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Abstract1

Basal ganglia output neurons transmit motor signals by decreasing their firing rate during movement.2

This decrease can lead to post-inhibitory rebound spikes in thalamocortical neurons in motor3

thalamus. While in healthy animals neural activity in the basal ganglia is markedly uncorrelated,4

in Parkinson’s disease neural activity becomes pathologically correlated. Here we investigated the5

impact of correlations in the basal ganglia output on the transmission of motor signals to motor6

thalamus using a Hodgkin-Huxley model of a thalamocortical neuron. We found that correlations in7

the basal ganglia output disrupt the transmission of motor signals via rebound spikes by decreasing8

the signal-to-noise ratio and increasing the trial-to-trial variability. We further examined the role of9

brief sensory responses in basal ganglia output neurons and the effect of cortical excitation of motor10

thalamus in modulating rebound spiking. Interestingly, both the sensory responses and cortical11

inputs could either promote or suppress the generation of rebound spikes depending on their timing12

relative to the motor signal. Finally, in the model rebound spiking occurred despite the presence13

of moderate levels of excitation, indicating that rebound spiking might be feasible in a parameter14

regime relevant also in vivo. Overall, our model provides novel insights into the transmission of15

motor signals from the basal ganglia to motor thalamus by suggesting new functional roles for16

active decorrelation and sensory responses in the basal ganglia, as well as cortical excitation of17

motor thalamus.18
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Introduction19

The basal ganglia have long been implicated in the selection and execution of voluntary movements20

(Albin et al., 1989; Alexander and Crutcher, 1990b; Redgrave et al., 1999; Hikosaka et al., 2000).21

Classic “box-and-arrow” models of the basal ganglia (Alexander and Crutcher, 1990a; Wichmann22

and DeLong, 1996) presume a propagation of motor signals through the direct pathway. The direct23

pathway consists of direct, inhibitory projections from the striatum to the basal ganglia output24

regions. Therefore increased activity in the striatum reduces the activity e.g. in the substantia nigra25

pars reticulata (SNr). SNr in turn disinhibits the motor thalamus (Deniau and Chevalier, 1985),26

and thereby enables movement. Basal ganglia output neurons often have high baseline firing rates27

and decrease their rate during movement in both rodents and primates (Hikosaka and Wurtz, 1983;28

Schultz, 1986; Leblois et al., 2007; Schmidt et al., 2013). However, recent studies have suggested29

a more complex picture on how basal ganglia output affects motor thalamus and motor cortex30

(Bosch-Bouju et al., 2013; Goldberg et al., 2013).31

Three different modes have been proposed for how the basal ganglia output can affect thalamic32

targets (Goldberg et al., 2013). In the first mode sudden pauses in basal ganglia inhibition of33

thalamus lead to “rebound” spikes in thalamocortical neurons due to their intrinsic T-type Ca2+
34

channels (Llinás and Jahnsen, 1982). Release from long-lasting hyperpolarisation (e.g. during35

movement) de-inactivates the T-type Ca2+ channels and thereby depolarises the membrane36

potential. For strong enough preceding hyperpolarisation, the membrane potential can even reach37

the spike threshold without any excitation (Person and Perkel, 2005; Person and Perkel, 2007;38

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2020. ; https://doi.org/10.1101/386920doi: bioRxiv preprint 

https://doi.org/10.1101/386920
http://creativecommons.org/licenses/by-nc/4.0/


Leblois et al., 2009; Kim et al., 2017). However, thalamocortical neurons also receive excitatory39

input from cortex, which can change the effect of nigrothalamic inhibition. For moderate levels of40

cortical excitation the nigrothalamic transmission operates in a disinhibition mode, in which the41

basal ganglia effectively gate cortical excitation, so that during pauses of inhibition the excitatory42

inputs can evoke spikes in the thalamocortical neuron (Kojima and Doupe, 2009; Bosch-Bouju et43

al., 2014; Edgerton and Jaeger, 2014). If the cortical excitation is strong enough, the inhibition44

from the basal ganglia no longer prevents action potentials in the thalamocortical neurons, but45

instead controls their timing. In this “entrainment” mode the thalamocortical neuron spikes46

after the inhibitory input spikes from SNr with a short, fixed latency (Goldberg and Fee, 2012;47

Goldberg et al., 2012).48

One prominent feature of the basal ganglia network is that neurons fire in an uncorrelated fashion,49

despite their overlapping dendritic fields and local recurrent connections (Wilson, 2013). Specific50

features of the basal ganglia such as pacemaking neurons and high firing rate heterogeneity may51

act as mechanisms for active decorrelation of activity. This effectively prevents correlations among52

neurons, and disrupting this mechanism leads to pathologically correlated activity as in Parkinson’s53

disease (Bar-Gad et al., 2003; Wilson, 2013). Increased correlated activity has also been observed54

in basal ganglia output neurons in Parkinson’s disease (Bergman et al., 1998), which can in55

turn increase correlated activity in the thalamus (Reitsma et al., 2011). Previous computational56

modelling has shown that pathological basal ganglia output can prevent the thalamic relaying of57

cortical excitatory signals (Guo et al., 2008). Here we examined how pathological correlations58
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in the basal ganglia output affect the transmission of motor signals from the basal ganglia to the59

