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Cognitive performance is highly heritable. However, little is known about common genetic 

influences on cognitive ability and brain activation when engaged in a cognitive task. The 

Human Connectome Project (HCP) offers a unique opportunity to study this shared genetic 

etiology with an extended pedigree of 785 individuals. To investigate this common genetic 

origin, we took advantage of the HCP dataset, which includes both language and mathematics 

activation tasks. Using the HCP multimodal parcellation, we identified areals in which inter-

individual functional MRI (fMRI) activation variance was significantly explained by genetics. 

Then, we performed bivariate genetic analyses between the neural activations and behavioral 

scores, corresponding to the fMRI task accuracies, fluid intelligence, working memory and 

language performance. We observed that several parts of the language network along the 

superior temporal sulcus, as well as the angular gyrus belonging to the math processing 

network, are significantly genetically correlated with these indicators of cognitive 

performance. This shared genetic etiology provides insights into the brain areas where the 

human-specific genetic repertoire is expressed. Studying the association of polygenic risk 

scores, using variants associated with human cognitive ability and brain activation, would 

provide an opportunity to better understand where these variants are influential.  
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Introduction 

Language and math functions in humans are extensively studied in fundamental neuroscience 

as distinctive abilities of human lineage. They are frequently assessed through neuroimaging 

to provide endophenotypes
1,2

. They are used as a way to classify the broad behavioral 

symptoms of language impairments into stable phenotypes that in turn are candidates to 

search for potential associations with either medical treatment responses or genetic profiles
3,4

. 

Structural properties observed using magnetic resonance imaging (MRI) or activations 

observed with functional MRI (fMRI) have been used to produce such endophenotypes
5
. 

These can reveal differences between control and disease groups in language-specific regions
6
 

or distinguish disorder subtypes such as grammatical-SLI (specific language impairment)
7
.  

Imaging-genetics resources, such as the Human Connectome Project (HCP) provide an 

unprecedented opportunity to study the variability of such endophenotypes in control subjects, 

as well as to determine their potential heritability or association with genetics. Following up 

on these ideas, we first proposed to study the additive genetic variance involved in fMRI 

activation differences among typically developed individuals. We used the pedigree data from 

the HCP language comprehension and verbal math fMRI tasks. These tasks recruit regions 

directly implicated in brain disorders, such as Broca’s area in SLI
8
, the angular gyrus in 

developmental dyslexia
1
 and the intraparietal in dyscalculia

2
. A few studies have already 

attempted to estimate the narrow sense heritability of brain activations for various tasks. They 

notably include digit and n-back working memory
9,10

, visual math subtraction
11

, and stimuli 

such as written words, faces and spoken language
12

. However, these studies had relatively 

small sample sizes for reliably detecting heritability estimates ranging between 25 and 50%. 

The previous samples included 30 subjects (10 triplets of male monozygotic (MZ) twins with 

one additional brother)
9
,  64 subjects (19 MZ and 13 dizygotic (DZ) pairs)

11,12
 or  319 subjects 

(75 MZ and 66 DZ pairs, 37 unpaired)
10

. In addition to including a larger sample size, the 

HCP data were processed using state of the art methods, providing 2-mm isotropic resolution 

and finer inter-individual registration. In particular, the so-called grayordinate activations are 

computed on the surface of the cortex
13

 for each individual, and inter-subject fMRI alignment 

is performed using areal-feature-based registration
14

. The grayordinate approach refers to 

fMRI analyses performed on the cortical surface, as opposed to a volume-based approach. 

The same idea was applied to build the multimodal parcellation of the human cerebral 
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cortex
15

 onto which we decomposed our heritability analyses, enabling us to map the genetic 

influence on fMRI activations on a very fine scale. 

Furthermore, it is known that neural activation endophenotypes from MRI may reflect not 

only impairments in language but also differences in cognitive scores. For example, weaker 

left-lateralizations have been reported for some developmental language disorders
16

, and in 

normal populations, fMRI activations during simple tasks correlate with various cognitive 

scores. Notably, single digit calculation fMRI activations are predictive of high school math 

scores
17

, and the fronto-parietal functional connectivity in children performing a task that 

required them to match Arabic numbers to an array of dots correlated with their score on a 

standardized math test
18

. Using HCP data and in line with these approaches, we show in this 

paper how variations in language related fMRI activations correlate with cognitive abilities 

assessed by the median reaction time (RT), average accuracy and difficulty level during the 

HCP language and math tasks. Remarkably, recent studies have shown that, beyond the age-

related heritability of general cognitive ability
19,20

 and of various indicators of academic 

performance
21

, these scores are highly pleiotropic
19,22

 [pleiotropy occurs when one gene 

regulates one or more phenotypic traits].  

