1 Running Title:

- 2 "ER-Ca²⁺ sensor STIM regulates neuropeptides required for development under nutrient
- 3 restriction in *Drosophila*"
- 4 Megha*(1), Christian Wegener (2) and Gaiti Hasan(1)
- 5 1. National Centre For Biological Sciences, Tata Institute for Fundamental Research,
- 6 Bellary Road, Bangalore 560065
- 7 2. Department of Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter,
- 8 University of Würzburg, Am Hubland, 97074 Würzburg
- 9 *Corresponding author; Contact: meghaphd@ncbs.res.in

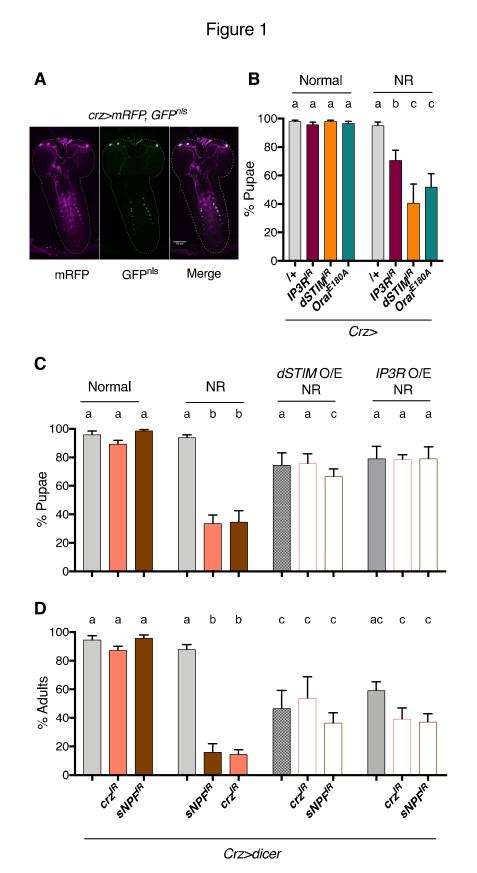
10

- 11 <u>ORCID:</u>
- 12 Megha: 0000-0002-2968-8211
- 13 Christian Wegener: 0000-0003-4481-3567
- 14 Gaiti Hasan: 0000-0001-7194-383X

16 Abstract

17	Neuroendocrine cells communicate via neuropeptides to regulate behaviour and
18	physiology. This study examines how STIM (Stromal Interacting Molecule), an ER-Ca $^{2+}$
19	sensor required for Store-operated Ca ²⁺ entry, regulates neuropeptides required for
20	Drosophila development under nutrient restriction (NR). We find two STIM-regulated
21	peptides, Corazonin and short Neuropeptide F, to be required for NR larvae to complete
22	development. Further, a set of secretory DLP (Dorso lateral peptidergic) neurons which co-
23	express both peptides was identified. Partial loss of <i>dSTIM</i> caused peptide accumulation in
24	the DLPs, and reduced systemic Corazonin signalling. Upon NR, larval development
25	correlated with increased peptide levels in the DLPs, which failed to occur when <i>dSTIM</i> was
26	reduced. Comparison of systemic and cellular phenotypes associated with reduced dSTIM,
27	with other cellular perturbations, along with genetic rescue experiments, suggested that
28	dSTIM primarily compromises neuroendocrine function by interfering with neuropeptide
29	release. Under chronic stimulation, <i>dSTIM</i> also appears to regulate neuropeptide synthesis.
30	

32 Introduction


33	Metazoan cells commonly use ionic Ca ²⁺ as a second messenger in signal
34	transduction pathways. To do so, levels of cytosolic Ca ²⁺ are dynamically managed. In the
35	resting state, cytosolic Ca ²⁺ concentration is kept low and maintained thus by the active
36	sequestration of Ca ²⁺ into various organelles, the largest of which is the ER. Upon
37	activation, ligand-activated Ca ²⁺ channels on the ER, such as the ryanodine receptor or
38	inositol 1,4,5-trisphosphate receptor (IP $_3$ R), release ER-store Ca ²⁺ into the cytosol. Loss of
39	ER-Ca ²⁺ causes STromal Interacting Molecule (STIM), an ER-resident transmembrane
40	protein, to dimerize and undergo structural rearrangements. This facilitates the binding of
41	STIM to Orai, a Ca ²⁺ channel on the plasma membrane, whose pore now opens to allow
42	Ca ²⁺ from the extracellular milieu to flow into the cytosol. This type of capacitative Ca ²⁺
43	entry is called Store-operated Ca ²⁺ entry (SOCE) [1]. Of note, key components of SOCE
44	include the IP $_3$ R, STIM and Orai, that are ubiquitously expressed in the animal kingdom,
45	underscoring the importance of SOCE to cellular functioning. Depending on cell type and
46	context, SOCE can regulate an array of cellular processes [2].
47	Neuronal function in particular is fundamentally reliant on the elevation of cytosolic
48	Ca ²⁺ . By tuning the frequency and amplitude of cytosolic Ca ²⁺ signals that are generated,
49	distinct stimuli can make the same neuron produce outcomes of different strengths [3]. The
50	source of the Ca ²⁺ influx itself contributes to such modulation as it can either be from
51	internal ER-stores or from the external milieu, through various activity-dependent voltage
52	gated Ca ²⁺ channels (VGCCs) and receptor-activated Ca ²⁺ channels or a combination of the
53	two. Although the contributions of internal ER-Ca ²⁺ stores to neuronal Ca ²⁺ dynamics are
54	well recognized, the study of how STIM and subsequently, SOCE-mediated by it, influences
55	neuronal functioning, is as yet a nascent field.

56	Mammals have two isoforms of STIM, STIM1 and STIM2, both which are widely
57	expressed in the brain. As mammalian neurons also express multiple isoforms of Orai and
58	${\sf IP}_3{\sf R}$, it follows that STIM-mediated SOCE might occur in them. Support for this comes
59	from studies in mice, where STIM1-mediated SOCE has been reported for cerebellar
60	granule neurons [4] and isolated Purkinje neurons [5], while STIM2-mediated SOCE has
61	been shown in cortical [6] and hippocampal neurons [7]. STIM can also have SOCE-
62	independent roles in excitable cells, that are in contrast to its role via SOCE. In rat cortical
63	neurons [8] and vascular smooth muscle cells [9], Ca ²⁺ release from ER-stores prompts the
64	translocation of STIM1 to ER-plasma membrane junctions, and binding to the L-type VGCC,
65	Ca $_{v1.2}$. Here STIM1 inhibits Ca $_{v1.2}$ directly and causes it to be internalized, reducing the
66	long-term excitability of these cells. In cardiomyocyte-derived HL1 cells, STIM1 binds to a
67	T-type VGCC, Cav1.3, to manage Ca $^{2+}$ oscillations during contractions [10]. These studies
68	indicate that STIM regulates cytosolic Ca ²⁺ dynamics in excitable cells, including neurons
69	and that an array of other proteins determines if STIM regulation results in activation or
70	inhibition of neurons. Despite knowledge of the expression of STIM1 and STIM2 in the
71	hypothalamus (Human Protein Atlas), the major neuroendocrine centre in vertebrates,
72	studies on STIM in neuroendocrine cells are scarce. We therefore used <i>Drosophila</i>
73	melanogaster (Drosophila), the vinegar fly, to address this gap.
74	Neuroendocrine cells possess elaborate machinery for the production, processing
75	and secretion of neuropeptides (NPs), which perhaps form the largest group of
76	evolutionarily conserved signalling agents [11,12]. Inside the brain, NPs typically modulate
77	neuronal activity and consequently, circuits; when released systemically, they act as
78	hormones. <i>Drosophila</i> is typical in having a vast repertoire of NPs that together play a role
79	in almost every aspect of its behaviour and physiology [13,14]. Consequently, NP synthesis

80	and release are highly regulated processes. As elevation in cytosolic Ca^{2+} is required for NP
81	release, a contribution for STIM-mediated SOCE to NE function was hypothesized.
82	<i>Drosophila</i> possess a single gene for STIM, IP $_3$ R and Orai, and all three interact to
83	regulate SOCE in <i>Drosophila</i> neurons [15,16]. In dopaminergic neurons, <i>dSTIM</i> is important
84	for flight circuit maturation [15–17], with dSTIM-mediated SOCE regulating expression of a
85	number of genes, including <i>Ral</i> , which controls neuronal vesicle exocytosis [17]. In
86	glutamatergic neurons, <i>dSTIM</i> is required for development under nutritional stress and its'
87	loss results in down-regulation of several ion channel genes which ultimately control
88	neuronal excitability [18]. Further, <i>dSTIM</i> over-expression in insulin-producing NE neurons
89	could restore Ca^{2+} homeostasis in a non-autonomous manner in other neurons of an IP ₃ R
90	mutant [19], indicating an important role for dSTIM in NE cell output, as well as
91	compensatory interplay between IP $_3R$ and dSTIM. At a cellular level, partial loss of dSTIM
92	impairs SOCE in <i>Drosophila</i> neurons [15,17,20] as well as mammalian neural precursor cells
93	[21]. Additionally, reducing dSTIM in <i>Drosophila</i> dopaminergic neurons attenuates KCl-
94	evoked depolarisation and as well as vesicle release [17]. Because loss of dSTIM specifically
95	in <i>dimm</i> ⁺ NE cells results in a pupariation defect on nutrient restricted (NR) media [22], we
96	used the NR paradigm as a physiologically relevant context in which to investigate STIM's
97	role in NE cells from the cellular as well as systemic perspective.
98	Results
99	SOCE is required in sNPF and Crz producing cells for development under nutritional
100	stress
101	Collectively, more than 20 different NPs are known to be made by the neuroendocrine cells
102	in which reducing SOCE components resulted in poor pupariation upon NR [22]. To
103	shortlist specific NPs important for this paradigm, we undertook a curated GAL4-UAS

