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Abstract 

Many lung diseases, such as acute respiratory distress syndrome (ARDS), display significant 

regional heterogeneity, with patches of severely injured tissue adjacent to apparently healthy 

tissue.  Current mouse models that aim to mimic ARDS generally produce diffuse injuries that 

cannot reproducibly generate ARDS’s regional heterogeneity.  This deficiency prevents the 

evaluation of how well therapeutic agents reach the most injured regions, and precludes many 

regenerative medicine studies, since it is not possible to know which apparently healing regions 

suffered severe injury initially.  Finally, these diffuse injury models must be mild to allow for 

survival, as their diffuse nature does not allow for residual healthy lung to keep an animal alive 

long enough for many drug and regenerative medicine studies.  To solve all of these deficiencies 

of current animal models,  we have created a simple and reproducible technique to selectively 

induce lung injury in specific areas of the lung. Our technique, catheter-in-catheter selective lung 

injury (CICSLI), involves guiding an inner catheter to a particular area of the lung and delivering 

an injurious agent mixed with nanoparticles  (fluorescently and/or radioactively labeled) that can 

be used to track the location and extent of where the initial injury was, days later.  Further, we 

demonstrate that CICSLI can produce a more severe injury than diffuse models, yet has much 

higher survival since CICSLI intentionally leaves undamaged lung regions.  Collectively, these 

attributes of CICSLI will allow better study of how drugs act within heterogeneous lung 

pathologies and how regeneration occurs in severely damaged lung tissue, thereby aiding the 

development of new therapies for ARDS and other lung diseases. 

Introduction
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Acute respiratory distress syndrome (ARDS) is characterized by patchy pulmonary 

infiltrates on chest x-ray, representing heterogeneously distributed inflammatory infiltrates and 

pulmonary edema[1-3].    While this heterogeneous distribution has been noted since the first 

descriptions of ARDS[4], it has been very difficult to study the consequences of regional 

heterogeneity of ARDS in experimental animal models.  Animal models intended to model ARDS, 

called acute lung injury (ALI) models, such as intra-tracheal or instilled toxins (e.g., LPS) or 

intravenous toxins (e.g., oleic acid) produce a diffuse lung injury[5, 6].  When these models do 

produce heterogeneity[7], such as in the intra-nasal influenza model, the patchiness has very 

high inter-individual variability, largely limiting systematic study of the effects of patchy injury[8].  

Further, because of the diffuse nature of such experimental ALI, the injuries must be kept mild 

to allow the animals to survive long enough for many analyses, such as for lung regeneration 

studies[7, 9].

These diffuse ALI models are particularly problematic for the primary two translational 

medicine fields aiming to ameliorate ARDS:  development of therapeutics and regenerative 

medicine[10-15].  In the therapeutics space, the problem is that investigators must show that 

potential therapeutics for ARDS reach the patches of inflamed tissue (not just healthy lung 

regions), but diffuse ALI models do not allow such analyses because of their diffuse nature [15].  

Thus with current diffuse ALI models we cannot determine the intra-pulmonary distribution of 

small molecule drugs, nano-scale drug delivery vehicles, inhaled drugs, or cell therapies.  In the 

field of regenerative medicine, it is important to know whether a “healed” lung region was 

actually damaged, or if its healed appearance was because it was never injured in the first place.  
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Since regenerative medicine requires analysis days to weeks after the injury, it is essential to be 

able to know the precise location and severity of the initial lung regions, even at long time points 

after injury[7, 9, 16].  Thus, for the development of ARDS therapeutics and post-ARDS lung 

regeneration treatments, the current diffuse ALI models leave room for optomiziation.

To solve those problems, we have created a very simple and reproducible system for 

creating and precisely tracking a heterogeneous and severe acute lung injury (ALI).  In this system, 

termed catheter-in-catheter selective lung injury (CICSLI), mice are endo-tracheally intubated 

with a catheter[17], followed by insertion of a smaller catheter directed either into a single lung 

or single lobe, simply determined by the length of the smaller catheter.  Into the smaller catheter 

a solution is instilled that contains an injurious insult (LPS, acid, etc) that has a low concentration 

of polymeric nanoparticles (labeled with fluorescence and/or radioactive moieties).  This 

produces a severe single lung or single lobe ALI with excellent animal survival.  Further, the 

nanoparticles allow tracing, several days later, of precisely where the injurious insult occurred, 

allowing fine determination of which regions received the initial injury, and correlating that with 

therapy distribution and lung regeneration assays.

