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ABSTRACT AND KEYWORDS 

Aims: Echocardiography has become an indispensable tool for the study of heart performance, 

improving the monitoring of individuals with cardiac diseases. Diverse genetic factors 

associated with echocardiographic measures of heart structure and functions have been 

previously reported. The impact of several apoptotic genes in heart development identified in 

experimental models prompted us to assess their potential association with indicators of human 

cardiac function. This study started with the aim to investigate the possible association of 

variants of apoptotic genes with echocardiographic traits and to identify new genetic markers 

associated with cardiac function. Methods and results: Genome wide data from different 

studies were obtained from public repositories. After quality control and imputation, association 

analyses confirm the role of caspases and other apoptosis related genes with cardiac phenotypes. 

Moreover, enrichment analysis showed an over-representation of genes, including some 

apoptotic regulators, associated with Alzheimer’s disease (AD). We further explored this 

unexpected observation which was confirmed by genetic correlation analyses. Conclusions: 

Our findings show the association of apoptotic gene variants with echocardiographic indicators 

of heart function and reveal a novel potential genetic link between echocardiographic measures 

in healthy populations and cognitive decline later on in life. These findings may have important 

implications for preventative strategies combating Alzheimer’s disease.  

KEYWORDS 

Echocardiography, Genetics, Single Nucleotide Polymorphisms (SNPs), Alzheimer’s disease. 
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INTRODUCTION 

Echocardiographic assessment of cardiac structure offers prognostic information about cardiac 

conditions such as heart failure (HF).
1
 Pathological processes including cardiomyocyte cell 

death, inflammatory cell response and changes in interstitial tissue of the heart are factors 

leading to adverse remodelling and HF.
2
  

 

A number of apoptotic genes have been investigated as potential targets to prevent 

cardiomyocyte death, but it is now increasingly evident that caspase-dependent cell death plays 

a minor if any role in adult myocyte loss,
3
 which involves Cyclophilin D

4
 and calpains.

5
 By 

contrast, caspase proteins are now recognized as important factors for initial differentiation of 

stem cells to cardiomyocytes
6
 and its deficiency in vivo was shown to induce abnormal heart 

development.
7,8

 In rodent cardiomyocytes, caspase-3 is involved in WNT signalling and 

myocyte growth
9,10

 and also contributes to muscle-specific gene splicing by cleaving PTB.
11

 In 

addition, apoptotic DNA nucleases were shown to play a role in the developmental process of 

C.elegans including the C.elegans Caspase-associated DNase (CAD), ENDOG and TATD 

orthologs.
12

 Furthermore, ENDOG also contributes to the signalling pathways determining 

myocyte size
13

 through the control of reactive oxygen radicals (ROS).
14

 These facts lead us to 

hypothesize that caspases and the nucleases ENDOG and TATD play relevant functions in 

cardiomyocyte proliferation and maturation during development.  

 

Genome wide association studies have been performed for evaluating comprehensive sets of 

echocardiographic traits in well characterized individuals included in large cohort studies.
15,16

 

Using data from publicly available repositories, we aimed to explore the association between a 

selected group of candidate apoptosis-related genes and these echocardiographic phenotypes by 

means of meta-GWAS. Furthermore, we aimed to assess previously reported signals in our 

study datasets and performed an agnostic analysis to investigate relevant pathways revealed for 

each trait. Following the leading results of this analysis, we further explored the unsuspected 
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genetic relationship between Alzheimer’s Disease (AD) and these echocardiographic traits, by 

estimating their genetic correlation, and identifying common genetic determinants of these 

conditions.  

METHODS 

STUDY COHORTS 

Heart study cohorts 

The four cardiovascular datasets analysed in this study were downloaded from dbGAP 

(https://www.ncbi.nlm.nih.gov/gap) after requesting the appropriate permissions. In the case of 

a multi-ethnic study, only Caucasian samples after principal component analysis (PCA) were 

retained for analysis. A summary of the clinical characteristics of these populations is shown in 

Table 1. A full description of each of them is provided as a Supplementary Note. 

Alzheimer’s disease study cohorts 

A total of seven AD datasets were used to further explore the observed enrichment of top genes 

derived from the analysis of echocardiographic traits on genes involved in AD pathways. As for 

previously described datasets, only Caucasian samples after principal component analysis 

(PCA) were retained for analysis. Demographic characteristics of these datasets are summarized 

in the Supplementary Table 1 whereas a full description is provided as a Supplemental Note. 