104	screen. NP-GAL4s were used to drive the knockdown of $IP_3R(IP_3R^{\prime R})$ [23], and pupariation
105	of the resulting larvae were scored on normal vs NR media (Fig. S1A). On normal food, a
106	significant reduction of pupariation was seen only with <i>sNPF-GAL</i> 4 (Fig. S1A), whose
107	expression strongly correlates with neurons producing sNPF [24]. Upon NR, the largest
108	effect was seen with <i>sNPF-GAL</i> 4, followed by small but significant pupariation defect with
109	AstA-GAL4 and DSK-GAL4 (Fig. S1A). Neurons that secrete NPs may also secrete
110	neurotransmitters, therefore, a role specifically for sNPF was tested. Reducing the level of
111	<i>sNPF</i> (<i>sNPF^{IR}</i>) or reducing an enzyme required for neuropeptide processing (<i>amontillado</i> ;
112	amon ^{IR}) [25] in sNPF-GAL4 expressing cells, as well as a hypomorphic sNPF mutation
113	(<i>sNPF⁰⁰⁴⁴⁸</i>) resulted in impairment of larval development upon NR (Fig. S1B). These data
114	indicate that sNPF is required for pupariating under NR conditions.
115	<i>sNPF-GAL</i> 4 expresses in large number of neurons (>300) in the larval brain [24] (Fig.
116	S1C), and also expresses in the larval midgut and epidermis. To further refine sNPF $^{\scriptscriptstyle +}$
117	neurons on which we can perform cellular investigations, we tested a <i>Cr</i> z-GAL4 driver. This
118	driver expresses in fewer neurons (~22), all of which express the neuropeptide Corazonin
119	(Crz). Importantly, a small subset of these, three bilateral neurons in the brain lobe, make
120	Crz and sNPF. [24] (Fig. 1A). Reducing SOCE in Crz neurons, by reducing either IP $_3$ R or STIM
121	(<i>dSTIM^{IR}</i>) [15,16] or over-expressing a dominant-negative version of Orai (<i>Ora1^{E180A}</i>) [26],
122	resulted in reduced pupariation on NR (Fig. 1B). The absence of a developmental defect on
123	normal food suggests that SOCE in these neurons is primarily required to survive NR.
124	To test if both sNPF and Crz were required, they were specifically reduced (<i>sNPF^{IR}</i> ;
125	<i>Crz^{IR}</i>) in Crz neurons. Knockdown of either NP resulted in larvae with a pupariation defect
126	on NR media but not, on normal food (Fig. 1C; Fig. S1D). In <i>Drosophila</i> neurons, enhancing
127	the expression of SOCE regulators leads to increased SOCE [16]. To test the positive effect

128	of SOCE on Crz and sNPF, a genetic compensation experiment was carried out. The SOCE-
129	regulators, $IP_{3}R$ or $dSTIM$ were over-expressed in Crz neurons which also expressed reduced
130	levels of either sNPF or Crz. NR larvae with this genetic make-up showed a significant
131	improvement in pupariation on NR media, as compared to NR larvae with only reduced NPs
132	(Fig. 1C). Interestingly, the compensation was sufficient to also increase the number of
133	adults that emerged (Fig. 1D). Notably, over-expression of either of the two SOCE
134	molecules, dSTIM and IP $_3$ R on their own, did not affect pupariation on either normal or NR
135	media (Fig. 1C), but unlike on normal food (Fig. S1E), did reduce development to adulthood
136	on NR media (Fig. 1D). These data underscore the sensitivity of Crz neurons to ER-Ca ²⁺
137	homeostasis during NR.
137 138	homeostasis during NR. Loss of IP ₃ R and sNPF has previously been shown to affect larval feeding [27—29].
138	Loss of IP ₃ R and sNPF has previously been shown to affect larval feeding [27–29].
138 139	Loss of IP ₃ R and sNPF has previously been shown to affect larval feeding [27—29]. Hence, larval intake of dye-colored food in a 2-hour span was measured. Age-synchronized
138 139 140	Loss of IP ₃ R and sNPF has previously been shown to affect larval feeding [27–29]. Hence, larval intake of dye-colored food in a 2-hour span was measured. Age-synchronized larvae with knockdown of either <i>dSTIM</i> , <i>IP₃R</i> , <i>Crz</i> or <i>sNPF</i> in Crz neurons exhibited no
138 139 140 141	Loss of IP ₃ R and sNPF has previously been shown to affect larval feeding [27–29]. Hence, larval intake of dye-colored food in a 2-hour span was measured. Age-synchronized larvae with knockdown of either <i>dSTIM</i> , <i>IP₃R</i> , <i>Crz</i> or <i>sNPF</i> in Crz neurons exhibited no difference in the amount of dye ingested (Fig. S1F), suggesting that developmental defects
138 139 140 141 142	Loss of IP ₃ R and sNPF has previously been shown to affect larval feeding [27–29]. Hence, larval intake of dye-colored food in a 2-hour span was measured. Age-synchronized larvae with knockdown of either <i>dSTIM</i> , <i>IP₃R</i> , <i>Crz</i> or <i>sNPF</i> in Crz neurons exhibited no difference in the amount of dye ingested (Fig. S1F), suggesting that developmental defects in the NR assay do not arise from a fundamental feeding problem.

147 Fig. 1 SOCE is required in Crz neurons for larval development on NR media. (A)

148	Expression	pattern of Crz-GAL4	driver, used in this	study to manipulate	Crz neurons,

- 149 visualised by expressing membrane bound RFP (mRFP) and GFP with a nuclear localisation
- signal (GFP^{nIs}) (B) % Pupae upon reduction of SOCE by knockdown of STIM (STIM^{IR}), IP_3R
- 151 (IP_3R^{IR}) or ectopic expression of a dominant-negative *Orai* (*Orai*^{£180A}) in Crz neurons. To
- measure pupariation, twenty five, 88h±3h old larvae, per vial, were transferred to either
- 153 normal food (corn flour, yeast, sugar) (See materials and methods for exact composition) or
- 154 nutrient restricted (NR; 100mM Sucrose) media and number of pupae (and adults where
- relevant) that developed were counted. N = 6 vials for all experiments in this study. (C) %
- 156 Pupae upon reduction of either *sNPF* or *Crz* (*Crz^{<i>IR*}, *sNPF*^{*IR*}) in Crz neurons, and when, *dSTIM*
- 157 or IP_3R are expressed in this background (dSTIM O/E; IP_3R O/E). (D) % Adults recovered for
- 158 genotypes in (C). Bars with the same alphabet represent statistically indistinguishable
- groups. Two-way ANOVA with Sidak multi comparison p<0.05 for (B), (C) and (D). See
- 160 also Figure Supplement 1.
- 161

162 Crz⁺ and sNPF⁺ DLP neurons majorly contribute to development on NR, and are

163 activated by NR

164	In the larval CNS, Crz is expressed in 3 pairs of DLPs (Dorso Lateral Peptidergic
165	neurons) in the <i>par</i> s lateralis region of the brain lobes, 1 pair of neurons in dorso-medial
166	region and 8 pairs of interneurons in the VG (ventral ganglion) [30]. Other than the dorso-
167	medial neurons, the <i>Crz-GAL</i> 4 used in this study recapitulates the known expression
168	pattern for Crz. (Fig. S2A, B; Cartoon: Fig. 2A). Additionally, adjacent to DLPs, low
169	expression of <i>Crz-GAL</i> 4 was observed in 3-4 neurons that do not express Crz (Fig. S2A and
170	Fig. S2C). As mentioned previously, Crz ⁺ DLPs co-express sNPF [24]. In terms of neuronal
171	architecture, the DLP neurons have two major branches: the anterior branch culminates in
172	a dense nest of neurites at the ring gland (RG), while the posterior branch terminates in the
173	subesophageal zone (SEZ). The VG neurons form a network amongst themselves to
174	ultimately give rise to two parallel bundles that travel anteriorly, and end in the brain lobes.
175	To visualize the overall distribution of NPs in the Crz neurons, we ectopically expressed a
176	rat neuropeptide coupled to GFP (ANF::GFP), a popular tool used to track NP transport and
177	release in <i>Drosophila</i> [31] (Fig. S2D). Firstly, within the DLPs, like Crz::mcherry (Fig. S2A),
178	ANF::GPF was either in the cell bodies or RG projections, but not in the projections
179	terminating at the subesophageal zone (Fig. S2D), suggesting selective NP transport to the
180	RG, which is a major neurohaemal site for systemic release of neuropeptides. Secondly,
181	ANF::GFP intensity was higher in the cell bodies of the DLPs than VG neurons (Fig. S2D).
182	The close proximity of the terminal projections of the Crz^{\star} VG neurons and the
183	anterior branch of the Crz $^{\scriptscriptstyle +}$ DLP neurons in the brain lobe suggested possible
184	neuromodulation between the two sets of neurons. Therefore, we undertook experiments
185	to distinguish the contribution of DLPs vs VG localized Crz neurons, to the development in

186	NR media. First, we utilized <i>tshGAL8o</i> to restrict <i>Crz-GAL</i> 4 expression to the DLPs (Fig.
187	S2E). The level of pupariation under NR conditions observed with restricted expression of
188	<i>dSTIM^{IR}</i> (Fig. 2B; Mean: 51%±4.2) was similar to that seen with full expression (Fig. 1B;
189	Mean: 40.7%±13.3), suggesting a major contribution of the DLP neurons to the NR
190	phenotype. Furthermore, <i>sNPF>Crz^{IR}</i> larvae have levels of pupariation of NR larvae (Fig.
191	S2F; Mean: 30.9%±7.8) similar to <i>Crz>Crz^{IR}</i> NR larvae (Fig. 1C; Mean: 33.8%±5.9). Because
192	<i>sNPF-GAL</i> 4 marks only the Crz ⁺ DLP neurons and not the Crz ⁺ VG neurons (Fig. S1C), this
193	too suggests a major role for the Crz $^+$ DLP neurons.
194	Requirement of SOCE in Crz neurons for pupariation on NR (Fig. 1C) suggested that
195	these neurons experience elevated cytosolic Ca ²⁺ in NR conditions and are therefore,
196	stimulated by chronic starvation. To test this, the UV light-activated genetically encoded
197	calcium sensor, CaMPARI [32], was utilised. The sensor fluoresces in the GFP range (F $_{ m 488}$)
198	and is converted irreversibly to fluoresce in the RFP range (F $_{5^{61}}$), when exposed to UV light
199	and in the presence of Ca ²⁺ . The level of conversion positively titrates with Ca ²⁺
200	concentrations. Larva expressing CaMPARI in Crz^{\star} neurons were placed in either normal or
201	NR media for 24 hours (24h NR). Whole larvae were immobilized, and exposed to UV light
202	for 2mins. Control larva were subject to the same treatment but, without being exposed to
203	UV light (Fig. 2C,D; no UV). Detection of $F_{5^{51}}$ in the fed state suggests that these neurons
204	are active even under normal food conditions (Fig. 2C,D). Notably, after 24 hours on NR
205	media, chronic starvation caused a ~2-fold increase in average levels $F_{5^{61}}$ and therefore, of
206	neuronal activation (Fig. 2D). $F_{5^{61}}/F_{4^{88}}$ ratios did not appear to change in the VG neurons
207	(Fig. S2G,H). While there is a possibility that VG neurons do not exhibit higher F $_{561}$ because
208	of insufficient penetration of UV light, the CaMPARI results together with the genetic

- 209 experiments (Fig. 2B, S2F), formed the basis for selecting the DLP neurons for further
- analysis on how dSTIM affects Crz and sNPF.

