1 Heat stress modifies the lactational performances and the

2 urinary metabolomic profile related to gastrointestinal

3 microbiota of dairy goats

4	
5	Alexandra Contreras-Jodar ^{1¶} , Nazri Nayan ^{2¶} , Soufiane Hamzaoui ^{1,#b} , Gerardo Caja ^{1*} ,
6	Ahmed A.K. Salama ^{1,#c¶*}
7	
8 9 10	¹ Group of Research in Ruminants (G2R), Department of Animal and Food Sciences, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain
11 12 13	² Department of Animal Science, Faculty of Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
14 15	^{#b} Current address: Department of Agronomic Science, University of Bouira, Bouira, Algeria
16 17 18	^{#c} Current address: Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, United States of America
19	
20	* Corresponding authors:
21	gerardo.caja@uab.es (GC), ahmed.salama@sdstate.edu (AAKS)
22	
23 24	[¶] These authors contributed equally to this work
25	
26	
27	

28 Abstract

29 The aim of the study was to identify the candidate biomarkers of heat stress (HS) in the 30 urine of lactating dairy goats through the application of proton Nuclear Magnetic 31 Resonance (1 H NMR)-based metabolomic analysis. Dairy does (n = 16) in mid-lactation 32 were submitted to thermal neutral (TN; indoors; 15 to 20°C; 40 to 45% humidity) or HS 33 (climatic chamber; 37°C day, 30°C night; 40% humidity) conditions according to a crossover 34 design (2 periods of 21 days). Thermophysiological traits and lactational performances 35 were recorded and milk composition analyzed during each period. Urine samples were 36 collected at day 15 of each period for ¹H NMR spectroscopy analysis. Principal component 37 analysis (PCA) and partial least square-discriminant analysis (PLS-DA) assessment with 38 cross validation were used to identify the goat urinary metabolome from Human 39 Metabolome Data Base. HS increased rectal temperature (1.2°C), respiratory rate (3.5-40 fold) and water intake (74%), but decreased feed intake (35%) and body weight (5%) of the 41 lactating does. No differences were detected in milk yield, but HS decreased the milk 42 contents of fat (9%), protein (16%) and lactose (5%). Metabolomics allowed separating TN 43 and HS urinary clusters by PLS-DA. Most discriminating metabolites were hippurate and 44 other phenylalanine (Phe) derivative compounds, which increased in HS vs. TN does. The 45 greater excretion of these gut-derived toxic compounds indicated that HS induced a 46 harmful gastrointestinal microbiota overgrowth, which should have sequestrated aromatic 47 amino acids for their metabolism and decreased the synthesis of neurotransmitters and 48 thyroid hormones, with negative impact on milk yield and composition. In conclusion, HS 49 markedly changed the thermophysiological traits and lactational performances of dairy 50 goats, which were translated into their urinary metabolomic profile through the presence 51 of gut-derived toxic compounds. Hippurate and other Phe-derivative compounds are 52 suggested as urinary biomarkers to detect heat stressed dairy animals in practice. 53

54 Introduction

55 Exposure to high ambient temperature induces several physiological responses in order to 56 maintain body homeostasis. Animals suffer from heat stress (HS) when physiological 57 mechanisms fail to counterbalance an excessive heat load [1]. Exposure of dairy animals to 58 HS results in a decline in their productive [2] and reproductive [3] performances due to a 59 strong metabolic disruption. Dairy animals under HS typically show decreased feed intake, 60 increased water consumption and thermophysiological traits, such as respiratory rate and 61 rectal temperature, when compared to thermoneutral (TN). Usually, HS reduces milk yield 62 and impairs milk composition in dairy goats [4]. Although these negative effects on milk

63	production are traditionally attributed to a decline in feed intake, pair-fed TN experiments
64	have shown that intake only accounts for 35-50% of milk yield reduction in dairy cows [5,
65	6]. Therefore, there is a specific effect of HS that disrupts body metabolism and milk
66	secretion which remains unknown.
67	Biofluid assessment by Nuclear Magnetic Resonance (NMR) spectroscopy can shed
68	some light on the physiological mechanisms occurred in animals when exposed to HS.
69	Proton (¹ H) NMR, together with multivariate statistical analysis, has been successfully used
70	as metabolite profiling method to study the metabolic changes in HS rats [7]. This robust
71	and reliable technique provides vast information on metabolome dynamics and metabolic
72	pathways [8]. The ¹ H NMR spectra derives from thousands of metabolite signals that
73	usually overlap, adding complexity to data processing. Computer-based data reduction and
74	multivariate statistical pattern recognition methods, such as principal component analysis
75	(PCA) and partial least square-discriminant analysis (PLS-DA), have shown to be beneficial
76	techniques to get the most from the information obtained in the $^1 extsf{H}$ NMR spectra for
77	classification purposes [9, 10].
78	To our knowledge, no studies have been carried out to evaluate urine metabolomics
79	of dairy goats. The aim of this study was to identify the candidate biomarkers of HS
80	through the application of ¹ H NMR-based metabolomic urinalysis of dairy goats.
81	

82 Material and methods

83 Animals and treatments

Animal care conditions and management practices agreed with the procedures stated by
 the Ethical Committee of Animal and Human Experimentation (reference CEEAH#09/771)