 

PHENOTYPES 

Echocardiographic Phenotypes 

Data from the most recent available echocardiographic examinations of each cohort were 

included in this study. The following five phenotypes were analysed: Left Ventricular Mass 

(LVM) (g), End-Diastolic Diameter of the Aortic Root (AROT) (cm), End-Diastolic LV 

Internal Dimension (LVID) (cm), Left Atrial Size (LAS) (cm), and LV Wall Thickness 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 7, 2018. ; https://doi.org/10.1101/386680doi: bioRxiv preprint 

https://doi.org/10.1101/386680


 
5 

 

(LVWT)(cm). The latter was defined as the sum of the End-Diastolic Thicknesses of the 

Posterior Wall (TPW) and End-Diastolic Thicknesses of the Interventricular Septum (TIS). 

LVM was calculated using the formula 0.8 [1.04{(LVID + TIS + TPW)
3
 −(LVID)

3
}] + 0.6.

17
  

GENOTYPING AND IMPUTATION 

The cardiovascular datasets included in this study were genotyped using different platforms: 

CARDIA and MESA were genotyped using the Affymetrix Genome-Wide Human 6.0 array, 

whereas the FHS was genotyped using the Affymetrix Human 500k array and the CHS cohort 

with the Illumina HumanCNV370-Duo v1.0.  

AD datasets were genotyped using the Illumina arrays Human 610‐ Quad BeadChip (ADNI1, 

AddNeuroMed batch 1), the HumanOmniExpress BeadChip (ADNI2/GO, AddNeuroMed batch 

2, ADGC dataset 3), the Human660W-Quad (ADGC datasets 1&2) and the HumanHap300-Duo 

BeadChip (The Mayo study) or the Affymetrix 250k NspI (the Neocodex-Murcia study), 500k 

(the TGEN and GenADA studies) or 6.0 (ROSMAP study) arrays. 

Prior to imputation, we first performed an extensive quality control excluding individuals with 

more than 3% missing genotypes, with excess autosomal heterozygosity (>0.35), those showing 

a discrepancy between genotypic and reported sex, as well as individuals of non-European 

ancestry based on PCA analyses using SMARTPCA.
18

 At the genotype level, we removed SNPs 

with missing genotype rate > 5%, not in Hardy-Weinberg equilibrium (p<10
-6

 in controls) and 

SNPs with minor allele frequency (MAF) < 1%. Duplicated and related individuals were 

identified and removed by means of IBS estimates within and across studies. 

Genotype imputation was performed using the minimac3 algorithm and the SHAPEIT tool for 

haplotype phasing at the University of Michigan server using the HRC reference panel (Das et 

al. 2016). After imputation, SNPs with an R2 quality estimate lower than 0.3 were excluded 

from further analyses. 
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STATISTICAL ANALYSIS 

All analyses were performed in Caucasian populations only. Individuals with prevalent 

myocardial infarction (MI) or congestive heart failure (CHF) were excluded from the study. 

Linear regression models available from PLINK software
19

 were fitted to investigate the 

association between genotypes and quantitative phenotypes, with age, sex, body mass index and 

the four principal components as covariates. For each phenotype, we obtained summary 

estimates of association across studies by using a fixed-effects model meta-analysis procedure 

implemented also in PLINK. For the genome wide SNP analysis, the conventional GWAS 

significance threshold was used (p=5 x 10
-8

).
20

 

Gene-wise statistics were computed using MAGMA software, which takes into account 

physical distance and linkage disequilibrium (LD) between markers.
21

 Only SNPs with MAF 

above 1% were used in these analyses. At each trait, genes were ranked according to the global 

p mean value. For the candidate gene analysis, considering the number of traits (n=5) and genes 

(n=20) being explored, we set the threshold for study-wide statistical significance in 5 x 10
-4

.  

The top 200 genes from each association analysis were further explored for enrichment in 

known pathways using the R packages Webgestalt and enrichR
22,23

 with default parameters. The 

threshold for statistical significance in these analyses was FDR values below 0.1.  

In order to explore genetic correlation between different traits we used a bivariate GREML 

analysis with GTCA software
24

 with default parameters. Furthermore, we obtained summary 

estimates of association across phenotypes performing unweighted meta-analysis of Fisher p-

values. The threshold for statistical significance in all these analyses was p-values below 0.05.  