thalamus and how this transmission is affected by cortical excitation. In addition to transmitting60

motor signals, basal ganglia output neurons may also be involved in further sensory and cognitive61

processing. For example, SNr neurons also respond to salient sensory stimuli instructing the62

initiation or stopping of movements (Pan et al., 2013; Schmidt et al., 2013). Therefore, we also63

investigated how these sensory responses may affect the motor transmission.64

In the present study we used computational modelling to study the transmission from the basal65

ganglia to the thalamus via postinhibitory rebound spikes. We found that uncorrelated basal66

ganglia output ensures a clear transmission of motor commands with low trial-to-trial variability67

in the thalamic response latency. In contrast, pathological correlations in SNr led to a noisy68

transmission with high trial-to-trial variability. In addition, we found that sensory responses in69

SNr can, depending on their timing relative to the movement-related decrease, either facilitate or70

suppress rebound spikes leading to promote or suppress movement. Therefore, in the rebound71

transmission mode, uncorrelated activity and sensory responses in the basal ganglia output have72

functional roles in the coordinated transmission of motor signals. Finally, we found that the73

rebound spiking mode persisted in the presence of excitation that is strong enough to maintain74

baseline firing rates reported in vivo (Bosch-Bouju et al., 2014).75

Materials and Methods76

Model neuron77
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In this study we used a Hodgkin-Huxley type model of a thalamocortical neuron (Rubin and78

Terman, 2004). The model has four different ionic currents: a leak current (IL), a Na+ current79

(INa), a K+ current (IK), and a T-type Ca2+ current (IT ), which are determined by the membrane80

potential v, the channel conductances g and reversal potentials E). While the conductance of the81

leak current gL is constant, the conductance of the Na+, K+ and T-type Ca2+ currents depends on82

the membrane potential and varies over time. These voltage-dependent conductances are formed83

by the product of the maximum channel conductance (gNa, gK and gCa) and the voltage-dependent84

(in)activation variables (m, h, p and r).85

The model neuron’s membrane potential is described by86

Cm
dv
dt

+ IL + INa + IK + IT + ISNr→TC + ICX→TC = 0 (1)

with a leak current IL = gL[v−EL]. The Na+ current INa = gNam3
∞(v)h[v−ENa] has an instantaneous87

activation gating variable m∞(v) = 1
1+exp(−(v+37)/7) and a slow inactivation gating variable h with88

dh
dt = h∞(v)−h

τh(v)
and steady-state h∞(v) = 1

1+exp((v+41/4)) that is approached with a time constant89

τh(v) = 1
ah(v)+bh(v)

; ah(v) = 0.128exp(−(v+46)/18), bh(v) = 4
1+exp(−(v+84)/4) .90

The activation variable of the K+ current IK = gK [0.75(1−h)4][v−EK ] is described in analogy to91

the Na+ inactivation variable (h), which reduces the dimensionality of the model by one differential92

equation (Rinzel, 1985a).93

The T-type Ca2+ current IT = gT p2
∞(v)r[v−ET ] has an instantaneous activation p∞(v)= 1

1+exp(−(v+60)/6.2)94

and slow inactivation dr
dt =

r∞(v)−r
τr(v)

with the steady-state r∞(v) = 1
1+exp((v+84)/4) and time constant95
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τr(v) = 28+0.3(−(v+25)/10.5).96

The T-type Ca2+ channel can cause post-inhibitory rebound spikes by the following mechanism.97

Prolonged hyperpolarisation leads to de-inactivation of the T-type Ca2+ channel, i.e. the inactivation98

gate (r) opens while the activation gate (p) closes. After shutting down the hyperpolarisation, the99

inactivation gate closes slowly whereas the activation gate opens very fast. Therefore, while both100

gates are open, the T-type Ca2+ channel briefly opens, leading to a membrane depolarisation. If101

this depolarisation is strong enough, this can lead to Na+ spikes, which are then referred to as102

post-inhibitory rebound spikes.103

The thalamic model neuron receives two types of synaptic inputs; one inhibitory from the basal104

ganglia output region SNr (SNr → TC) and one excitatory from cortex (CX → TC). Synaptic105

currents IX are described by a simple exponential decay with the decay rate βX , where X denotes106

the synapse type (Gerstner and Kistler, 2002). Similar to the intrinsic ionic currents, each synaptic107

current is described in terms of the membrane potential v, channel conductance gX , and the reversal108

potential vX : IX = gX [v− vX ]∑ j s j; X = {SNr→ TC,CX → TC}. When a presynaptic neuron j109

spikes at time ti, s j becomes 1 and decays with time constant β afterwards ds j
dt = (1− s j)δ (t− ti)−110

βX s j, where δ (t) is the Dirac delta function. With the conductance caused by a single presynaptic111

spike (s j = 1) given by gX , the net synaptic current is therefore the sum of all presynaptic events s j112

multiplied by gX and the difference between the membrane potential and synaptic reversal potential.113

In our model, the reversal potential for the inhibitory synapse is vSNr→TC = −85mV (Rubin and114

Terman, 2004), which is required by the model to generate rebound spikes. This reversal potential,115