86	of the Universitat Autonoma of Barcelona (UAB) and the codes of recommendations for
87	livestock wellbeing of the Ministry of Agriculture, Food and Environment of Spain.
88	Sixteen multiparous Murciano-Granadina dairy does (43.5 \pm 1.6 kg body weight),
89	lactating and open, from the herd of the SGCE (Servei de Granges i Camps Experimentals)
90	of the UAB in Bellaterra (Barcelona, Spain), were blocked in 2 balanced groups at mid-
91	lactation (81 \pm 3 days-in-milk; 2.00 \pm 0.04 L/day). Does were adapted to metabolic cages
92	for 2 weeks before the start of the experiment and the groups randomly allocated to 2
93	ambient conditions treatments according to a 2×2 (treatment \times period) crossover design.
94	Treatments were TN (indoors shelter; 15 to 20°C and 45 \pm 5% relative humidity) and HS
95	(climatic chamber $4 \times 6 \times 2.3$ m with temperature-humidity control system, Carel Controls
96	Ibérica, Barcelona, Spain; 37 \pm 0.5°C during the day, and 30 \pm 0.5°C during the night; 40 \pm
97	5% humidity and 90 m ³ /h continuous air turnover). Day-night length was set to 12-12
98	hours and the experimental periods lasted 21 days (14-days adaptation, 5-days
99	measurements, 2-days washout). Temperature-humidity index (THI) calculated according
100	to NRC (1971) resulted THI _{TN} = 59 to 65 and THI _{HS} = 75 to 83. Experimental conditions were
101	
101	similar to those detailed by Hamzaoui et al. [11].
101	similar to those detailed by Hamzaoui et al. [11]. Does were milked once-a-day (0800) with a portable machine (Westfalia-Separator
102	Does were milked once-a-day (0800) with a portable machine (Westfalia-Separator
102 103	Does were milked once-a-day (0800) with a portable machine (Westfalia-Separator Ibérica, Granollers, Spain) set at 42 kPa, 90 pulses/min and 66% pulsation ratio and
102 103 104	Does were milked once-a-day (0800) with a portable machine (Westfalia-Separator Ibérica, Granollers, Spain) set at 42 kPa, 90 pulses/min and 66% pulsation ratio and provided with volumetric recording jars (3 L \pm 5%). The milking routine included cluster
102 103 104 105	Does were milked once-a-day (0800) with a portable machine (Westfalia-Separator Ibérica, Granollers, Spain) set at 42 kPa, 90 pulses/min and 66% pulsation ratio and provided with volumetric recording jars (3 L ± 5%). The milking routine included cluster attachment, machine milking, machine stripping before cluster removal, and teat dipping
102 103 104 105 106	Does were milked once-a-day (0800) with a portable machine (Westfalia-Separator Ibérica, Granollers, Spain) set at 42 kPa, 90 pulses/min and 66% pulsation ratio and provided with volumetric recording jars (3 L ± 5%). The milking routine included cluster attachment, machine milking, machine stripping before cluster removal, and teat dipping in an iodine solution (P3-ioshield, Ecolab Hispano-Portuguesa, Barcelona, Spain). Feed was

110	on dry matter basis). Ration ingredients were (as fed): alfalfa hay, 64.2%; ground barley,
111	9.6%; beet pulp, 9.6%; ground corn, 8%; soybean meal, 3.3%; sunflower meal, 3.2%;
112	molasses, 1%; salt, 0.6%; sodium bicarbonate, 0.3%; mineral and vitamin complex, 0.2%
113	(Vitafac premix, DSM Nutritional Products, Madrid, Spain). Water was permanently
114	available and offered at room temperature in water bowls connected to individual tanks of
115	20 L. A sawdust drip tray under each water bowl was used to collect spilled water.
116	
117	Sampling and measurements
118	Thermophysiological traits and lactational performances of the goats
119	Does were weighed at the start and the end of each period using an electronic scale (True-
120	Test SR2000, Pakuranga, New Zealand; accuracy, 0.2 kg). Rectal temperature (digital
121	clinical thermometer, ICO Technology, Barcelona, Spain; accuracy, 0.1°C) and respiratory
122	rate (flank movements during 60 s) were recorded daily at 0800, 1200, and 1700
123	throughout the experiment. Milk yield (volume) was recorded daily throughout the
124	experiment and milk samples collected weekly for composition (NIRSystems 5000, Foss,
125	Hillerød, Denmark). Feed and water intakes were calculated by weight from the daily
126	refusals and feed samples were collected daily and composited by period for analyses.
127	Feed composition was determined according to analytical standard methods [12].
128	
129	Urine sampling and preparation
130	Urine samples from each doe were collected at micturition on the morning of day 15 of
131	each period (n = 32) and stored at –20°C until ¹ H NMR analysis.
132	Preparation of samples for ¹ H NMR spectroscopy was done according to Beckonert et
133	al. [8]. Briefly, phosphate buffer solution (pH 7.4) was prepared with sodium phosphate

134	dibasic (Na ₂ HPO ₄ ; 99.95% trace metals basis, anhydrous, Sigma-Aldrich, Germany), sodium
135	phosphate monobasic (NaH $_2$ PO $_4$; 99.95% trace metals basis, anhydrous, Sigma-Aldrich)
136	and sodium azide (NaN ₃ ; Sigma-Aldrich). Deuterium oxide (D ₂ O; 99.9 atom % D, Sigma-
137	Aldrich), containing 0.75% 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid (TSP) sodium salt as
138	NMR reference compound, was added before the flask was filled up to 25 mL with milli-Q
139	water (EMD Millipore, Darmstadt, Germany). The flask was shaken thoroughly and left in a
140	Clifton sonicator (Nickel Electro, Weston-super-Mare, United Kingdom) at 40°C until the
141	salts were dissolved. The prepared phosphate buffer solution was stored at 4°C. Urine
142	samples were thawed in a water bath, thoroughly shaken and spun for 5 min at 12,000 × g
143	in a swing-bucket rotor (Hettich, Tuttlingen, Germany) at 4°C. Then, 400 μL of the urine
144	sample were transferred into Eppendorf tubes and mixed thoroughly with 200 μL of cold
145	phosphate buffer solution. All the tubes were then centrifuged for 5 min at 12,000 $ imes g$ at
146	4°C and 550 μL of the final mixture transferred into 5-mm NMR tubes (VWR International
147	Eurolab, Barcelona, Spain). The prepared NMR tubes were immediately put on ice and sent
148	to the NMR Service of the UAB for ¹ H High Resolution NMR Spectroscopy.

149

150 NMR spectroscopy

¹H NMR spectra were acquired on a Bruker Avance-III spectrometer (Bruker BioSpin,

152 Rheinstetten, Germany) operating at a ¹H NMR frequency of 600 MHz and a temperature

153 of 298°K, controlled by a Burner Control Unit-extreme regulator. A 5 mm Triple Resonance

154 Broadband Inverse probe with z-gradients and inverse detection was used and controlled

- 155 by TopSpin2.1 software (Bruker, Germany). One-dimensional ¹H NMR spectra were
- 156 obtained using an one-dimensional Nuclear Overhauser Enhancement Spectroscopy
- 157 (NOESY) pulse sequence. The solvent signal was suppressed by pre-saturation during