RESULTS 

Overall, our study included data from 11,559 individuals with echocardiographic phenotypes 

from four different datasets (Table 1). After imputation and quality control, we obtained about 7 

million SNPs with MAF>0.01 that were tested for association with echocardiographic traits at 

each study. We then performed a meta-GWAS to obtain summary estimates of association for 
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each SNP. Genomic inflation factor (λ) ranged from 0.994 to 1.022 in these analyses, indicating 

absence of population stratification due to hidden population structure (Figure 1). MAGMA 

software was used for summarising the meta-GWAS SNP results in order to obtain a gene-wise 

statistic of the association between 18,480 genes and the five phenotypes.  

 

Association of apoptosis-related genes with cardiac phenotypes 

Because there is experimental evidence supporting the role of some apoptosis-related genes with 

cardiac development and disease, we first analysed the potential association of polymorphisms 

in a series of apoptosis-related genes with the cardiac phenotypes. Table 2 shows the association 

results of the 20 apoptosis-related candidate genes. Study-wide statistically significant results 

were observed for the association of a genetic locus on 2q33.1 involving two initiator caspases 

(CASP8 and CASP10) and the apoptosis regulator protein CFLAR (CASP8 And FADD Like 

Apoptosis Regulator, c-FLIP) with LVM. The same three genes were also linked to LVID with 

suggestive results (p<0.05), along with the Fas receptor-associated adaptor FADD (Fas-

associated protein with death domain) and BCL2 (B-cell lymphoma-2). BCL2, FADD and 

TATDN1 (TatD DNase domain containing-1) showed suggestive signals of association with 

AROT. We did not find evidence of association of any calpain family member with any of the 

analysed traits (data not shown). 

Agnostic GWAS of genetic variants associated with cardiac phenotypes and enrichment 

analysis of top genes on echocardiographic traits  

Although we did not find any GWAS significant signal at SNP-level (p<5x10
-8

) related with the 

analysed phenotypes, we observed several suggestive signals at the p<10
-5

 level (Supplementary 

tables 2-6), most of them intragenic (Figure 1). For each genotype, we ranked genes according 

to the MAGMA computed SNP-wise p-value (Table 3 and Supplementary tables 7-11). 

Top 200 ranked genes were tested for enrichment using Webgestalt and EnrichR R packages 

(Supplementary tables 12-16). These top genes show little overlap across phenotypes (Figure 
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2a), which is reflected in the little overlap of the top ten enriched gene ontology (GO) categories 

(Figure 2b). For both AROT and LVID, we found enrichment on members from the keratin II 

gene cluster. LVID and LVWT share genes from the olfactory receptor families 52 and 56, 

whereas LVM and LVWT show enrichment on genes from the haemoglobin locus. Specific 

signals for LVID arise from genes involved in long QT signals and atrial fibrillation, the HLA 

locus and the vesicular and lysosomal system for LAS and grow factors such as VEGF and FGF 

were observed for LVWT. Surprisingly, in pathway analysis, we observed an enrichment in 

Alzheimer related pathways for both LVID and LVM, involving the PSEN2, MPO, SMAD1, 

ADRB2, APH1B, MAPK9 and RBP genes. 

 

Genetic correlation analysis between echocardiographic traits and AD 

The association of gene variants related to echocardiographic measures with mental illnesses 

prompted us to explore in more depth the relationship between the echocardiographic 

phenotypes and AD. We performed a genetic correlation analysis using the study dataset 

(comprised by 11,559 individuals with echocardiographic phenotypes) along with 12,730 AD 

cases and controls both from internal and publicly available databases. First, we estimated the 

proportion of variance, as a proxy of trait heritability, explained by all SNPs in each one of 

these traits,
25

 which was higher for Alzheimer disease (0.38) than for the echocardiographic 

phenotypes (range: 0.17-0.36). Then, we looked for shared genetic loci between 

echocardiographic traits and AD using GREML analyses confirming the involvement of AD 

genes in heart performance detected during enrichment analyses. Specifically, we observed a 

positive correlation between AD and LAS (rG=0.167, p=0.0334), and negative correlations 

between AD and LVID (rG=-0.196, p=0.0056), and AD and LVM (rG=-0.198, p=0.0165); of 

note, LVM and LVID are the most correlated echocardiographic traits (rG=0.988, p<0.00001). 