7

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2020. ; https://doi.org/10.1101/386920doi: bioRxiv preprint 

https://doi.org/10.1101/386920
http://creativecommons.org/licenses/by-nc/4.0/


though very hyperpolarised, is in the range of the reversal potentials of thalamocortical neurons in116

the thalamus (Huguenard and Prince, 1994; Ulrich and Huguenard, 1997; Herd et al., 2013) and is117

in line with the presence of thalamic rebound spikes in vivo (Kim et al., 2017). The intrinsic and118

synaptic parameters of the model neuron are described in Table 1.119

Table 1. Model parameters

Parameter type Parameter, value and unit

Ionic channel conductance

gL = 0.05 nS/µm2

gNa = 3 nS/µm2

gT = 5 nS/µm2

gK = 5 nS/µm2

Ionic channel reversal potential

EL =−70 mV

ENa = 50 mV

ET = 0 mV

EK =−90 mV

Synaptic reversal potential
vSNr→TC =−85 mV

vCX→TC = 0 mV

Synaptic decay constant
βSNr→TC = 0.08 ms−1

βCX→TC = 0.18 ms−1

Parameters were taken from Rubin and Terman, 2004 and Ermentrout and Terman, 2010.

Input spike trains120

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2020. ; https://doi.org/10.1101/386920doi: bioRxiv preprint 

https://doi.org/10.1101/386920
http://creativecommons.org/licenses/by-nc/4.0/


We generated uncorrelated and correlated Poisson spike trains as inputs to the model neuron. To121

generate uncorrelated spike trains we simulated N independent Poisson processes, each with a122

firing rate r. We generated the correlated input spike trains for a given average pairwise correlation123

among them, denoted by ε . However, for N ≥ 3 different realisations of spike trains with different124

correlations of order 3 or higher are possible (Kuhn et al., 2003). For a convenient parametrisation125

of the order of correlation, we used the distribution of the number of coincident spikes, referred to126

as spike amplitudes (A), in a model of interacting Poisson processes (Staude et al., 2010). For a127

homogeneous population of spike trains, the average pairwise correlation depends on the first two128

moments of the amplitude distribution fA:129

ε =

E[A2]
E[A] −1

N−1
(2)

In the present study, we considered binomial and exponential amplitude distributions (Figure 1).130

While the binomial amplitude distribution has a high probability density around the mean of131

the distribution (Figure 1A), the exponential distribution has a higher probability density toward132

smaller amplitudes (Bujan et al., 2015, Figure 1B).133

To generate spike trains with a binomial amplitude distribution we implemented a multiple134

interaction process (Kuhn et al., 2003, Figure 1A). For correlated outputs (ε > 0), this was135

done by first generating a so-called “mother” spike train, a Poisson spike train with rate λ . We then136

took this mother spike train to derive the set of spike trains used in our simulations as convergent137
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inputs to the model neuron. Each spike train in this set was derived by randomly and independently138

copying spikes of the “mother” spike train with probability ε . The firing rate of each spike train139

generated via this algorithm is r = ελ .140

We also generated spike trains using exponentially distributed amplitudes described by:141

fA(ξ ;τ) =
e−τξ

∑
N
k=1 e−τk

;ξ ∈ [1, N] (3)

where fA(ξ ;τ) is the amplitude distribution with the parameter τ . According to Eq. 2, to compute ε142

for this distribution, we needed to compute the proportion of the second moment to the first moment143

for this distribution. We used E[An] = ∑
N
ξ=1 ξ n fA(ξ ) to compute the first and second moments of144

the distribution and then applied it into Eq. 2, rewriting it to145

ε =

∑
N
ξ=1 ξ 2e−τξ

∑
N
ξ=1 ξ e−τξ

−1

N−1
(4)

This equation shows that ε depends on τ and we took a simple numerical approach to find τ for146

each desired ε . We computed ε for a range of τ (from 0 to 5 with steps of 0.001) and then selected147

the τ that yielded an ε closest to our desired ε (Figure 1C). The maximum error between the ε we148

calculated using Eq. 4 and the desired ε was 5×10−4.149

The next step was to generate the population spike trains using the probability distribution150

determined by the τ we already computed. We drew N independent Poisson spike trains each151
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with rate rξ = Nr fA(ξ )/ξ ; ξ ∈ [1, N]. Since ξ represents the number of coincident spikes in152

a time bin, spike times from independent spike trains should be copied ξ times to get the final153

population spike train used as inputs to the model neuron. As the amplitude distribution described154

in Eq. 3 has a high probability density toward lower amplitudes, high average pairwise correlations155

cannot be achieved. For typical parameters of the inhibitory input spike trains in this study (N = 30,156

r = 50 Hz), the maximum average pairwise correlation was less than 0.65 (Figure 1C).
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Figure 1. Generation of correlated Poisson spike trains used as input to the model neuron. (A, top) The amplitude

distribution of the higher-order correlations was determined for spike trains generated by a multiple interaction process

with ε = 0.3 and r = 50 Hz. The bottom panel shows the raster plot of 30 respective example spike trains. (B, top)

Alternatively, the amplitude distribution of higher-order correlations followed an exponential amplitude distribution with

ε = 0.3 and r = 50 Hz, and corresponding example spike trains (bottom panel). (C) The parameter τ of the exponential

amplitude distributions determined the resulting average pairwise correlation ε (red trace). Black dots represent the

average pairwise correlations that we used to generate input spike trains with an exponential amplitude distribution.

