly, logistic regression is used in genetic studies of disease, testing for 

association between a single nucleotide polymorphism (SNP) and disease status. However, some 

study designs perform analysis on the liability scale, with the summary measure of heritability 

being presented on this scale. Models of disease using the logit and the liability scale can be 

written as latent variable models, where it is assumed that the risk of disease is a function of a 

continuous, unobserved (latent) variable. The liability scale assumes that this latent variable is 

either normally distributed, or a mixture of normal distributions, while the logit scale assumes 

that this latent variable follows a logistic distribution, or a mixture of logistic distributions. 

 Both logit and liability scales are used in generating polygenic risk scores (PRSs). Within a 

discovery sample, SNP-by-SNP logistic regression is run for all SNPs from a genome-wide 
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association study. A weighted sum of SNPs, weighting each SNP by log odds ratios (ORs), is then 

calculated with multiple p-value thresholds for SNP inclusion used to create multiple scores. The 

final PRS is selected in a target sample, where each score is regressed against disease outcome 

in turn and the best performing score, in terms of variance explained, is selected. One summary 

measure presented for the final PRS is the estimated proportion of the variability in liability to 

disease attributable to the PRS, which is calculated in the target sample and presented on the 

liability scale. Similarly, incorporating family history of disease into the joint effects model may 

also be easier using the liability scale. The disease outcome of multiple relatives can be used by 

defining the multivariate distribution for the latent variables underlining disease for all family 

members. 

 We therefore select the liability scale as the common scale for risk models combining 

existing risk estimates from the literature. Hence, equations to transform effect size estimates 

from the logit scale to the liability scale are required. Here, we present such equations which 

use the similarities between the cumulative distribution functions (CDFs) of the normal and the 

logistic distributions. This method requires the population prevalence of disease, the log OR for 

a risk factor and the frequency of the risk factor in the population. The resulting effect size 

estimates on the liability scale can be used within models of disease risk on the liability scale, 

which can combine risk information from multiple risk factors, obtained from different sources. 

We demonstrate these methods by estimating the risk of schizophrenia using a PRS and five 

environmental risk factors.  

 

3. Methods  

 In this work we aim to transform the univariate log OR for a risk variable, which we also call 

the effect size on the logit scale, to the liability scale. To do this, we define models of disease 

on both scales. For the model on the logit scale we show that the resulting risk of disease is a 

function of the CDF for the logistic distribution. Similarly, we show that the risk of disease from 

the model on the liability scale is a function of the CDF for the standard normal distribution. 
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 The approximate equivalence of the CDF for the standard normal distribution and the logistic 

distribution has long been noted [3-6]; an example of this can be seen in Figure 1. Having 

demonstrated that the conditional probability of disease from a model the logit scale can be 

written as a logistic CDF, and similarly for the liability scale as a standard normal CDF, we use 

this approximate equivalence to equate the disease risks from both models. We therefore 

generate an equation linking the log OR to the corresponding effect size on the liability scale. A 

joint effects model on the liability scale can then be built using these transformed effect size 

estimates, assuming the risk variables are independent and do not interact. 

 To begin, we define the disease status variable, ! ∼ #$%&'(1, +), where ! = 1 if an 

individual is affected with the disease of interest and 0 otherwise. + = /(! = 1) is the 

population prevalence. 

 We assume that a risk factor, 0, is observed. For simplicity, we assume that 0 is a discrete 

random variable with 1 + 1 categories, where: ∑ /(0 = 4) = 15
678 .  

 We want to quantify the relationship between this risk factor and disease status using the 

liability scale. However, the relationship between a risk factor and disease outcome is typically 

estimated using logistic regression within a case-control study. We therefore transform the 

effect size estimates on the logit scale, the log ORs, to the liability scale. We now define the 

risk model on the logit and the liability scales, to understand what we are transforming from and 

to. 

