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Abstract 
Streptococcus pneumoniae​ is a common nasopharyngeal colonizer, but can also cause 
life-threatening invasive diseases such as empyema, bacteremia and meningitis. Genetic 
variation of host and pathogen is known to play a role in invasive pneumococcal disease, 
though to what extent is unknown. In a genome-wide association study of human and 
pathogen we show that human variation explains almost half of variation in susceptibility to 
pneumococcal meningitis and one-third of variation in severity, and identified variants in 
CCDC33​ associated with susceptibility. Pneumococcal variation explained a large amount of 
invasive potential, but serotype explained only half of this variation. Newly developed 
methods identified pneumococcal genes involved in invasiveness including ​pspC​ and ​zmpD​, 
and allowed a human-bacteria interaction analysis, finding associations between 
pneumococcal lineage and ​STK32C​. 
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Streptococcus pneumoniae​, or the pneumococcus, is a leading cause of pneumonia, 
meningitis, and bacteremia. Over 90 serotypes are known, which have varying prevalence of 
asymptomatic carriage and disease ​1,2​. Some clonal genotypes have been associated with 
invasive disease, though as serotype is correlated with genetic background, finding how 
much each of these factors affects invasive propensity in clinical cases of disease is 
challenging.  
 
Bacterial meningitis involves severe inflammation of the membranes surrounding the brain, 
the meninges, which is a response to the presence of bacteria in the cerebrospinal fluid 
(CSF)​3​. ​S. pneumoniae​ is the most common cause of bacterial meningitis and despite 
advances in vaccination and treatment case fatality rate is 17-20% and unfavourable 
outcome occurs in 38-50% of cases​4​. 
 
Knowledge of the contribution of genetic variability of humans and invading pathogens to 
pneumococcal meningitis susceptibility could guide development of new vaccines preventing 
the progression from asymptomatic carriage to invasive disease, whereas genetic variation 
associated with disease severity may guide new clinical intervention strategies during 
treatment​5​. However the effect of human genetics on pneumococcal meningitis is unknown – 
whether it affects the disease at all, and if so, which specific regions of the genome cause 
the effect. Historically, genetic association studies on bacterial meningitis have been held 
back by only assessing candidate genes, small sample sizes or poorly defined phenotypes​6​. 
More recent GWAS studies have found associations for children with meningococcal 
meningitis in Europe ​7​, and pneumococcal meningitis in Kenya ​8​. 
 
In terms of pathogen variability, it is well known that the pneumococcal polysaccharide 
capsule, which determines its serotype, contributes to invasive propensity​1,2​. The 
pneumococcal genome also encodes a variety of proteins which directly interact with the 
host, mostly to enhance colonisation and avoid the host immune response ​9​. Mouse models 
have shown that some antigens such ​pspC​ (​cbpA​) enhance virulence but are not essential in 
invasive isolates. Though the role of these antigens in colonisation and disease may be 
known, whether sequence variation at these loci has an effect on pathogenesis in human 
disease remains unclear. Previous small association studies have additionally suggested a 
role for platelet binding ​10​ and arginine synthesis​11​ in pneumococcal meningitis, and analysis 
of within-host variation found that sequence variation of ​dlt​ and ​pde1​ are associated with 
pneumococcal meningitis​12,13​. 
 
Thus, because of a lack of large cohort studies combined with detailed clinical metadata, the 
overall role of pneumococcal variation in clinical cases of meningitis is as yet unknown. It 
has not been possible to calculate the degree to which different serotypes affect 
invasiveness compared to other factors (either genetic or environmental), or if there are 
serotype-independent loci which are involved in invasion. Bacterial genome wide association 
studies (GWAS) provide a way to identify pneumococcal sequence variation associated with 
meningitis, independent of genetic background in an unbiased manner. While GWAS is 
more challenging in bacteria than humans due to strong population structure and high levels 
of pan-genomic variation, recent methodological advances have helped overcome these 
issues​14–16​. 
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We have collected data and samples from Dutch adults with meningitis between Jan 1, 
2006, and July 1, 2014 in the prospective and nationwide MeninGene cohort​4​. Our study 
addresses previous limitations of genetic studies by collecting a large number of samples of 
both host and pathogen DNA from culture-proven cases of pneumococcal meningitis, along 
with detailed clinical metadata (supplementary table 1). We have performed genotyping and 
whole genome sequencing of this collection, a combined GWAS of host and pathogen in 
pneumococcal meningitis, the first time such a study has been attempted for a bacterial 
disease. We performed a GWAS separately in host and pathogen, continuing to develop 
new approaches to conduct the latter analysis. In both cases we have collected additional 
cohorts to replicate our findings (figure 1). We also had sequences available from both host 
and pathogen in 460 cases allowing analysis of interaction effects in a joint GWAS. Using 
these well characterised cohorts we explain the role of genetic variation of human and 
pathogen in pneumococcal meningitis. 
 

 
Figure 1: Overview of cohorts sequenced and associations performed.​ Left, host data; right, 
bacterial data; the centre represents samples with both host and pathogen sequence data. Samples 
in green are those collected from our MeninGene cohort that form the centre of this work. Due to 
unbalanced case control ratios we show the effective sample size, specific numbers of cases and 
controls of human genotypes are shown in Supplementary table 2.  
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Results 

Human genetics influences pneumococcal meningitis susceptibility and 
severity 
Before trying to find specific loci associated with meningitis, we first calculated the heritability 
of susceptibility and severity due to host genetics using the MeninGene cohort. While 
genetic associations have been found with invasive meningococcal disease ​7​ and 
susceptibility to infectious diseases more broadly​17,18​, the heritability of adult meningitis and 
its outcome have not previously been calculated. We used two methods to calculate SNP 
heritability, which showed that variation in host genetics explains 29% ± 7% of the observed 
variation in pneumococcal meningitis susceptibility, and 49% ± 14% of the variation in 
meningitis severity (table 1). 
 