211

212

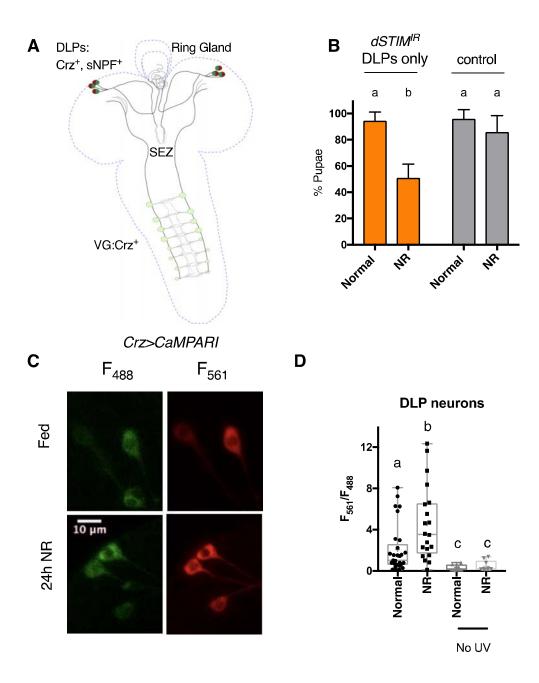


Figure 2

Fig. 2 Crz⁺ and sNPF⁺ DLPs are required for development on NR media and activated by

214 **NR (A)** Cartoon of Crz⁺ and sNPF⁺ neurons in the larval CNS marked by Crz-GAL₄. DLP:

215	dorso lateral peptidergic; VG: Ventral Ganglion; SEZ: Subesophageal zone (B) % Pupae
216	when <i>dSTIM</i> is selectively down-regulated only in Crz^+ and $sNPF^+$ DLPs, by using the <i>tsh</i> -
217	<i>Gal8o</i> transgene and in the presence of <i>dicer</i> 2. Control: <i>tshGal8o</i> /+; <i>dSTIM^{IR}</i> /+ . Data
218	represents mean ± SEM (C) Representative image. Expression of the UV-activated Ca ²⁺
219	indicator, CaMPARI in Crz ⁺ and sNPF ⁺ DLPs, in larvae on 24 hours of normal (Fed) or NR
220	media (24h NR). Fluorescence at 561nm (F ₅₆₁) reflects Ca ²⁺ levels, while at 488nm (F ₄₈₈)
221	reflects levels of the indicator CaMPARI. (D) Quantification of Ca ²⁺ levels as reported by
222	$F_{5^{61/488}}$ ratio in DLPs in larvae on 24 hours of normal or NR media, in the presence and
223	absence of UV-stimulation. N>7 larvae for UV-stimulated; N=3 for No UV stimulation. Bars
224	with the same alphabet represent statistically indistinguishable groups. Two-way ANOVA
225	with Sidak multi comparison test p<0.05 for (B). Mann-Whitney Test for (D). See also Figure

226 Supplement 2.

dSTIM regulates NP synthesis and release in Crz neurons

228	Crz peptide levels were measured in DLP neurons by staining larval brains with an
229	antiserum raised against the mature Crz peptide sequence [33]. Two locations on the DLP
230	neurons were chosen for measurement: neuronal cell body/soma and neurite projections
231	on the RG. In control DLP neurons, 24 hrs of NR caused average levels of Crz levels to
232	increase, in both locations (Fig. 3A, S3A,B). In comparison, DLP neurons expressing <i>dSTIM^{IR}</i>
233	displayed increased Crz peptide levels on normal food itself, and this remained unaltered
234	upon NR, for both locations (Fig. 3A, S3B, C). sNPF levels could not be similarly measured
235	by immunofluorescence because sNPF is expressed in many neurons close to the DLPs (Fig.
236	S1C), making measurements specifically from the DLP soma difficult to quantify. Instead,
237	semi-quantitative, direct, mass spectrometric profiling of dissected RGs was employed.
238	This technique can measure peptide levels relative to stable isotopic standards at single
239	neurohaemal release sites [34]. As Crz levels between the cell bodies and projections
240	correlated, and Crz $^{\scriptscriptstyle +}$ DLPs are the sole contributors of sNPF on the RG [24], this technique
241	allowed us to infer sNPF levels in DLPs. In controls, 24hrs of NR, increased the average level
242	of sNPF ~5-fold on the RG (Fig. 3C). In comparison, RG preparations from larvae where
243	DLPs express <i>dSTIM^{IR}</i> , displayed increased sNPF levels on normal food itself, and this
244	remained unaltered upon NR (Fig. 3C). Although Crz was detected in the RG preparations, it
245	was of much lower intensity. Average Crz levels increased with NR in the control, and in
246	$dSTIM^{IR}$ condition, but statistically higher levels of Crz were seen only in the NR, $dSTIM^{IR}$
247	condition (Fig. S3E). Nonetheless, broad agreement in trends, between Crz using
248	immunofluorescence and sNPF using MALDI-MS, suggest that the two peptides are
249	similarly regulated by NR and <i>dSTIM</i> . This is consistent with genetic experiments which

showed that over-expression of *dSTIM* can rescue loss of both, sNPF as well as Crz (Fig.

251 1C,D).

252 Thus, increased activation of DLP neurons by NR (Fig. 2D), appears to result in 253 peptide accumulation. Loss of *dSTIM* increases peptide levels on normal food, and prevents 254 an increase in peptide levels upon NR.

As an ER-Ca²⁺ sensor, *dSTIM* may potentially regulate several cellular processes that 255 256 would affect NPs such as their synthesis, processing, trafficking and/or release. As $STIM^{R}$ 257 increased peptide levels in the cell body as well as neurite projections on the RG, a major 258 trafficking defect was unlikely (Fig. 3A vs S_3B ,C). This does not rule out a role for dSTIM in 259 dense-core vesicle trafficking, but merely indicates that trafficking of Crz is not observably 260 disrupted by STIM^{IR}. We therefore proceeded to examine systemic and cellular phenotypes when molecules known to reduce overall NP synthesis (InR^{R} ; Insulin Receptor) [35], peptide 261 processing $(amon^{R})$ [25], and vesicle exocytosis (Ral^{DN}) [17] were expressed in Crz neurons. 262 263 All three perturbations caused a pupariation defect on NR media (Fig. 3D). However, despite similar systemic outcomes, $amon^{R}$, which reduces the prohormone convertase 264 265 required for peptide maturation, reduced Crz levels (Fig. 3E). Because this is not seen with *STIM^{IR}*, a role for dSTIM in peptide processing was not pursued further. 266 Expression of InR^{IR} caused a modest increase in Crz peptide levels in DLP neurons in 267 268 the fed state and peptide levels did not increase as in the control, in NR media (Fig. 3F). InR 269 is a global protein synthesis regulator, and its expression scales $DIMM^*NE$ cell size, with functional consequences [35]. As the Crz^+ DLPs are DIMM⁺[36], we expected InR^{IR} to 270 271 reduce, not increase peptide levels. A potential explanation for this observation is that Crz 272 peptide levels are under feedback regulation, which was substantiated when we examined how Crz transcript and peptide levels are connected. Similarities between $InR^{\prime R}$ and $STIM^{\prime R}$ 273

274	phenotypes, coupled with a previous observation that IP_3R , another SOCE component,
275	positively regulates protein synthesis in <i>Drosophila</i> neuroendocrine cells [22], prompted us
276	to test if <i>dSTIM</i> too regulates protein synthesis in general. We ectopically expressed a
277	physiologically irrelevant neuropeptide construct (ANF::GFP), that yields a processed
278	peptide in <i>Drosophila</i> neurons [31]. ANF::GFP levels in control and <i>dSTIM^{IR}</i> DLP neurons
279	were similar (Fig. S3E), suggesting that dSTIM does not have generic effects on peptide
280	synthesis. Instead, its effect on Crz and sNPF synthesis may be specific. The lack of Crz
281	elevation upon NR, in DLP neurons where $\mathit{InR}^{\prime R}$ is expressed, leads to the speculation that
282	InR signalling is required for the up-regulation of protein synthesis needed for increased
283	peptide synthesis, processing and packaging during NR.
284	We previously found that <i>Ral</i> expression lies downstream of dSTIM-mediated SOCE
285	in <i>Drosophila</i> pupal brains [37], and in dopaminergic neurons, over-expression of <i>Ral^{DN}</i>

reduces secretion of ANF::GFP [17]. These previous data, coupled with the observation that

287 Ral^{DN} and dSTIM^{IR} show similarly high Crz levels in the fed state, suggest that dSTIM affects

vesicle secretion through regulation of *Ral* expression. To independently validate if vesicle

release is important in Crz neurons, we over-expressed a temperature sensitive dynamin

290 mutant (*Shibire^{ts}*) also shown to reduce NP release [38] and tetanus toxin (*TNT*) shown to

291 prevent release of eclosion hormone, a neuropeptide [39]. Both manipulations caused a

292 pupariation defect on NR (Fig. S₃F). It is unclear why Ral^{DN} causes Crz levels to decrease

293 upon NR. In *Drosophila* pacemaker neurons, *Ral* has been shown to bias the sensitivity of a

neuropeptide receptor, the Pigment Dispensing Factor Receptor [40]. Perhaps, functions

distinct from *Ral*'s contribution to vesicle exocytosis contribute to this observation.

296 Nonetheless, the lack of increase in Crz levels in DLP neurons upon NR, when InR^{IR} and

297 *Ral^{DN}* are expressed, assumes significance in the context of pupariation of NR larvae.

298	Control larvae subject to 24hrs of NR, display increased Crz (Fig. 3A) and sNPF (Fig. 3C)
299	levels, and then proceed to successfully complete development to pupae (Fig. 1C).
300	Whereas, in d <i>STIM^{IR}, InR^{IR}</i> and <i>Ral^{DN}</i> conditions, on NR, neither do DLPs display increased
301	Crz levels (Fig. 3A, 3F), nor do all larvae pupariate (Fig. 1B, 1C, 3D). Thus, an increase in
302	peptide levels on NR correlates with larval ability to pupariate on NR. Taken in context with
303	increased neuronal activation during NR (Fig. 2D), and evidence that functional vesicle
304	exocytosis (Fig. 3D, S3F) as well as adequate peptide production (Fig. 3D) is required for
305	survival on NR, these data suggest that increased production and release of Crz and sNPF
306	during NR, is required for NR larvae to successfully complete development.
307	To prove that Crz and sNPF are released during NR, the ideal experiment would be
308	to measure levels of secreted NPs. But small size (8-10 amino acids), low hemolymph titres
309	and high complexity of hemolymph, make peptide measurements by biochemical means
310	highly challenging in <i>Drosophila</i> . Moreover, NPs exhibit endocrine as well as paracrine
311	signalling [41]; and the latter will not be reflected in hemolymph measurements.
312	Fortunately, in the Crz signalling system there is feedback compensation between secreted
313	Crz and Corazonin receptor (<i>CrzR</i>) mRNA levels, providing a means to gauge secreted Crz
314	levels indirectly. In adults, expression of <i>Crz^{IR}</i> in Crz neurons, increased levels of <i>CrzR</i> on the
315	fat body [42]. We thus tested if <i>CrzR</i> , which in larvae appears to be expressed in the salivary
316	glands and CNS [43], was subject to similar feedback. In larval brains, reducing Crz, using
317	two different <i>Crz^{IR}</i> strains, not only caused a reduction in <i>Crz</i> mRNA levels (Fig. 3G), but also
318	a concomitant increase in <i>CrzR</i> mRNA levels (Fig. 3H). Conversely, reducing CrzR levels
319	(<i>CrzR^{IR}</i>) in the larval CNS, results in up-regulation of <i>Crz</i> mRNA (Fig. S3G). This confirmed
320	the existence of feedback in the Crz signalling system, and the use of neuronal <i>CrzR</i>
321	transcript levels as a measure of secreted Crz levels. In line with this inference, we observed