 

1. Defining the model on the logit scale  

The statistical model relating the risk factor to disease outcome on the logit scale is the logistic 

regression model, and we therefore write the conditional risk of disease as: 

/(! = 1	|0 = 4) =	
exp >?8 + ∑ ?@A67@

5
@7B C

1 + exp >?8 + ∑ ?@A67@
5
@7B C

	

= 		
1

1 + exp >−(?8 + ∑ ?@A67@)
5
@7B C

	

= 	 EFGHIJKIL M?8 +N ?@A67@
5

@7B
O																		(1) 
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where:  

• ?8 is the intercept, corresponding to the log-odds of disease when {0 = 0}, 

• ?@ is the change in the log-odds of disease from observing {0 = R} compared to the reference 

category {0 = 0}, and, 

• EFGHIJKIL[T] is the CDF of the logistic distribution with 0 mean and variance equal to VW 3⁄ . 

Here we use a logistic distribution with zero mean and variance equal to VW 3⁄  as this is the 

distribution used in the generation of effect size estimates from logistic regression outputted 

from standard statistical software, such as the glm function from the stats library within R. 

 

2. Defining the model on the liability scale 

 We define a latent variable, Z, known as the ‘liability to disease’, such that: 

Z = ∑
@7B

5

[@A\7@ + ] 

where:  

• [@ is the change in liability to disease from observing {0 = R} compared to the reference 

category {0 = 0},  

• A\7@ is a dummy variable which equals 1 if {0 = R} and 0 otherwise (R = 1, . . . , 1), and, 

• ] ∼ _(0,1 − `ab[c(0)]), with `ab[c(0)] = `ab[∑ [@A\7@]
5
@7B  . 

Z therefore has a unit variance (`ab[Z] = 1), as is standard in the definition of liability to 

disease. We note that the expected value of Z here is not 0; instead we assume that d[Z|0 =

0] = [8 = 0. This assumption is made for simplicity, and once model parameters [@ (R = 1, . . . , 1) 

have been found, d[Z] = ∑ [@/(0 = R)5
@7B  can be calculated and a mean centred liability to 

disease variable found if required. 

 Using the above definition of liability to disease, the probability of disease given the 

observed risk factor can be written as: 

/(! = 1	|0 = 4) = 	/(Z > f	|	0 = 4)	

= 1 − 	Φh
f −	∑ [@A67@

5
@7B

i1 − `ab[c(0)]
j	
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= 	Φh−
f −	∑ [@A67@

5
@7B

i1 − `ab[c(0)]
j	

= 	Φ M
−f

i1 − `ab[c(0)]
+	N

[@

i1 − `ab[c(0)]
A67@

5

@7B
O 																	(2) 

where Φ[l] = 	 B

√Wn
∫ p4/(−

B

W
lW)ql is the CDF of the standard normal distribution. 

 If the model relating disease status to the risk factor is defined on the liability scale, the risk 

of disease given the observed risk factor is a normal CDF. Similarly, if the model of disease is 

defined on the logit scale, the risk of disease given the observed risk factor is a logistic CDF. 

 The CDFs of the standard normal distribution and the unit variance standardised logistic 

distribution can be used to approximate one another [3]. Recall that output from logistic 

regression provides estimates of risk as a function of the logistic CDF with variance equal to 

VW 3⁄ , and not 1. However, we note that: 

/(! = 1|0 = 4) = 	EFGHIJKIL M?8 +N ?@A67@
5

@7B
O = 	EFGHIJKIL Mr?8 + rN ?@A67@

5

@7B
|r =

√3
V
O 

where: 

EFGHIJKIL[T] = 	EFGHIJKIL[T|r = 1] =	
1

1 + p4/(−T)
 

is, as before, the CDF corresponding to the logistic distribution with mean equal to 0 and 

variance equal to VW 3⁄ , and: 

EFGHIJKILsTtr = √3 V⁄ u = 	
1

1 + p4/ >−
T
rC

 

is the CDF corresponding to the standardised logistic distribution with mean equal to 0 and 

variance equal to 1. That is, if the logistic regression model were re-run using an error variable 

following the standardised logistic regression then the resulting coefficient estimates would 

equal the usual logistic regression coefficients multiplied by the scale parameter, r. Further, the 

estimated risk of disease would be the same regardless of whether the logistic regression used 

an error variable with a variance of VW 3⁄  or 1. 
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 Using the approximate equivalence of the standard normal CDF and the standardised logistic 

CDF, we expect the risk estimates from a model on the liability scale to be approximately the 

same as those on the logit scale. We therefore say: 

Φv
−f

i1 − `ab[c(0)]
+N

[@

i1 − `ab[c(0)]
A67@

5

@7B

w ≈ EFGHIJKIL M?8 +N ?@A67@
5

@7B
O 

When {0 = 0} is observed we can write the above approximation as: 