This raises the question of the potential pleiotropy between neural activations and cognitive 

abilities. Thus, as a second contribution, we studied the shared genetic variance of fMRI 

activations and cognitive performance scores measured during the MRI session or behavioral 

scores acquired independently from the task. We studied behavioral variables measured by the 

HCP using standardized tests from the National Institute of Health (NIH): fluid intelligence, 

working memory, and language assessments such as vocabulary comprehension and oral 

reading decoding. Details of these variables and their heritability estimates can be found in 

Table S1, and how well they correlate phenotypically and genetically with the behavioral 

scores measured during the task is reported in Table S2. 

Recent genome wide association studies have unveiled new loci and genes influencing human 

cognitive performance (e.g. human intelligence
23

, general cognitive function
24,25

 and 

educational attainment
25

) and possibly intelligence as a construct in differential psychology
19

. 

However, for these human-specific characteristics, little is known about the underlying 

integration mechanism of molecular functions or the brain areas where they are most 

influential. The shared genetic etiology investigated in this work provides new perspectives to 

decipher the basis of cognitive abilities such as language in humans. This study had two major 
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aims: (1) to estimate the heritability of fMRI activations during story comprehension and 

math tasks; and (2) to determine the shared genetic etiology between these activations and 

cognitive performance. 
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Results 

Task fMRI Activations in MATH and STORY tasks 

Figure 1 shows the activations for MATH (vs the intercept of the general linear model (GLM) 

being considered as baseline), STORY and the contrast STORY - MATH. The intercept 

reflects the mean of the residual BOLD time series after removing variance explained by all 

other regressors. Both tasks show clear activations in the planum temporale and Heschl’s 

gyrus area, reflecting the fact that the stimuli were presented in the auditory modality. The 

MATH task, in which participants were requested to perform addition and subtraction, 

activates areas traditionally implicated in mathematical calculations, that is, the intraparietal 

sulcus, the middle frontal and the inferior temporal regions
26,27

. The story listening task 

activates the language understanding network, encompassing bilateral temporal regions and 

left frontal regions
28,29

. As expected, the group activations for the STORY task are more left 

lateralized, notably in the left posterior superior temporal and inferior frontal regions, which 

correspond to Wernicke’s and Broca’s areas, respectively. Moreover, regions implicated in 

inhibition networks are also activated by these tasks
30,31

, notably the middle frontal gyrus in 

the math task and the medial prefrontal cortex, implicated in motivation and execution, and 

above the anterior cingulate cortex, controlling selective attention
32,33

. In addition, both tasks 

activate complementary networks; in particular, the math task deactivates the semantic and 

episodic memory processes, known as the default mode network, which is also active in 

resting or passive states
34

. This last remark makes the STORY-MATH contrast particularly 

relevant for studying the genetic influence on activation specifically elicited by math and 

story tasks. 

Univariate Genetic Analyses 

We performed a cortex-wise heritability analysis on the median activation (β-value) in the 

360 areals of the HCP multi-modal parcellation. After stringent Bonferroni correction (p < 

0.05/360 ≈ 1.4·10
-4

), we found 54 regions whose activations during the MATH task are 

heritable and 46 regions for the STORY task. These results are summarized in Figure 2 and 

heritability estimates are included in Tables S3-S6. The details and names of the areals can be 

found in the Supplementary Information of the paper describing the multimodal parcellation 

of the human cerebral cortex
15

. For the MATH (resp. STORY) task, the heritability estimates 

range from 0.23 to 0.45, with the maximum in the left “Area PGp” corresponding to the 
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angular gyrus (resp. 0.22 to 0.55, with the maximum in the left “PeriSylvian Language Area”). 

In addition, we performed heritability analysis using the median z-stat value in each areal 

instead of the median parameter estimate (β-value) and obtained similar results (Fig S1). 

The univariate genetic analysis of the activations associated with verbal math emphasizes 

mainly areals spanning the math network, including the intraparietal sulcus, middle frontal, 

inferior temporal and angular gyri. The analysis of activations associated with story 

comprehension distinctively underlines regions of the language network as bilaterally 

heritable. Among these regions are the superior temporal sulcus dorsal and ventral parts, 

Brodmann area (BA) 47 in Broca’s area, and the middle frontal gyrus at the junction with the 

precentral sulcus. Interestingly, the heritability networks of the MATH and STORY tasks 

overlap very little except in the auditory cortex, around the planum temporale, in the frontal 

cortex (BA 8), and in the inferior temporal region. 