157
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Input spike trains with mixture of binomial and exponential amplitude distributions158

We computed the spike amplitude distribution of SNr model neurons using a large-scale network159

model of the basal ganglia (Figure 2D; see also below). This amplitude distribution involved a160

mixture of exponential and binomial distributions leading to an average pairwise correlation of161

0.6 (black dot in Figure 2). To obtain spike trains following this mixed distribution, we first162

created one spike train with an exponential amplitude distribution contributing 20% of the spikes163

with an average pairwise correlation of 0.25. Next, another spike train with a binomial amplitude164

distribution was generated (see above), contributing the remaining 80% of the spikes in the input165

spike train. We changed the average pairwise correlations of these input spike trains by only166

changing the average pairwise correlation of the subset with the binomial amplitude distribution.167

Uncorrelated input spike trains with gradual decrease168

We captured the gradual movement-related decrease, which is observed experimentally, by using169

a sigmoid function to describe the firing rate of the input spike trains as a function of time r(t) =170

50(1− 1/[1+ e−a(t−tmov)]) Hz. We varied the slope parameter, a, to change the slope of the firing171

rate decrease. tmov is the time point (in this study at one second), when the firing rate decreases to172

the half maximum, i.e. r(tmov) = 25 Hz.173

Data analysis: identifying rebound spikes174

The model neuron can fire spikes in response to excitatory input or due to release from inhibition175
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with post-inhibitory rebound spikes. Therefore, one challenge was to distinguish “normal”176

spikes driven by excitatory inputs from post-inhibitory rebound spikes. In mice studies, genetic177

approaches are often used to knockout T-type Ca2+ channels, which are critical for generation178

of post-inhibitory rebound spikes (Kim et al., 2017). We adopted this in our model by simply179

removing the T-type Ca2+ channels in our model (i.e. gT = 0 nS/µm2). However, this also caused180

changes in the intrinsic properties of the model neuron such as its excitability. We therefore took a181

more elaborate approach tailored to each of the two excitation scenarios, single excitatory spikes182

(Figure 5) and spontaneous excitation (Figure 6).183

For the simulations with a single excitatory input spike the identification of rebound spikes was184

straightforward because the used excitatory strengths were subthreshold and thus could evoke185

no spikes. Therefore, we labelled all generated spikes as rebound spikes. However, for the186

simulations with ongoing excitation, the excitatory input was able to evoke “normal” spikes as187

well. To identify rebound spikes there, we simulated the model neuron with three different input188

combinations, inhibition-only, excitation-only and inhibition-excitation. For inhibition-only input,189

we determined the output firing rate of the model neuron purely due to rebound spiking ( fI). In190

addition, we determined the time window in which the model neuron fired those rebound spikes191

(as this was typically in a short time window just after the movement-related decrease). We then192

compared the rebound-driven firing rate in this time window with the firing rate fE obtained from an193

excitation-only simulation (i.e. without any inhibitory input, so no rebound spikes). Finally, we fed194

our model with both inputs (inhibition-excitation) and computed the firing rate in that time window,195
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which involved both rebound and non-rebound spiking ( fEI). We then computed the proportion of196

rebound spiking as: fEI− fE
fI

.197

Data analysis: transmission quality198

For our simulations shown in Figure 2, we needed to quantify the transmission quality for a variety199

of inputs strengths and degrees of correlation. For a clear transmission of the motor signal the200

thalamocortical neuron would ideally respond only to the movement-related decrease of activity201

in SNr neurons with a rebound spike, and be silent otherwise. Any rebound spike before the202

movement-related decrease would make the transmission noisy, in the sense that the decoding of203

the presence and timing of the motor signal in thalamic activity would be less accurate. Therefore,204

we used the number of spikes after the onset of the movement-related decrease, normalised by the205

total number of spikes within -1 s to 0.5 s around the onset of the movement-related decrease as a206

measure of the transmission quality.207

Large-scale model of the basal ganglia208

We utilised a large-scale network model of the basal ganglia (Lindahl and Kotaleski, 2016) to209

compute the distribution of spike amplitudes in SNr during pathological activity in dopamine-depleted210

basal ganglia. This network model mimics the pathological activity pattern observed experimentally211

in a rat model of Parkinson’s disease. To achieve the pathological activity pattern in SNr, we ran212

this model using a default parameter set originally from this network model. This parameter set213

involved setting dopamine modulation factor to zero and inducing a 20-Hz modulation to the214

14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2020. ; https://doi.org/10.1101/386920doi: bioRxiv preprint 

https://doi.org/10.1101/386920
http://creativecommons.org/licenses/by-nc/4.0/


emulated cortical inputs to the basal ganglia regions (for details see Lindahl and Kotaleski, 2016).215

Software packages216

We implemented the model neuron in Simulink, a simulation package in MATLAB (R2016b) and217

used a 4th-order Runge-Kutta method to numerically solve the differential equations (time step218

= 0.01 ms). We wrote all scripts to generate input spike trains, handle simulations and analyse219

and visualise the simulation data in MATLAB. To run the simulations we used the “NEMO”220

high-performance computing cluster in the state of Baden-Wuerttemberg (bwHPC) in Germany.221