322	an up-regulation of <i>CrzR</i> mRNA in larval brains where Crz neurons are expressing either
323	<i>InR^{IR}</i> or <i>amon^{IR}</i> or <i>Ral^{DN}</i> (Fig. 3I). Therefore, the observation that in the <i>STIM^{IR}</i> condition
324	<i>CrzR</i> mRNA levels are high (Fig. 3I), supports the idea that dSTIM function is necessary for
325	the secretion of optimal levels of Crz.
326	Because dSTIM-mediated SOCE is known to induce changes in gene expression [37],
327	we probed if <i>Crz</i> expression is sensitive to NR and <i>dSTIM</i> . In the control, NR did not change
328	<i>Cr</i> z mRNA levels (Fig. 3J), suggesting that a post-transcriptional mechanism is responsible
329	for increasing Crz peptide levels upon NR (Fig. 3A,S3B,C). In the <i>STIM^{IR}</i> condition, <i>Crz</i>
330	transcript levels were up-regulated on normal food conditions (Fed) and no further increase
331	was observed upon NR (Fig. 3J). The straightforward explanation for high Crz peptide levels
332	in <i>STIM^{IR}</i> condition could therefore be attributed to higher gene expression of <i>Crz</i> .
333	However, data from other perturbations in Crz neurons suggested that a linear
334	interpretation between Crz mRNA and peptide levels cannot not be made. When Crz^{R} is
335	expressed, <i>Cr</i> z mRNA is reduced (Fig. 3G), but peptide levels are elevated (Fig. S3I);
336	whereas, when $amon^{\prime\!R}$ is expressed, <i>Crz</i> mRNA is increased (Fig. S ₃ H), but peptide levels
337	are decreased (Fig. 3E). Meanwhile, in three conditions, <i>Crz</i> mRNA as well as peptide levels
338	are higher than controls: $Crz R^{\prime R}$ (Fig. S3G vs S3I), $In R^{\prime R}$ (Fig. S3H vs Fig. 3F) and Ral^{DN} (Fig.
339	S ₃ H vs Fig ₃ F). Note also that both higher (d <i>STIM^{IR}, InR^{IR}, Ral^{DN}</i>) or lower (<i>amon^{IR}</i>) Crz
340	peptide levels in DLP cell bodies, result in reduced systemic Crz signalling (<i>CrzR</i> mRNA
341	levels; Fig. 3I). These data indicate that Crz transcription, translation and release are
342	independently regulated. A simple explanation for elevated levels of <i>Crz</i> transcript as well
343	as peptide levels in $STIM^{\prime R}$ is therefore, feedback compensation. Moreover, there is no
344	change in Crz mRNA upon 24hrs of NR, when <i>STIM^{IR}</i> is expressed (Fig. 3J). Together, this
345	argues against a direct role for <i>dSTIM</i> in regulating <i>Crz</i> gene expression.

346	In summation	, these data l	have been	inferred as	follows: o	on normal food	, partial loss

- 347 of *dSTIM* reduces systemic Crz signalling, indicating a requirement for *dSTIM* in Crz
- 348 secretion. On NR media, Crz⁺ DLPs are stimulated to increase peptide synthesis and
- 349 release, in order for NR larvae to complete development. Peptide up-regulation upon NR is
- abrogated when *dSTIM* is reduced. These add up to suggest that *dSTIM* compromises NE
- 351 cell function in a manner that affects peptide synthesis and release, with functional
- 352 consequences for survival on NR.

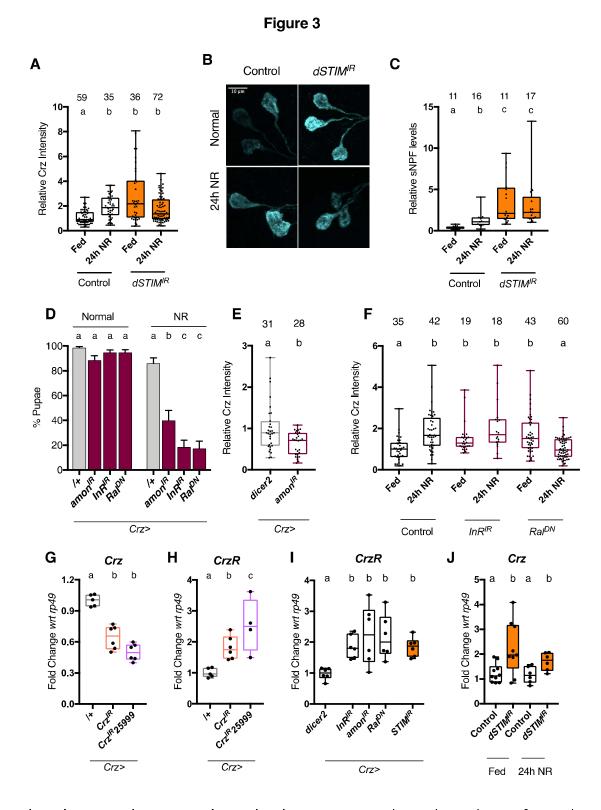


Fig 3. *dSTIM* regulates Crz and sNPF levels. Larvae were subjected to 24 hours of normal
(fed) or nutrient restricted (NR) media. Crz levels were measured in DLP neurons by

356	immunofluorescence on larval brains. All manipulations were performed using the <i>Cr</i> z-
357	<i>GAL4</i> driver (A) Relative levels of Crz peptide in DLP neuron cell bodies, Control= <i>crz>dicer</i> 2
358	. <i>dSTIM^{IR}=crz> dSTIM^{IR},dicer2</i> . Number of cells measured shown atop bars. N>12 brains (B)
359	Representative images for cell bodies measured in (A). (C) Relative levels of total sNPF
360	peptides measured on dissected ring glands (N atop bars) and quantified using MALDI-MS.
361	Externally added heavy standard (Hug-PK*) was used to normalise peptide levels between
362	samples. (D) % Pupae on normal or NR media, upon reduced peptide processing
363	(<i>amon^{IR},dicer</i> 2) protein synthesis (Insulin receptor; <i>InR^{IR}</i>) or vesicle exocytosis (dominant-
364	negative <i>Ral; Ral^{DN}</i>) in Crz ⁺ neurons. Data represents mean ± SEM (E) Relative levels of Crz
365	upon expression of <i>amon^{IR}</i> and <i>dicer2</i> . N>10 brains. (F) Relative levels of Crz upon indicated
366	cellular perturbation of Crz⁺ neurons. N≥6 brains. control: <i>Cr</i> z- <i>GAL</i> 4/+. (G) <i>Cr</i> z mRNA levels
367	from larval brains when Crz is reduced by two different RNAi lines. N ≥ 5. (H) Corazonin
368	receptor (<i>CrzR</i>) mRNA levels from larval brains with reduced <i>Crz</i> . N \ge 4. (I) <i>CrzR</i> mRNA
369	levels from larval brains expressing indicated cellular perturbations in Crz neurons. N \ge 6 (J)
370	<i>Cr</i> z mRNA levels from larval brains. Control <i>=cr</i> z> <i>dicer2 . dSTIM^{IR}=crz> dSTIM^{IR},dicer</i> 2 N ≥ 6.
371	Bars with the same alphabet represent statistically indistinguishable groups. Kruskal-Wallis
372	Test with Dunn's multicomparison correction p<0.05 for (A), (C), (F). Mann-Whitney Test
373	for (E). Two-way ANOVA with Sidak's multi comparison test p<0.05 for (D), (J). One-way
374	ANOVA with Tukey multi comparison test p<0.05 for (G), (H), (I). See also Figure
375	Supplement 3.

376

377 Systemic and cellular phenotypes observed with reduced *dSTIM* in Crz neurons can be

378 rescued by increasing synthesis and release of peptides

379 To validate a role for dSTIM in peptide synthesis and release, we tested genetic 380 perturbations that can compensate for this deficiency, to rescue developmental and cellular phenotypes associated with *dSTIM^{IR}* expression in Crz neurons. In the case of NPs, genetic 381 382 over-expression may not translate to enhanced release, as proteins involved in NP 383 processing as well as the regulated secretory pathway would need to be up-regulated. 384 Furthermore, regulatory feedback from peptides to their transcription may complicate 385 over-expression, as seen for the Crz signalling system (Fig. S31). To get around these issues, and because InR^{IR} phenocopied STIM^{IR} (Fig. 3A,D,F,I, S3H), we opted to increase protein 386 387 synthesis by over-expression of the Insulin receptor (InR). Cell size (Fig. S4A) as well as Crz 388 levels (Fig. S4B,C) in DLP neurons scaled with *InR* over-expression, supporting the 389 effectiveness of *InR*. To increase release, we over-expressed *Ral^{WT}* as *Ral* over-expression can compensate for vesicle release in dopaminergic neurons expressing STIM^{IR} [17]. In Crz 390 neurons with reduced dSTIM, over-expression of either InR or Ral^{WT} rescued pupariation on 391 392 NR media (Fig. 4A); restored peptide up-regulation upon NR (Fig. 4A,B) and decreased CrzR mRNA back to control levels (Fig. 4D). Of note, over-expressing Ral^{WT} or InR by itself, in Crz 393 394 neurons, did not alter CrzR mRNA levels (Fig. 4D), suggesting that neuronal activation, 395 which happens on NR media (Fig. 2D) potentiates their activity. 396 To increase neuronal activity, we utilised the temperature and voltage-gated cation 397 channel, TrpA1 [44]. Over-expression of *dTrpA1* and its activation by raising the temperature to 30° C for 24 hours, in the $dSTIM^{IR}$ background, rescued pupariation of NR 398

399 larvae (Fig. 4E). It also restored the ability of DLP neurons to increase Crz levels upon NR

400	(Fig. 4F) and decreased levels of <i>CrzR</i> mRNA (Fig. 4G). In line with the feedback between
401	<i>CrzR</i> mRNA levels and systemic Crz signaling, over-expression of <i>dTrpA1</i> alone in Crz
402	neurons resulted in a decrease in <i>CrzR</i> mRNA levels (Fig. 4G), supporting the role for
403	neuronal activation in secreting Crz. Interestingly, development to adulthood on NR, for
404	<i>dSTIM^{IR}</i> larvae, was also significantly increased upon over-expression of <i>InR</i> (Fig. S4E) and
405	<i>TrpA1</i> (Fig. S4F), but not Ral ^{WT} (Fig. S4E).
406	An optogenetic approach, utilizing the over-expression of Channelrhodopsin (ChR2-
407	XXL), a light-sensitive cation channel, also rescued pupariation but not to the same extent
408	(Fig. S4D). Poorer rescue with <i>ChR2-XXL</i> could be because sustained activation of this
409	channel depress synaptic transmission and the channel is less conductive for Ca^{2+} compared
410	to TrpA1 [45]. Similar genetic manipulation, with TrpA1 and Chr2-XXL, in a hypomorphic
411	$IP_{3}R$ mutant (<i>itpr^{ku}</i>) resulted in a small but significant rescue of <i>itpr^{ku}</i> pupariation on NR
412	media (Fig. S4G,H).
413	Together, these results strongly suggested that defects arising from dysregulated
414	intracellular Ca ²⁺ signalling, may be overcome by increasing vesicle exocytosis (Ral^{WT} ,
415	<i>TrpA1, ChR2-XXL rescue</i>) or protein synthesis (<i>InR</i> rescue). Importantly, the rescues
416	observed with InR, Ral^{WT} and $dTrpA_1$ are effective at the molecular (CrzR levels), cellular

417 (Crz peptide levels upon NR) as well as systemic (NR larvae) level.