158	relaxation and mixing time. A total of 32 scans and 2 dummy scans were performed to
159	produce 32,768 data points for each spectrum using a relaxation delay of 2.0 s with a pulse
160	power level of 54 dB and an acquisition time of 2.6 s. Spectral width (δ) used for all data
161	collected was 12.0 ppm, and 0.3 Hz exponential line broadening was applied for the
162	Fourier-transform of the raw data. ¹ H NMR spectra were phased, baseline corrected, and
163	corrected for chemical shift registration relative to the TSP reference compound previously
164	indicated (δ = 0.0 ppm) in TopSpin 2.1.(data in S1 File).
165	
166	Statistical analyses
167	Thermophysiological and performance analysis
168	Data were analyzed by the PROC MIXED for repeated measurements of SAS v. 9.1.3 (SAS
169	Inst. Inc., Cary, North Carolina, USA). The statistical mixed model contained the fixed
170	effects of environmental treatment (TN vs. HS), the period (1 and 2) and measuring day (1
171	to 19), and the random effects of the animal (1 to 16), the interactions (treatment $ imes$ day
172	and treatment × period), and the residual error. Differences between least squares means
173	were determined with the PDIFF option of SAS. Significance was declared as P<0.05.
174	
175	NMR data pre-processing and analysis
176	Pre-treatment of raw spectral data is critical for generating reliable and interpretable
177	models using multivariate analysis techniques. Nevertheless, metabolic fingerprinting
178	datasets acquired from ¹ H NMR spectrometers suffer from imprecisions in chemical shifts
179	due to temperature, pH, ionic strength and other factors. Therefore, models generated
180	using multivariate analysis may fail to identify separations between classes, and their

181 loadings can be difficult to interpret due to over-abundance of variables. To mitigate these

182 complications each spectrum was uniformly divided into 'bins' and the signal intensities 183 within each bin were integrated to produce a smaller set of variables according to Worley 184 and Powers [13]. In this way, each dataset was divided in bins of 100 (i.e., from 0.0003 to 185 0.03 ppm) using R software v. 3.2.3 [14]. After binning, alignment and normalization of 186 spectra were accomplished to ensure that all observations were directly comparable. In 187 this sense, urine spectra were normalized to creatinine methyl resonance intensity at δ = 188 3.05 ppm and then log₂ transformed. Regarding variable selection, raw ¹H NMR spectral 189 data were edited by excluding the regions outside the chemical shift range of δ = 9.0-0.5 190 ppm, and also the residual peak of the imperfect water suppression (δ = 5.5-4.6 ppm). 191 Following the recommendations of Pechlivanis et al. [15], the spectral regions of histidine, 192 1-metylhistidine, and 3-methylhistidine (δ = 8.17-7.87, δ = 7.15-7.01, and δ = 3.77-3.71 193 ppm, respectively) were also removed because of the sensitivity to small pH differences 194 among urine samples. 195 Once ¹H NMR pre-processing data was completed, data were subjected to 196 multivariate statistical analysis. Initially, PCA was performed without considering the class 197 information for samples examination and search for outliers. Then, PLS-DA with leave-one-198 out cross validation was also performed on the datasets using the pls package of R 199 software [16]. PLS-DA allowed individual samples to be classified according to the 200 respective class prior to analysis (TN or HS). Model strength was assessed using both R² 201 and Q² statistical parameters. While R² values reported the total amount of variance 202 explained by the model, the Q² reported model accuracy as a result of cross-validation. 203 Aside from its theoretical maximum value of 1, for biological models, an empirically 204 inferred acceptable value is ≥ 0.4 [9]. The resulting Q² statistic was compared to a null 205 distribution to test model significance (P<0.05).

206	Interpretation of multivariate analysis was performed through scores and loadings
207	plots according to its contribution to the separation between groups. For biomarker
208	search, PLS-DA loadings were sorted by absolute values, being the first ones the
209	metabolites responsible of the separation between experimental groups. Because both
210	PCA and PLS-DA analysis may be influenced by variable correlations, the intra- and the
211	inter-class variance of metabolites may have no significant differences in the one-
212	dimensional statistical analysis [17]. For this reason, spectral bins were also selected using
213	a Volcano plot with paired student <i>t</i> test analysis between HS over TN cohorts to get a
214	general overview of the data (log ₂ fold change thresholds, \leq 1.5 and \geq 1.5; P<0.01). All ¹ H
215	NMR data pre-processing, statistical analysis and the generated plots were performed
216	using R software v. 3.2.3 [14].
217	
218	Metabolite assignment
219	Chemical shifts linked to the highest loading values found in PLS-DA were annotated for
220	metabolite assignment as HS biomarker candidates. The candidate chemical shifts and
221	corresponding metabolites were assigned using the Human Metabolome Database [18]
222	and queried in KEGG (Kyoto Encyclopedia of Genes and Genomes) database to know in
223	which metabolic pathways they were involved.
224	
225	
226	Results and discussion
227	Effects of heat stress on thermophysiological and lactational performances

of the goats

229	The effects of the experimental HS conditions on thermophysiological and lactational
230	performances of the dairy goats are summarized in Table 1. Rectal temperature and
231	respiratory rate increased during the day in both groups of does, following the expected
232	circadian rhythm and the daily THI pattern in both TN and HS conditions. The greatest
233	values were observed in the HS does at 1700, the increases being 1.2°C and 3.5-fold
234	(P<0.001) when compared to TN does. On average, feed intake decreased 35% in HS
235	(P<0.001) when compared to TN does but, in contrast, water consumption increased 74%
236	(P<0.001). Furthermore, HS does lost 115 g/d of body weight, whereas TN goats won 162
237	g/d, on average (P<0.001). Obtained results agreed with those reported for the same
238	breed of dairy goats in late-lactation and under similar HS conditions [11].
239	Reducing feed intake is a way to decrease heat production in warm environments
239 240	Reducing feed intake is a way to decrease heat production in warm environments because heat increment of feeding, especially in ruminants, is an important source of heat
240	because heat increment of feeding, especially in ruminants, is an important source of heat
240 241	because heat increment of feeding, especially in ruminants, is an important source of heat production [4]. Moreover, increased water consumption under HS conditions is mainly
240 241 242	because heat increment of feeding, especially in ruminants, is an important source of heat production [4]. Moreover, increased water consumption under HS conditions is mainly used for boosting latent heat losses by evaporation (e.g., sweating and panting). Despite
240241242243	because heat increment of feeding, especially in ruminants, is an important source of heat production [4]. Moreover, increased water consumption under HS conditions is mainly used for boosting latent heat losses by evaporation (e.g., sweating and panting). Despite this, no differences in milk yield were observed, although milk composition markedly
 240 241 242 243 244 	because heat increment of feeding, especially in ruminants, is an important source of heat production [4]. Moreover, increased water consumption under HS conditions is mainly used for boosting latent heat losses by evaporation (e.g., sweating and panting). Despite this, no differences in milk yield were observed, although milk composition markedly worsened. Milk fat, protein and lactose contents varied by –9%, –16% and –5%,
 240 241 242 243 244 245 	because heat increment of feeding, especially in ruminants, is an important source of heat production [4]. Moreover, increased water consumption under HS conditions is mainly used for boosting latent heat losses by evaporation (e.g., sweating and panting). Despite this, no differences in milk yield were observed, although milk composition markedly worsened. Milk fat, protein and lactose contents varied by –9%, –16% and –5%, respectively (Table 1; P<0.01), which would severely compromise the milk transformation

Table 1. Thermophysiological and lactational performances of dairy goats under thermal
 neutral (TN) and heat stress (HS) conditions. Values are least square means and standard
 error of the means (SEM).