Table 1 presents the heritability estimates of the behavioral scores gathered during the MRI 

scans. The global accuracy on the HCP language tasks, averaging the scores in the MATH 

and STORY tasks, was significantly heritable, with h² = 0.34, close to the traditionally high 

heritability estimate of cognitive performance
35,36

. The heritability estimates for the median 

reaction time (RT) were approximately 0.2. Furthermore, RT Story and RT Math were 

significantly correlated (phenotypic correlation: ρp = 0.34, genetic correlation: ρg = 0.45, 

Table S2). Regarding the accuracy and average difficulty level of the HCP language task, we 

observed that the MATH task variables have higher heritability estimates than those of the 

STORY task. This result might indicate a higher genetic influence on performance during 

simple arithmetic tasks than during language comprehension. However, this result needs to be 

considered in light of the different distribution patterns of MATH and STORY accuracies. 

The STORY accuracy reported by the HCP displays discrete values and might not be 

sufficiently informative (Fig S2). Table S2 underlines a significant correlation between math 

and story accuracies (ρp = 0.15, ρg = 0.27). The discrete distribution of STORY accuracy 

likely occurs because each story lasted approximately 20-30s, few story questions were 

presented to the subjects, and most subjects tended to choose the correct answer in the two-

alternative forced-choice question. 

Bivariate Genetic Analyses 

We performed bivariate genetic analyses to quantify the shared genetic influence between 

intellectual performance, represented by the behavioral measures, and the neural activation in 
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each areal. The genetic correlation estimates are usually subject to substantial sampling errors 

and therefore inaccurate. The large sample size of the HCP offers the opportunity to reduce 

the standard errors. The distribution of STORY accuracy values is concentrated on a small 

number of values (Fig S2), thus, we chose to use the average of the STORY and MATH 

accuracies as the behavioral score to characterize the individual performance. Thus, the 

results presented here concern the relationship between this average score and the activations 

or deactivations revealed by the contrast STORY-MATH (activation map shown in Figure 

1c). As a first step of our analysis and to filter out the areals for which the neural activation 

was not significantly correlated with the behavioral score, we computed the phenotypic 

correlation between these two variables in each areal of the HCP multi-modal parcellation. 

Figure 3 (a, b) summarizes the phenotypic correlation and associated p-values, for areals 

significant after Bonferroni correction (p < 0.05/360). The language network is clearly 

encompassed along the left superior temporal sulcus (STS) and Broca’s area, as well as in the 

anterior part of the right STS. The activations in the angular gyrus (area PGp), supporting the 

manipulation of numbers in verbal form
37

, were also significantly correlated with the 

behavioral scores.  

Among the 360 areals of the HCP multimodal parcellation, 39 (resp. 38) were significantly 

phenotypically correlated and were kept for the bivariate analysis in the right (resp. left) 

hemisphere. The shared genetic variance estimates for these areals are presented Figure 3 (c, 

d) (p < 0.05 without correction), and detailed values can be found in Tables S7 and S8. With 

stringent Bonferroni correction the p-value threshold for ρg is p < 0.05/(39+38) ≈ 6.5·10
-4

. 

Among the areals with significant shared genetic variance, we found the left anterior ventral 

insular area (AVI, ρg = 0.61)and the right angular gyrus (PGp, ρg = -0.40). Noticeably, in the 

left hemisphere areals, parts of the language network in the posterior STS had activations that 

shared significant genetic variance with language accuracy. These include the posterior 

ventral (STSv posterior, ρg = 0.47) and dorsal (STSd posterior, ρg = 0.45) parts of the STS, 

adjacent to the auditory 5 complex area (A5, ρg = 0.54), the perisylvian language area (PSL, ρg 

= 0.47) and the temporo-intraparietal junction (PGi, ρg = 0.54). On the left hemisphere internal 

face, we also found the superior frontal language area (SFL, ρg = 0.61) and, adjacent to this 

areal the Brodmann 8 decomposed into medial (8Bm, ρg = 0.75) and lateral (8Bl, ρg = 0.73) 

parts. Additionally, we noted two right hemisphere regions implicated in language processing 

and significantly genetically correlated with the fMRI task average score: the temporal pole 

(area TG dorsal, TGd, ρg = 0.65) and the lateral part of Brodmann area 47 (47l, ρg = 0.51). The 
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latter is adjacent to Brodmann areas 44 and 45 in the inferior frontal, which are connected 

through the arcuate fasciculus with the language temporal regions. 