418

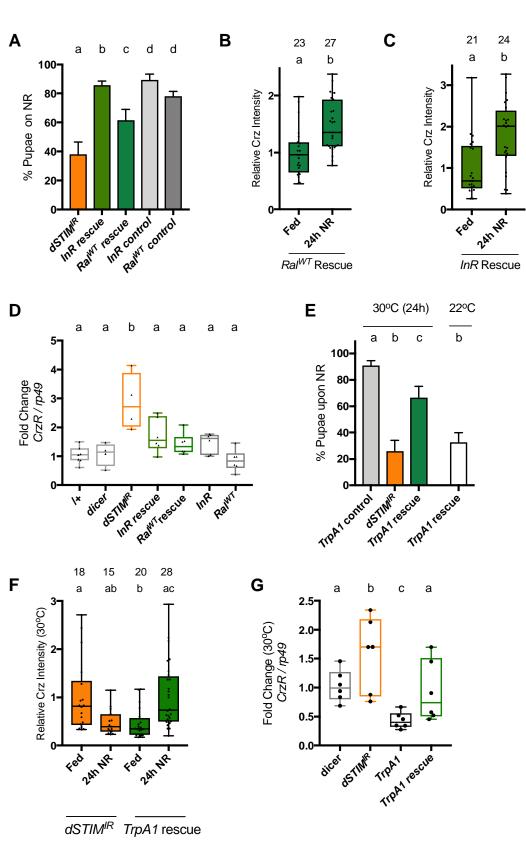


Figure 4

420	Fig 4. Systemic and cellular phenotypes caused by partial loss of dSTIM in Crz neurons,
421	can be rescued by increasing peptide synthesis or release. (A) % Pupae upon expression
422	of Insulin receptor (<i>InR</i>) or Ral (<i>Ral^{WT}</i>) in Crz neurons expressing <i>dSTIM^{IR}</i> . Genotypes:
423	dSTIM ^{IR} = crz>dSTIM ^{IR} . InR rescue=Crz>InR,dSTIM ^{IR} ,dicer2. Ral ^{WT} rescue=Crz> Ral ^{WT} ,
424	dSTIM ^{IR} ,dicer2. InR control: dicer2;InR/+; dSTIM ^{IR} /+;. Ral ^{WT} control: Ral ^{WT} /+; dSTIM ^{IR} /+. Data
425	represents mean ± SEM. (B) <i>Ral^{WT}</i> rescue or (C) InR rescue larvae were transferred to
426	normal (Fed) or NR media for 24 hours. Crz immunofluorescence levels in DLP neurons
427	were measured. Number of cells measured shown atop bars. N>7 brains (D) <i>Cr</i> z receptor
428	(CrzR) mRNA levels in larval brains expressing various molecules in Crz neurons.
429	InR= <i>Crz>InR. Ral^{WT}=Crz>Ral^{WT}.</i> N≥4. (E) % Pupae upon expression of TrpA1 in Crz neurons
430	expressing <i>dSTIM^{IR}</i> . TrpA1 control: <i>dicer2;TrpA1</i> /+; <i>dSTIM^{IR}</i> /+; TrpA1 rescue: <i>Crz>TrpA1</i> ,
431	<i>dSTIM^{IR},dicer2.</i> Larvae were reared at 25°C, at 88h±3h AEL age transferred to NR media and
432	incubated either at 30°C or 22°C for 24 hours, and returned to 25°C thereafter. Data
433	represents mean ± SEM. (F) Crz levels in DLP neurons upon 24 hrs of NR or normal food
434	(Fed) at 30°C for indicated genotypes. N > 5 brains. (G) <i>Crz</i> receptor (<i>CrzR</i>) transcript levels
435	in larval brains expressing various molecules in Crz $^{\scriptscriptstyle +}$ neurons, when larvae are reared at
436	30°C. TrpA1: <i>Cr</i> z> <i>TrpA1</i> . N=6. one-way ANOVA with a post hoc Tukey's test p<0.05 for (A),
437	(D), (E), (G). Mann-Whitney test for (B), (C). Kruskal-Wallis Test with Dunn's multi-
438	comparison correction p<0.05 for (F). See also Figure Supplement 4.

440 Discussion

441	This study employed an <i>in vivo</i> approach coupled to a functional outcome, in order
442	to broaden our understanding of how STIM regulates neuropeptides. A role for dSTIM-
443	mediated SOCE in <i>Drosophila</i> neuroendocrine cells for survival on NR was previously
444	established [22]. The previous study offered the opportunity to identify SOCE-regulated
445	peptides, produced in these neuroendocrine cells, that could be investigated in a
446	physiologically relevant context.
447	In <i>Drosophila</i> , both Crz and sNPF have previously been attributed roles in many
448	different behaviours. Crz has roles in adult metabolism and stress responses [42,46–48],
449	sperm transfer and copulation [49], and regulation of ethanol sedation [50,51]. While, sNPF
450	has been implicated in various processes including insulin regulation (Kapan et al., 2012;
451	Lee et al., 2008) circadian behaviour [53], sleeping [54,55] and feeding [27]. Thus, the
452	identification of Crz and sNPF in coping with nutritional stress is perhaps not surprising, but
453	a role for them in coordinating the larval to pupal transition under NR is novel.
454	A role for Crz in conveying nutritional status information was originally proposed by
455	Jan Veenstra [56], which this study now supports. In larvae, $Crz^{*}DLPs$ are known to play a
456	role in sugar sensing [57] and in adults, they express the fructose receptor Gr43a [58].
457	Additionally, they express receptors for neuropeptides DH31 [59], DH44 [59] and AstA [56],
458	which are made in the gut as well as larval CNS. Together, these observations and our study
459	are strongly indicative of a role for Crz^*DLPs in directly or indirectly sensing nutrients, with
460	a functional role in larval survival and development in nutrient restricted conditions.
461	Several neuropeptides and their associated signalling systems are evolutionarily
462	conserved [11,12]. The similarities between Crz and GnRH (gonadotrophin-releasing
463	hormone), and sNPF and PrRP (Prolactin-releasing peptide), at the structural [11],

464	developmental [60] and receptor level therefore, is intriguing. Structural similarity of
465	course does not imply functional conservation, but notably, like sNPF, PrRP has roles in
466	stress response and appetite regulation [61]. This leads to the conjecture that GnRH and
467	PrRP might play a role in mammalian development during nutrient restriction.
468	dSTIM regulates Crz and sNPF at the levels of peptide release and likely, peptide
469	synthesis upon NR. We speculate that neuroendocrine cells can use these functions of
470	STIM, to fine tune the amount and timing of peptide release, especially under chronic
471	stimulation (such as 24hrs NR), which requires peptide release over a longer timeframe.
472	Temporal regulation of peptide release by dSTIM may also be important in neuroendocrine
47 3	cells that co-express peptides with multifunctional roles, as is the case for Crz and sNPF. It
474	is conceivable that such different functional outcomes may require distinct bouts of NP
475	release, varying from fast quantile release to slow secretion [62]. As elevation in cytosolic
476	Ca ²⁺ drives NP vesicle release, neurons utilise various combinations of Ca ²⁺ influx
477	mechanisms to tune NP release. For example, in <i>Drosophila</i> neuromuscular junction,
478	octopamine elicits NP release by a combination of cAMP signalling and ER-store Ca ²⁺ , and
479	the release is independent of activity-dependent Ca ²⁺ influx [63]. In the mammalian dorsal
480	root ganglion, VGCC activation causes a fast and complete release of NP vesicles, while
481	activation of TRPV1 causes a pulsed and prolonged release [64]. dSTIM-mediated SOCE
482	adds to the repertoire of mechanisms that can regulate cytosolic Ca ²⁺ levels and therefore,
483	vesicle release. This has already been shown for <i>Drosophila</i> dopaminergic neurons [17] and
484	this study extends the scope of release to peptides. Notably, dSTIM regulates exocytosis
485	via Ral in neuroendocrine cells, like in dopaminergic neurons.
486	In <i>Drosophila</i> larval Crz⁺ DLPs, dSTIM appears to have a role in both fed, as well as

486 In *Drosophila* larval Crz⁺ DLPs, dSTIM appears to have a role in both fed, as well as
487 NR conditions. On normal food, not only do Crz⁺ DLPs exhibit small but significant levels of

488	neuronal activity (Fig. 2D) but also, loss of dSTIM in these neurons reduced Crz signalling
489	(Fig. 3I). Thus, dSTIM regulates Ca ²⁺ dynamics and therefore, neuroendocrine activity,
490	under basal as well as stimulated conditions. This is consistent with observations that basal
491	SOCE contributes to spinogenesis, ER-Ca ²⁺ dynamics as well as transcription [65].
492	However, in our case, this regulation appears to have functional significance only in NR
493	conditions as pupariation of larvae, with reduced levels of $dSTIM$ in Crz ⁺ neurons, is not
494	affected on normal food (Fig. 1B). In a broader context, STIM is a critical regulator of
495	cellular Ca $^{2+}$ homeostasis as well as SOCE, and a role for it in the hypothalamus has been
496	poorly explored. Because STIM is highly conserved across the metazoan phyla, our study
497	predicts a role for STIM and STIM-mediated SOCE in peptidergic neurons of the
498	hypothalamus. There is growing evidence that SOCE is dysregulated in neurodegenerative
499	diseases [66]. In neurons derived from mouse models of familial Alzheimer's' disease [67]
500	and early onset Parkinson's [65], reduced SOCE has been reported. How genetic mutations
501	responsible for these diseases manifest in neuroendocrine cells is unclear. If they were to
502	also reduce SOCE in peptidergic neurons, it's possible that physiological and behavioural
503	symptoms associated with these diseases, may in part stem from compromised SOCE-
504	mediated NP synthesis and release.
505	Material and Methods

506 Fly Husbandry

Flies were grown at 25°C in 12h:12h L:D cycle. Normal food: (1L recipe: 80g corn flour,
20g Glucose, 40g Sugar, 15g Yeast Extract, 4mL propionic acid, *p*-hydroxybenzoic
acid methyl ester in ethanol 5mL, 5mL ortho butyric acid) For nutritional stress assay,
flies were allowed to lay eggs for 6 hours on normal food. After 88hours, larvae were