	Treatment			
Item	TN	HS	SEM	P value
Rectal temperature, ^o C				
0800	38.5	39.1	0.08	<0.001
1200	38.7	39.7	0.07	<0.001
1700	38.7	39.9	0.09	<0.001
Respiratory rate, breaths/min				
0800	27	69	4	<0.001
1200	39	131	6	<0.001
1700	37	130	6	<0.001
Performances				
Dry matter intake, kg/d	2.26	1.47	0.09	<0.001
Water intake, L/d	6.1	10.6	1.0	<0.001
Final body weight, kg	48.6	39.8	1.8	<0.001
Body weight variation, kg	3.5	-2.1	1.0	<0.001
Milk yield, L/d	1.88	1.79	0.11	0.413
FCM ¹ yield, L/d	2.17	1.86	0.13	0.017
Milk composition, %				
Fat	3.98	3.64	0.13	0.009
Protein	3.40	2.85	0.10	<0.001
Lactose	4.51	4.30	0.07	0.003

252

¹Fat corrected milk at 3.5%; FCM = $L \times [0.432 + 0.162 \times (fat, \%)]$, being L liters of milk.

253 Although our does were less sensitive to HS than dairy cows with regard to feed intake

and milk yield, the effects of HS on milk fat content and fat corrected milk were

255 contradictory when compared to cows. So, despite the typical fat depression seen in

commercial dairy cow farms during the summer, Rhoads et al. [5] and Shwartz et al. [20]

reported 9% increase or no change in milk fat content, at the short- or mid-term,

respectively, in HS vs. TN dairy cows. On the other hand, the above indicated negative

effect of HS on the milk protein content of our goats (i.e., -16%), was greater than

reported by Rhoads et al. ([5], -5%) and Shwartz et al. ([20], -9%) in dairy cows, and herewith in the same breed of dairy goats in late lactation ([11], -13%). The negative effects of HS on the lactational performances of dairy ruminants are usually attributed to the decline in feed intake, but pair-fed experiments under TN conditions have shown that feed intake only explains approximately a half of the fall in milk yield and body weight in dairy cows [5, 6]. Therefore, similar responses were expected in our dairy goats.

As an intermediate conclusion, the thermophysiological and lactational performance

responses observed, clearly evidenced that our HS does (kept at THI = 75 to 83) were

268 under severe stress on the days at which the urine samples for ¹H NMR-metabolomics

assessment were collected (day 15).

270 NMR urinary spectroscopy of the goats

271 Comparison of ¹H NMR urinary mean spectra for the TN and HS lactating does is shown in

272 Fig 1. Resonance assignments reported in the figure were made from the known chemical

273 shifts and coupling patterns of urine spectra previously described in humans [14, 21].

274 Fig 1. One-dimensional ¹H NMR spectra at 600 MHz of urine from representative

thermoneutral (TN) and heat stressed (HS) dairy does. Dominant metabolites were: 1,

276 creatinine; 2, creatine; 3, trimethyl-N-oxide; 4, urea; 5, branched-chain amino acids and

277 organic acids; 6, glycine; 7, allantoin; 8, alanine; 9, N-acetyl glycoprotein; 10, glutamate;

278 **11**, succinic acid; **12**, citric acid; **13**, aromatic signals; **14**, hippuric acid.

279 S1 Table. ¹H NMR data matrix of normalized and binned spectral data. HS, heat-stressed

280 lactating dairy does; TN, thermal neutral lactating dairy does.

281 At first sight, visible differences in urine metabolites were found between HS and TN 282 groups. Spectral region from δ = 8.0-6.5 ppm showed higher excretion compounds in the

283	HS doe group. On the contrary, all excreted compounds that lay on the δ = 4.5-0.5 ppm
284	spectral region appeared to be at lower concentrations in the HS group. More detailed
285	analysis of metabolic differences between these two thermal conditions were obtained
286	from the multivariate PCA and PLS-DA data analyses and the Volcano plot.
287	First, the Volcano plot (Fig 2) showed that TN does excreted a greater number of
288	urinary metabolites (i.e., higher number of left-sided spots) than HS does. Most probably,
289	this was a consequence of the metabolic sparing of nutrients of the HS does, which loosed
290	weight as a result of their negative energy balance, to cope with the HS conditions.
291	Fig 2. Volcano plot based on fold change (log_2) and P value ($-log_{10}$) of all spectral bins of
292	1 H NMR urinary spectroscopy of thermoneutral (TN) and heat stressed (HS) lactating
293	dairy does. Red circles indicate the spectral bins that showed significant changes and
294	absolute fold changes greater than 1.5.
295	Regarding the multivariate analysis, PCA was initially applied to the ¹ H NMR spectra.
296	Based on the principle of minimum differentiation, no samples were identified as outliers
297	according to Hotelling's T ² (95% interval of confidence). Therefore, all samples remain for
298	subsequent PLS-DA in order to identify the metabolic differences between HS and TN dairy
299	does. The PLS-DA scores plot showed a slight distinguishable separation between HS and
300	TN datasets (Fig 3).
301	Fig 3. PLS-DA scores plot of the first two principal components of ¹ H NMR urinary spectra

302 of thermoneutral (TN) and heat stressed (HS) lactating dairy does.

303 The separation along the x-axis (PLS-DA component 1) represents differences related 304 to the environmental treatment. All other variations in the NMR data are visualized as 305 separation in the y-axis direction (second component). The cross-validation of plasma

306	metabolomics PLS-DA models (first 2 components) gave R_x^2 = 0.54, R_y^2 = 0.17, and Q^2 =
307	0.47. The R ² and Q ² values in the model were higher than in the random model (P<0.01).
308	The top-ranking urinary metabolites responsible for discriminating HS does were hippurate
309	(δ = 7.54 ppm, 7.83 ppm and 7.63 ppm) and the phenylalanine (Phe) derivative
310	compounds OH-phenylacetate (δ = 7.27 ppm), OH-phenylacetylglycine (δ = 7.20 ppm) and
311	phenylglyoxylate (δ = 7.62 ppm). All of them were excreted in greater concentrations in
312	the urine of HS when compared to TN does. Table 2 shows the excreted metabolites with
313	the greatest quantitatively change under HS conditions, according to the results of the
314	univariate and multivariate analyses.
315	As it can be observed, of them come from certain gastrointestinal bacteria that
316	generate uremic toxins that are absorbed into the blood and mainly cleared by the kidney
317	[22, 23]. The greater excretion of these metabolites, also known as gut-derived uremic
318	toxins and mammalian-microbial cometabolites [24], may be related to an abnormal
319	overgrowth of gastrointestinal microbiota that is commonly accompanied with intestinal
320	hyper-permeability [23, 25, 26].
321	

322 **Table 2. Selected metabolites contributing to the classification of the urine metabolome**

323 of thermoneutral and heat stressed lactating dairy does.