The sign of the rG estimates determines whether a direct or inverse relationship between the two 

phenotype traits is observed. Therefore, our results suggest that SNPs that increase the risk of 

AD tend to be associated with increasing LAS values. On the contrary, we found that SNPs 
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associated with increased risk of AD tend to be associated with decreasing ventricular measures 

(or vice versa), in particular LVID and LVM.  

 

Based on these findings we performed a SNP-wise meta-analysis by pooling Fisher association 

p-values of two or more phenotypes. Thus, we combined in these meta-analyses p-values for 

LAS&AD, LVID&AD, LVM&AD, LAS&LVID&LVM&AD and LVID&LVM&AD and 

calculated gene-wise statistics (Supplementary tables 17-21). We performed a new enrichment 

analysis for identifying relevant functions and pathways determined by the top genes shared by 

AD and cardiac measures (Supplementary tables 22-25). The comparison of the enrichment 

results using Venn diagrams (Figure 3) showed that apoptosis related pathways driven by the 

CASP8, CASP10 and CFLAR locus, and phospholipid scramblase genes are common elements 

for LAS, LVID, LVM and AD. We also observed an enrichment on genes present at the 

neuronal synapse such as glutamate and GABA receptors (GRIN2C, GABRR1, GABRR2 and 

GABBR2), teneurin (TENM2), calsyntenin (CLSTN3), adenylate cyclase (ADCY4), SLC5A7, 

LIN7A or LRFN2. The haemoglobin complex, previously found among shared genes by LVID 

and LVM also seems to be relevant for AD. 

 

DISCUSSION 

 

Our study, based on data from 11,559 individuals free of cardiovascular disease, shows that 

variants affecting diverse genes involved in apoptosis regulation associate with 

echocardiographic phenotypes in humans. We have obtained these results by both hypothesis-

driven and agnostic approaches. In addition, novel findings from the analysis of our GWAS also 

include previously unnoticed associations of variants in genes involved in cell proliferation, 

DNA replication and mRNA splicing with left ventricular morphology. Our data also suggest 
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the existence of a set of genes, mainly related to apoptosis/inflammation signalling, whose 

variants are associated with both cardiac phenotype and Alzheimer’s disease. 

 

Our hypothesis-driven analysis showed that caspases 8 and 10 and the regulatory CFLAR 

(cFLIP) gene are strong predictors of LVM. Furthermore, our hypothesis-free approach found 

that caspase dependent pathways were overrepresented among the top 200 genes involved in the 

LVM phenotype. These results support our a priori hypothesis that the apoptotic signalling 

influences heart morphology with potential impact on heart performance. Our hypothesis was 

based in previous experimental work, including our own, showing that deficiency
8,10

 or 

overexpression
26

 of key apoptotic genes altered normal cardiomyocyte differentiation and heart 

development independently of cell death. Indeed, although these genes are best known for their 

role in regulating apoptotic cell death, experimental evidences show that the same genes also 

regulate myocyte proliferation, inflammation and hypertrophy in the heart.
8,10,27–29

 Because cell 

death is not a major event during heart development, and based on the above experimental 

work, we suggest that the relationship between the apoptotic genes and the cardiac phenotype 

might involve non-apoptotic functions.  

 

In order to estimate the robustness of our GWAS analysis, we asked whether we had reproduced 

some signals already observed in previous genetic studies. Indeed, we found the already 

published link between SMG6, TSR1 and SRR genes and AROT,
15,16

 but failed to detect 

statistically significant associations of other gene variants, possibly due to the limited power of 

this study. However, our analysis demonstrated genetic association between variants of genes 

previously shown to influence heart function and cardiac hypertrophy in experimental models, 

such as MLF1,
30

 which associates with LVM phenotype in our study, and KCNIP2 (KChIP2)
31–

33
 and TRAF3IP2,

34,35
 which have also been associated with LVM and LVWT phenotypes in 

humans in this study as well. Also, from the top list of genes whose variants are associated to 

LIVD, ANKS6 has been associated with heart malformations.
36
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The GWAS analysis also showed strong association of variants of a group of 4 genes located in 

the 11p15.4 chromosomic region coding for odorant receptors with LVWT and LVID. 