Code accessibility222

We provided our simulation scripts (in “BasicModelSimulations” directory) including the scripts223

generating input spike trains (in “SpikeTrains” directory) accessible via a git repository https:224

//github.com/mmohaghegh/NigrothalamicTransmission.git225

Results226

Uncorrelated activity promotes the transmission of motor signals227

To determine whether uncorrelated activity in basal ganglia output is important for the transmission228

of motor signals, we simulated a thalamocortical neuron exposed to inhibitory Poisson input spike229

trains with varying degrees of correlation (Figure 2). We used binomial and exponential amplitude230

distributions to generate correlated Poisson spike trains (see Materials and Methods). In addition,231
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we modulated the input firing rate so that it mimicked the prominent movement-related decrease232

of basal ganglia output neurons observed in experimental studies (Hikosaka and Wurtz, 1983;233

Schultz, 1986; Leblois et al., 2007; Schmidt et al., 2013).234

For uncorrelated inputs the model responded to the movement-related decrease with a single235

rebound spike (Figure 2A, left panel). However, for correlated inputs rebound spikes appeared236

not only after the movement-related decrease, but also at random times during baseline activity237

(Figure 2A, middle and right panels). The reason for this was that correlated SNr activity led not238

only to epochs with many synchronous spikes, but also to pauses in the population activity that239

were long enough to trigger rebound spikes.240

In mammals multiple inhibitory projections from SNr converge on a single thalamocortical neuron241

(Edgerton and Jaeger, 2014), which affects the strength of the inhibition on the thalamocortical242

neuron. Since the degree of convergence is not known, we repeated our simulations for different243

inhibitory strengths, but found that the transmission quality did not depend on the inhibitory244

strength as long as the inhibition was strong enough to lead to rebound spikes (Figure 2D).245

Furthermore, as for more than two inputs the input spike trains cannot be uniquely characterised246

by pairwise correlations, we considered two different possibilities for higher-order correlations247

(see Materials and Methods). We found that the transmission quality strongly depended on both248

the input average pairwise correlation and higher-order correlations among input spike trains249

(Figure 2B).250
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Figure 2. Input spike correlations impair the transmission quality (TQ) of motor signals from SNr to thalamus. (A) Top panels show

the intracellular response of the thalamocortical model neuron to the inhibitory input spike trains from SNr displayed in the bottom

panels. Uncorrelated Poisson spike trains (ε = 0) led to clear transmission (TQ = 1) via a single rebound spike after the firing rate

decrease in the input (leftmost panel). Correlated Poisson spike trains, however, led to rebound spikes at random times, whenever there

is a pause in the input spike trains (left middle panel: ε = 0.2 leading to TQ = 0.5, right middle panel: ε = 0.35 leading to TQ = 0.33

and rightmost panel: ε = 0.7 leading to TQ = 0.25). (B) Impact of input correlations on TQ depended on the correlation model (BIN,

binomial; EXP, exponential; BIN&EXP, mixture of both). Note that the exponential amplitude distribution had a maximum average

pairwise correlation of 0.65 (see Materials and Methods). The black dot marks the TQ for the spike trains generated using the amplitude

distribution shown in (E). (C) For the binomial correlation model, jittering the input spike times decreased the TQ only for long jitter

time windows (50ms), indicating that correlations on longer time scales are overall less detrimental. (D) The threshold correlation at

which the transmission quality deteriorated (TQ< 0.95) only weakly depended on the inhibitory input strength (same legend as in B).

(E) The simulation of Parkinson’s disease in a large-scale model of the basal ganglia yielded an amplitude distribution of SNr spike

times that corresponded to a mixture of the exponential and binomial amplitude distributions.
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Pairwise correlations affected the transmission for a binomial amplitude distribution (Figure 2B,251

dark blue trace). For a binomial amplitude distribution higher-order events (“population bursts”)252

are common, which increases the probability for pauses in the population activity. Thereby, even253

weak correlations among SNr spike trains led to a sharp decrease in the transmission quality.254

In contrast, for spike train correlations with an exponential amplitude distribution, the decrease255

in transmission quality was less pronounced (Figure 2B, grey trace). This was because for the256

exponential amplitude distribution lower-order events are more common, which are not sufficient257

for pauses in the population activity of SNr neurons leading to thalamic rebound spikes. Therefore,258

in particular higher-order correlations may be detrimental for the transmission of motor commands.259

We further investigated whether the substantial decrease in the transmission quality observed for the260

binomial amplitude distribution depended on millisecond synchrony of correlated spike times. We261

jittered the synchronous spike events using different time windows (Figure 2C), which corresponds262

to correlations on slower timescales. We found that the transmission quality decreased for jittering263

timescales ≤ 20 ms similar to inputs with correlations on a millisecond timescale (i.e. without264

jittering), confirming that the decrease in transmission quality does not depend on millisecond265

synchrony. However, correlations on the timescale of 50 ms did not substantially influence the266

transmission quality, as was expected due to the lack of population pauses.267

The purpose of our simulation of correlated activity was to mimic basal ganglia output patterns in268