Pathway	Chemical shift (δ, ppm)	Metabolite	Fold change [*]	P value
Phenylalanine (Phe) metabolism	7.83, 7.63, 7.54	Hippurate	2.74	<0.001
	7.62	Phenylglyoxylate	1.59	<0.001
Microbial metabolism in diverse environments	7.27	OH-phenylacetate	1.51	<0.001

	[]		1	1	
	Tyrosine (Tyr) metabolism	7.20	OH-phenylacetylglycine	2.16	<0.001
324 325 326 327	* Metabolites with positive concentrations under heat st	0	ues means that they are	excreted in	greater
328	The increase of gut-deriv	ved uremic toxins	s reflected alterations in th	ne gastroint	estinal
329	environment due to the met	abolic impact of	HS. In fact, it is well knowr	n that under	HS
330	conditions, mammals redistr	ibute blood to th	e periphery for heat dissip	oation purpo	oses,
331	while vasoconstriction occur	s in the gastroint	estinal tract [27] that lead	s to tissue h	ypoxia
332	and oxidative stress [28]. Mo	oreover, lower ru	men pH has been reported	d as a side e	ffect in
333	HS goats [29] and it may con	npromise the inte	egrity of the gastrointestin	al tract barr	ier [2].
334	Hippurate and other Phe	e-derivative com	pounds are produced by th	ne aerobic a	nd
335	anaerobic degradations of a	romatic amino ac	ids (e.g., Phe and Tyr) and	dietary	
336	polyphenols by the gastroint	testinal microbiot	a [22, 30, 31]. Although th	iey are usua	lly
337	found in plasma and excrete	d in urine by cros	ssing the cellular and tissue	e barriers	
338	(gastrointestinal epithelium,	lymphatic barrie	r and liver), high levels of	Phe-derivat	ives in
339	urine are related to gastroin	testinal leaky stag	ges [32]. Moreover, high le	evels of gut-	derived
340	uremic toxins seem to affect	both the cellular	protein expression and th	ne activity o	f the
341	cyclooxygenase-2 (COX-2) er	nzyme, which play	ys a major role in the regu	lation of	
342	inflammation trough the pro	oduction of prosta	aglandins; so, when COX-2	activity is s	peed
343	up, inflammation increased	[33]. Some Phe-d	erivatives also produce cy	totoxic effe	cts by
344	the inhibition of cell pores o	pening and the p	roduction of reactive oxyg	en species [34].
345	Among Phe-derivatives,	hippurate has a s	strong association with die	et and	
346	gastrointestinal microbiota a	and its productior	n requires of both microbia	al and mami	malian
347	metabolisms [24]. Gastrointe	estinal bacteria p	roduce benzoic acid from	dietary aror	natic

348	compounds, which is absorbed into the blood. Because of the toxicity of benzoic acid, it is
349	conjugated with glycine in the mitochondrial matrix of the liver and renal cortex to form
350	hippuric acid [24, 25], which is later filtered in the kidneys and finally excreted in urine as
351	hippurate [24, 35]. The main elimination route for hippurate is the active renal tubular
352	secretion and its disruption results in its accumulation in the blood [24]. Hippurate is a
353	uremic toxin that participates in the correction of metabolic acidosis by stimulating
354	ammoniagenesis, a dominant and adaptive mechanism of proton excretion. Moreover, it
355	interferes several metabolic processes, such as: inhibition of glucose utilization by the
356	kidney and muscle, modulation of fatty acid metabolism and regulation of acid-base
357	balance by stimulating kidney's ammoniagenesis, among others, as reviewed by Dzúrik et
358	al. [35].
359	It might also be noted that, additionally to the production of gut-derived uremic toxins
360	from dietary aromatic amino acids by the gastrointestinal microbiota, Phe is known to be
361	an essential amino acid for most animals, including ruminants [36]. It is also the precursor
362	of Tyr, that is essential for the synthesis of thyroid hormones and levodopa
363	neurotransmitter. Previous studies have evidenced a strong decrease in plasma thyroid
364	hormones (i.e., TSH, T4 and T3) of steers under HS conditions [37], which means that the
365	basal heat production may in fact decrease when Phe and Tyr are scarce. Moreover, the
366	rate of milk production is markedly affected by thyroid hormones, which modulate the
367	nutrient partitioning towards milk production [38]. On the other hand, a decrease in the
368	dopaminergic neurons activity was also observed in HS calves [39]. The drop of levodopa
369	synthesis may be the result of the hypersecretion of its antagonist prolactin, as observed
370	in response to HS in goats [40], ewes [41] and cows [42]. Prolactin is not only a hormone

372	thermoregulation and water balance. The increase in plasma prolactin is not reflected in
373	an increase in milk yield, as seen in dairy ruminants under HS conditions [11, 43]. Alamer
374	[44] concluded that the mammary gland experiences a down-regulation of prolactin
375	signaling pathways that could partially explain the depressed milk production of dairy
376	cows during HS.