−f

i1 − `ab[c(0)]
≈ ΦyB zEFGHIJKIL[?8]{ 

Then for all other observed values, {0 = R}; R = 1, . . . , 1, we obtain: 

[@

i1 − `ab[c(0)]
≈ 	ΦyB zEFGHIJKILs?8 + ?@u{ − ΦyB zEFGHIJKIL[?8]{ 

      

It can be shown that: 

`ab[c(0)] = `ab MN [@A\7@
5

@7B
O	

=
}

1 + }
 

where } is a calculable constant defined as: 

} = 	N>ΦyB zEFGHIJKILs?8 + ?@u{ − ΦyB zEFGHIJKIL[?8]{C
W
/(0 = R)

5

@7B

−	 N N >ΦyB zEFGHIJKILs?8 + ?@~u{ − Φ
yB zEFGHIJKIL[?8]{C >ΦyB zEFGHIJKILs?8 + ?@�u{

5

@�7B

5

@~7B

− ΦyB zEFGHIJKIL[?8]{C /(0 = RB)/(0 = RW) 

Details of this derivation are provided in the Supplementary Materials. This provides the 

following approximation for the effect size on the liability scale of the RKÄ category for a risk 

factor: 

[@ 	≈ 	Å
1

1 + }
>ΦyB zEFGHIJKILs?8 + ?@u{ − ΦyB zEFGHIJKIL[?8]{C																		(3) 
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 If we have model parameter estimates from a logistic regression model, including the 

intercept: {?@; R = 0,1, . . . , 1}, then we can use the above approximation to estimate the 

corresponding effect size estimate on the liability scale. 

 We note that the intercept is required. The intercept is not typically reported. Additionally, 

this is the intercept assuming no ascertainment bias. It is common in case-control studies to 

over-sample cases. In logistic regression the over-sampling of cases impacts the intercept 

estimate, but not the effect size estimates. In either of these situations, the required population 

intercept, ?8, can be calculated in the following manner. Using the law of total probability, and 

the logistic risk model, we can write: 

+ = /(! = 1)	

= 	N /(! = 1|0 = R)/(0 = R)
5

@78
	

= 	N
1

1 + p4/ Ç−>?8 + ∑ ?@A\7@
5
@7B CÉ

/(0 = R)
5

@78
 

If we have estimates for the population prevalence, the log ORs for the risk factor of interest 

and the probability distribution function (PDF) for the risk factor, then the only unknown in the 

above equation is the required ?8. This can then be calculated using numerical optimisation, 

such as by using the uniroot function within the stats R package. The approximation in Equation 

(3) can then be used to calculate [@. 

 If we can assume that the effect of the risk factor, 0, is additive on the liability and the logit 

scale, such that Equation (1) is: 

/(! = 1|0 = 4) = 	EFGHIJKIL[?8 + ?B4] 

and Equation (2) is: 

/(! = 1|0 = 4) = 	Φ M
−f

i1 − `ab[c(0)]
+

[B
i1 − `ab[c(0)]

4O	

= 	Φ M
−f

i1 − [B
W`ab[0]

+
[B

i1 − [B
W`ab[0]

4O 

then the approximation to obtain the effect size estimate on the liability scale simplifies to: 
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[B 	≈ 	
ΦyB zEFGHIJKIL[?8 + ?B]{ − ΦyB zEFGHIJKIL[?8]{

Ñ1 + >ΦyB zEFGHIJKIL[?8 + ?B]{ − ΦyB zEFGHIJKIL[?8]{C
W
`ab[0]

																	(4) 

 The approximation in Equation (4) is suitable for use when the risk factor under 

consideration is a SNP which is assumed to have an additive relationship with the liability to 

disease.  