Additionally, we extended our analysis to behavioral variables measured by the HCP 

following a standardized NIH protocol. Among these, we selected the variables that are most 

likely to reflect cognitive performance. Then, we estimated their heritability (Table S1) and 

correlations with the behavioral scores measured during the fMRI task (Table S2). In this set 

of variables, fluid intelligence (heritability: h
2
=0.43, correlations with language accuracy: ρp = 

0.36, ρg = 0.61), working memory (h
2
=0.52, ρp = 0.34, ρg = 0.50), vocabulary comprehension 

(h
2
=0.64, ρp = 0.40, ρg = 0.57) and oral reading decoding (h

2
=0.67, ρp = 0.46, ρg = 0.67) were 

the ones with the highest heritability estimates and correlations with the average accuracy of 

the two fMRI tasks. Thus, we performed a bivariate genetic analysis between the STORY-

MATH activations (difference between STORY and MATH) and these four variables. Regardless of 

whether one considers the NIH scores or the ones directly related to the fMRI tasks, the study 

of shared genetic influence with the median activation yields approximately the same set of 

regions (Figures 4, 5). This observation reinforces our claim that these regions have common 

genetic roots with the parts of general cognitive performance accounted for by the four 

cognitive variables under scrutiny, namely fluid intelligence, working memory, vocabulary 

comprehension and reading decoding.  
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Discussion 

In this paper, we have shown that brain activation pattern in the language and math networks 

are heritable. Additionally, we highlighted a particular set of regions along the superior 

temporal sulcus and in the inferior frontal whose activations share a common genetic basis 

with some aspects of general cognitive ability, assessed through fMRI task accuracy and 

behavioral scores. 

We must emphasize that these results correspond to fMRI activations associated with verbal 

math and semantic comprehension tasks. Thus, regions not recruited by the tasks cannot be 

found to be significantly correlated with cognitive ability in our case, because activations in 

these regions are incoherent across individuals. Notably, the visual word form area, related to 

literacy, is not activated in our oral tasks because they did not require word reading. 

Furthermore, combining data from various cohorts is unfeasible, because neural activations 

from different tasks are not comparable when estimating inter-individual variance. This 

highlights the necessity of utilizing large cohorts with standardized fMRI protocols to perform 

such genetic analyses. To our knowledge, this is the first study to address the heritability of 

fMRI activation cortex-wise on a multimodal parcellation of the human cerebral cortex. Our 

results confirm the genetic influence on the formation of neural circuits implicated in 

language
38

 and math
11

. Using the HCP fine scale parcellation
15

 allowed us, for instance, to 

distinguish the genetic effects on the temporo-parietal junction implicated in language
28

 (area 

PGi) and on the adjacent angular gyrus (area PGp), which is particularly involved in the 

manipulation of numbers in verbal form
37

. Indeed, these two areas, part of BA 39, present 

different cytoarchitectonic properties, such as a slightly broader layer II for PGi
39

, which 

might explain their involvement in different tasks. In a previous work, Pinel and Dehaene also 

found the left angular gyrus and the posterior superior parietal lobule bilaterally to be 

heritable
11

. Adding to these observations, our results underline a left hemisphere intraparietal 

specificity, with more heritable areals and slightly higher heritability compared to the right for 

the MATH contrast. This finding is consistent with results reported by Vogel and colleagues 

demonstrating a correlation of activations in the left intraparietal sulcus modulated by age, 

which was not observed in the right intraparietal
40

. Heritability represents the proportion of 

observed inter-individual phenotypic variance that is explained by genetics. Thus, it might be 

that inter-individual variance is not sufficiently pronounced in the right hemisphere, whereas 

activations have evolved over one’s lifetime in the left hemisphere. Overall, the heritability 
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maps for the STORY and MATH tasks pinpoint regions known to be disrupted in 

neurodevelopmental disorders. For instance, the inferior frontal area and the temporo-parietal 

junction activations are impaired in developmental dyslexia
1,41

, and the intraparietal region 

activations are less modulated by the numerical distance between two numbers being 

compared in developmental dyscalculia
2,42,43

. Highlighted areas might provide new insights 

into brain regions where normal gene expression might be disrupted, leading to brain 

dysfunction and neurodevelopmental disorders. Frequently replicated genes associated with 

neurobehavioral disorders, such as developmental dyslexia or SLI, likely play such a role in 

structural brain maturation by interfering with neuronal migration and neurite growth
4
. 

Several studies have already described some phenotypic correlations between cognitive 

abilities and neural activations in language
44–46

 and math
17,18,47,48

. Our study replicates these 

observations, notably the correlation with language processing regions, including Broca’s area 

and the posterior superior temporal gyrus
44

. Moreover, we estimated the genetic proportion in 

these phenotypic correlations. Hence, we demonstrated a shared genetic etiology between 

brain activations and cognitive performance, assessed in our study by the following tests: 

fluid intelligence, working memory, vocabulary comprehension and reading decoding. 