Table 1: Human SNP heritability (​h ​2 ​SNP ​) of meningitis susceptibility and severity in Dutch 
adults.​ Heritabilities are shown on the liability scale (adjusted for population prevalence and case 
ascertainment ratio). We used two methods for each phenotype, GCTA and LDAK. The latter corrects 
for linkage disequilibrium when estimating the kinship between genotypes. All results showed 
significant evidence for a heritability above zero. 

Phenotype Method Heritability Error P-value 

Susceptibility 
(any species) 

GCTA 0.22 0.03 2.4x10 ​-6 

 LDAK 0.29 0.05 3.9x10 ​-11 

Susceptibility 
(pneumococcal) 

GCTA 0.25 0.05 2.4x10 ​-6 

 LDAK 0.29 0.07 3.9x10 ​-6 

Severity GCTA 0.29 0.11 2.8x10 ​-5 

 LDAK 0.49 0.14 1.4x10 ​-4 

  
Finding that these traits were heritable we then used GWAS to search for specific loci 
associated with meningitis. Using the MeninGene cohort alone, one marker reached 
significance when testing for severity: position 64680775 (rs12081070) on chromosome 1, 
an intronic variant in ​UBE2U​ which was associated with unfavourable outcome (MAF = 0.43; 
OR = 1.63; p = 2.0x10 ​-8​) (supplementary figures 1-4). ​UBE2U​ is part of the ubiquitin 
pathway, but has not been previously associated with any disease or trait. Chromatin 
conformation capture data shows that the site of the most significantly associated variant 
interacts with ​PGM1​ and ​ROR1​ in a range of immune cell types including 
monocyte/macrophages, CD4/8 T cells, B cells and neutrophils (supplementary figure 5). 
PGM1 ​ encodes a phosphoglucomutase while ​ROR1​ is a protein of unknown function which 
has previously been associated with cancers​19​ and pulmonary function ​20​. There was 
evidence of association of rs12081070 with gene expression in a panel of tissues and cell 
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types but this was only significant in skin (p = 5.7x10 ​-13​)​21​. Six other loci showed suggestive 
significance (table 2), whereas in the Danish cohort, no variants reached genome wide 
significance (supplementary figures 6 & 7). 
 
Table 2: Signals of human association in the MeninGene cohort.​ We report the lead SNP at each 
associated locus with MAF > 5% and p < 1x10 ​-6 ​, and nearby annotated genes. The suggestive signal 
in all meningitis cases was also present when restricted to pneumococcal cases, albeit with a lower 
p-value of 3.9x10 ​-7 ​. 

Position (SNP) Effect 
allele 

MAF OR P-value Annotation 

Susceptibility (any species) 

chr6:153582990  
(rs3870369) 

T 0.42 1.27 7.2x10 ​-8 Upstream of ​RGS17 

Susceptibility (pneumococcal) 

chr6:117624549  
(rs210967) 

G 0.46 0.77 8.8x10 ​-7 ROS1​ intronic 

chr18:48403560  
(rs2850542) 

T 0.43 0.65 7.6x10 ​-8 ME2 ​promoter (2kb 
upstream of TSS) 

chr22:47506160  
(rs13057743) 

G 0.33 0.74 5.5x10 ​-7 TBC1D22A​ intronic 

Severity 

chr1:64680775  
(rs12081070) 

A 0.43 1.62 2.0x10 ​-8 UBE2U ​(5th intron)​/ROR1 

chr4:182823804  
(rs2309554) 

A 0.33 1.58 4.1x10 ​-7 AC108142.1​ intron 

chr9:37382231 
(rs72739603) 

A 0.07 2.36 6.7x10 ​-7 ZCCHC7/GRHPR 

 
Of the genes implicated in the single cohort, we noted that the ​ME2​ promoter variant 
rs2850542 is an eQTL for the same gene in whole blood (p = 5.9x10 ​-20​, supplementary figure 
8A) and specifically in monocytes (FDR 5.1x10-26)​22​. There was also evidence of chromatin 
interaction of the variant location with ​SMAD4​ again in a range of immune cell types 
including monocytes, lymphocytes and neutrophils (supplementary figure 8B/C). This gene is 
involved in TGF-β signalling and invasion across the epithelium; the variant also showed 
evidence of an eQTL involving rs2850542 for ​SMAD4​ expression in tibial artery (p = 
8.6x10 ​-7​)​23​.  
 
To improve our discovery power and mitigate false positives from batch effects, we then 
performed similar associations in the other cohorts. In an analysis of all available cases 
(MeninGene, Danish invasive disease, GenOSept, 23andme, UK biobank invasive disease) 
no hits were significantly associated with invasive disease (supplementary figure 9). 
However, the results for susceptibility to meningitis (MeninGene, Danish meningitis, UK 
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biobank ICD-10 code for meningitis) found that position 74601544 on chromosome 15 
(rs116264669) was associated with the minor allele increasing susceptibility in all three 
studies (p = 4.4x10 ​-8​; MAF = 3%) (supplementary figures 10 & 11). This intronic SNP is 
located in ​CDCC33​, a gene that has no prior association with infectious disease. ​CDCC33​ is 
expressed in whole blood and the brain ​21​ although there is no evidence of an eQTL involving 
this variant or SNPs in linkage disequilibrium with it. The disease-associated variant is 
located in a genomic region that interacts with the immunoglobulin superfamily containing 
leucine rich repeat 2 gene ​ISLR2​ on chromatin conformation capture analysis in 
macrophages (supplementary figure 12A) and CD8 T-cells (supplementary figure 12B); 
moreover a variant in complete linkage disequilibrium (rs80140040) with the meningitis 
susceptibility SNP shows evidence of eQTL with ​ISLR2​ in a number of tissues including 
brain (p = 0.02). ​ISLR2​ shows highest expression in the brain (neural tissues, supplementary 
figure 12C) and plays a role in the development of the nervous system​24​ but remains poorly 
characterised notably in humans. Severity data had not been recorded in other cohorts, and 
there were too few cases that had resulted in death to allow using this as a proxy for 
unfavourable outcome in a meta-analysis. 
 