- 511 collected and transferred to either normal or NR (100mM Sucrose) food. Pupae and adults
- 512 were scored after 10 days of observation.
- 513 Fly strains.
- 514 *Canton S* was used as the wild type (+) control.
- 515 The following strains were obtained from Bloomington Drosophila Stock Centre: AKH-
- 516 GAL4 (25684), Crz-GAL4 (51976), DSK-GAL4 (51981), sNPF-GAL4 (51981), UAS-Crz^{IR} 25999
- 517 (25999), UAS-dicer2 (24651), UAS-TeTxLc (28837), UAS-TeTxLc-IMP (28838), UAS-CaMPARI
- 518 (58761), UAS-GFP^{nls} (4776), UAS-mRFP (32218), UAS-TrpA1 (26263), UAS-InR (8248), UAS-
- 519 *amon^{IR}* (28583), UAS-Ral^{DN} (32094)
- 520 The following strains were obtained from Drosophila Genetic Resource Center, Kyoto:
- 521 *sNPF-GAL*4 (113901)
- 522 The following were from Vienna Drosophila Research Centre stock collection: UAS-IP₃R^{IR}
- 523 (106982), UAS-STIM^{*IR*} (47073), UAS- Crz^{IR} (30670), UAS- InR^{IR} (999)
- 524 The following was from Exelixis at Harvard Medical School: *sNPF*⁰⁰⁴⁴⁸ (coo448)
- 525 The following were kind gifts: AstA¹-GAL4 (David Anderson), dILP₂-GAL₄ (Eric Rulifson),
- 526 hug-GAL4 (Michael Pankratz), NPF-GAL4 (Ping Shen), UAS-sNPR^{IR} (Kweon Yu),
- 527 Crz::mCherry (Gábor Juhász), UAS-hid::UAS-rpr (Tina Mukherjee), UAS-Shibire^{ts} (Toshihiro
- 528 Kitamoto), *tsh-GAL8o* (Julie Simpson), *UAS-preproANF::GFP* (Edwin Levitan), *UAS-*
- 529 ChR₂XXL (Robert Kittel and Georg Nagel)
- 530 The following were previously generated in our laboratory: $itpr^{ka1091}$, $itpr^{vg3}$, UAS-Orai^{E180A},
- 531 UAS-*itpr*⁺, UAS-Stim, UAS-Ral^{WT}
- 532 Larval Feeding
- 533 Ten 3rd instar larvae were collected and placed on cotton wool soaked with solution of 4.5%
- dissolved yeast granules and 0.5% Erioglaucine (Sigma, 861146). Controls contained no

- 535 dye. Feeding was allowed for 2 hours at 25° C. 5 larvae per tube were crushed in 100μ L of
- 536 double distilled water. Solution was spun at 14000 rpm for 15 minutes and 50µL was
- 537 withdrawn for absorbance measurement at 625nm in a 96-well plate. 5µL was used to
- 538 measure protein content using the Pierce BCA Protein Assay kit (#23227).
- 539 **qRT-PCR**
- 540 RNA was isolated from 12-15 larval brains at the specified time points using Trizol. cDNA
- 541 synthesis was carried out as described [26]. All mRNA levels are reported as fold change
- 542 normalized to *rp49*. Primer sequences:
- 543 *rp49*, F:CGGATCGATATGCTAAGCTGT, R:GCGCTTGTTCGATCCGTA.
- 544 *Crz*, F:TCCTTTAACGCCGCATCTCC, R:CGTTGGAGCTGCGATAGACA
- 545 *CrzR*, F:CTGTGCATCCTGTTTGGCAC, R:GGCCTTGTGTATCAGCCTCT
- 546 Measuring neuronal activation using CaMPARI
- 547 Early third instar larvae were transferred to either normal or NR food. After 24 hours, larvae
- 548 were recovered and immobilized on double sided tape. UV light from a Hg-arc lamp was
- 549 focused using the UV filter, on the larvae through a 10X objective on Olympus BX60, for 2
- 550 minutes. Larvae were them immediately dissected in ice-cold PBS, mounted in PBS and
- 551 imaged using Olympus FV-3000 Confocal microscope using a 40X objective and high-
- sensitivity detectors. Microscope settings for laser intensity, PMT settings and
- magnification were kept identical for all measurements. Each experiment always had a no
- 554 UV control, in which larvae were subject to immobilisation but not UV light. Fluorescence
- intensity was calculated for each cell body using Image J.
- 556 Immunofluorescent staining
- 557 For expression patterns, 3rd instar larval brains with RGs attached were dissected in ice-
- cold PBS and fixed in 3.7% formaldehyde at 4°C for 20mins. The samples were washed 4

559	times in PBS and mounted in 60% glycerol. Endogenous fluorescence was acquired on
560	Olympus FV-3000 using a 20X, 40X or 60X objective, and processed used ImageJ. For
561	samples requiring antibody staining brains were similarly processed and then subjected to
562	permeabilisation (0.3% Triton X-100 + PBS; PBSTx) for 15 mins, 4 hr blocking in 5% normal
563	goat serum in PBSTx at 40C, followed by overnight incubation in primary antibody (1:1000
564	Chicken-GFP, Abcam: ab13970) and secondary with Alexa 488 or Alexa 594 (1:400; Abcam).
565	For corazonin (1:1000; raised in Rabbit; Jan Veenstra, University of Bordeaux), all the above
566	steps remained the step, except that dissected brains were fixed for 1hr at RT in 4% PFA
567	and the secondary was anti-rabbit Alexa 405 (1:300, Abcam). Cell bodies were outlined
568	manually and integrated density was used to calculate CTCF (Corrected Total Cell
569	Fluorescence). For all samples, a similar area was measured for background fluorescence.
570	Direct peptide-profiling by MALDI-TOF MS
571	Ring glands were dissected in cold HL3.1 and transferred to a MALDI plate as previously
571 572	Ring glands were dissected in cold HL3.1 and transferred to a MALDI plate as previously described [68]. 0.2 μ l of matrix (saturated solution of recrystallized α -cyano-4-
572	described [68]. 0.2 μ l of matrix (saturated solution of recrystallized α -cyano-4-
572 573	described [68]. o.2 μl of matrix (saturated solution of recrystallized α-cyano-4- hydroxycinnamic acid in MeOH/EtOH/water 30/30/40% v/v/v) was added, containing 10 nM
572 573 574	described [68]. o.2 μl of matrix (saturated solution of recrystallized α-cyano-4- hydroxycinnamic acid in MeOH/EtOH/water 30/30/40% v/v/v) was added, containing 10 nM of stable isotope-labeled HUG-pyrokinin (HUG-PK* (Ser–Val[d8]–Pro–Phe–Lys–Pro–Arg–
572 573 574 575	described [68]. o.2 μl of matrix (saturated solution of recrystallized α-cyano-4- hydroxycinnamic acid in MeOH/EtOH/water 30/30/40% v/v/v) was added, containing 10 nM of stable isotope-labeled HUG-pyrokinin (HUG-PK* (Ser–Val[d8]–Pro–Phe–Lys–Pro–Arg– Leu–amide, Mw = 950.1 Da; Biosyntan, Berlin, Germany)) and 10 nM labeled
572 573 574 575 576	described [68]. o.2 μl of matrix (saturated solution of recrystallized α-cyano-4- hydroxycinnamic acid in MeOH/EtOH/water 30/30/40% v/v/v) was added, containing 10 nM of stable isotope-labeled HUG-pyrokinin (HUG-PK* (Ser–Val[d8]–Pro–Phe–Lys–Pro–Arg– Leu–amide, Mw = 950.1 Da; Biosyntan, Berlin, Germany)) and 10 nM labeled myosuppressin (MS* (Thr–Asp–Val[d8]–Asp–His–Val–Phe–Leu–Arg–Phe–amide, Mw =
572 573 574 575 576 577	described [68]. o.2 μl of matrix (saturated solution of recrystallized α-cyano-4- hydroxycinnamic acid in MeOH/EtOH/water 30/30/40% v/v/v) was added, containing 10 nM of stable isotope-labeled HUG-pyrokinin (HUG-PK* (Ser–Val[d8]–Pro–Phe–Lys–Pro–Arg– Leu–amide, Mw = 950.1 Da; Biosyntan, Berlin, Germany)) and 10 nM labeled myosuppressin (MS* (Thr–Asp–Val[d8]–Asp–His–Val–Phe–Leu–Arg–Phe–amide, Mw = 1255.4 Da; Biosyntan) MALDI-TOF mass spectra were acquired in positive ion mode on a
572 573 574 575 576 577 578	described [68]. o.2 μl of matrix (saturated solution of recrystallized α-cyano-4- hydroxycinnamic acid in MeOH/EtOH/water 30/30/40% v/v/v) was added, containing 10 nM of stable isotope-labeled HUG-pyrokinin (HUG-PK* (Ser–Val[d8]–Pro–Phe–Lys–Pro–Arg– Leu–amide, Mw = 950.1 Da; Biosyntan, Berlin, Germany)) and 10 nM labeled myosuppressin (MS* (Thr–Asp–Val[d8]–Asp–His–Val–Phe–Leu–Arg–Phe–amide, Mw = 1255.4 Da; Biosyntan) MALDI-TOF mass spectra were acquired in positive ion mode on a 4800 Plus MALDI TOF/TOF analyzer (MDS Sciex, Framingham, MA, USA) in a mass range
572 573 574 575 576 577 578 579	described [68]. o.2 μl of matrix (saturated solution of recrystallized α-cyano-4- hydroxycinnamic acid in MeOH/EtOH/water 30/30/40% v/v/v) was added, containing 10 nM of stable isotope-labeled HUG-pyrokinin (HUG-PK* (Ser–Val[d8]–Pro–Phe–Lys–Pro–Arg– Leu–amide, Mw = 950.1 Da; Biosyntan, Berlin, Germany)) and 10 nM labeled myosuppressin (MS* (Thr–Asp–Val[d8]–Asp–His–Val–Phe–Leu–Arg–Phe–amide, Mw = 1255.4 Da; Biosyntan) MALDI-TOF mass spectra were acquired in positive ion mode on a 4800 Plus MALDI TOF/TOF analyzer (MDS Sciex, Framingham, MA, USA) in a mass range of 900-4000 Da and fixed laser intensity with 20 subspectra and 1000 shots per sample.
572 573 574 575 576 577 578 579 580	described [68]. o.2 μl of matrix (saturated solution of recrystallized α-cyano-4- hydroxycinnamic acid in MeOH/EtOH/water 30/30/40% v/v/v) was added, containing 10 nM of stable isotope-labeled HUG-pyrokinin (HUG-PK* (Ser–Val[d8]–Pro–Phe–Lys–Pro–Arg– Leu–amide, Mw = 950.1 Da; Biosyntan, Berlin, Germany)) and 10 nM labeled myosuppressin (MS* (Thr–Asp–Val[d8]–Asp–His–Val–Phe–Leu–Arg–Phe–amide, Mw = 1255.4 Da; Biosyntan) MALDI-TOF mass spectra were acquired in positive ion mode on a 4800 Plus MALDI TOF/TOF analyzer (MDS Sciex, Framingham, MA, USA) in a mass range of 900-4000 Da and fixed laser intensity with 20 subspectra and 1000 shots per sample. Data were analyzed with Data Explorer 4.10. Spectra were baseline corrected and de-

- 583 peptides*. Then, the ratios sNPF/HUG-PK* and corazonin/MS* were calculated, using the
- labeled peptide with the most similar molecular weight. For sNPF, all isoforms (1/2-short, 1-
- 585 long, -3 and -4) variants were totaled.
- 586 **Optogenetic and thermogenic experiments**
- 587 For thermogenetic (*dTrpA1*, *Shibire^{ts}*) experiments, larvae were matured to 88hours AEL at
- 588 25°C. After transfer to either NR or normal food, vials were placed at 22°C, 25°C or 30°C for
- 589 either 24 hours (*dTrpA*1) or till the end of observation time (*Shibire*^{ts}). For optogenetic
- 590 experiments (*Chr2-XXL*), larvae were matured to 88AEL in the dark. After transfer to either
- 591 NR or normal food, one set was placed in the dark while another was placed in an incubator
- 592 with regular white lights that were on continuously till the end of observation time.