Expression of these genes in non-neural tissues is related to the control of different processes, 

including glucose and oxygen homeostasis or cell cycle control,
37

 and has been shown to be 

involved in the regulation of cardiac function in rodent experimental models through interaction 

with fatty acids.
38

 Therefore, our genetic results open the possibility that odorant receptors’ 

activity can influence cardiac function in humans. Interestingly, low OR expression has been 

found in the cortex of neuro-psychiatric patients
39

 and a genetic microduplication in the 11p15.4 

region has been associated with familial intellectual disability and autism.
40

  

 

For the LVM phenotype, 8 of the 10 top ranked genes are involved in mRNA splicing, DNA 

replication and cell proliferation, and two are related to protein elongation and folding. 

Interestingly, 6 of the top genes associated with ventricular phenotypes have been also 

associated with mental illnesses including AD, Schizophrenia and bipolar disorder
41,42

  and the 

11p15.4 region containing 4 of the 10 top genes for LVWT has been previously associated with 

intellectual disability.
40

 

 

Unexpectedly, we found enrichment on AD related pathways for LAS, LVID and LVM that led 

us to explore comprehensively a possible link between AD and all these echocardiographic 

traits. Intriguingly, our results revealed for the first time a potential genetic link between AD 

and LAS, paired with a negative correlation between AD and either LVM or LVID. 

Interestingly, in line with our observation, a recent report found that LAS was independently 

associated to cognitive function in older adults.
43

 The opposite direction of the correlation 

coefficients for atrial and ventricular measures could be related to the different development 

patterns of these chambers during embryogenesis
44

 and with the described strong association of 

left atrial size with long-term exposure to vascular risk factors, particularly high blood pressure 
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and obesity. In fact, the CARDIA Brain MRI Substudy found association of higher left atrial 

volume in early adulthood with impairment of white matter integrity in midlife, but not for 

ventricular measures.
45

  

 

The link between AD and cardiac conditions is not well understood. The old concept of 

cardiogenic dementia was based on the high incidence of cardiac dysrhythmias observed in 

patients with dementia due to vascular causes.
46

 However, the relation between coronary heart 

disease (CHD) or HF and AD in epidemiological studies remains controversial, with some 

studies showing an association with cognitive impairment and dementia
47–49

 whereas others 

found no association.
50,51

 The fact that both conditions are competing risks complicates the 

study of their relationship. Lower cardiac index levels are related to lower cerebral blood flow 

in older adults free of CVD,
52

 but individuals with cardiac conditions that did not result in 

premature death might include many individuals chronically exposed to brain hypoperfusion 

due to reduced cardiac output that adaptively decreased cerebrovascular resistance through 

arteriolar dilatation. This kind of antagonistic pleiotropy between these phenotypes has been 

previously suggested by Beeri et al. after observing that better cognitive performance was 

associated with worse cardiac functioning in very elderly subjects.
53

 

 

Moreover, whereas enlarged ventricular volume (LV hypertrophy) is a marker of diastolic 

dysfunction, LVM is also a marker of cardiovascular health, positively correlated with physical 

activity and cardiorespiratory fitness.
54,55

 Population based studies have shown an inverted U-

shaped association for LVM values and age, since they rise in adolescence and decline with 

increased age.
56,57

 Furthermore, a U-shaped association between left ventricular ejection fraction 

(LVEF), a marker of systolic dysfunction, and abnormal cognitive decline has been reported, 

with increased dementia risk at the lowest and highest LVEF quintiles.
58
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To our knowledge, this is the first report analysing shared genetic factors between 

echocardiographic measures and AD. This method for estimating genome-wide pleiotropy has 

the advantage of being free of potential confounders determined by shared epidemiological risk 

factors such as high blood pressure or atherosclerosis. Our results show a negative genetic 

correlation for the ventricular measures LVID and LVM and AD, pointing to antagonist 

pleiotropic effects of shared genes by AD and LV cardiac measures, the main known functions 

of which are related to apoptosis, oxygen and phospholipid transport and neurotransmission. 