The results from the heritability analysis and GWAS suggest that susceptibility to meningitis 
is caused by many SNPs with individually low effect sizes (a polygenic trait), and that this 
cohort size is underpowered to detect these. To determine whether we expected the addition 
of more samples to uncover new associations with a larger effect size, we used Bayesian 
mixture models to fit the distribution of effect sizes in the MeninGene cohort. The maximum 
posterior suggested that 89% of the SNP heritability was caused by 29 large effect size 
SNPs (oligogenic), with the remaining heritability explained by small effect size SNPs 
(supplementary table 3). This was further supported by a dynamic Bayesian model 
incorporating variance in small and large effects, which found support for a mixture of many 
small effects plus a small number of large effects (maximum posterior ρ = 0.50 - proportion 
of variance explained by sparse terms) (supplementary table 4). 
 
The collection of these datasets gave us the opportunity to perform two further multi-cohort 
analyses related to sepsis and self-reported meningitis. In the first, we combined Danish 
bacteremia, GenOSept and self-reported cases of sepsis in the UK biobank, but found no 
significant hits. Furthermore, we found no evidence that sepsis from clinician diagnosed 
cases in the UK biobank (using ICD-10 codes) were heritable. Secondly, we meta-analysed 
23andme's results for self-reported meningitis with self-reported cases in the UK biobank​17​ – 
the reported hit in ​CA10​ did not replicate. Given the p-value in the original study was just 
significant, it is possible that this result was a false positive. This may also be an artefact of 
respondent's knowledge of whether they had bacterial meningitis, which requires expert 
knowledge to diagnose and distinguish from viral meningitis​25​. 

Multiple bacterial loci determine pneumococcal invasive potential 
We first performed a heritability analysis to quantify the amount of variation due to the 
pneumococcal genome for each phenotype on the liability scale. We found that additive 
pneumococcal genetics explained much of variation in invasive propensity (​h​2​ = 85%), but no 
evidence of heritability of meningitis severity (​h​2​ = 0%). This suggests that invasive 
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propensity is highly heritable, but that disease outcome is not determined by natural variation 
of pathogen genetics. The latter is not surprising as invasive disease is an evolutionary dead 
end for the pathogen so adaptations affecting virulence over the short course of infection are 
unlikely to be selected for. This is contrary to smaller studies which have suggested that 
bacterial genotype may help diagnose severe disease in a clinical setting ​26​, but consistent 
with a meta-analysis finding no effect of pneumococcal serotype on the risk-ratio of death 
from meningitis​27​.  
 
That pneumococcal invasiveness is affected by pneumococcal genetics is well known, but a 
quantitative estimate of by how much is unknown. The high heritability estimated here, 
suggests that in this population some bacteria are able to invade while others are not. This is 
consistent with some serotypes rarely found in invasive disease ​2​, and with wide genetic 
separation from invasive lineages. The current focus of pneumococcal vaccination, and the 
most well known invasiveness determinant, is serotype. We therefore calculated what 
proportion of variation in invasiveness can be attributed to the serotype. Although not 
adjusted directly for genetic background, logistic regression gave a variance in invasiveness 
explained by the observed serotypes using Nagelkerke’s pseudo R​2​ from logistic regression 
of 0.45, less than the total heritability. 

Identification of pneumococcal invasiveness loci in multiple cohorts 
Given that serotype does not explain all of the variation in invasive potential other 
pneumococcal factors associated with disease are likely to exist. We then looked at overall 
differences in the sequence variation between asymptomatic carriage and meningitis 
isolates. The amount of rare variation compared to common variation present in a population 
is informative of recent selection and population size changes​28​. An overall difference may 
therefore be informative of different selection on regions of the genome depending on the 
niche. In figure 2a we plot the site-frequency spectrum by niche and predicted consequence. 
Across the range of common minor allele frequencies (MAFs) in both niches the proportion 
of synonymous/nonsynonymous/intergenic/loss-of-function (LoF) mutations is as previously 
observed ​29​; at low frequencies there is an excess of potentially damaging variants. Figure 2c 
shows the overall burden of damaging rare variants between carriage and invasive samples; 
in both LoF and damaging variants there was higher burden in carriage isolates (median 
LoF: invasive 7, carriage 11, W = 297440, p < 1x10 ​-10​; median damaging: invasive 22, 
carriage 26, W = 345370, p = 8x10 ​-4​),  
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Figure 2: Differing burden and frequency of rare variation between invasive and carriage 
isolates, based on short variation called from mapping against the ATCC 700669 reference 
genome.​ Loss-of-function (LoF) are frameshift or nonsense mutations. a) The site frequency 
spectrum (SFS) stratified by niche and by predicted consequence. Frequency has been normalised 
with respect to the number of samples in each population. b) Histogram of Tajima’s D for all coding 
sequences in the genome, stratified by niche. c) Boxplot of number of rare variants per sample, 
stratified by niche and predicted consequence. Damaging mutations are LoF mutations and missense 
mutations predicted damaging by PROVEAN. 
 
In total, invasive samples had a higher proportion of rare variants than carriage samples. To 
quantify this difference and identify which regions of the genome are responsible for the 
excess of rare alleles we calculated Tajima’s D, a statistic for neutral evolution, for each 
coding sequence in the genome, and looked for differing signs of selection between cases 
and controls. Deviations with D < 0 are indicative of selective sweeps and/or recent 
population expansion, whereas D > 0 is indicative of balancing selection and/or recent 
population contraction. In terms of differences between site-frequency spectrum (SFS), a 
negative D manifests as an excess of rare variants whereas a positive D manifests as a 
uniform distribution. We compared the distributions of D by gene in each phenotype (figure 
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2b). Genes in invasive isolates had a lower average D (difference in medians -0.34; W = 
1996100, p < 10 ​-10​) and a more positively skewed D (difference in skewness 0.30; 95% 
bootstrapped CI 0.17-0.44). This difference in D may be representative of a genuine 
difference in selection of variants in genes between niche, or may be due to a difference in 
recent population dynamics, for example due to the bottlenecks for invasion and 
transmission.  
 