Interestingly, in the right hemisphere, mainly the anterior STS was found to be genetically 

correlated with the language task accuracy. This result seems consistent with the hypothesized 

role of the right anterior STS in the processing of prosody or figurative language, likely 

involved in the Aesop’s fable metaphors presented to the subjects
49

.  

The observed genetic correlations shed light on the genetic links between cognitive 

performance and activation level in cognitive task-related fMRI. These links might be related 

to the development and maturation of myelin, enhancing brain connectivity. In children with 

difficulties processing syntactically complex sentences, arcuate fasciculus maturation was 

incomplete compared to adults
50,51

. Thus, we could look for additive genetic effects 

implicated in the various levels of fiber tract maturation, which improves brain connectivity 

and efficiency. Indeed, Skeide and colleagues reported an example of such a genetic risk 

variant for dyslexia. They showed that this variant is related to the functional connectivity of 

left fronto-temporal phonological processing areas during the resting state
52

. Similarly, 

children with higher arithmetic scores present a more mature response modulation in their left 

intraparietal lobe
47

. Our study suggests that a proportion of the observed inter-individual 

variance in cognitive performance partly results from the same additive genetic effects as 

those contributing to brain activation variance. The moderate shared genetic basis suggests 
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that a crucial interaction occurs between the environment and gene networks to enable the 

brain to develop to its full potential.  

Recently, with the emergence of large cohorts, such as UKBiobank, new loci and genes 

influencing human cognitive ability have been discovered
23–25

. However, little is known about 

how these genes contribute to this human-specific trait. Our study pinpoints brain regions 

where activations genetically correlate with global cognition scores. These regions might help 

elucidate the mechanism in which these genes are implicated. When the HCP genotyping data 

are released, a polygenic score of these newly discovered variants could be used to determine 

the explained proportion of the neural activation variance in these regions. 
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Material and Methods 

Subjects 

This study utilized the dataset of the Human Connectome Project (HCP). The HCP scans and data 

were released in April 2017 (humanconnectome.org). The details of the release are available in the 

HCP reference manual. In this project, 1046 subjects aged between 22 and 37 years old (µ ± σ = 28.8 

± 3.7 years) completed the fMRI language task in the HCP S1200 release. To avoid population 

stratification, we only included the 785 Caucasian individuals (372/413 M/F) that were classified as 

race=“White” by the HCP; among these, the ethnicity of 69 was “Hispanic/Latino”. This subgroup of 

the HCP contains 178 twin pairs (117 monozygotic twins (MZ) with 103 siblings and 61 dizygotic 

twins (DZ) with 61 siblings and 1 half sibling), 203 siblings, 1 half sibling and 60 unpaired individuals. 

The unpaired individuals did not contribute to the genetic parameter estimation but allowed a more 

accurate estimation of mean and variance effects. Subjects were chosen by the HCP consortium to 

represent healthy adults beyond the age of major neurodevelopmental changes and before the onset of 

neurodegenerative changes 
53

. They underwent a battery of tests to determine if they met the 

inclusion/exclusion criteria of the HCP 
53

. All subjects provided written informed consent on forms 

approved by the Institutional Review Board of Washington University. All of the following methods 

were carried out in accordance with relevant guidelines and regulations. All experimental MRI 

protocols were approved by the Institutional Review Board of Washington University. 

Data availability statement: HCP (https://db.humanconnectome.org) is a publicly available dataset. 

Investigators need to apply to be granted access to restricted data. 

Statistical power analysis 

The statistical power of an extended pedigree study should not be confused with that of a cohort of 

unrelated subjects. In the latter case, the software often used is GCTA (genome wide complex trait 

analysis)
54

, which enables one to easily compute the statistical power
55

. In an extended pedigree, the 

the statistical power computation is a hard problem because non-independence among relatives must 

be taken into account
56

. To the best of our knowledge, there is no consensus method to compute the a 

priori statistical power for studies on imaging genetics in the case of a large pedigree cohort. For the 

sake of comparison, we propose to compare our study with previously published studies. Previous 

heritability studies that used approximately 800 subjects from the HCP, roughly as much as in our 

sample, obtained standard errors between 0.06 and 0.08 for phenotypes with heritability between 0.20 

and 0.45
57,58

. Using the GCTA Power Calculator
55

 with the default value for the variance of the single 

nucleotide polymorphism (SNP) derived genetic relationship matrix of 10
-5

, this range of standard 

errors and heritability estimates requires a sample size of 6000-7000 unrelated individuals. To allow 
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comparison with other pedigrees studies, we computed a relatedness summary parameter (RSP) using 

the pedRSP R package
59

. We determined that our sample of 785 individuals is equivalent to an 

effective number of 1,922 pairs of siblings (RSP of our sample: Vλ = 0.649 , Vq = 0.671, γ = 0.73; see 

59
 for details of the parameter’s meaning). 