 For any single risk factor, it may be reasonable to assume that its contribution to the total 

variability in liability to disease is very small. In such a case, we could assume that: 

`ab[c(0)] → 	0 

and the approximation becomes: 

[@ 	≈ 	ΦyB zEFGHIJKILs?8 + ?@u{ − ΦyB zEFGHIJKIL[?8]{ 																		(5) 

 If [@ is small, as is the case for the effect size of SNPs in a PRS, or if the probability of being 

in a single category is large, for example for rare copy number variants, then: 

?8 	≈ 	EFGHIJKIL
yB [+] = 	 log Ç

+
1 − +

É 

We can then achieve our aim of transforming univariate effect size estimates for a risk factor 

from the logit to the liability scale, by using this in Equation (5), giving: 

[@ 	≈ 	ΦyB MEFGHIJKIL ãlog Ç
+

1 − +
É + ?@åO − ΦyB[+]																		(6) 

  We now present an example applying this transformation. We estimate the risk of 

schizophrenia, integrating summary statistics for five environmental risk factors and a polygenic 

risk score (PRS) into a risk model on the liability scale. 

 

4. Estimating the risk of schizophrenia 

 Schizophrenia is disabling mental health disorder, characterised by hallucinations, delusions 

or disordered thinking. The prevalence of schizophrenia is low (estimated lifetime prevalence of 

1%), but the disorder has a huge personal and economic impact [7-9]. 

 We aim to estimate an individual’s risk of schizophrenia using a polygenic risk score (PRS) 

and an environmental risk score (ERS).  
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 The Psychiatric Genomics Consortium estimated that the proportion of variability in the 

liability to schizophrenia explained by the PRS was 0.07 [10]. We use this PRS summary measure, 

already on the liability scale, within our risk model and define the PRS random variable to be: 

éèê ∼ _(0, 0.07) 

 For the ERS, we combine information from meta-analyses of five environmental risk factors: 

cannabis usage, migrant status, urbanicity, paternal age and childhood adversity [11-15]. These 

meta-analyses present risk effect size estimates as ORs, except for migrant status, which uses 

relative risk. We opt to treat the relative risk as an OR here. In addition to the effect size 

estimates, the probability distribution function (PDF) for each risk factor is taken from its 

corresponding meta-analysis. 

 For each risk factor, the effect size estimate and distribution of the risk factor levels are 

extracted from the meta-analyses, and Equation (3) is used to convert each OR to their 

corresponding effect size on the liability scale (Table 1). The intercept for each risk factor on 

the logit scale is found using numerical optimization. R code for the transformation procedure is 

available from https://github.com/alexgillett/scale_transformation.  

 Assuming that the risk factors to be included in the ERS are independent, and do not interact 

on the liability scale, we define the ERS component to be: 

dèê = 	NN[@íA\ì7í

5ì

í7B

î

@7B

 

where [@í is the change in liability to disease from observing the ïKÄ category for the RKÄ risk 

factor (denoted 0@), compared to observing the reference category for the RKÄ risk factor; ï =

1, . . . , 1@ and R = 1, . . . ,5. The resulting schizophrenia ERS has 216 unique combinations, with 

values ranging from 0 to 1.53. A value of 0 corresponds to an individual in the lowest risk 

category for all five environmental risk factors. That is, someone who does not use cannabis, is 

native to the country in which they live, grew up in a rural setting, experienced no childhood 

adversity, and whose father was aged between 25 and 29 at conception. The ERS population 

average is: 
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d[dèê] = ∑
@7B

î
∑
í7B

5ì

[@í/(0@ = ï) = 0.39 

and the variance is: 

`ab[dèê] = ∑
@7B

î
`ab[ ∑

í7B

5ì

[@íA\ì7í] = 0.07 

 These five environmental risk factors therefore explain approximately the same proportion 

of the variability in liability to disease as the schizophrenia PRS. We now define the following 

joint effects model for schizophrenia as: 

Z = dèê + éèê + ó 

where dèê and éèê are as defined above, and ó is the unmeasured liability to disease random 

variable, which is assumed to follow the normal distribution: 

ó ∼ _(0,1 − `ab[dèê] − `ab[éèê]) 

thereby ensuring that `ab[Z] = 1. 

 If the disease threshold parameter, f, was known then this risk model on liability scale 

provides the following equation to estimate the conditional risk of schizophrenia: 

/(! = 1|dèê = pbr, éèê = /br) = 	Φ M−
f − pbr − /br

i1 − `ab[dèê] − `ab[éèê]
O	

= 	Φ ã−
f − pbr − /br

0.93
å																																			(7) 

Assuming that the liability to disease, Z, is normally distributed rather than a mixture of normal 

distributions, as is the case here, we can write: 

+ = /(! = 1) = /(Z > f) ≈ Φs−f + d[Z]u 

which provides the following approximation for f:  

f ≈ d[Z] − ΦyB[+] 

Here, d[Z] = d[dèê], therefore giving an estimate of: 

f ≈ 2.71 

for the disease threshold. Using this in Equation (7) we can gain estimates of the risk of 

schizophrenia, given an observed ERS and PRS.  