Materials and Methods

Mice All mice were housed in SPF conditions in an animal facility at the Children’s Hospital of 

Philadelphia. All mouse protocols were approved by the IACUC at the Children’s Hospital of 

Philadelphia. WT C57BL/6J mice (strain 000664 from the Jackson Laboratory, Bar Harbor, ME) 
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aged 8-10 weeks were used for experiments. Both male and female mice were used in equal 

proportions.

Injury Model Sedated mice were intubated using a 20G angiocatheter (BD catalog #381434) 

using a previously described technique[17]. The mice were then placed in the right lateral 

recumbent position at a polytehelene 10 (PE-10) catheter (BD catalog #427400) was directed into 

the right main stem bronchus. Injury was induced by instilling 2 μL/g of osmotically balanced 0.1N 

HCl into the right lung through the PE-10 catheter. 

Instillation of LPS  Lipopolysaccharide B4 (Sigma catalog # L2630) was selectively instilled 

into mouse airways, as described in sections above.  Each mouse was instilled with 1 mg/kg of 

LPS.  

Nanoparticle-based tracking of the location of instillate into airways 

Polymeric nanoparticles (NPs) were purchased from Bangs Laboratories, Inc.  For tracking where 

the NPs localized by immunofluorescence days after acid instillation, we used NPs that were 1000 

nanometer (nm) in diameter and composed of polystyrene with the fluorphore FlashRed (similar 

spectrum to Cy5) covalently attached (Bangs Labs Catalog #FSFR004).  For radiotracing where the 

instillate localized, we used 200-nm polystyrene conjugated to FlashRed and with surface 

carboxylate groups (Catalog #FSFR002).  The surface carboxylation allowed for conjugation to 

radiolabeled proteins, as described below.
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Radiolabeling nanoparticles  Rat IgG (ThermoFisher catalog #31933) was labeled with 

I-125 via Pierce Iodination Beads (ThermoFisher catalog # 28665).  We then conjugated the IgG 

to nanoparticles using our published protocol[15].  In brief, 100 L of polystyrene NPs were buffer 

exchanged Zeba™ Spin Desalting Columns, 7K MWCO, 0.5 mL (ThermoFisher catalog # 89882), 

exchanging for 50 mM MES buffer at pH 5.2, finally putting the buffer-exchanged beads into 1.5 

mL Eppendorf tubes.  Next N-Hydroxysulfosuccinimide (“sulfo-NHS”; Sigma catalog #56485) was 

added to a final concentration of 0.275 mg/ml and incubate for 3 minutes at room temperature 

(RT)  Next N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (“EDAC”; Sigma 

catalog # E7750) was added to a final concentration of 0.1 mg/ml and incubated for 10-15 

minutes at RT.   Next 114 ug of I-125-labeled rat IgG was added (giving 200 antibody molecules 

per bead) and incubated for 2 to 4 hours at RT on a vortex/shaker at low speed.  1 mL MES buffer 

was added to dilute free antibody, followed by centrifuge at 12,000g x 3 min to pellet the IgG-

conjugated NPs.  The IgG-NP pellet was resuspended in 200 uL of PBS + 0.05% bovine serum 

albumin (BSA) buffer.  Immediately before use, the NPs were sonicated with a probe / tip 

sonicator for three 3-second pulses at 30% maximum power.  

Radiolabeled albumin tracing BSA was I-125-labeled as described for IgG above.  Mice 

were given selective instillation of LPS, followed 20 hours later by intravenous injection of 1 x 106 

counts per minute (cpm) of I-125-BSA, followed by sacrifice 4 hours later.  The right ventricle was 

then flushed with 10 mL of PBS to flush out the pulmonary vasculature of residual blood.  The 
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lobes of the lungs were then individually removed from chest cavity and measured for I-125 levels 

in a Perkin Elmer Wizard-2 gamma counter.

Evans Blue determination of capillary leak  Mice were given lobar LPS.  Twenty 

four hours later, mice were injected IV with Evans Blue at 30 mg/kg, followed 2 hours later by 

perfusing the right ventricle with 10 mL of PBS + 10mM EDTA.  The lung lobes were individually 

dissected from the chest and a photograh was taken of them.