Additionally, we want to emphasize that modeling non-additive genetic effects
60

 is not possible when 

genetic data are not available. In a pedigree study such as the one currently available from the HCP, 

the only information available is the relationship between individuals. 

Image acquisition and processing 

MR images were acquired using a 3T Connectome Scanner, adapted from Siemens Skyra, housed at 

Washington University in St Louis, using a 32-channel head coil. T1-weighted images with 256 slices 

per slab were acquired with the three-dimensional magnetization-prepared rapid gradient echo (3D-

MPRAGE) sequence: TR=2400 ms, TE=2.14 ms, TI=1000 ms, flip angle=8°, FOV=224×224 mm, and 

resolution 0.7 mm isotropic. T2-weighted images, 256 slices per slab, were acquired with a 3D-

T2SPACE sequence: TR=3200 ms, TE=565 ms, variable flip angle, FOV=224×224 mm, and 

resolution 0.7 mm isotropic. fMRI data acquisition parameters were as follows: TR=720 ms, TE=33.1 

ms, flip angle=52 deg, BW=2290 Hz/Px, in-plane FOV=208×180 mm, 72 slices, and 2.0 mm isotropic 

voxels, with a multi-band acceleration factor of 8. Two runs of each task were acquired, one with 

right-to-left and the other with left-to-right phase encoding 2; each run interleaved 4 blocks of a story 

task with 4 blocks of a math task. The lengths of the blocks varied (average of approximately 30 

seconds), but the task was designed so that the math task blocks matched the length of the story task 

blocks, with some additional math trials at the end of the task to complete the 3:57 (min:sec) run.  

The details of the HCP data analysis pipelines are described elsewhere
13,61

. Briefly, they are primarily 

built using tools from FSL
62

 and Freesurfer
63

. The HCP fMRIVolume pipeline generates “minimally 

preprocessed” 4D time series that include gradient unwarping, motion correction, fieldmap-based EPI 

distortion correction, brain-boundary- based registration of EPI to structural T1-weighted scans, non-

linear (FNIRT) registration into MNI152 space, and grand-mean intensity normalization
61

. For the 

S500 release, two smoothing approaches were chosen by the HCP: volume-based smoothing or 

smoothing constrained to the cortical surface and subcortical gray-matter parcels. For the former, 

standard FSL tools can be applied for analysis, while for the latter, the HCP adapted these tools to this 

the ‘grayordinate’ approach
13,61

. The grayordinate approach refers to fMRI analyses performed on the 

cortical surfacen, as opposed to a volume-based approach. This is more accurate spatially because 

activation occurs in gray, not white, matter. Unconstrained volume-based smoothing causes blurring 

effects by mixing signals from cortex regions adjacent in volume but not on the surface. For these 

reasons, our study analyses were carried out on the surface of the cortex. 
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The HCP fMRISurface pipeline brings the time series from the volume into the CIFTI grayordinate 

standard space. This is accomplished by mapping the voxels within the cortical gray matter ribbon 

onto the native cortical surface, transforming them according to the surface registration onto the 32k 

Conte69 mesh, and mapping the set of subcortical gray matter voxels from each subcortical parcel in 

each individual to a standard set of voxels in each atlas parcel. The result is a standard set of 

grayordinates in every subject (i.e., the same number in each subject, with spatial correspondence) 

with 2mm average surface vertex and subcortical volume voxel spacing. These data are smoothed with 

surface and parcel constrained smoothing of 2mm FWHM (full width half maximum) to regularize the 

mapping process
61

.  

The language task 

The HCP language task was developed by Binder and colleagues
34

.  In the story blocks, participants 

were presented with brief auditory stories adapted from Aesop’s fables, followed by a 2-alternative 

forced-choice question to check the participants’ understanding of the story topic.  The example 

provided in the original paper is “For example, after a story about an eagle that saves a man who had 

done him a favor, participants were asked, “Was that about revenge or reciprocity?””. In the math 

blocks, participants were also presented auditory series of addition and subtraction (e.g., “fourteen 

plus twelve”), followed by “equals” and then two choices (e.g., “twenty-nine or twenty-six”). To 

ensure similar level of difficulty across participants, math trials automatically adapted to the 

participants responses. As shown by Binder and colleagues
34

, the story and math trials were well 

matched in terms of duration, auditory and phonological input, and attention demand. Furthermore, 

they were likely to elicit distinct brain activation – on the one hand, anterior temporal lobes classically 

involved in semantic processing, and parietal cortex on the other hand, classically involved in 

numerical processing, thus spanning a broad set of regions involved in conceptual semantic processing. 