 Estimates of risk from one risk score (PRS or ERS) can be calculated as: 
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/(! = 1|éèê = /br) 	≈ 	Φ M
−ΦyB[+] + /br

i1 − `ab[éèê]
O																																					(8)	

/(! = 1|dèê = pbr) 	≈ 	Φ M
−ΦyB[+] + d[dèê] + pbr

i1 − `ab[dèê]
O																		(9) 

    

 We now present estimates for the risk of schizophrenia from the PRS, the ERS and both 

scores, using Equations (7) - (9) (Figure 2). For ease of interpretation, the PRS is standardised to 

be from a standard normal distribution.  

 Under the PRS-only model (Figure 2a), 95% of individuals are expected to have a 

schizophrenia risk estimate between 0.0016 and 0.0304. An individual with a PRS > 95th 

percentile has at least a 3-fold increased risk of schizophrenia, compared to the population 

prevalence of approximately 1%. However, only 2.5% of the population has a risk of this 

magnitude, and an individual with a PRS in the 95th percentile still only has a low absolute risk of 

schizophrenia.   

 Under the ERS-only model (Figure 2b), the estimated for schizophrenia ranges between 

0.0025 and 0.1107. An individual can therefore be as much as 11 times more likely to develop 

schizophrenia compared to the average individual in the population depending on their ERS. 

However, 95% of individuals are expected to have an estimated risk for schizophrenia between 

0.0025 and 0.0267. Although a relatively high risk estimate can be achieved by considering the 

joint effects of environmental risk factors, it is rare to observe the ERS corresponding to this. 

 By using the joint effects model, with both PRS and ERS included, we can further refine the 

estimates of disease risk. For example, under the PRS-only model, an individual with an average 

PRS of 0 has an estimated risk of 0.0079. When the ERS is also included in the model, the 

estimated risk of schizophrenia ranges between 0.0017 and 0.1018. Including both PRS and ERS 

in the model therefore improves our ability to stratify individuals by risk. We do note that this 

upper risk estimate will be rarely observed; only 0.0006% of individuals expected to have a PRS 

equal to 0 and an ERS equal to 1.53. Indeed, under the joint effects model, 95% of individuals 

will have an estimated risk of disease between 0.0006 and 0.0458. As expected given the 

distribution of the risk scores in the population, and the impact of these risk scores shown under 
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the single risk score models, most individuals have an estimated risk of disease low in absolute 

value.  

 However, this risk range from the joint risk model is wider than that found using the PRS and 

ERS only models, which suggests better calibrated risk estimates from the joint effects model 

[16]. Additionally, despite being a rare occurrence, for individuals with a high PRS and ERS, it is 

useful to understand the magnitude of their increased risk given our current knowledge. 

  

5. Discussion 

 Motivated by building a joint effects model for disease risk on the liability scale using 

parameter estimates available in the literature, we have presented equations to transform 

effect size estimates from the logit to the liability scale. This method uses the approximate 

equivalence of the normal and logistic CDFs to define a relationship between the univariate 

effect size estimates for a risk factor on both scales. Assuming that the risk factors under 

consideration are independent and act additively, without interaction, on the liability scale then 

the resulting transformed effect size estimates can be used in a joint effects model to estimate 

the risk of disease. Such a model, which uses existing summary statistics in its parameterisation, 

is easily updated, and therefore may have utility in stratified medicine.  