Parkinson’s disease. However, as the amplitude distribution of pathologically correlated activity269

in SNr is currently unknown, we employed a large-scale model of the basal ganglia (Lindahl and270

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2020. ; https://doi.org/10.1101/386920doi: bioRxiv preprint 

https://doi.org/10.1101/386920
http://creativecommons.org/licenses/by-nc/4.0/


Kotaleski, 2016), in which beta oscillations propagate through cortico-basal ganglia circuits (see271

Materials and Methods). Beta oscillations are widely observed in animals with dopamine-depleted272

basal ganglia including their output nuclei (Brown et al., 2001; Avila et al., 2010). While beta273

oscillations can be generated in the pallido-subthalamic loop (Mirzaei et al., 2017), here we did274

not assume a specific mechanism for the generation of correlated activity in Parkinson’s disease,275

but focussed on the amplitude distribution in SNr in a simulation of Parkinson’s disease. We276

found that the amplitude distributions in the dopamine-depleted state of the large-scale model were277

somewhere in between binomial and exponential (Figure 2E).278

To investigate the model with a correlation structure that might be relevant for Parkinson’s disease,279

we generated input spike trains based on a mixture of binomial and exponential distributions (see280

Materials and Methods). We then investigated the effect of different average pairwise correlations281

in this mixed distribution. We found that increasing the average pairwise correlation of the282

binomial component of the mixed distribution had a similar effect on the transmission quality as283

in the standard binomial amplitude distribution (Figure 2B, red and blue traces). Furthermore,284

for the average pairwise correlation found from the large-scale model for Parkinson’s disease285

the transmission quality was low (Figure 2B, black dot). This confirms that under a correlation286

structure similar to Parkinson’s disease, even weak correlations in basal ganglia output can impair287

the transmission of motor signals, potentially related to motor symptoms such as tremor or akinesia288

(Magnin et al., 2000; Edgerton and Jaeger, 2014; Kim et al., 2017).289

Uncorrelated activity increases transmission speed290
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To study the effect of input correlations on transmission speed, we used the same scenario as291

above (Figure 2) and measured the time between the onset of the movement-related decrease and292

the rebound spike. We found that the transmission speed was fastest for no or weak correlations,293

and slower for stronger correlations (Figure 3A). Therefore, uncorrelated activity in basal ganglia294

output regions may also promote the fast transmission of motor signals. To generalise our findings295

on the transmission speed beyond the scenario using the movement-related decrease, we further296

examined transmission speed using (rebound) spike-triggered averages of inputs. Instead of297

simulating a movement-related decrease, we exposed the model neuron to inhibitory inputs with298

a constant firing rate. To compute the spike-triggered average, we used the peak of each rebound299

spike as the reference time point to compute the average of the preceding input. Since rebound300

spikes occurred more often for stronger input correlations, we performed this analysis on inputs301

having a correlation coefficient of either 0.3 or 1.0. These simulations confirmed that weak input302

correlations induce faster transmission than strong correlations (Figure 3C).303

Uncorrelated activity decreases transmission variability304

For the transmission of motor signals via rebound spikes the trial-to-trial variability of the305

transmission speed may be important. For example, to coordinate motor signals across different306

neural pathways low variability (i.e. high precision) of the transmission speed might be necessary.307

To investigate the nigrothalamic transmission variability, we computed the variance over the308

latencies across 100 trials with movement-related decreases in SNr activity (i.e. the same scenario309

as in Figure 3A). We found that for uncorrelated inputs transmission was very precise in the310
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Figure 3. Correlated SNr spike trains decrease transmission speed and temporal precision of rebound spikes.

Systematic investigation of average transmission latency (A) and its standard deviation (B) for different degrees

of correlation and inhibitory strengths identified the range with fastest transmission speed and highest transmission

precision, respectively. (C) Left panel shows a sample membrane potential (gSNr→TC = 0.70 nS/µm2, ε = 0.7; top)

of the thalamocortical model neuron and the corresponding inhibitory inputs (bottom). Note that rebound spikes were

preceded by pauses in the input raster plot (indicated by black horizontal bars). However, for very short pauses (indicated

by grey horizontal bars) no rebound spikes occurred. Averages triggered by rebound spikes for weakly correlated inputs

(C, middle panel) and strongly correlated inputs (C, right panel) confirmed that pauses in the inhibitory input preceded

rebound spikes. The duration of the pause preceding the rebound spikes reflected the transmission latency. The inset

symbols (#, *) in (A) indicate the parameters used for the corresponding spike-triggered averages in (C).
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sense that the trial-to-trial variability of the response latency was small (Figure 3B). In contrast,311

even weak correlations led to a high transmission variability due to changes in the amount of312

hyperpolarisation caused by correlated inputs preceding rebound spikes. We conclude that313

uncorrelated inputs ensure a high precision of the transmission via rebound spikes by reducing314

the trial-to-trial variability in response latency.315

Sensory responses can promote or suppress rebound spiking316

SNr neurons often have short-latency responses to salient sensory stimuli characterised by brief317

increases in firing rate (Pan et al., 2013). In rats performing a stop-signal task these responses also318

occurred in neurons that decreased their activity during movement (Schmidt et al., 2013). This319

included responses to auditory stimuli, which cued the initiation of a movement (Go cue) or the320