593 Author contributions

- 594 M, C.W and G.H designed research; M performed research, except MALDI-MS which was
- 595 performed by C.W.; M, C.W and G.H. analysed data; M wrote the paper with inputs from

596 C.W. and G.H.

597 Acknowledgments

- 598 Supported by Wellcome Trust/ DBT India Alliance (Early Career Award #IA/E/12/1/500742 to
- 599 M) and NCBS core funding (GH). We thank Jan Veenstra for the Crz antibody and helpful
- 600 suggestions with immunostaining. Members of the Hasan lab for help with fly transfers,
- 601 critical comments and helpful discussions. Drosophila fly community (List in supplementary
- 602 information), BDSC, VDRC, NIG and DGRC for fly strains. NCBS Central Imaging and Flow
- 603 Facility, for imaging, and Jörg Kahnt (core facility for mass spectrometry and proteomics,
- 604 Max-Planck-Institute for Terrestrial Microbiology, Marburg) for access to the mass
- 605 spectrometer.
- 606 Competing Interests

607 All of the authors declare no financial and non-financial competing interests.

608 References

609 1. Prakriya M, Lewis RS. Store-Operated Calcium Channels. Physiol Rev. United States; 610 2015;95: 1383-1436. doi:10.1152/physrev.00020.2014 611 Putney JW, Steinckwich-Besancon N, Numaga-Tomita T, Davis FM, Desai PN, 2. 612 D'Agostin DM, et al. The functions of store-operated calcium channels. Biochim 613 Biophys Acta - Mol Cell Res. 2017;1864: 900-906. 614 doi:https://doi.org/10.1016/j.bbamcr.2016.11.028 615 Brini M, Cali T, Ottolini D, Carafoli E. Neuronal calcium signaling: function and 3. 616 dysfunction. Cell Mol Life Sci. Switzerland; 2014;71: 2787–2814. doi:10.1007/s00018-617 013-1550-7 618 Lalonde J, Saia G, Gill G. Store-operated calcium entry promotes the degradation of 4. 619 the transcription factor Sp4 in resting neurons. Sci Signal. United States; 2014;7: 620 ra51. doi:10.1126/scisignal.2005242 621 Hartmann J, Karl RM, Alexander RPD, Adelsberger H, Brill MS, Ruhlmann C, et al. 5. 622 STIM1 controls neuronal Ca(2)(+) signaling, mGluR1-dependent synaptic 623 transmission, and cerebellar motor behavior. Neuron. United States; 2014;82: 635-624 644. doi:10.1016/j.neuron.2014.03.027 Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, et al. 625 6. 626 STIM2 Regulates Capacitive Ca2+ Entry in Neurons and Plays a Key Role in Hypoxic 627 Neuronal Cell Death. Sci Signal. 2009; 2: ra67 LP-ra67. Available: 628 http://stke.sciencemag.org/content/2/93/ra67.abstract Sun S, Zhang H, Liu J, Popugaeva E, Xu N-J, Feske S, et al. Reduced synaptic STIM2 629 7. 630 expression and impaired store-operated calcium entry cause destabilization of 631 mature spines in mutant presenilin mice. Neuron. United States; 2014;82: 79–93. 632 doi:10.1016/j.neuron.2014.02.019 633 8. Park CY, Shcheglovitov A, Dolmetsch R. The CRAC channel activator STIM1 binds 634 and inhibits L-type voltage-gated calcium channels. Science. United States; 2010;330: 101–105. doi:10.1126/science.1191027 635 Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, et al. The calcium 636 9. 637 store sensor, STIM1, reciprocally controls Orai and CaV1.2 channels. Science. United 638 States; 2010;330: 105–109. doi:10.1126/science.1191086 639 10. Nguyen N, Biet M, Simard É, Béliveau É, Francoeur N, Guillemette G, et al. STIM1 640 participates in the contractile rhythmicity of HL-1 cells by moderating T-type Ca2+ 641 channel activity. Biochim Biophys Acta - Mol Cell Res. 2013;1833: 1294–1303. 642 doi:https://doi.org/10.1016/j.bbamcr.2013.02.027 Jékely G. Global view of the evolution and diversity of metazoan neuropeptide 643 11. 644 signaling. Proc Natl Acad Sci. 2013;110: 8702 LP-8707. Available: 645 http://www.pnas.org/content/110/21/8702.abstract 646 Elphick MR, Mirabeau O, Larhammar D. Evolution of neuropeptide signalling 12. 647 systems. J Exp Biol. 2018;221: jeb151092. doi:10.1242/jeb.151092 648 Nassel DR, Winther AM. Drosophila neuropeptides in regulation of physiology and 13. behavior. Prog Neurobiol. 2010;92: 42-104. Available: 649 650 http://www.ncbi.nlm.nih.gov/entrez/guery.fcgi?cmd=Retrieve&db=PubMed&dopt=C 651 itation&list_uids=20447440

652	14.	Taghert PH, Nitabach MN. Peptide neuromodulation in invertebrate model systems.
653		Neuron. United States; 2012;76: 82–97. doi:10.1016/j.neuron.2012.08.035
654	15.	Venkiteswaran G, Hasan G. Intracellular Ca2+ signaling and store-operated Ca2+
655		entry are required in Drosophila neurons for flight. Proc Natl Acad Sci U S A.
656		2009;106: 10326–10331. Available:
657		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
658		itation&list_uids=19515818
659	16.	Chakraborty S, Deb BK, Chorna T, Konieczny V, Taylor CW, Hasan G. Mutant IP3
660		receptors attenuate store-operated Ca2+ entry by destabilizing STIM-Orai
661		interactions in Drosophila neurons. J Cell Sci. 2016; doi:10.1242/jcs.191585
662	17.	Richhariya S, Jayakumar S, Kumar Sukumar S, Hasan G. dSTIM and Ral/Exocyst
663	-/.	Mediated Synaptic Release from Pupal Dopaminergic Neurons Sustains Drosophila
664		Flight. eneuro. 2018;5. Available:
665		http://eneuro.org/content/early/2018/05/22/ENEURO.0455-17.2018.abstract
666	18.	Jayakumar S, Richhariya S, Deb BK, Hasan G. A Multicomponent Neuronal Response
	10.	
667		Encodes the Larval Decision to Pupariate upon Amino Acid Starvation. J Neurosci.
668		2018;38: 10202 LP-10219. doi:10.1523/JNEUROSCI.1163-18.2018
669	19.	Agrawal N, Venkiteswaran G, Sadaf S, Padmanabhan N, Banerjee S, Hasan G.
670		Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulin-
671		producing neurons regulates systemic intracellular calcium homeostasis and flight. J
672		Neurosci. 2010;30: 1301–1313. Available:
673		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
674		itation&list_uids=20107057
675	20.	Chakraborty S, Hasan G. IP3R, store-operated Ca2+ entry and neuronal Ca2+
676		homoeostasis in Drosophila. Biochem Soc Trans. 2012/01/21. 2012;40: 279—281.
677		doi:10.1042/BST20110618BST20110618 [pii]
678	21.	Gopurappilly R, Deb BK, Chakraborty P, Hasan G. Stable STIM1 Knockdown in Self-
679		Renewing Human Neural Precursors Promotes Premature Neural Differentiation
680		[Internet]. Frontiers in Molecular Neuroscience . 2018. p. 178. Available:
681		https://www.frontiersin.org/article/10.3389/fnmol.2018.00178
682	22.	Megha, Hasan G. IP3R-mediated Ca2+ release regulates protein metabolism in
683		Drosophila neuroendocrine cells: implications for development under nutrient stress.
684		Development. England; 2017;144: 1484–1489. doi:10.1242/dev.145235
685	23.	Agrawal T, Sadaf S, Hasan G. A genetic RNAi screen for IP(3)/Ca(2)(+) coupled GPCRs
686	2	in Drosophila identifies the PdfR as a regulator of insect flight. PLoS Genet.
687		2013/10/08. 2013;9: e1003849. doi:10.1371/journal.pgen.1003849PGENETICS-D-13-
688		01291 [pii]
689	24.	Nassel DR, Enell LE, Santos JG, Wegener C, Johard HA. A large population of diverse
690	-4.	neurons in the Drosophila central nervous system expresses short neuropeptide F,
691		suggesting multiple distributed peptide functions. BMC Neurosci. 2008;9: 90.
692		Available:
693		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
694 605		itation&list_uids=18803813
695 695	25.	Rhea JM, Wegener C, Bender M. The proprotein convertase encoded by amontillado
696		(amon) is required in Drosophila corpora cardiaca endocrine cells producing the
697		glucose regulatory hormone AKH. PLoS Genet. 2010;6: e1000967. Available:
698		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C