We then used GWAS to find locus effects on invasive disease, independent of serotype. As 
pneumococcal genomes vary extensively in their pan-genome ​30​, as well as having 
phenotypically important mosaic structural variants​31​ and antigens alleles​32​, we used a 
combination of methods to catalogue the population level variation then tested for 
associations while adjusting for population structure. We first performed this GWAS with 
disease severity, which was only measured in the Dutch cohort. Consistent with our 
estimates of no heritability, we found no loci of any type to be significantly associated with 
severity.  
 
We then analysed meningitis versus carriage isolates. We first performed this analysis in the 
Dutch cohort (supplementary tables 5-7) revealing that many of our results involved rare 
variation, which has largely been ignored in previous bacterial GWAS studies​16​. This 
variation may be more important in a disease like meningitis where there is no pervasive 
selection for the phenotype. To improve the power and reliability of our results, we combined 
our Dutch cohort of meningitis and carriage samples with a cohort collected in South Africa, 
which included samples from carriage and cases of invasive pneumococcal disease. This 
gave a total of 5845 pneumococcal genomes to analyse. Table 3 shows the genes which 
were significant in this combined analysis using any of our association methods. 
 
Table 3: Signals of bacterial association in the combined Dutch and South-African cohorts. 
Genes significant (Bonferroni corrected P < 0.05) in a pooled analysis of both cohorts with any of the 
association approaches, ordered by p-value. Odds-ratios are with respect to carriage samples. The 
genes in bold in the top half of the table are immunogenic, and are have previous evidence for 
association with virulence. For Tajima's D the effect size is the difference between D values, and for 
k-mers and LoF burden tests it is the odds-ratio. For some p-values the calculation only allows an 
upper bound to be produced. The locus tag in the ATCC 700669 reference is listed, along with the 
common gene name if available. 

Gene ID Gene 
name 

Method AF OR/Effe
ct size 

P-value Function 

SPN23F05680 ldcB/dacB Missense 
burden 

0.81 
(gene) 

1.20 1.3x10​-19 D-alanyl-D-alanine 
carboxypeptidase (peptoglycan 
peptide precursors) 

SPN23F22240 pspC/cbpA K-mers 0.2 
(k-mer) 
0.59 
(gene) 

1.05 3.8x10​-13 Binds secretory IgA, C3 and 
complement factor H; adhesin 

SPN23F10590 zmpD Rare LoF 
in 
invasive 

0.53 
(gene) 

1.42 <1x10​-10 Unknown; paralogous to IgA1 
protease (​zmpA​) 

SPN23F08080 spnTVRhs
dS 

Missense 
burden 

1.00 
(gene) 

1.08 2.8x10​-6 Type I restriction-modification 
system specificity subunit S 
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SPN23F17820 psrP Tajima's 
D 

0.42 
(gene) 

-2.71 
(invasive) 
-2.59 
(carriage) 

<1x10​-6 adhesin 

SPN23F09820  Missense 
burden 

0.36 
  (gene) 

1.3 3.4x10​-49 Bacteriocin precursor 

SPN23F12140 ntpI Missense 
burden 

0.88 
(gene) 

0.71 1.3x10​-48 V-type sodium ATP synthase subunit 
I 

SPN23F05670 FM211187.
1804 

Missense 
burden 

1.00 
(gene) 

1.27 4.3x10​-47 Histidine triad family protein 
(nucleotide phosphatase) 

SPN23F04400 FM211187.
1384 

Missense 
burden 

1.00 
(gene) 

0.76 6.9x10​-41 Unknown 

SPN23F18990 FM211187.
5748 

Missense 
burden 

1.00 
(gene) 

0.76 1.9x10​-18 ABC transporter ATP-binding protein 

SPN23F01160 FM211187.
339 

Missense 
burden 

1.00 
(gene) 

0.88 2.7x10​-11 Unknown 

SPN23F20970 puuD Missense 
burden 

1.00 
(gene) 

1.24 1.9x10​-10 Gamma-glutamyl-gamma-aminobutyr
ate hydrolase 

SPN23F04740 ecsA Missense 
burden 

1.00 
(gene) 

1.15 1.4x10​-8 ABC transporter ATPase 

SPN23F16700  Missense 
burden 

1.00 
(gene) 

1.16 3.8x10​-8 Nucleotide diphosphate hydrolase 

SPN23F21080 phoR/pnpS Missense 
burden 

1.00 
(gene) 

0.89 1.1x10​-6 Phosphate-sensitive histidine sensor 
kinase 
  

SPN23F11460 mcrB Missense 
burden 

- 1.13 1.2x10​-6 Endonuclease 

SPN23F05090  Missense 
burden 

1.00 
(gene) 

1.15 1.0x10​-5 Aldose epimerase (putative) 

SPN23F12730  Missense 
burden 

- 0.77 2.1x10​-5 Bacteriocin 

 
The genes noted in bold font in table 3 are all immunogenic​32​, and have all previously been 
associated with pneumococcal virulence in animal models​33–36​, but this is the first time an 
association has been shown in patients with invasive disease.​ ​Previous conclusions, drawn 
from protein binding to the Laminin receptor, have suggested that ​pspC ​(​cbpA​) is necessary 
for meningitis​37​. We predicted that both forms of ​pspC​ were absent in 13 meningitis isolates, 
though on closer inspection of the summary statistics from mapping and assembly these 
may also be an unresolved form of allele 8. Using our database of clinical data we also 
found that all of these patients had a severe ear, nose or throat infection, suggestive for 
direct spread of bacteria rather than crossing the blood-brain barrier. Three patients had 
clear bone destruction and/or pneumocephalus, which is proof for direct spread of the 
infection, and one patient had a skull defect. We further tested whether the two major forms 
of PspC were associated with meningitis specifically, as has previously been suggested ​38​, 
but did not find either to be overrepresented, when accounting for population structure. ​dacB 
is involved in preserving cell wall shape, and has shown to attenuate virulence in a mouse 
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model of lung infection. ​zmpD​ is homologous to IgA1 protease (​zmpA​)​39​, and while it is 
immunogenic​32​, its function is unknown – these results suggest a role in human cases of 
disease. The other genes in table 3 have not previously been directly associated with 
virulence or invasive disease in ​S. pneumoniae​. 