While low haemoglobin concentrations are associated with adverse cardiovascular outcomes 

and poor exercise capacity, increased concentration of the heme group have been found in the 

pathological lesions of AD patients.
59,60

 Hypoxia is a well known trigger factor for caspase 

related apoptosis, but caspases have been shown to play a role in cardiomyocyte morphogenesis 

rather than in cardiomyocyte death, whereas neuronal death is a hallmark of AD.
61

 

Neurotransmission affects both cardiac and neuronal performance, and a few studies have 

examined synapse and neuron loss in AD brains and suggested that synaptic changes precede 

neuron loss.
62,63

 Finally, scramblase proteins, associated with LAS, LVID, LVM and AD in this 

study, have been involved not only in lipid transport, but also in mitochondrial membrane 

maintenance promoting cardiolipin synthesis, a key protein for myocardial energetics, and in 

caspase induced apoptosis.
64

 Anyway, lipid metabolism, especially cholesterol and fatty acid 

biogenesis have been associated with cardiovascular and cognitive phenotypes in adults being a 

potential common pathway explaining the connection between both groups of disorders and the 

decline of the incidence of dementia in younger cohorts with a better control of cardiovascular 

risk factors.
65

 

 

In summary, our GWAS data suggest the influence of gene variants affecting the 

apoptotic/inflammation signalling pathway on left ventricular morphology and cardiac function, 

uncover novel candidate gene variants regulating echocardiographic phenotypes and establish a 

genetic link between cardiac morphology alterations, mental illness and Alzheimer’s disease 
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involving key genes in the regulation of apoptotic signalling that deserve functional assessment 

due to their diagnostic and therapeutic potential. 
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NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer 

Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. 

The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in 

Canada. Private sector contributions are facilitated by the Foundation for the National Institutes 

of Health (www.fnih.org). The grantee organization is the Northern California Institute for 

Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research 

Institute at the University of Southern California. ADNI data are disseminated by the 

Laboratory for Neuro Imaging at the University of Southern California. 

The AddNeuroMed data are from a public-private partnership supported by EFPIA companies 

and SMEs as part of InnoMed (Innovative Medicines in Europe), an Integrated Project funded 

by the European Union of the Sixth Framework program priority FP6-2004-LIFESCIHEALTH-

5. Clinical leads responsible for data collection are Iwona Kłoszewska (Lodz), Simon Lovestone 

(London), Patrizia Mecocci (Perugia), Hilkka Soininen (Kuopio), Magda Tsolaki 

(Thessaloniki), and Bruno Vellas (Toulouse), imaging leads are Andy Simmons (London), Lars-
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Olad Wahlund (Stockholm) and Christian Spenger (Zurich) and bioinformatics leads are 

Richard Dobson (London) and Stephen Newhouse (London). This dataset was downloaded 

from Synapse (doi:10.7303/syn2790911). 

Funding support for the Alzheimer’s Disease Genetics Consortium (ADGC) was provided 

through the NIA Division of Neuroscience (U01-AG032984). This study was downloaded from 

NIH dbGaP repository (phs000372.v1). 

 

The Coronary Artery Risk Development in Young Adults Study (CARDIA) is conducted 

and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with 

the University of Alabama at Birmingham (N01-HC95095 & N01-HC48047), University of 

Minnesota (N01-HC48048), Northwestern University (N01-HC48049), and Kaiser Foundation 

Research Institute (N01-HC48050). This manuscript was not approved by CARDIA. The 

opinions and conclusions contained in this publication are solely those of the authors, and are 

not endorsed by CARDIA or the NHLBI and should not be assumed to reflect the opinions or 

conclusions of either. Genotyping for the CARDIA GENEVA cohort was supported by grant 

U01 HG004729 from the National Human Genome Research Institute. This study was 

downloaded from NIH dbGaP reporsitory ( phs000285.v3.p2). 

The Cardiovascular Heart Study (CHS) was supported by contracts HHSN268201200036C, 

HHSN268200800007C, N01-HC85079, N01-HC-85080, N01-HC-85081, N01-HC-85082, 

N01-HC-85083, N01-HC-85084, N01-HC-85085, N01-HC-85086, N01-HC-35129, N01 HC-

15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, and N01-HC-85239; grant numbers 

U01 HL080295 and U01 HL130014 from the National Heart, Lung, and Blood Institute, and 

R01 AG-023629 from the National Institute on Aging, with additional contribution from the 

National Institute of Neurological Disorders and Stroke. A full list of principal CHS 

investigators and institutions can be found at https://chs-nhlbi.org/pi. This manuscript was not 

prepared in collaboration with CHS investigators and does not necessarily reflect the opinions 

or views of CHS or the NHLBI. Support for the genotyping through the CARe Study was 
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The Framingham Heart Study is conducted and supported by the National Heart, Lung, and 

Blood Institute (NHLBI) in collaboration with Boston University (Contract No. N01-HC-25195 

and HHSN268201500001I). This manuscript was not prepared in collaboration with 

investigators of the Framingham Heart Study and does not necessarily reflect the opinions or 

views of the Framingham Heart Study, Boston University, or NHLBI. “Funding for SHARe 

Affymetrix genotyping was provided by NHLBI Contract N02-HL64278. SHARe Illumina 

genotyping was provided under an agreement between Illumina and Boston University. Funding 

for Affymetrix genotyping of the FHS Omni cohorts was provided by Intramural NHLBI funds 

from Andrew D. Johnson and Christopher J. O’Donnell. This dataset was obtained from the 

NIH dbGaP repository (phs000007.v29.p10). 