HCP task fMRI analysis 

The analysis of fMRI data was carried out by the HCP consortium and we describe briefly their 

pipeline
13

. The Story predictor covered the variable duration of a short story, question, and response 

period (~30 s). The Math predictor covered the duration of a set of math questions designed to roughly 

match the duration of the story blocks. The grayordinate data for individual task runs were processed 

in a level 1 analysis. Activity estimates were computed for the preprocessed functional time series 

from each run using a general linear model (GLM) implemented in FSL's FILM (FMRIB's Improved 

Linear Model with autocorrelation correction)
64

. Predictors were convolved with a double gamma 

“canonical” hemodynamic response function
65

 to generate the main model regressors.  The two runs 

for each task and subject were then combined in a level 2 fixed-effects analysis
13

, which we used as 

our phenotype. Fixed-effects analyses were conducted using FEAT (fMRI Expert Analysis Tool) to 

estimate the average effects across runs within-subjects, and then mixed-effects analyses treating 
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subjects as random effects were conducted using FLAME (FMRIB’s Local Analysis of Mixed Effects) 

to estimate the average effects of interest for the group third-level analysis. 

Phenotype definitions 

To define our phenotypes, we consider separately the regression analyses on STORY and MATH 

tasks, and the contrast STORY-MATH. We used the beta values (pe1.dtseries.nii files) of the results 

of the level 2 analysis, which essentially average the level 1, i.e., the individual, runs. The contrasts 

were defined by the HCP in level 1 and averaged for level 2: thus, the grayordinate values of the beta 

and contrast values (cope1.dtseries.nii) are identical in this case, as they did not define any “new” 

contrasts specifically at level 2. Therefore, we could have used the cope1.dtseries.nii.files with no 

difference in results. We used the MSMAll registered the functional analysis results from HCP and the 

HCP multimodal parcellation
15

. We analyzed each of the 180 areals separately. We computed the 

median beta values in each areal for both hemispheres. These phenotypes constitute our proxy to 

estimate the activation in each part of the brain. 

Moreover, we also included in our phenotypes the accuracy, reaction time and average difficulty level 

for the MATH and STORY tasks. We called these “behavioral scores”, as opposed to the grayordinate 

activation phenotypes previously defined. 

Univariate analysis of additive genetic variance 

The variance components method, as implemented in the Sequential Oligogenic Linkage Analysis 

Routines (SOLAR) software package
66

, was used for the heritability estimations of the phenotypes 

under analysis, such as the median activation in each areal
15

. The SOLAR algorithms use maximum 

variance decomposition methods derived from the strategy developed by Amos
67

. The covariance 

matrix Ω for a pedigree of individuals is given by: 

Ω = 2·Φ·σg² + I· σe², where σg² is the genetic variance due to the additive genetic factors, Φ is the 

kinship matrix representing the pair-wise kinship coefficients among all individuals, σe² is the variance 

due to individual-specific environmental effects, and I is the identity matrix.  

Narrow sense heritability is defined as the fraction of the phenotype variance σp² attributable to 

additive genetic factors:  h² = σg²/ σp². 

The significance of the heritability is tested by comparing the likelihood of the model in which σg² is 

constrained to zero with that of the model in which σg² is estimated. Before testing for the significance 

of heritability, phenotype values for each individual within the HCP cohort were adjusted for the 

following covariates: sex, age, age², age·sex interaction, age²·sex interaction, ethnicity (Hispanic or 

not) and education level. We used the number of years of education as a proxy for the education level 

to account for environmental differences in family socioeconomic status. This is a conservative 
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approach because the number of years of education was shown to be associated not only with the 

family socioeconomic status (7%) but also with the general cognitive ability (3.5%)
68

. Thus, it likely 

has shared environmental ground with the former and shared genetic origin with the latter. HCP data 

do not contain the information that would disentangle this issue. Following this last remark, one 

should note that the heritability estimates and shared genetic variances, described in the next section, 

were underestimated. 

Bivariate genetic analyses 

To assess the relationship between math dexterity/language comprehension and activation in brain 

areas, we computed the Pearson correlation between the median activation in each of the 180 areals of 

both hemispheres, and the behavioral scores.  