cancellation of an upcoming movement (Stop cue). We examined how such brief increases in SNr321

activity affect rebound spiking in the thalamocortical model neuron (Figure 4). The thalamocortical322

model neuron received inputs similar to the SNr firing patterns recorded in rats during movement323

initiation (i.e. uncorrelated inputs with high baseline firing rate and a sudden movement-related324

decrease). To model sensory responses in the SNr neurons, we added a brief increase in firing rate325

at different time points relative to the movement-related decrease (Figure 4A). We generated the326

brief increase by adding a single spike in each spike train having the sensory response at the desired327

time point. This allowed us to observe the effect of the timing of sensory responses on rebound328

spiking.329
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Figure 4. Sensory responses in SNr firing rate change the probability of rebound spikes in the thalamocortical

model neuron. (A) The simulations used an average firing rate as input, which reflected the SNr firing rate with

a movement-related decrease (black line). Sensory responses (red lines) were then added to the input at different

time points relative to the movement-related decrease. Here two example timings are shown, before (solid) and after

(dash-dot) the movement-related decrease. (B) The timing of the sensory responses relative to the movement-related

decrease was varied systematically (x-axis). For a given relative timing, we determined whether rebound spikes were

suppressed (blue area) or facilitated (yellow area; here gSNr→TC = 0.29 nS/µm2). Note the large impact of the timing

of the sensory response on the probability of rebound spikes, even if it occurred in only a small subset of neurons. (C)

The input strength gSNr→TC affects the suppression and facilitation of rebound spikes. Here the change in rebound

probability was averaged across the number of inputs with sensory responses (across y-axis in B).
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To quantify the effect of sensory responses, we measured the difference in the probability of330

generating a rebound spike after the movement-related decrease in simulations with and without331

sensory responses. Interestingly, the sensory responses could either increase or decrease the332

probability of generating a rebound spike, depending on their relative timing to the movement-related333

decrease (Figure 4B). For sensory responses preceding the movement-related decrease for up334

to 40 ms, the probability of generating a rebound spike was increased. This was because the335

sensory response led to additional hyperpolarisation in the thalamocortical neuron, which promoted336

rebound spiking. In contrast, for sensory responses occurring 10-40 ms after the movement-related337

decrease, the probability of generating a rebound spike was decreased. This was because the338

sensory response in that case partly prevented the movement-related pause of SNr firing. Together,339

this points to the intriguing possibility that sensory responses in SNr can have opposite effects on340

behaviour (either promoting or suppressing movement), depending on their timing (Figure 4B).341

This could explain why SNr neurons respond to both Go and Stop cues with a similar increase in342

firing rate (Schmidt et al., 2013; Mallet et al., 2016), a previously puzzling finding (see Discussion).343

In addition to the timing of sensory responses relative to the movement-related decrease, also the344

inhibitory input strength modulated the probability of generating a rebound spike (Figure 4C).345

For weaker inhibitory inputs (gSNr→TC = 0.25nS/µm2), the probability of generating a rebound346

spike was increased because the additional inhibitory inputs contributed to the hyperpolarisation347

of the thalamocortical neuron. However, for slightly stronger inputs (gSNr→TC ≥ 0.35nS/µm2), the348

sensory responses could not further facilitate rebound spiking because the probability of generating349
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a rebound spike was already one. Accordingly, sensory responses were most effective in reducing350

the probability of generating a rebound spike for medium input strengths (i.e. with a relatively351

high probability of generating a rebound spike). We found that the most effective strength for352

suppressing rebound spikes was at gSNr→TC = 0.35nS/µm2. However, the suppressing effect353

vanished for gSNr→TC ≥ 0.8nS/µm2 because for this strength the sensory responses themselves354

caused a hyperpolarization strong enough to trigger a rebound spike (Figure 4C). Therefore, the355

effect of sensory responses in SNr on motor signals strongly depended on the nigrothalamic356

connection strength.357

Rebound spikes in the presence of excitation358

Having studied basic properties of rebound spiking in the model under somewhat idealised359

conditions, we next extended the model to account for further conditions relevant in vivo. For360

example, we have assumed so far that the thalamocortical neuron receives input from SNr neurons361

that decrease their activity during movement. However, electrophysiological recordings in SNr362

and other basal ganglia output neurons have also identified neurons that do not decrease their363

activity during movement (Schmidt et al., 2013). Therefore, we investigated the response of the364

thalamocortical model neuron in a scenario in which only a fraction of SNr inputs decreased their365

firing rates, while the remaining neurons did not change their rates (Figure 5). We found that the366

thalamocortical model neuron elicited a rebound spike with high probability only when a large367

fraction of input neurons decreased their firing rates to zero (Figure 5A).368
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Figure 5. Effect of excitatory input spike timing on rebound spiking. (A) Rebound spikes occurred only when a large fraction of

inhibitory input spike trains exhibited a movement-related decrease in firing rate, even for strong inhibitory inputs. (B) Single excitatory

input spikes increased the probability of rebound spikes compared to pure inhibitory inputs (letter “B” in panel A) when they were

presented briefly after the movement-related decrease (x-axis). Note that this occurred in a regime, in which usually no rebound spike

were generated because not enough neurons decreased their firing rate (here 22 out of 30). (C) In contrast, in a regime in which rebound