CT scanning of mice   Mice were given lobar LPS.  Twenty four hours later, under general 

anesthesia a tracheostomy was created and a 20 gauge peripheral IV catheter was placed into 

the tracheostomy.  The mouse was then immediately sacrificed via overdose of ketamine.  Before 

the development of post-mortem atelectasis, the tracheostomy tube was removed while a 

ligature was cinched around the trachea, thus ensuring the lungs remained filled with air.  

Immediately after sacrifice, the mouse’s body was put into a small animal microCT scanner made 

by ImTek, housed at the University of Pennsylvania’s Small Animal Imaging Facility.

Results

A simple and traceable method for selectively injuring murine lungs. We developed a 

straightforward and minimally invasive technique for instilling liquid into a mouse’s lung. The 

procedure starts with intubating the mouse using a previously established method of orotracheal 

intubation using a 20g angiocatheter[17]. Once the angiocatheter has been advanced into the 
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mouse’s trachea, we then insert polyethylene 10 tubing (54 mm) attached to a 1mL syringe via a 

30G needle (Fig 1A). For the purpose of demonstrating the method in the left lung we used a 2uL 

per gram of methylene blue followed by 200ul of air. The mouse was placed on in the left lateral 

recumbent position before slowly instilling the methylene blue. Afterwards, the mouse was 

placed in the supine position and the lungs were extracted and photographed to demonstrate 

the that this method can achieve selective instillation of a liquid into a living mouse (Fig 1B).

Fig1.  Unilateral lung injury, created by instilling acid into just one lung. A) Procedure for single 

lung acute injury.  The mouse was sedated, followed by orotracheal intubation with a 20G 

angiocatheter (Blue) that terminates in the trachea (brown). The mouse is then placed in the left 

lateral recumbent position and a 51mm PE10 catheter (yellow) is advanced into the inferior lung 

(the left lung in this example). A syringe is attached to the catheter using a 0.5 inch 30G needle 

(not shown) and a specified amount of liquid is selectively delivered to the inferior lung (red). B) 

Healthy mice underwent selective instillation of methylene blue as detailed in A. The mouse was 

euthenized 5 minutes after instillation. Selective injury of the left lung was verified visually. C) 

Selective instillation of 0.1N osmotically balanced hydrochloric acid into the right lung was 

performed 24 hours before euthanizing the mice and subejecting them to microCT scans. CT 

imaging shows parenchymal injury exclusively on the right side. D) Mice underwent single lung 

instillation of acid containing 1 μM FlashRed-labeled polystyrene beads, followed by euthanasia 

72 hours later. Frozen sections of embedded injured lung tissue demonstrated persistence of 

beads at 72 hours post-injury. 
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To demonstrate that this method can be used to induce selective lung injury we repeated the 

procedure outlined in Fig 1A but instead placed the mouse in the right lateral recumbent position 

in order to guide the PE 10 catheter into the right lung and instilled 2.5ul per gram of 0.1N 

hydrochloric acid into the mouse’s right lung. A CT scan performed one day later showed selective 

injury of the right lung, indicating that we can safely induce a radiographically apparent injury 

without causing the mouse to die (Fig 1C). Because this method is ideal for studying lung 

regeneration we wanted to find a way to distinguish where injury occurred. Ordinarily, it may not 

be possible to distinguish between uninjured and properly regenerated lung tissue, therefore we 

sought to mark where injury had occurred by including 1uM of innocuous FlashRed-labeled 

polystyrene beads. Frozen section of the injured right lung demonstrate that the beads are 

readily apparent even when delivered in a solution containing 1M hydrochloric acid (Fig 1D). No 

beads were visible in the contralateral, uninjured, lung (data not shown).

Selective lung injury paradoxically increases histological injury and decreases mortality. 

To ascertain the relative difference in the relative differences in tissue injury between unilateral 

and diffuse lung injury, we instilled 2.5ul/g of 1N hydrochloric acid into the lungs of C57BL/6 mice 

using our selective method (Fig 1) or intratracheally, meaning without using the PE10 catheter. 

