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We present the Good-Toulmin like estimator via Thompson sampling, a computational method

for iterative experimental design in multi-tissue single-cell RNA-seq (scRNA-seq) data. Given

a budget and modeling cell type information across tissues, GT-TS estimates how many cells

are required for sampling from each tissue with the goal of maximizing cell type discovery

across samples from multiple iterations. In both real and simulated data, we demonstrate

the advantages of GT-TS in data collection planning when compared to a random strategy in

the absence of experimental design.

As both experimental and computational techniques advance, single-cell RNA-seq (scRNA-seq)

allows for the characterization of cell type and cellular diversity at unprecedented high-throughout.

Taking advantage of these developments, recent scientific efforts aim at the molecular profiling of

all the cell types of an organism [Han et al., 2018, Regev et al., 2017]. These initiatives raise

important questions regarding experimental design choices. First, given a budget, how many cells
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should one sample to maximize cell type discovery? Second, how should one prioritize among

sampling organs or tissue types?

Both of these experimental design questions are related to the ecological problem of estimating the

number of unseen species from a population. In the 1940s, the British naturalist Alexander Corbet

spent two years collecting butterflies in Malaya, and he observed 118 butterfly species for which

he had trapped only one specimen, 74 for which he had trapped two specimens, and 44 for which

he had trapped three specimens. Following these trips, he wanted to estimate the expected number

of distinct new species of butterflies he expected to find if he were to conduct a new expedition to

Malaya.

Corbet posed this question to the famed mathematician Ronald Fisher who developed a parametric

empirical Bayes method to estimate the expected number of new species with further sampling

based on prior discoveries [Fisher et al., 1943]. Good further extended this work with the Good-

Toulmin (GT) estimator [Good and Toulmin, 1956, Good, 1953]. Since this estimator was devel-

oped, many statistical approaches having been proposed, spanning parametric and nonparametric

statistics and frequentist and Bayesian approaches [Orlitsky et al., 2016]. Variants of the problem

exist in a variety of fields. In linguistics, the GT estimator has been applied to estimate the number

of words in Shakespeare’s vocabulary [Efron and Thisted, 1976]; in genetics, it has been applied

to estimate the number of unobserved genetic variants in the human genome [Ionita-Laza et al.,

2009].

The history of the species discovery problem is rooted in a two-trial case over a single population
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of interest: n samples are collected from a population (first trial), and an expectation over the

number of unseen species is estimated, if c ∗ n additional samples were collected, for a given

extrapolation factor c (second trial). This setup has since been extended to an online learning

setting over multiple populations [Battiston et al., 2016, Bubeck et al., 2013, Favaro et al., 2016,

Good, 1953, Lijoi et al., 2007, Mao, 2004, Raghunathan et al., 2017]. These algorithms rely

on solving the multi-armed bandit problem [Robbins, 1985], which balances exploration of the

experimental choices with exploitation of current estimates of expected rewards – here, a new

species. In the classical set-up, a gambler at a casino is presented with a row of slot machines

(“one-armed bandits”) that each pay out a random reward according to their machine-specific

probability distributions. The goal of the gambler is to maximize her winnings over a number of

trials by deciding the sequence of machines to play; to do so, she must balance between exploiting

the current estimates of expected arm rewards to select arms with the highest expected rewards and

exploring undersampled arms in order to improve the estimates of the arms expected rewards.

In this work, we develop a principled approach to guiding the iterative selection of samples through

single cell sequencing technologies when presented with the possibility of querying multiple tis-

sues or sample sites. Motivated by multi-armed bandits, we consider this problem as a set of

sequential trials where a scientist may choose a subset of tissue samples to assay, constrained by

a budget. Each tissue or sample site represents an arm to be pulled, and upon choosing the tissue,

the scientist can query a number of cells proportional to the maximum expected number of new

cell type discoveries in the current experiments. The reward of each experimental trial is given by

the number of new cell types uncovered in the chosen sample.
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Figure 1: Panel A: Workflow for GT-TS. At each experiment, we select cells proportional to

the Good-Toulmin estimate of new cell types; after each experiment, the estimates are recom-

puted to incorporate the current experiment. Panel B: Comparison of the average cell types

discovered by the GT-TS, Random and Oracle algorithms on the heterogeneous simulated

data set over 100 trials across 100 runs (standard deviation shown as shaded region). We

consider the incidence case (top) and the delayed abundance case (bottom).