Interactions between host and pathogen genomes 
It is possible that different host genotypes have varying susceptibility to different lineages, or 
strains carrying certain alleles. To test this we used the 460 samples where we had collected 
both human genotype and pneumococcal genome sequence (figure 1). In the first instance, 
to retain hypothesis-free approach of GWAS, we performed a host-pathogen interaction 
analysis between every pair of common bacterial variants and genotyped host variants. 
While we were able to perform the 2x10 ​10​ associations required, no pairs of loci surpassed 
the large multiple testing burden required by this analysis - a power calculation showed that 
we would have 80% power for finding an effect with MAF of 25% and OR of 4 
(supplementary figure 13) in the absence of population structure. Through this approach, we 
can therefore rule out large single interaction effects (with OR > 4 and MAF > 25%) between 
host and pathogen in cases of meningitis. 
 
Given the difficulty of reaching significance for this large number of tests, we then went on to 
consider regions with strong prior evidence for being involved in host-pathogen interaction. 
S. pneumoniae​ has many virulence factors, some of which are known to interact with 
specific human proteins​9​. We were interested in the interactions where the pneumococcal 
protein contains sequence variation, ideally somewhat independent of genetic background. 
These regions have a higher power to be detected in an association analysis, and the higher 
rate of variation is potentially a sign of diversifying selection, which may mean the variation is 
more likely to be associated with specific interactions with the human immune system. We 
tested for an association between host genotype and the allele of three antigens selected for 
their variability and immunogenicity: PspC (CbpA), PspA, and ZmpA. For all of the antigen 
alleles with enough observations (supplementary table 8) we performed an association 
against all imputed human variants as above, and using a more accurate imputation of the 
CFH​ region due to its potential relevance in these interactions. 
 
None of the bacterial antigen alleles were significantly correlated with variants in their human 
interacting-protein counterparts at the suggestive level (p < 10 ​-5​). However, there were two 
associations of a ​cbpA​ allele reaching genome-wide significance elsewhere in the genome. 
Supplementary figure 14 shows a locuszoom plot of each of these associations. The first is 
between ​cbpA​-8 and position 148788006 on chromosome 6 (MAF = 0.08; OR = 9.20; p = 
4.1x10 ​-9​). This is in ​SASH1​, which has previously been found to have decreased expression 
during meningococcal meningitis 
(​https://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-11755/​) . The second is between 
pspC-9 and position 98891272 on chromosome 13 (MAF = 0.16; OR = 6.30; p = 3.6x10 ​-8​), in 
FARP1​, a gene not previously associated with infectious disease. Of note, we could find no 
published evidence of chromatin confirmation capture interaction or eQTL effects with either 
of these human variants. 
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We attempted to reduce the multiple testing burden by reducing the dimension of the 
pathogen genotype, which takes advantage of the extensive genome-wide correlation 
between variants. To give a straightforward biological interpretation we used hierarchical 
Bayesian clustering to define lineages, and tested whether pathogen genotypes, so defined, 
were associated with host genotype. We ran associations with lineages with at least 10% of 
samples in the subphenotype (supplementary table 9). The only result reaching 
genome-wide significance was an association between cluster eight (serotypes 9N/15B/19A, 
which have no overall association with invasive disease over carriage) and variants on 
chromosome 10 (supplementary figure 15). The lead variant (rs10870273) is at position 
134046136 on chromosome 10 (MAF = 0.27; OR = 4.28; p = 1.2x10 ​-8​) located in an intron of 
STK32C, a serine/threonine kinase highly expressed in the brain. The high effect size 
estimated for the interaction is consistent with the power predicted in supplementary figure 
13. 
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Discussion 
How genetics can affect susceptibility to and severity of pneumococcal meningitis has not 
been systematically investigated. We used multiple independent cohorts to perform human 
and pathogen GWAS to investigate the genetics of pneumococcal meningitis. We found no 
evidence for pathogen genetics affecting the severity of disease, whereas human genetics 
explained 49% ± 9% of this variation. In our Dutch cohort, variation near ​UBE2U​ and ​ROR1 
was significantly associated with severity. Our findings suggest that sequencing of the 
pathogen is likely to be uninformative for predicting disease progression, whereas further 
investigation of the host (and these genes in particular) may lead to greater insights into the 
mechanism behind severe cases of meningitis. 
 
Host genetics explained 29% ± 7% of variation in susceptibility to meningitis, and a pooled 
GWAS analysis with our Danish cohort and the UK biobank found an association at 
CDCC33​. This gene does not have a currently known function which is related to immunity, 
so this association may provide a new avenue with which to approach host studies; 
functional genomic data suggest a further possible mechanism for the susceptibility 
associated variant through interacting at a distance with and modulating expression of the 
brain expressed leucine-rich repeat and immunoglobulin (LIG) family protein gene ​ISLR2​. By 
analysing the distribution of effect sizes, we found that meningitis susceptibility is likely to be 
affected by both a small number of large effect variants (oligogenic), and a large number of 
small effect variants (polygenic). We found no evidence of association between 
pneumococcal meningitis and ​CFH​, which has previously been associated with 
meningococcal meningitis​7​, nor at any other candidate locus. We were also not able to report 
a previous finding in ​CA10​ from self-reported meningitis status, pointing to a need for careful 
clinical phenotyping needed in studies of hard to diagnose diseases such as bacterial 
meningitis. 
 