We observed a relatively more severe lung injury in the selective group with a markedly increased 

cellular infiltrate and hyaline membrane formation. The mice that received bilateral lung injury 

had less cellular infiltrate (Fig 2A).  Although intratracheal administration produced a more 

bland-appearing injury, the survival at twenty-four hours was significantly lower in the mice that 

had bilateral lung injury relative to those that had unilateral injury (Fig 2B). These data reveal a 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2018. ; https://doi.org/10.1101/385922doi: bioRxiv preprint 

https://doi.org/10.1101/385922
http://creativecommons.org/licenses/by/4.0/


10

paradox in which selectively injuring lungs increases histological injury while decreasing 

mortality. 

Fig 2.  Unilateral lung injury increases injury while improving survival. A) H&E staining of lung 

sections taken from C57BL/6 mice 24 hours after undergoing unilateral or bilateral lung injury 

demonstrates significantly increased accumulation of cellular infiltration and protein-rich edema 

fluid when compared to the lung that underwent bilateral (intratracheal) lung injury. B) We 

subjected mice to right unilateral (n=7) and bilateral (n=8) lung injury. Mice were evaluated on 

an hourly basis and were euthanized if a blinded observer determined that the mouse was 

obtunded. Differences in mortality were significant, p = 0.0055, when compared using a log-rank 

(Mantel-Cox) test. 

Selectively injuring a single lobe is possible and remains isolated. Data shown in Figures 1 and 

2 demonstrate that instilling agents through a catheter that is longer than the endotracheal tube 

can help selectively injure the left (Fig 1A and B) or right (Fig 1C) lungs. Based on these data we 

hypothesized that using a longer catheter and smaller volume of fluid could selectively injure a 

single lobe of the right lung. To test this hypothesis, we repeated the experimental design shown 

in Figure 1 but used a slightly longer catheter – 59mm PE 10 catheter (Fig.3A). Using Evan's 

blue dye, we show that the longer catheter is able to selectively instill fluid into the RUL (Fig 

3B).  The immediate specificity of selectively instilling lipopolysaccharide (LPS) into the right 

upper lobe was assayed by co-instilling I-125-labeed-IgG that was bound to 100nm polystyrene 

beads along with the LPS. We observed that 97% of the radiolabeled albumin was detected in 
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the RUL, quantifying the selectiveness of this approach (Fig 3C).  To determine if the 

initial instillation remained isolated in the right upper lobe we repeated the same test with I-125-

labeled IgG co-administered with LPS and found that 92% of the isotope was detected in the right 

upper lobe 24 hours after selectively instilling LPS in the right upper lobe, suggesting that the 

selective lung injury did not spread to other lobes.  

Fig 3. Single-lobe injury created by a longer instillation catheter:  A) Mice were treated as in 

Figure 1, but instead a 59mm PE10 catheter was used and the mice are kept in left lateral 

recumbent for 20 minutes after instillation.  B) Mice were instilled as in A, with the instillate 

containing 1mg/kg of LPS,  24 hours later, Evans Blue dye was injected followed by sacrifice 2 

hours later, with visible photography of the lobes.  C) Mice were treated as in C, but into the LPS 

mixture was included I-125-labeled-IgG coated onto 100 nanometer diameter polystyrene beads.  

Immediately after instillation, the mice were sacrificed, followed by measurement of each lobe 

in a gamma counter. Each data point represents mean ± s.e.m (n=3). * p<0.0001, one-way 

ANOVA.

Selective lung injury changes regional lung physiology physiology. Hematoxylin and eosin (H&E) 

staining of a lung following lung injury revealed a spectrum of tissue damage within the injured 

lung, which we attribute to uneven distribution of the LPS within the injured lobe. Importantly, 

we did not observe any areas of uninjured tissue within the injured lobe (Fig 4A). Although 

selective injury was able to induce lobe-specific tissue damage (Figs 1C, 4A) we were uncertain if 

a seminal physiologic response to injury was also regional or if the severe injury would induce 

systemic changes in all lobes. To assay for vascular leak, we injected I-125-labeled albumin via 
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retroorbital injection 24 hours after inducing selective lung injury. When compared to uninjured 

mice we found that only the right upper lobe had a significantly increased amount of radiolabeled 

albumin (Fig 4B). These data suggest that selective injury can recapitulated lobe-specific tissue 

damage and physiologic change.  