The genotypic and associated phenotypic data used in the study, “Multi-Site Collaborative 

Study for Genotype-Phenotype Associations in Alzheimer’s Disease (GenADA)” were 

provided by the GlaxoSmithKline, R&D Limited. The datasets used for analyses described in 

this manuscript were obtained from NIH dbGaP repository (phs000219.v1.p1).  

The Mayo Clinic Alzheimer's Disease Genetic Studies, led by Dr. Nilüfer Ertekin-Taner and 

Dr. Steven G. Younkin, Mayo Clinic, Jacksonville, FL using samples from the Mayo Clinic 

Study of Aging, the Mayo Clinic Alzheimer's Disease Research Center, and the Mayo Clinic 

Brain Bank. Data collection was supported through funding by NIA grants P50 AG016574, R01 

AG032990, U01 AG046139, R01 AG018023, U01 AG006576, U01 AG006786, R01 

AG025711, R01 AG017216, R01 AG003949, NINDS grant R01 NS080820, CurePSP 

Foundation, and support from Mayo Foundation. This dataset was downloaded from Synapse 

(doi:10.7303/syn5550404). 

 

The MESA study was supported by contracts HHSN268201500003I, N01-HC-95159, N01-
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001420 from NCATS.  The authors thank the other investigators, the staff, and the participants 

of the MESA study for their valuable contributions. A full list of participating MESA 

investigators and institutions can be found at http://www.mesa-nhlbi.org. This dataset was 

obtained from the NIH dbGaP repository (phs000209.v6.p2). 

The Neocodex-Murcia study was funded by the Fundación Alzheimur (Murcia), the Ministerio 
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CIBERDEM is an ISCIII Project. 

The ROS/MAP study data were provided by the Rush Alzheimer’s Disease Center, Rush 

University Medical Center, Chicago. Data collection was supported through funding by NIA 

grants P30AG10161, R01AG15819, R01AG17917, R01AG30146, R01AG36836, 

U01AG32984, U01AG46152, the Illinois Department of Public Health, and the Translational 

Genomics Research Institute. This dataset was downloaded from Synapse 

(doi:10.7303/syn3219045). 

 

The TGEN study was supported by Kronos Life Sciences Laboratories, the National Institute 
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Alzheimer’s Disease Center P50 AG16574, and Intramural Research Program), the National 

Alzheimer’s Coordinating Center (U01 AG016976), and the state of Arizona. TGEN 

investigators provided free access to genotype data to other researchers via Coriell 
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FIGURE LEGENDS 

Figure 1. Manhattan plots of the meta-analyses for the different echocardiographic traits 

analysed. The threshold for genome-wide significance (P < 5 x 10-8) is indicated by the red 

line, while the blue line represents the suggestive threshold (P < 1 x 10-5). Loci previously 

associated with echocardiographic traits are shown in blue, and newly associated loci are shown 

in red. 

Figure 2. Venn diagrams showing the overlap of top genes (1a) and GO categories (1b) between 

the different traits analysed. 

Figure 3. Enrichment analysis of top genes from meta-analysis on echocardiographic traits and 

Alzheimer’s disease. 
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APPENDIX: ABBREVIATIONS 

LVM: Left Ventricular (LV) Mass (g)  

LVID: End-Diastolic LV Internal Dimension (cm) 

LVWT: LV Wall Thickness (cm) (TPW+TIS) 

LAS: Left Atrial Size (cm) 

AROT: End-Diastolic Diameter of the Aortic Root (cm) 

LV: Left Ventricle 

CVD: Cardiovascular Disease 

CHD: Coronary Heart Disease 

HF: Heart Failure 

TPW: End-Diastolic Thicknesses of the Posterior Wall 

TIS: End-Diastolic Thicknesses of the Interventricular Septum 
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