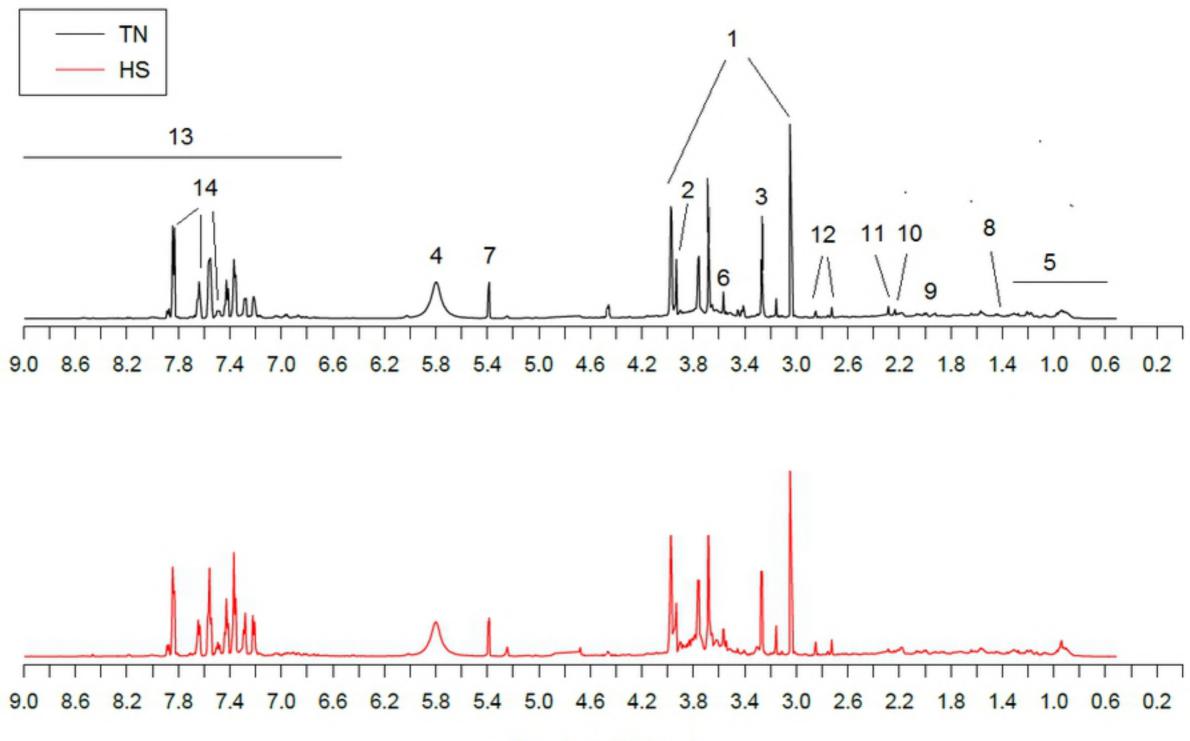
377 **Conclusions**

- 378 Heat stress caused marked changes in thermophysiological traits and lactational
- performances of dairy goats, which were translated into their ¹H NMR metabolomic
- 380 urinary profile. These changes were related to the over-excretion of gut-derived toxic
- 381 compounds generated by the gastrointestinal microbiota with expected decreases in the
- 382 bioavailability of aromatic amino acids and impairment of the synthesis of thyroid
- 383 hormones and neurotransmitters (i.e., levodopa, serotonin), which compromised the milk
- 384 production of dairy goats. In practice, the use of hippurate and other phenylalanine
- 385 derivatives are suggested as urinary biomarkers to identify heat stressed animals.