We propose the Good-Toulmin like estimator via Thompson sampling (GT-TS), a robust approach

to experimental design for cell type discovery. Given a per trial budget, GT-TS leverages informa-

tion across tissues to inform subsequent experiments in order to maximize cell type diversity and
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discovery. The GT-TS proceeds in two stages. First, a warm-up batch is selected from each possi-

ble tissue type, and an initial population-wise diversity metric is estimated using a Good-Toulmin

like estimator (Methods, Fig. 1 a). The Good-Toulmin estimator quantifies the expected number

of new cell type discoveries for each tissue type conditioned on the available samples from sub-

sequent experiments. Second, given a budget M corresponding to the allowed number of samples

to be collected, GT-TS iteratively and stochastically selects an experiment from a set of possible

tissue types in proportion to their current Good-Toulmin estimate of expected rewards. We con-

sidered two variants of GT-TS, an incidence case and a delayed abundance case corresponding to

different experimental design scenarios. The incidence case corresponds to a setting where, at each

trial, all M cells are collected from one tissue type; in the delayed abundance case, the M cells

are sampled from a subset of tissues, and the budget is partitioned across the tissues relative to the

estimated probability of finding novel cell types in each of the tissues.

To evaluate the performance of GT-TS, we considered both simulated and existing single cell RNA-

seq data. We compared our results to two relative strategies: a baseline Random strategy for which

the probability of each tissue type being selected is equal, and an Oracle strategy, which makes the

optimal arm choice. We demonstrated that GT-TS maximizes the number of cell types that can be

discovered when compared with the Random strategy.

First, we generated a needle-in-the-haystack toy data set with 1, 000 cell types distributed across 10

tissues over 100 trials (Methods). The cell types were distributed across the tissue populations as

follows: nine of the populations only contained species 1, while one population contained species
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one thousand unique species with uniform probability. We averaged the experiments over 100 runs.

We found that the GT-TS algorithm outperforms the Random algorithm in both the Incidence case

and the Delayed Abundance case (Fig. 1b). On this simulation, the improvement was dramatic,

leading to up to six times more unique cell types discovered in the first 20 trials relative to the

Random algorithm. In the Incidence case, GT-TS performs nearly as well as the Oracle strategy

on these data.
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Figure 2: Panel A: Distribution of the cells found in 98 clusters across 43 organs in the original Mouse Cell Atlas data set. Each bar represents an organ, and each color

represents a cluster. The y-axis indicates the number of clusters represented in each organ, and the x-axis represents the number of cells. Panel B: Distribution of the cells aggregated in

4 developmental stages. Each bar represents a stage, and each color represents a cluster. The y-axis indicates the number of clusters represented in each stage, and the x-axis represents

the number of cells. Panel C: Comparison of the average clusters discovered by the GT-TS, Random, and Oracle algorithms on the Mouse Cell Atlas data set over 100 runs with 50 trials

in the Incidence case. Panel D: Comparison of the average clusters discovered by the GT-TS, Random, and Oracle algorithms on the Mouse Cell Atlas data set over 100 runs with 50

trials in the Delayed Abundance case. Panel E: Comparison of the average and standard deviation samples drawn from each population by the GT-TS, Random,and Oracle algorithms

on the Mouse Cell Atlas data set over 500 trials across 100 runs. GT-TS exhibits Oracle-like exploration behavior.

We then applied GT-TS to a scRNA-seq data set from the Mouse Cell Atlas Project, a compendium
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of over 400, 000 cells from all of the major mouse organs, whose goal is to catalog murine cell types

based on digital gene expression Han et al. [2018]. The large number of cells allowed us to sim-

ulate settings in which the cells were collected in smaller batches than in the actual experiments

(Methods). We aggregated the 43 organs into 4 developmental stages: embryo, fetal, neonatal,

and adult. The resulting data set is heterogeneous across age groups and organs, with most of the

possible experiments representing organs or tissues in the adult population (Fig. 2a,b). When sim-

ulating iterative experiments, we sampled cells with replacement from each experimental category

in the data set. GT-TS outperforms the Random strategy in both the Incidence case and the Delayed

Abundance case (Fig. 2 b,c). In particular, GT-TS with Delayed Abundance identifies 20% more

unique cell types after five trials as compared with the Random strategy (Fig. 2 d), approximately

matching the arms selected by the Oracle algorithm (Figure Fig. 2 e).

Discussion

We develop an experimental design approach to iteratively select samples for single cell RNA-

sequencing assays to maximize novel cell type discovery. Here, we assume that the cell type can

be determined precisely using the scRNA-seq data; we know that this assumption is not true both

for computational reasons—classification will be noisy—and for biological reasons–cell types are

not discrete. Future work will incorporate richer models of cell type densities.

The difference in performance for both the Oracle and the sequential decision making strategies

between the simulated and Mouse Atlas scRNA-seq data highlights an important point about pop-
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ulation heterogeneity: GT-TS shows remarkable improvement over random sampling when the

different arms or organs share cell types and have heterogeneous relative entropy in cell types. As

heterogeneous cell types form tissues, and heterogeneous tissue types form organs, considering

experiments on the level of organs may lead to more uncertainty in terms of cell type discovery

than designing experiments on the level of tissue types. It is preferable then to specify the exper-

iments at the most local level possible at the expense of increasing the number of experimental

arms. Including additional information in the experiment such as spatial information will also

increase the number of possible experiments and, consequently, design methods including GT-TS

will be essential for systematic experiment prioritization. With this in mind, our approach is simple

and can be immediately applied to improve the efficiency of experimental studies with alternative

goals, such as designing sampling techniques for diversifying location-dependent tumor cell type

heterogeneity Levitin et al. [2018]. We showed through empirical evaluation that our approach

outperforms Random experiment selection when designing experiments with goal of maximizing

cell type discovery.