Fig 4.  In single-lobe lung injury, some pathological phenotypes are restricted to injured lobes.  

A) Mice underwent single-lobe LPS instillation as in Figure 3, followed by sacrifice 24 hours later, 

and then H&E staining of the lungs.  Comparison is shown to a naïve mouse.  B) Mice underwent 

single-lobe LPS instillation, followed by injection of I-125-labeled albumin 24 hours later, followed 

by sacrifice, perfusion of the pulmonary arteries with 5 mL of PBS, and then gamma counting of 

the lobes.  Note that the lobe into which LPS was instilled (the superior) has a greater capillary 

leak than the other lobes. Each data point represents mean ± s.e.m (n=3). * p<0.0001, one-way 

ANOVA, followed by pairwise comparison for each lobe, comparing naïve vs single lobe LPS, with 

all lobes having non-significant differences except the superior lobe.  

Discussion 

Developing and testing new therapeutics for lung diseases starts with using outstanding pre-

clinical models that recapitulate key aspects of human lung disease[15, 18]. Intratracheal 

administration of injurious agents or inducing non-specific systemic inflammation either create 

bland injury that falls short of the severe injury that often produces the greatest mortality or it 

creates such a severe injury that studying long-term regeneration is not possible. 

Furthermore, inducing regional physiologic changes can help us understand how drugs will be 
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distributed in function in a patient with a mix of injured and healthy tissues[15], which is the case 

in most human diseases[3, 19-21]. 

In this paper we describe a simple and reproducible technique to selectively injure specific parts 

of the lung. By combining a catheter-within-a-catheter technique and positioning a mouse in the 

right or left lateral recumbent position we can easily direct a lung injury to the right or left lung. 

Further lengthening the inner catheter facilitates selective injury of the right upper 

lobe. Inducing injury in this way is the major innovation of our model because of its ability to 

produce a histologically severe yet simultaneously more survivable injury. This has allowed us to 

study how regeneration following a tissue injury that would otherwise be unsurvivable[22].  

We considered that using these models to study lung regeneration would be challenging as 

newly regenerated lung tissue would appear histologically identical to the uninjured lung. 

Although lineage tracing[23] of alveolar epithelial progenitors could be used to overcome this 

challenge, there is no way label all progenitor populations[7, 9, 16, 24, 25], meaning that 

regenerated lung tissue could still resemble uninjured lung even when using lineage tracing. 

Labeling the injured area is thus an essential second innovation that we are reporting. We show 

here that co-administration of innocuous fluorescently-labeled beads or radiolabeled albumin 

will persist as validated markers of where injury occurred.  

We have also shown that our selective lung injury model is useful for inducing selective changes 

in lung permeability. This third innovation recapitulates key heterogeneity that occurs in our 
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patients[2, 3, 26] and has important implications for evaluating candidate drugs. Indeed, we have 

already shown regional changes in drug delivery which may be useful in understanding how to 

selectively deliver drugs to injured lungs while avoiding normal tissue.  

Although other groups have published reports utilizing selective lung injury[27, 28] we believe 

that this is the first systematic approach to delineating the methodology and interrogating the 

physiology though the lens of developing better pre-clinical mouse models of lung disease. 

Further work is needed to determine best-practices for histologically scoring heterogenous lung 

injuries and assaying lung function. Furthermore, technological advances, such as the recently 

described mouse bronchoscope[29], may facilitate repeat instillations and sequential sampling. 

Nevertheless, this report details a simple, low-cost, and low-labor method that can be easly 

employed that can dramatically improve the study of ARDS.

Notably, the CICSLI technique can be used to prepare not just ARDS models, but perhaps other 

heterogeneous lung diseases.  Numerous other lung diseases are modeled by intra-tracheal 

instillations:  pneumonia with bacteria[30], idiopathic pulmonary fibrosis with bleomycin[31], 

and asthma with airway irritants[32].  Each of these human diseases is very spatially 

heterogeneous and so would benefit from CICSLI.  Additionally, CICSLI could be done with new 

agents, such as transfection with gene therapy and CRISPR reagents, to create new pathology 

models.
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In summary, CICSLI provides a simple, easy, quick and inexpensive method to improve key 

features of pre-clinical lung disease models, which should aid the development of new drugs and 

regenerative medicine therapies. 
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