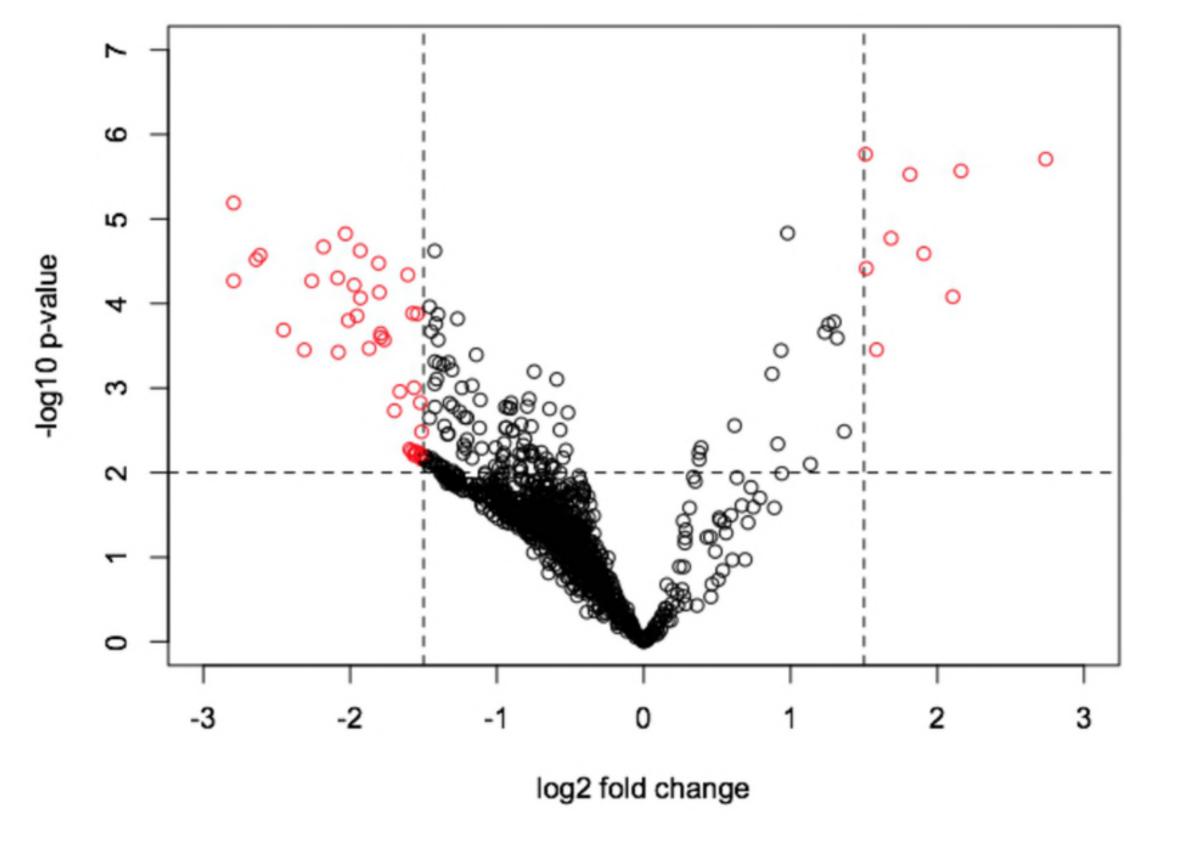
386 Acknowledgements

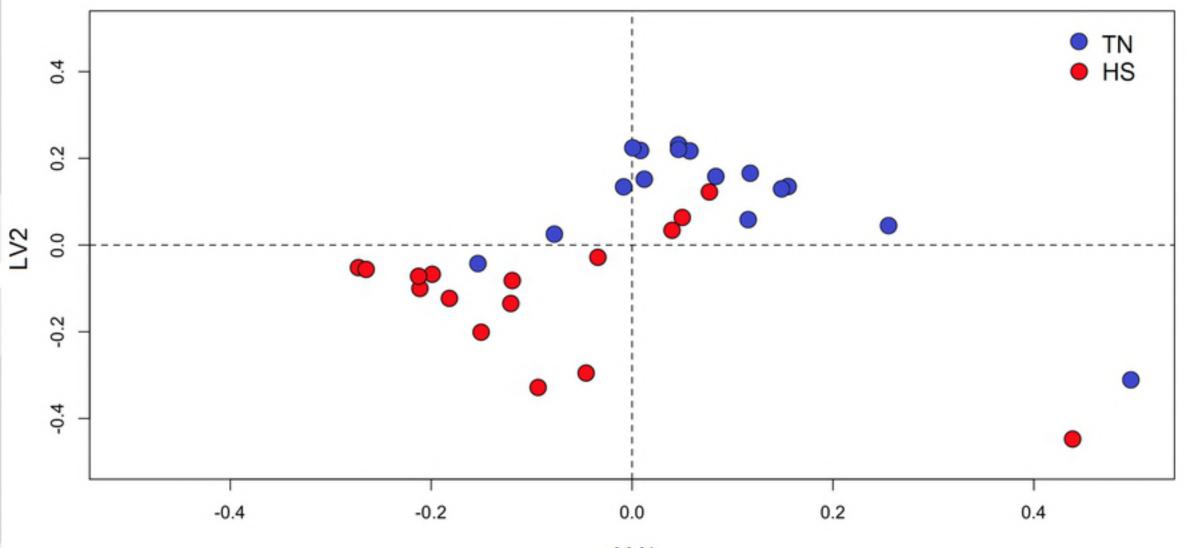
- 387 The authors are grateful to the technical team of SGCE (Servei de Granges i Camps
- 388 Experimentals) of the UAB for the care of the animals.
- 389

390 **References**


- Bernabucci U, Lacetera N, Baumgard LH, Rhoads RP, Ronchi B, Nardone A.
 Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Anim. 2010;4:1167–83. pmid: 22444615.
- 3942. Baumgard LH, Rhoads RP. Effects of heat stress on postabsorptive metabolism395and energetics. Annu Rev Anim Biosci. 2013;1:311–37. pmid: 25387022.

• • •	-		
396		3.	Hansen PJ. Effects of heat stress on mammalian reproduction. Philos Trans R Soc
397			Lond B Biol Sci. 2009; 364:3341–50. pmid: 19833646.
398		4.	Salama AAK, Caja G, Hamzaoui S, Badaoui B, Castro-Costa A, Façanha DE et al.
399)		Different levels of response to heat stress in dairy goats. Small Rumin. Res.
400)		2014;121:73–9.
401		5.	Rhoads ML, Rhoads RP, VanBaale MJ, Collier RJ, Sanders SR, Weber WJ et al.
402	2		Effects of heat stress and plane of nutrition on lactating Holstein cows: I.
403	;		Production, metabolism, and aspects of circulating somatotropin. J Dairy Sci.
404	ŀ		2009;92:1986–97. pmid: 19389956.
405	5	6.	Wheelock JB, Rhoads RP, VanBaale MJ, Sanders SR, Baumgard LH. Effects of heat
406	Ď		stress on energetic metabolism in lactating Holstein cows. J Dairy Sci.
407	7		2010;93:644–55. pmid: 20105536.
408	3	7.	Ippolito DL, Lewis JA, Yu C, Leon LR, Stallings JD. Alteration in circulating
409)		metabolites during and after heat stress in the conscious rat: potential
410			biomarkers of exposure and organ-specific injury. BMC Physiol. 2014;14:14.
411			pmid: 25623799.
412		8.	Beckonert O, Keun HC, Ebbels TMD, Bundy J, Holmes E, Lindon JC et al.
413		-	Metabolic profiling, metabolomic and metabonomic procedures for NMR
414			spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols.
415			2007;2:2692–703. pmid: 18007604.
416		9.	Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen EJJ et al.
417			Assessment of PLSDA cross-validation. Metabolomics. 2008;4:81–9.
418		10.	Yamamoto H, Yamaji H, Abe Y, Harada K, Waluyo D, Fukusaki E et al.
419			Dimensionality reduction for metabolome data using PCA, PLS, OPLS, and RFDA
420			with differential penalties to latent variables. Chemom Intell Lab Syst.
421			2009;98:136–42.
422		11.	Hamzaoui S, Salama AAK, Albanell E, Such X, Caja G. Physiological responses and
423			lactational performances of late lactating dairy goats under heat stress
424			conditions. J Dairy Sci. 2013;96:6355–65. pmid: 23958010.
425		12	AOAC (2003) Official Methods of Analysis of the Association of Official's
426		12.	Analytical Chemists. 17th Edition, Association of Official Analytical Chemists
427			(AOAC), Arlington, Virginia.
428		13	Worley B, Powers R. Multivariate analysis in metabolomics. Curr Metabolomics.
429		15.	2013;1:92–107. pmid: 26078916.
430		1/	R Core Team. R: A language and environment for statistical computing. R
431		⊥ .	Foundation for Statistical Computing, Vienna, Austria. 2015. URL https://www.R-
432			project.org/.
433		15	Pechlivanis A, Kostidis S, Saraslanidis P, Petridou A, Tsalis G, Mougios V et al. H-1
434		15.	NMR-Based Metabonomic Investigation of the Effect of Two Different Exercise
435			Sessions on the Metabolic Fingerprint of Human Urine. J Proteome Res.
436			
		10	2010;9:6405–16. pmid: 20932058. Movik B. Webrens B., Hoyde Liland K. Bls: Partial Least Squares and Principal
437		тр.	Mevik B, Wehrens R., Hovde Liland K. Pls: Partial Least Squares and Principal
438			Component Regression. R package version 2.5-0. 2015. Available from:
439		47	http://CRAN.R-project.org/package=pls.
44(17.	Ji P, Wei Y, Hua Y, Zhang X, Yao W, Ma Q et al. A novel approach using
441			metabolomics coupled with hematological and biochemical parameters to
442	2		explain the enriching-blood effect and mechanism of unprocessed Angelica