1 Online Methods.

GT-TS workflow. GT-TS is a multi-armed bandit algorithm for experimental design that relies on

two main concepts: i) an estimate of population’s cell type discovery potential based on a variant

of the Good-Toulmin estimator, and ii) a classic Thompson Sampling (TS) routine [Abeille and

Lazaric, 2017, Russo et al., 2017]. Pseudocode available in Supplementary Note 1.
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Good-Toulmin Estimates of tissue’s cell type discovery potential. Let Ω denote the set of tis-

sues. Each of the K tissues (arms) corresponds to a probability distribution D1, . . . , DK over Ω,

such thatDj , j = 1, . . . , K represents the frequency of cell types in tissue j. At the initial stage, we

have observed nj cells from the jth tissue, {Xj
i }

j=1,...,K
i=1,...,nj

. At a future experiment, we may choose to

sample an additional cj ≤ nj samples from the jth tissue, {Y j
i }

j=1,...,K
i=1,...,cjnj

, for an extrapolation fac-

tor cj . The number of new cell types discovered across all tissues is the statistic U({Y j
i }, {X

j
i }),

which is approximated as the sum of the number of new cell types discovered in each population

Uj({Yi}, {Xi}), where j = {1, . . . , K}

U({Y j
i }, {X

j
i }) =

K∑
j=1

Uj({Y j
i }, {X

j
i })

The truncated Good-Toulmin estimate Orlitsky et al. [2016] of Uj is

Ûj = −
∞∑
i=1

(−cj)iP (L > cj)Φij , (1)

where Φij denotes the number of cell types observed in i cells in the sample from the jth tissue,

and L is an independent random nonnegative integer.

Experimental design via Thompson Sampling. Given a budget M constraining the number of

cells that can be collected per trial and a set of J tissues to be explored, the algorithm iteratively

selects a subset of tissues to sample from as well as the appropriate number of cells to sample. TS

is a heuristic based on probability matching Thompson [1933]: the number of times an arm should

be chosen should match its probability of being optimal. At each step, an arm is chosen based

on its probability of being optimal according to the Bayesian posterior probability, which is then

updated based on the given reward.
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The probability that the jth tissue is chosen during a trial is based on the weight of its Good-

Toulmin estimator Ûj . As the Good-Toulmin estimator can be negative and each arm must have

a non-zero probability, we used a normalizing parameter α to set the probability of each arm as

max(0, Ûj) + α; this results in the probability of the arm choice being

pj =
max(0, Û j) + α∑K

j′=1

(
max(0, Ûj′) + α

) .

At each step, GT-TS allocates a budget M and calculates the desired number of samples from each

population according to a probability mass function p = [p1, . . . , pK ] for cj = 1 and a uniform

random variable L. From the samples,M cell type labels are observed; the reward is the number of

cell types that are novel discoveries. When labels are not available, a preferred clustering algorithm

is employed and the cluster assignment become labels proxies that are iteratively updated.

Hyperparameters. We set the hyperparameter α = 0.1 in both the simulated and real data. A

larger α allows for more uniform exploration and higher variance in choosing the optimal tissues

for sampling. The budget considered across experiments isM = 100. This budget is a low estimate

of real life sequencing scenarios where collecting many samples of higher quality is expensive

and experiments have to be prioritized, such as C1 and SMART-Seq technologies, which have

throughput of 100-1000 cells Brennecke et al. [2013], Ziegenhain et al. [2017]. This budget is not

higher because, in the Mouse Cell Atlas data, numbers greater than 100 often saturated the cell

type diversity of a single tissue type and collapse the differences in performance between Oracle

approaches and Random approaches. With larger sample sizes and greater cell type diversity, we

hope to increase this budget in future work.
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Method Comparison. All results correspond to averaged results across 100 simulations or exper-

iments.

Mouse Cell Atlas Data. ScRNA-seq from Microwell-Seq in over 400, 000 cells from all of the

major mouse organs representing > 800 cell types [Han et al., 2018]. Here, we define cell types

based on digital gene expression. The Mouse Cell Atlas selected 60, 000 high-quality, batch cor-

rected cells sampled from the complete data set that include 43 tissues and 98 major clusters of

cell types. Note that this removed 87.5% of the diversity of cell types, and rare cell types in partic-

ular, limiting the complexity of the underlying data. Some cell type clusters presented significant

multi-tissue contributions; for example, liver and muscle include cells from the hematopoietic cell

cluster. Differential gene expression was performed by unsupervised clustering with the scRNA-

seq data analysis tool Seurat [Butler et al., 2018].
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