 This approach was explored using schizophrenia where we constructed a joint effects model 

for risk using a polygenic risk score (PRS) and five environmental risk factors. Using 

schizophrenia associated risk variables from different studies, we created an environmental risk 

score (ERS) on the liability scale from effect size estimates on the logit scale, and fully 

parameterised the liability model by approximating the disease threshold parameter. We 

demonstrated the potential improved ability of the joint effects model to stratify individuals by 

risk compared to the single risk score models based on only PRS or ERS. Individually, the PRS and 

ERS each explain 7% of the variability in liability to disease. Combined, and assuming 

independence, they explain 14%. Further improvements in risk stratification for schizophrenia 

will come as knowledge of risk variables expands, and this model is updated.  
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 In this work we have presented equations to transform univariate effect size estimates from 

the logit scale to the liability scale. To incorporate the transformed effect size estimates from 

multiple risk variables into a joint effects model for disease risk on the liability scale we must 

therefore assume that the risk variables are independent and do not interact on the liability 

scale. Future work will investigate how to relax these assumptions, however the simplest way to 

do this is likely to use effect size estimates on the logit scale from studies considering the joint 

effects of correlated and interacting risk variables. 

 It is possible to build joint effects models on other risk scales, for example the logistic scale. 

The transformation equations presented here can, of course, be rearranged such that we 

transform effect size estimates on the liability scale to the logistic scale. However, as noted in 

the Introduction, there are benefits to using the liability scale when including the family history 

of disease in the joint effects model, with a stronger body of research in multivariate normal 

(MVN) distribution compared to the multivariate logistic (MVL) distribution. Indeed, since the 

MVL distribution is part of the extreme value distribution family, it has multiple potential 

definitions [17]. It is therefore simpler to use the liability scale, rather than the logit scale, in 

this circumstance and equations for risk estimation incorporating a PRS and family history have 

been derived using the liability model [18]. Although we do not consider family history here, we 

acknowledge that family history is important for stratifying individuals by risk. The methods for 

scale transformation presented here could be used in conjunction with a MVN approach to 

incorporate family history, allowing disease risk models to be constructed using environmental, 

genetic and family history risk profiles. 

 In addition to the logistic and liability models for disease risk, time-to-event models, such as 

the Cox proportional hazards model, may be used. Such models have the advantage of 

incorporating age at onset into the model, and therefore work with incidence rather than 

prevalence. Future work would be to investigate the parameterisation of such incidence models 

using commonly available summary statistics. The motivation for the scale transformation 

equations was to estimate disease risk using a PRS and environmental risk factors on the liability 

scale. Other uses for the transformation equations would be to transform SNP effect size 
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estimates to be used in the estimation of SNP heritability. In summary, the equations developed 

here provide a straightforward method to convert model parameters from the logit scale to the 

liability scale (or vice versa), and may be a key tool to integrate risk estimates from published 

studies into a comprehensive risk model for disease risk, particularly allowing joint models 

across environmental and genetic risk factors to be constructed.    
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Fig. 1. Plot of the normal and logistic cumulative distribution functions (CDF). The standard 

normal CDF is: �  . The standardised logistic CDF, where the 

mean is 0 and variance is 1 is given by: �  .

Φ[x] = 1
2π ∫
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Risk factor Odds ratio p(risk factor) ! 

Cannabis usage [15]    

None 1.00 0.70 0.00 

Little to moderate 1.41 0.15 0.12 

High 2.78 0.15 0.39 

Migration [11]    

Native 1.00 0.92 0.00 

1#$ generation 2.30 0.08 0.32 

Urbanicity [14]    

Rural 1.00 0.25 0.00 

Middle sized town 1.50 0.25 0.15 

Urban 2.00 0.50 0.25 

Paternal age [12]    

< 25 1.06 0.20 0.02 

25-29 1.00 0.34 0.00 

30-34 1.06 0.25 0.02 

35-39 1.13 0.12 0.05 

40-44 1.22 0.05 0.07 

45-49 1.21 0.02 0.07 

≥ 50 1.66 0.01 0.19 

Childhood adversity [13]    

None 1.00 0.73 0.00 

Any 2.78 0.27 0.38 

 
 
Table 1. Environmental risk factors to be included in the schizophrenia environmental risk score. 
! = effect size estimate on the liability scale, gained by transforming the odds ratio using Equation (3). 
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Fig. 2. Estimated risk of schizophrenia against: (a) the standardised 
polygenic risk score (PRS), and, (b) the environmental risk score (ERS). 
Line types in plot: (a) refer to different ERS values including when no 
ERS is included in the model and, (b) refer to no PRS being included in 
the model and the 2.5th, 50th and 97.5th PRS percentiles. The probability 
density functions (PDFs) for: (a) the standardised PRS and (b) the ERS 
are also provided.
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