443		sinensis and its 4 kinds of processed products. J Ethnopharmacol .
444		2017;211:101–16. pmid: 28958590.
445	18.	Wishart DS, Knox C, Guo AC. 2009. HMDB: a knowledgebase for the human
446		metabolome. Nucleic Acids Res. 2009;37 (Database Issue):D603–610. pmid:
447		18953024.
448	19.	Salama AAK, Caja G, Hamzaoui S, Such X, Albanell E, Badaoui B et al. 2016. Chap.
449		2. Thermal stress in ruminants: Responses and strategies for alleviation. In:
450		Animal Welfare in Extensive Systems. J. Villalba, X. Manteca (eds.). The animal
451		Welfare Series, 5M Publishing, Sheffield, UK, pp. 11–34.
452	20.	Shwartz G, Rhoads ML, VanBaale MJ, Rhoads RP, Baumgard LH. Effects of a
453		supplemental yeast culture on heat-stressed lactating Holstein cows. J.
454		Dairy Sci. 2009;92:935-42. pmid: 19233786.
455	21.	Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C et al. The human urine
456		metabolome. PLoS One 2013;8:e73076. 10.1371/journal.pone.0073076. pmid:
457		24023812.
458	22.	Martin AK. The origin of urinary aromatic compounds excreted by ruminants. 1.
459		The metabolism of quinic, cyclohexanecarboxylic and non-phenolic aromatic
460		acids to benzoic acid. British J Nutr. 1982;47:139–54. pmid: 7059566.
461	23.	Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted
462		interventions. J Am Soc Nephr. 2014;25: 657–70. pmid: 24231662.
463	24.	Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. Hippurate: the natural
464		history of a mammalian-microbial cometabolite. J Proteome Res. 2013;12:1527-
465		46. pmid: 23342949.
466	25.	Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism
467		and personalized health care. Nat Rev Microbiol. 2005;3:431–8. pmid:
468		15821725.
469	26.	Pearce SC, Mani V, Weber TE, Rhoads RP, Patience JF, Baumgard LH, Gabler NK.
470		Heat stress and reduced plane of nutrition decreases intestinal integrity and
471		function in pigs. J Anim Sci. 2013;91:5183–93. pmid: 23989867.
472	27.	Kregel KC, Wall PT, Gisolfi CV. Peripheral vascular responses to hyperthermia in
473		the rat. J Appl Physiol. 1988;64:2582–8. pmid: 340344.
474	28.	Lambert GP. Stress-induced gastrointestinal barrier dysfunction and its
475		inflammatory effects. J Anim Sci. 2009;87(14 Suppl):E101–8. pmid: 18791134.
476	29.	Castro-Costa A, Salama AAK, Moll X, Aguiló J, Caja G. Using wireless rumen
477		sensors for evaluating the effects of diet and ambient temperature in
478		nonlactating dairy goats. J Dairy Sci. 2015;98:4646–58. pmid: 25958285.
479	30.	Macfarlene GT, Macfarlene S. Human colonic microbiota: ecology, physiology
480		and metabolic potential of intestinal bacteria. Scand J Gastroenterol. 1997;32
481		(Suppl 222):3–9. pmid: 9145437.
482	31.	Pallister T, Jackson MA, Martin TC, Zierer J, Jennings A, Mohney RP, MacGregor
483		A, Steves CJ, Cassidy A, Spector TD, Menni C. Hippurate as a metabolomic
484		marker of gut microbiome diversity: Modulation by diet and relationship to
485		metabolic syndrome. Sci Rep. 2017;7:13670. pmid: 29057986.
486	32.	Fedotcheva NI, Kazakov RE, Kondrashova MN, Beloborodova NV. Toxic effects of
487		microbial phenolic acids on the functions of mitochondria. Toxicol Lett.
488		2008;180:182–8. pmid: 18634861.


489	33.	Karlsson PC, Huss U, Jenner A, Halliwell B, Bohlin L, Rafter JJ. Human fecal water
490		inhibits COX-2 in colonic HT-29 cells: role of phenolic compounds. J Nutr.
491		2005;135:2343–9. pmid: 16177193.
492	34.	Galati G, Lin A, Sultan AM, O'Brian PJ. Cellular and in vivo hepatotoxicity caused
493		by green tea phenolic acids and catechins. Free Radic Biol Med. 2006;40:570–80.
494		pmid: 16458187.
495	35.	Dzúrik R, Spustová V, Krivosíková Z, Gazdíková K. Hippurate participates in the
496		correction of metabolic acidosis. Kidney Int. 2001;78:S278–81. pmid: 11169026.
497	36.	Patton RA, Hristov AN, Parys C, Lapierre H. Relationships between circulating
498		plasma concentrations and duodenal flows of essential amino acids in lactating
499		dairy cows. J Dairy Sci. 2015;98: 4707–34. pmid: 25912872.
500	37.	Kahl S, Elsasser TH, Rhoads RP, Collier RJ, Baumgard LH. Environmental heat
501		stress modulates thyroid status and its response to repeated endotoxin
502		challenge in steers. Domest Anim Endocrinol. 2015;52:43–50. pmid: 25804834.
503	38.	Hurley WL. Adrenal and thyroid hormones; 2010 [cited 25 July 2018]. In:
504		Lactation biology website. University of Illinois, Urbana-Champaign, IL. Available
505		from: http://ansci.illinois.edu/static/ansc438/Lactation/adrenalthyroid.html
506	39.	Tucker HA, Chapin LT, Lookingland KJ, Moore KE, Dahl GE, Evers JM.
507		Temperature effects on serum prolactin concentrations and activity of
508		dopaminergic neurons in the infundibulum/pituitary stalk of calves. Proc Soc Exp
509		Biol Med. 1991;197:74–6. pmid: 1902294.
510	40.	Sergent D, Berbigier P, Kann G, Ravault JP. Effect of prolactin inhibition on
511		thermo-physiological parameters and on plasma prolactin and cortisol
512		concentrations in male Creole goats. Reprod Nutr Dev. 1985;25:629–40.
513	41.	Colthorpe KL, Anderson ST, Martin GB, Curlewis JD. Hypothalamic dopamine D1
514		receptors are involved in the stimulation of prolactin secretion by high
515		environmental temperature in female sheep. J Neuroendocrinol. 1998;10:503-
516		9. pmid: 9700677.
517	42.	Ronchi B, Stradaioli G, Supplizi AV, Bernabucci U, Lacetera N. Influence of heat
518		stress or feed restriction on plasma progesterone, oestradiol-17b, LH, FSH,
519		prolactin and cortisol in Holstein heifers. Livest. Prod Sci. 2001;68:231–41.
520	43.	Gao ST, Guo J, Quan SY, Nan XM, Fernández MVS, Baumgard LH, Bu DP. The
521		effects of heat stress on protein metabolism in lactating Holstein cows. J Dairy
522		Sci. 2017;100:5040–9. pmid: 28390717.
523	44.	Alamer M. The role of prolactin in thermoregulation and water balance during
524		heat stress in domestic ruminants. Asian J Anim Vet Adv. 2011;6:1153–69.
525		
526	Suppo	orting information
527	S1 Datas	et. ¹ H NMR data matrix of normalized and binned spectral data. HS, heat-stressed

- 528 lactating dairy does; TN, thermal neutral lactating dairy does.

Chemical shift (ppm)

LV1