Research of the role of pneumococcal variation in invasive potential in large epidemiological 
studies has mostly been focused on serotype variation. The lack of cohorts with whole 
genomes and invasive phenotypes has not allowed determination of other virulence factors 
in human disease – it is only with large cohorts of whole genome sequences that 
contributions to pneumococcal phenotypes can be systematically attributed to serotype or 
other genetic variation. With our large collection of genomes we were able to determine that 
the bacterial genome is crucial in determining invasive potential, with serotype likely to be 
the main factor (45% of variance explained). We went on to perform a combined analysis 
using 5892 pneumococcal genomes from two independent cohorts to find specific variation 
associated with invasive disease. We found five genes independent of genetic background 
and serotype to be associated with invasive disease. This showed a role for the virulence 
genes ​cbpA ​(​pspC​), ​dacB​ and ​psrP​ in human disease for the first time, and a new 
association with the loss of expression of the immunogenic protein ​zmpD​. 
 
Our cohort also allowed a joint analysis of bacterial and human sequencing data. Though the 
high dimension of data required more samples to find interaction effects of modest effect 
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sizes, through biologically guided dimension reduction we were able to show evidence for 
possible enrichment of certain pathogen genotypes in certain host genotypes.  
 
Pneumococcal meningitis, although a clinically important area of study due to its poor 
prognosis, is difficult to study. It is a relatively rare disease, challenging to diagnose in a 
timely manner, and requires a well set-up study to record the causal pathogen. Severe 
cases of meningitis are rare and may be difficult to record due to the need to follow up 
patients. Although there are no more current cohorts available to validate our results in, our 
findings suggest more cases should be collected to find further associations. Further 
replication using in vivo models will be necessary to confirm our results associating genes 
not previously known to be involved in pneumococcal meningitis. 
 
Phenotype heterogeneity, here between causal organism, age of host infected and 
immunocompromised status may make replication of results with a large number of samples 
difficult. While we attempted to address this by looking for differences between 
sub-phenotypes, our sample size was likely too low to draw firm conclusions. It has been 
proposed that one reason why common variants associated with variation in infectious 
disease may be hard to find is that over human history they would have been selected 
against, and are therefore purged from the population ​18,40​. Future genetic studies of 
meningitis should continue to collect samples with detailed clinical data, including the causal 
pathogen, to minimise phenotype heterogeneity. 
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Methods 

Human genotyping and quality control 
We performed genotyping using the Illumina Omni array, and called genotypes from 
normalised intensity data using optiCall ​41​. For data taken from other platforms, we merged 
cases and controls only at sites in the intersection of the genotyping arrays used. We then 
performed basic quality control steps to first remove low quality samples, then low quality 
markers​42​. Samples with a heterozygosity rate three standard deviations away from the 
mean, or over 3% missing genotypes were removed. Markers with over 5% missing 
genotypes, significantly different (p < 10 ​-5​) call rate between cases and controls, MAF < 1% 
or out of Hardy-Weinberg equilibrium (p < 10 ​-5​) were removed. Using an LD-pruned set of 
markers, we estimated sample relatedness with KING​43​, and removed any duplicate 
samples. Using the same set of markers, we used eigenstrat to perform a PCA to check 
sample ancestry (supplementary figure 16)​44​. Samples closer than third-degree relation and 
samples of non-European ancestry (which we defined as PC1 < 0.07) were removed for 
heritability analysis, initial association attempts and analysis with Subtest. We manually 
inspected intensity plots for any associated markers using Evoker​45​, and removed any 
miscalled sites. Finally, we removed markers significantly associated with control batch (p < 
5x10 ​-8​). 
 
All markers were reported with respect to the reference allele and coordinates of GRCh37. 
We imputed markers using the HRC as a reference panel with the Sanger Imputation 
Server​46–48​. For the Danish samples, we instead used the Michigan imputation server due to 
the decreased number of markers available from merging two different genotyping arrays​49​. 
For greater accuracy, we reimputed the ​CFH​ region was imputed using impute2 with 1000 
Genomes and GoNL as reference panels​50–52​. We removed resulting markers with MAF < 
1%, HWE p < 10 ​-5​ or INFO scores < 0.7 leaving 6.8M markers for association testing and 
heritability estimation. 

Association of human variation 
Throughout, we used a Glasgow Outcome Scale score ​53​ of anything less than five (any long 
term disability or death) to define unfavourable outcome. We performed the association 
study using bolt-lmm​54,55​, using the LD-pruned set of genotyped markers to estimate the 
kinship matrix, and then calculating association statistics for all genotyped and imputed sites 
passing the above quality control thresholds. For the Dutch samples we included whether 
the patient was immunocompromised as a fixed effect (10% of cases), assuming that no 
control samples were immunocompromised (1% population prevalence ​56,57​). To estimate 
heritability, we used two methods: GCTA-GREML ​58​ (as implemented in bolt-lmm) and LDAK 
v5 ​59​. For both, we only used samples passing the stricter thresholds for ancestry and 
relatedness. Estimates of heritability were transformed from the observed scale to the liability 
scale using a population prevalence of meningitis of 1x10 ​-3​. When using Subtest to search 
for genetic difference between subphenotypes​60​, we used default settings, using the weights 
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per marker calculated by LDAK to adjust for LD, and 1500 draws of 400 subsamples to 
generate null distributions of the test statistic. 
 
We did not find evidence of overall differences between pneumococcal meningitis and other 
bacterial meningitis (pseudo-likelihood ratio (PLR) = 0.25; p = 0.75) or between severity and 
susceptibility (PLR = 0.14; p = 1.00). In the Danish cohort, there was no evidence of 
difference between meningitis and bacteremia (PLR = 311; p = 0.60). However this 
technique may rely on relatively highly associated SNPs, which were not found with this few 
samples. Susceptibility to any meningitis had a significantly higher heritability than its 
sub-phenotypes, which also have heritability above zero. This is more consistent with some 
difference in genetic architecture between the phenotypes. 
 
To infer the distributions of effect sizes on meningitis, we ran bayesR​61​ and the Bayesian 
Sparse Linear Mixed Model (BSLMM), as implemented in gemma ​62​. For both models, we 
used the genotyped sites (~630k) in the Dutch data using all meningitis cases as the 
phenotype. For bayesR we used version 2 of the software, using the '-shuffle' option to 
increase computational efficiency. We ran the MCMC in each case with default settings: 
5x10 ​5​ iterations, discarding the first 2x10 ​5​ as burn-in and sampling every tenth iteration. We 
ran BSLMM using a probit link function for 1x10 ​6​ iterations, discarding the first 10 ​5​ as burn-in 
and sampling every tenth iteration. In both cases we report the mean value of each 
hyperparameter in the posterior. 
 