Furthermore, we assessed the degree of shared genetic variance in the areals for which activation was 

significantly correlated with the behavioral scores; we performed a genetic correlation analysis using 

SOLAR, relying on the following model: 

𝜌𝑝 = √ℎ𝑎
2  √ℎ𝑏

2  ∙ 𝜌𝑔 + √1 − ℎ𝑎
2  √1 − ℎ𝑏

2  ∙ 𝜌𝑒 , where Pearson’s phenotypic correlation ρp is 

decomposed into ρg and ρe. ρg is the proportion of variability due to shared genetic effects and ρe that 

due to the environment, while ℎ𝑎
2  and ℎ𝑏

2  correspond to the previously defined narrow sense 

heritability for phenotypes a and b, respectively. In our case, one corresponds to the heritability of 

fMRI activation in one areal, while the second is the heritability of one of our behavioral scores.  
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Figure 1. Group average activations for the HCP language tasks, including MATH (a.) and STORY (b.) 

blocks, and the STORY-MATH contrast (c.). Group maps are shown with a lower threshold of z = ± 10 and 

saturation from z = 30 to introduce the main areas activated by the tasks. Due to the large number of subjects, the 

associated p-values are significant; we arbitrarily set the thresholds to emphasize the regions that are known to 

be recruited by these tasks. 
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Figure 2. Heritability estimates for the activations of the MATH (a.) and STORY (c.) tasks, and their 

associated p-values (respectively, b. and d.). Only the estimates significant after correction (p < 0.05/360, with 

180 areals in each hemisphere) are displayed. Activations correspond to the median parameter estimate (β) in 

each areal of the HCP multimodal parcellation. 
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Figure 3. Bivariate genetic analysis results between HCP LANGUAGE task accuracy and activation for 

the STORY-MATH contrast in each areal. a. After strict Bonferroni correction (p < 0.05/360), significant 

phenotypic correlations between the language task accuracy (average of story and math accuracies) and the 

median activation of the contrast STORY-MATH in each areal, b. with their associated p-values. c. Proportion 

of variability due to shared genetic effects with d. their associated uncorrected p-values < 0.05. 
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Figure 4. Significant phenotypic correlations between the grayordinate activations of the STORY-MATH 

contrast and the NIH behavioral scores. a. Fluid intelligence (PMAT24_A_CR). b. Working memory 

(ListSort). c. Vocabulary comprehension (PicVocab). c. Reading decoding (ReadEng). Associated p-values (p <  

0.05/360, Bonferroni correction) can be found Fig S3. 
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Figure 5. Shared genetic variance (absolute value) between the grayordinate activations of the STORY-

MATH contrast and the NIH behavioral scores. a. Fluid intelligence (PMAT24_A_CR). b. Working memory 

(ListSort). c. Vocabulary comprehension (PicVocab). c. Reading decoding (ReadEng). Associated p-values (p < 

0.05, uncorrected) can be found in Fig S4. Genetic correlation was investigated only for areals that were 

significantly phenotypically correlated (Figure 4). 
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Table 1. Heritability estimates for the behavioral scores associated with the tasks. Language accuracy and 

reaction time (RT) correspond to the average of the respective MATH and STORY variables. The p-values 

associated with the covariates related to age and sex, ethnic group and education level are also displayed. 

Trait h²±SE (p) 
Age Age² Sex Age*Sex Age²*Sex Hispanic Educ h²cov% 

 p-val  

Language Accuracy 0.34±0.06 (2.3·10
-8

) 0.49 0.75 0.01 0.96 0.22 0.97 1.2·10
-7

 7.2 

Language RT 0.22±0.07 (8.4·10
-4

) 0.44 0.91 0.69 0.85 0.95 0.71 0.04 0.5 

Math Accuracy 0.4±0.06 (1.6·10
-10

) 0.5 0.96 9.2·10
-4

 0.81 0.39 0.76 1.9·10
-6

 7.2 

Math Difficulty 

Level 
0.33±0.07 (1.0·10

-6
) 0.53 0.17 0.02 0.61 0.05 0.42 8.7·10

-8
 7.9 

Math Median RT 0.17±0.07 (7.4·10
-3

) 0.6 0.41 0.78 0.82 0.69 0.26 0.01 1.1 

Story Accuracy 0.18±0.06 (1.6·10
-3

) 0.78 0.48 0.86 0.76 0.23 0.61 2.2·10
-3

 1.4 

Story Difficulty 

Level 
0.33±0.07 (1.3·10

-6
) 0.66 0.43 0.81 0.44 0.28 0.91 0.11 0.0 

Story Median RT 0.2±0.07 (1.4·10
-3

) 0.41 0.63 0.39 0.59 0.68 0.45 0.39 0.0 
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