600		
699	- (itation&list_uids=20523747
700	26.	Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-Operated Calcium Entry
701		through Orai Is Required for Transcriptional Maturation of the Flight Circuit in
702		Drosophila. J Neurosci. United States; 2015;35: 13784–13799.
703		doi:10.1523/JNEUROSCI.1680-15.2015
704	27.	Lee KS, You KH, Choo JK, Han YM, Yu K. Drosophila short neuropeptide F regulates
705		food intake and body size. J Biol Chem. 2004;279: 50781–50789. Available:
706		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
707	0	itation&list_uids=15385546
708	28.	Subramanian M, Jayakumar S, Richhariya S, Hasan G. Loss of IP3 receptor function in
709		neuropeptide secreting neurons leads to obesity in adult Drosophila. BMC Neurosci.
710		2013/12/20. 2013;14: 157. doi:10.1186/1471-2202-14-1571471-2202-14-157 [pii]
711	29.	Agrawal N, Padmanabhan N, Hasan G. Inositol 1,4,5- trisphosphate receptor function
712		in Drosophila insulin producing cells. PLoS One. 2009;4: e6652. Available:
713		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
714		itation&list_uids=19680544
715	30.	Choi YJ, Lee G, Hall JC, Park JH. Comparative analysis of Corazonin-encoding genes
716		(Crz's) in Drosophila species and functional insights into Crz-expressing neurons. J
717		Comp Neurol. United States; 2005;482: 372-385. doi:10.1002/cne.20419
718	31.	Rao S, Lang C, Levitan ES, Deitcher DL. Visualization of neuropeptide expression,
719		transport, and exocytosis in Drosophila melanogaster. J Neurobiol. United States;
720 721		2001;49: 159–172. Facque RE, Sun V, Dana H, Vang C, T, Obyama T, Tadross MB, et al. Neural circuits
721 722	32.	Fosque BF, Sun Y, Dana H, Yang C-T, Ohyama T, Tadross MR, et al. Neural circuits.
722		Labeling of active neural circuits in vivo with designed calcium integrators. Science. United States; 2015;347: 755–760. doi:10.1126/science.1260922
725	22	Veenstra JA. Peptidergic paracrine and endocrine cells in the midgut of the fruit fly
725	33.	maggot. Cell Tissue Res. 2009;336: 309–323. Available:
726		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
727		itation&list_uids=19319573
728	۲,	Wegener C, Herbert H, Kahnt J, Bender M, Rhea JM. Deficiency of prohormone
729	34.	convertase dPC2 (AMONTILLADO) results in impaired production of bioactive
730		neuropeptide hormones in Drosophila. J Neurochem. 2011;118: 581–595. Available:
731		http://www.ncbi.nlm.nih.gov/entrez/guery.fcgi?cmd=Retrieve&db=PubMed&dopt=C
732		itation&list_uids=21138435
733	35.	Luo J, Liu Y, Nassel DR, Nässel DR. Insulin/IGF-regulated size scaling of
734	30.	neuroendocrine cells expressing the bHLH transcription factor Dimmed in
735		Drosophila. PLoS Genet. 2014/01/05. Public Library of Science; 2013;9: e1004052.
736		doi:10.1371/journal.pgen.1004052
737	36.	Park D, Veenstra JA, Park JH, Taghert PH. Mapping peptidergic cells in Drosophila:
738	50.	where DIMM fits in. PLoS One. 2008;3: e1896. Available:
739		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
740		itation&list_uids=18365028
741	37.	Richhariya S, Jayakumar S, Abruzzi K, Rosbash M, Hasan G. A pupal transcriptomic
742	57.	screen identifies Ral as a target of store-operated calcium entry in Drosophila
743		neurons. Sci Rep. The Author(s); 2017;7: 42586. Available:
744		http://dx.doi.org/10.1038/srep42586
745	38.	Wong MY, Cavolo SL, Levitan ES. Synaptic neuropeptide release by dynamin-
		5 / ·····/······ -/··································

746		dependent partial release from circulating vesicles. Mol Biol Cell. United States;
747		2015;26: 2466–2474. doi:10.1091/mbc.E15-01-0002
748	39.	McNabb SL, Truman JW. Light and peptidergic eclosion hormone neurons stimulate
749		a rapid eclosion response that masks circadian emergence in Drosophila. J Exp Biol.
750		2008;211: 2263–2274. doi:10.1242/jeb.015818
751	40.	Klose M, Duvall L, Li W, Liang X, Ren C, Steinbach JH, et al. Functional PDF Signaling
752		in the Drosophila Circadian Neural Circuit Is Gated by Ral A-Dependent Modulation.
753		Neuron. 2016/05/05. 2016;90: 781–794. doi:10.1016/j.neuron.2016.04.002
754	41.	Nässel DR. Neuropeptide signaling near and far: how localized and timed is the
755	•	action of neuropeptides in brain circuits? Invertebr Neurosci. 2009;9: 57.
756		doi:10.1007/s10158-009-0090-1
757	42.	Kubrak Ol, Lushchak O V, Zandawala M, Nässel DR. Systemic corazonin signalling
758		modulates stress responses and metabolism in Drosophila. Open Biol. The Royal
759		Society; 2016;6: 160152. doi:10.1098/rsob.160152
760	43.	Chintapalli VR, Wang J, Dow JAT. Using FlyAtlas to identify better Drosophila
761	40	melanogaster models of human disease. Nat Genet. United States; 2007;39: 715–720.
762		doi:10.1038/ng2049
763	44.	Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC. Temporal dynamics
764	44	of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral
765		output in Drosophila larvae. J Neurophysiol. 2009/04/01. American Physiological
766		Society; 2009;101: 3075–3088. doi:10.1152/jn.00071.2009
767	/ -	Dawydow A, Gueta R, Ljaschenko D, Ullrich S, Hermann M, Ehmann N, et al.
768	45	Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications.
769		
		Proc Natl Acad Sci. 2014;111: 13972 LP-13977. Available:
770 771	. 6	http://www.pnas.org/content/111/38/13972.abstract
771 772	46.	Lee G, Kim KM, Kikuno K, Wang Z, Choi YJ, Park JH. Developmental regulation and
772		functions of the expression of the neuropeptide corazonin in Drosophila
773		melanogaster. Cell Tissue Res. 2008;331: 659–673. Available:
774		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
775		itation&list_uids=18087727
776	47.	Kapan N, Lushchak O V, Luo J, Nässel DR. Identified peptidergic neurons in the
777		Drosophila brain regulate insulin-producing cells, stress responses and metabolism
778		by coexpressed short neuropeptide F and corazonin. Cell Mol Life Sci. 2012;69: 4051–
779		4066. doi:10.1007/s00018-012-1097-z
780	48.	Johnson EC, Kazgan N, Bretz CA, Forsberg LJ, Hector CE, Worthen RJ, et al. Altered
781		Metabolism and Persistent Starvation Behaviors Caused by Reduced AMPK Function
782		in Drosophila. Hassan BA, editor. PLoS One. San Francisco, USA: Public Library of
783		Science; 2010;5: e12799. doi:10.1371/journal.pone.0012799
784	49.	Tayler TD, Pacheco DA, Hergarden AC, Murthy M, Anderson DJ. A neuropeptide
785		circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc
786		Natl Acad Sci U S A. National Academy of Sciences; 2012;109: 20697–20702.
787		doi:10.1073/pnas.1218246109
788	50.	McClure KD, Heberlein U. A Small Group of Neurosecretory Cells Expressing the
789		Transcriptional Regulator apontic and the Neuropeptide corazonin Mediate Ethanol
790		Sedation in Drosophila. J Neurosci. Society for Neuroscience; 2013;33: 4044—4054.
791		doi:10.1523/JNEUROSCI.3413-12.2013
792	51.	Sha K, Choi S-H, Im J, Lee GG, Loeffler F, Park JH. Regulation of Ethanol-Related

702		Debasian and Ethennel Matchelians by the Conservation Neuropean d Conservation
793		Behavior and Ethanol Metabolism by the Corazonin Neurons and Corazonin
794		Receptor in Drosophila melanogaster. PLoS One. Public Library of Science; 2014;9:
795		e87062. Available: https://doi.org/10.1371/journal.pone.0087062
796	52.	Lee KS, Kwon OY, Lee JH, Kwon K, Min KJ, Jung SA, et al. Drosophila short
797		neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nat
798		Cell Biol. 2008;10: 468-475. Available:
799		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
800		itation&list_uids=18344986
801	53·	Selcho M, Millán C, Palacios-Muñoz A, Ruf F, Ubillo L, Chen J, et al. Central and
802		peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat
803		Commun. The Author(s); 2017;8: 15563. Available:
804		http://dx.doi.org/10.1038/ncomms15563
805	54	Chen W, Shi W, Li L, Zheng Z, Li T, Bai W, et al. Regulation of sleep by the short
806	51	neuropeptide F (sNPF) in Drosophila melanogaster. Insect Biochem Mol Biol.
807		England; 2013;43: 809–819. doi:10.1016/j.ibmb.2013.06.003
808		Shang Y, Donelson NC, Vecsey CG, Guo F, Rosbash M, Griffith LC. Short
	55·	5
809		neuropeptide F is a sleep-promoting inhibitory modulator. Neuron. United States;
810	-	2013;80: 171–183. doi:10.1016/j.neuron.2013.07.029
811	56.	Veenstra JA. Does corazonin signal nutritional stress in insects? Insect Biochem Mol
812		Biol. 2009;39: 755–762. Available:
813		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
814		itation&list_uids=19815069
815	57	Mishra D, Miyamoto T, Rezenom YH, Broussard A, Yavuz A, Slone J, et al. The
816	27	Molecular Basis of Sugar Sensing in Drosophila Larvae. Curr Biol.
817		Elsevier; 2013;23: 1466–1471. doi:10.1016/j.cub.2013.06.028
818	58.	Miyamoto T, Amrein H. Diverse roles for the Drosophila fructose sensor Gr43a. Fly
819	50.	(Austin). Landes Bioscience; 2014;8: 19–25. doi:10.4161/fly.27241
820	59·	Johnson EC, Shafer OT, Trigg JS, Park J, Schooley DA, Dow JA, et al. A novel diuretic
821		hormone receptor in Drosophila: evidence for conservation of CGRP signaling. J Exp
822		Biol. England; 2005;208: 1239–1246. doi:10.1242/jeb.01529
823	60.	Hartenstein V. The neuroendocrine system of invertebrates: a developmental and
824		evolutionary perspective. J Endocrinol. England; 2006;190: 555–570.
825		doi:10.1677/joe.1.06964
826	61.	Onaka T, Takayanagi Y, Leng G. Metabolic and stress-related roles of prolactin-
827		releasing peptide. Trends Endocrinol Metab. 2010;21: 287–293.
828		doi:https://doi.org/10.1016/j.tem.2010.01.005
829	62.	van den Pol AN. Neuropeptide transmission in brain circuits. Neuron. United States;
830	02.	2012;76: 98–115. doi:10.1016/j.neuron.2012.09.014
	6-	
831	63.	Shakiryanova D, Zettel GM, Gu T, Hewes RS, Levitan ES. Synaptic neuropeptide
832		release induced by octopamine without Ca2+ entry into the nerve terminal. Proc Natl
833		Acad Sci U S A. 2011;108: 4477–4481. Available:
834		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
835		itation&list_uids=21368121
836	64.	Wang Y, Wu Q, Hu M, Liu B, Chai Z, Huang R, et al. Ligand- and voltage-gated Ca $^{ m 2+}$
837	•	channels differentially regulate the mode of vesicular neuropeptide release in
838		mammalian sensory neurons. Sci Signal. 2017;10: eaal1683. Available:
839		http://stke.sciencemag.org/content/10/484/eaal1683.abstract
		······································

840	65.	Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of
841		PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease.
842		Nat Commun. England; 2016;7: 10332. doi:10.1038/ncomms10332
843	66.	Secondo A, Bagetta G, Amantea D. On the Role of Store-Operated Calcium Entry in
844		Acute and Chronic Neurodegenerative Diseases. Front Mol Neurosci. Switzerland;
845		2018;11: 87. doi:10.3389/fnmol.2018.00087
846	67.	Popugaeva E, Bezprozvanny I. Role of endoplasmic reticulum Ca2+ signaling in the
847		pathogenesis of Alzheimer disease. Front Mol Neurosci. Switzerland; 2013;6: 29.
848		doi:10.3389/fnmol.2013.00029
849	68.	Wegener C, Neupert S, Predel R. Direct MALDI-TOF mass spectrometric peptide
850		profiling of neuroendocrine tissue of Drosophila. Methods Mol Biol. 2010;615: 117—
851		127. Available:
852		http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=C
853		itation&list_uids=20013204
854		
855		