To perform associations using the UK biobank we used bolt-lmm, following the 
recommended protocol for analysing the available genetic data ​55​. We extracted case 
samples with self-reported meningitis or sepsis/septicaemia (data-field 20002), with a 
diagnosis of meningitis (data-field 41202 having a value of G01, G001, G002, G003, G008, 
A170, A390 or A321 at least once), and with a diagnosis of sepsis (A403, A409, A408 or 
A40 at least once). We randomly selected 3000 control samples from the remaining samples 
which had passed the UK biobank genetic quality control, which allowed for quicker analysis 
with little impact on effective sample size. Using this sample, we removed genotyped 
markers with MAF < 0.001 or a missing rate > 0.1, and used this to estimate kinships in 
bolt-lmm. We used bolt-lmm to perform association analysis of every imputed SNP site, 
including participant age as a fixed effect. 
 
We used METAL to perform meta-analysis between different sets of studies​63​. We used the 
effective sample size to weight the beta and SE from each set of summary statistics, also 
adjusting the beta values and standard errors produced by bolt-lmm (supplementary table 
10). We only retained markers which had been successfully imputed in all studies, to avoid 
effects of varying sample size at each locus. 
 
Chromatin conformation capture data was tested and presented using the Capture HiC 
Plotter​64​ and eQTL data from the GTEx Consortium​21​. 
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Catalogue of bacterial variation 
From the whole genome sequence data of bacteria in the cohort we called SNPs and short 
INDELs with respect to the ATCC 700669 reference ​65​. We mapped reads with bwa mem​66​, 
marked optical duplicates with Picard, and called variants with GATK HaplotypeCaller​67​. For 
INDELs we used the recommended hard filters. For SNPs we used the recommended hard 
filters to create an initial call set. We then applied GATK VariantRecalibrator using the 
following call sites as true positive priors: the intersection of SNPs called by both GATK and 
bcftools (Q10; 90% confidence); filtered SNPs from a carriage cohort of Karen infants​68​ (Q5; 
68% confidence); filtered SNPs from a carriage cohort of children in Massachusetts​30​ (Q5; 
68% confidence). After quality score recalibration we used 99.9% recall as a cutoff for SNPs 
to maximise sensitivity, and annotated the predicted effect of all coding variation using the 
variant effect predictor​69​. We defined LoF variants as either stop gained or frameshift 
mutations. We used PROVEAN with a score cutoff of < -2.5 to predict whether 
non-synonymous SNPs affected protein function ​70​. 
 
We produced a core gene alignment using roary​71​, where we used reciprocal best BLAST​72 
to choose a cut-off of 95% BLAST ID that maximised the balanced accuracy. To produce a 
presence/absence matrix of accessory elements, to be used as variants in association 
testing, we mapped the annotated genes in each isolate to a manually curated reference 
set​32,73​. As a first pass we used cd-hit​74​, and then used blastp against the genes which were 
unclustered after the first pass. 
 
We counted variable length k-mers with a minor allele count of at least ten using fsm-lite ​14​. In 
the Dutch data there were 11.7M informative k-mers, with 2.6M unique patterns. Using the 
mapping to the ATCC 700669 reference, we used cn.mops​75​ to call CNVs. We used 
windows of 1kb, and used windows with support for a CNV in at least two samples. The 
number of reads mapping to each ​ivr​ allele in each sample was determined by using read 
pair information, as previously​12,31​. 
 
While the k-mer approach should directly assay or tag most variation at the population level, 
the allelic variation of the pneumococcal antigens may not be well captured. For example, 
pspC​ can be difficult to assemble due to repeats and copy number variation ​76​, and k-mers 
from ​pspA​ and ​zmpA​ may not map to each allele specifically due to orthologous and 
paralogous genes​39,77​. As these antigens have been shown to interact with the host immune 
system, we developed a way to classify the allele present in each isolate combining 
assembly and mapping statistics. For each antigen in each sample we mapped reads to a 
reference panel using srst2 ​78​, and aligned annotated genes from the assemblies using 
blastp. We used coverage, number of SNP mismatches, number of INDEL mismatches and 
number of truncated bases as summary statistics for each reference allele from srst2, and 
equivalently percent ID, number of mismatches, number of gaps, E-value and bitscore from 
blastp. For ​pspC​, we used an existing classification scheme of 11 alleles from 48 
sequences​76​ (supplementary figure 17). For ​zmpA​ and ​pspA​ we built trees from previously 
characterised alleles​32​ (supplementary figures 18 & 19). Finding that the ancestral branches 
in the phylogenies were poorly supported, while the topology of clades were well resolved, 
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we took a cut through the deep branches of the phylogeny to define four allele groups for 
pspA​ and three for ​zmpA​. We ensured the training data were separable into these groups 
using PCA (supplementary figure 20). We tested the performance of four out-of-the-box 
classifiers on 20 ​pspC​ alleles spread across the population that we manually typed from the 
assemblies (supplementary table 11). Finding that an SVM with a linear kernel worked best, 
we used this to classify the allele of all antigens in all isolates using the summary statistics 
described above (supplementary figure 21). 
 
Using the South African samples we counted k-mers, SNPs and INDELs and COGs in the 
same way, and annotated LoF function variants. We found 52215 SNPs and INDELs, 6.3M 
informative k-mers, with 1.5M unique patterns.  

Association of bacterial variation 
Using the SNP and INDEL alignment we built a phylogenetic tree from this alignment using 
fasttree ​79​, and calculated the kinship between each pair of strains as the distance between 
their MRCA and the midpoint root. We calculated heritability on the liability scale ​80​ using this 
kinship matrix with FaST-LMM​81​. To estimate contributions for specific variant components 
such as serotype, we used lasso regression with leave-one-out cross validation to select 
significant predictors​16​ and Nagelkerke's pseudo ​R​2​ to find the variance explained in 
phenotype ​82,83​. To test the effect of capsule charge on phenotype we used previously 
measured zeta potentials in place of serotype ​84​, using the serogroup average when a 
serotype specific charge was not known. Invasiveness was not well predicted from capsule 
charge alone (R​2​ = 0.08)​84​, partly because of the unknown capsule charge for many of the 
serotypes observed. 
 
For association of common variation (MAF > 1%) we compared SEER​14​, using the first ten 
multidimensional scaling components as fixed effects to control for population structure, with 
FaST-LMM​81​, which uses eigenvectors from the kinship matrix calculated from the SNP and 
INDEL alignment as random effects to control for population structure. The Q-Q plots using 
fixed effects were highly inflated (supplementary figure 22), so we used the linear mixed 
model throughout. To correct for multiple testing we used the number of unique patterns as 
the number of tests in a Bonferroni correction, giving p < 8.2x10 ​-7​ for SNPs and p < 1.9x10 ​-8 
for k-mers. Inspection of the QQ-plots showed inflation of the test statistic for k-mers, so we 
used a higher threshold of p < 10 ​-16​ instead. The same association methods was used with 
the antigen alleles and CNVs. 
 
We considered whether the ​ivr​ locus, a phase variable inverting type I R-M system with six 
possible alleles ​31​, is associated with meningitis. Using mouse models, alleles at this locus 
have previously been shown to be selected for in carriage, whereas others are preferred in 
invasive disease ​35,85​. The rapid variation of this locus allows simple associations independent 
of genetic background. To test for association of the ​ivr​ locus alleles with susceptibility and 
severity, we used a Bayesian hierarchical model we had previously developed to find 
differences in the proportion of alleles present in tissue types while accounting for 
heterogeneity within single colony picks​12​. We used the same priors (using allele prevalence 
calculated using long-range PCR from a subset of samples) and MCMC parameters as 
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specified previously, but labelling with phenotype rather than tissue. We found no evidence 
that either allele frequencies or overall diversity had any association with invasive disease or 
carriage in clinical cases of meningitis (supplementary figures 23 & 24). 
 
To calculate Tajima's D between phenotype groups we wrote a program in C++ using a 
function to calculate pairwise differences between strains we had previously optimised. Gaps 
or unknown sites were ignored. We calculated ​D ​for all coding sequences annotated in the 
ATCC 700669 reference, and p-values for difference between niche were calculated using 
44000 null permutations of phenotype labels​86​. We applied a Bonferroni correction using the 
number of coding sequences tested. 
 
Rare variants (MAF < 1%) could not be directly associated. Instead we applied a burden 
test​87​, grouping variants by coding sequence. As burden tests lose power when variants 
have different directions of effect on the phenotype, we used only those variants predicted to 
cause a loss of function in one test, and those causing either loss of function (6825 variants) 
or predicted change in protein function in another (additional 26206 variants). These variants 
will have occurred on terminal (or close to terminal) branches and therefore population 
structure is less of an issue than for common variants. We used plink/seq to perform this 
association for each phenotype, applying a Bonferroni correction using the number of genes 
as the number of multiple tests.  
 
Reasoning that power to detect individual variants may also be hampered by population 
structure as well as allele frequency, we also searched for a burden of missense variants of 
any frequency by gene. We used the LMM burden testing mode of pyseer​88​ which allowed 
us to correct for population structure with the same model as above.  
 
When performing analysis with both the Dutch and South African samples we pooled the 
genetic data, and performed the same association analysis as for the Dutch data alone. 
Where possible (associations using the linear mixed model) we included country as a 
covariate. The South African cohort also included host gender, age, collection year and HIV 
status and PCV-use at time of sampling. We included these as additional covariates for 
these samples. We were not able to use PROVEAN with this data, so only performed a 
burden test of damaging LoF variants. We used a significance threshold of P < 0.05 in the 
pooled analysis, after applying a Bonferroni correction for multiple testing based on the 
number of unique patterns as above. For all tests we ensured that the QQ-plots of the 
resulting p-values were not inflated (supplementary figure 25). We observed hits to simple 
transposons without cargo genes, which we therefore discarded as we assumed this was an 
artefact of their independence from population structure. We also found significant 
association of some BOX repeats​89​, but as there are many copies we could not map these 
associations to a single region of the genome. 

Interaction effects 
We took 460 pneumococcal meningitis samples with matched pathogen and human 
sequence data which passed quality control thresholds for both data types. This has 
previously been applied to coding changes and host genotypes for HIV​90​ and HCV​91​, though 
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these have much less variation than the pneumococcal population. To test all variants in a 
pairwise manner we converted the VCFs of human and pathogen calls into CSV files treating 
human genotypes as additive, and storing site and sample data separately for more efficient 
access by chunk​92​. The number of pairwise tests between all common variants was 
prohibitively large (10 ​12​), so we only tested genotyped markers: 1.8x10 ​10​ pairs of variants 
passed filters of MAF > 5% and missing rate < 5% in both the human and pathogen data. 
We modified the association code of SEER ​14​ to extend the 𝛘​2​ test to a 3x2 table, and to 
perform a 3x2 Fisher's exact test (using ​https://github.com/chrchang/stats​) when 
assumptions of the 𝛘​2​ test were violated. Those sites with p < 5x10 ​-11​ (a Bonferroni correction 
with alpha = 1, as an initial filter) were then tested using a logistic regression of the human 
SNP against the pathogen variant, with the first three components from multidimensional 
scaling of the pathogen kinship matrix included as covariates to adjust for pathogen 
population structure. 
 
To test for an association between invading lineage and human genotype we re-ran 
hierBAPS on the 460 samples​93​, which generated ten top level clusters (including a bin 
cluster) seven of which were large enough to test (supplementary table 9). We used 
bolt-lmm as above, but used whether the invading genotype was a member of the BAPS 
cluster as cases. We tested association of antigen alleles with frequencies over 10% in the 
sampled population in the same way (supplementary table 8).  
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