spikes were often generated (letter “C” in panel A), adding a single excitatory spike as input to the thalamocortical neuron decreased

the probability of rebound spikes compared to pure inhibitory inputs, when they were presented briefly before the movement-related

decrease (x-axis). (D) Systematic investigation of the parameter space indicated a narrow regime, in which single excitatory spikes can

decrease, and a larger regime, in which they can increase the probability of a rebound spike. The change in probability was averaged

over excitatory input strengths (i.e. over the y-axis in B and C). (E) SNr firing rate decreases with different slopes were generated by

varying the indicated slope parameter a (see Methods). (F) Smaller SNr firing rate slopes reduced the probability of rebound spikes

and increased the standard deviation of the rebound spike latencies across trials. (G) Single excitatory input spikes typically decreased

the probability of rebound spikes for steep movement-related decreases in firing rate (i.e. high slopes), and increased the probability of

rebound spikes for more gradual decreases.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2020. ; https://doi.org/10.1101/386920doi: bioRxiv preprint 

https://doi.org/10.1101/386920
http://creativecommons.org/licenses/by-nc/4.0/


The large fraction of SNr neurons required to exhibit a movement-related decrease in order369

to elicit a rebound spike downstream constrains the scenario under which this transmission is370

plausible in vivo. However, in a more realistic scenario the thalamocortical neuron also receives371

excitatory inputs (e.g. from cortex). Therefore, we examined whether excitatory input can, under372

some conditions, enhance the transmission via rebound spiking (Figure 5B-D). Importantly, the373

excitatory inputs should be weak enough in order not to elicit spikes themselves. We simulated374

the model neuron by adding a single excitatory input spike with variable timing with respect375

to the movement-related decrease in the inhibitory inputs, and observed whether it promoted or376

suppressed rebound spikes. We investigated the effect of the excitatory spike on the probability of377

generating a rebound spike by comparing a simulation including excitatory and inhibitory inputs378

with a simulation that included only inhibitory inputs. We found that for parameter regions in379

which the probability of generating a rebound spike was usually small (i.e. in the dark blue region380

in Figure 5A), additional excitatory spikes after the movement-related decrease increased the381

rebound probability (Figure 5B). We confirmed that these spikes in the thalamocortical neuron are382

actually rebound spikes (and not just driven by the excitatory input; see Materials and Methods).383

However, for strong excitation, the thalamocortical model neuron spiked also before the SNr384

movement-related decrease, indicating that these spikes were no longer rebound spikes.385

For parameter regions in which the probability of generating a rebound spike was high (i.e. outside386

the dark blue region in Figure 5A), the excitatory input spikes could also suppress the generation of387

rebound spikes when they occurred before the movement-related decrease (Figure 5C). In contrast,388
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when the excitatory input spike occurred after the movement-related decrease, it enhanced the389

probability of generating a rebound spike. Therefore, similar to the complex effect of sensory390

responses in SNr neurons described above, also the excitatory input to the thalamocortical neurons391

could either promote or prevent rebound spikes depending on its timing. Furthermore, if only a392

fraction of SNr neurons exhibited a movement-related decrease, precisely timed excitatory input393

could promote the transmission of the motor command to the thalamocortical neuron (Figure 5D).394

Overall, our simulations indicate that rebound spikes can occur in a broad parameter regime395

that also includes excitation. Furthermore, precisely timed excitation provides an additional396

rich repertoire of rebound spike modulation, either promoting or suppressing movement-related397

rebound spikes.398

Role of the slope of the movement-related decrease399

So far we assumed that the movement-related decreases in SNr firing rate are abrupt. However,400

electrophysiological recordings in rodents (Schmidt et al., 2013) and non-human primates (Hikosaka401

and Wurtz, 1983; Schultz, 1986; Leblois et al., 2007) indicate that, at least in data averaged over402

trials, the firing rate decreases can also be more gradual. Therefore, we investigated the impact403

of input spike trains with various slopes (see Methods) on rebound spikes (Figure 5E). We found404

that steep slopes of the movement-related firing rate decrease led to rebound spikes with high405

probability and small timing variability (Figure 5F). In contrast, more gradual movement-related406

decreases reduced the probability of rebound spikes and increased the spike timing variability.407
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We further investigated the impact of single excitatory spikes (similar to above) on the probability408

of rebound spikes for different SNr firing rate slopes (Figure 5G). We found that, if the slope409

was too small to reliably evoke rebound spikes (low rebound probability), excitatory spikes briefly410

after the onset of the movement-related decrease could increase the probability of rebound spikes.411

In contrast, for steeper slopes, the probability of rebound spikes decreased when the excitatory412

spike occurred before the movement-related decrease. These results further support that excitation413

can powerfully modulate rebound spiking and promote rebound spikes even under circumstances414

in which the inhibitory input characteristics are by themselves insufficient for the generation of415

rebound spikes.416

Transmission modes revisited: prevalence of rebound spiking417

The interaction of excitation and inhibition in thalamocortical neurons is important because even418

weak excitation may change the transmission mode from rebound to disinhibition (Goldberg et419

al., 2013). As we observed rebound spiking in the presence of single excitatory spikes (Figure 5),420

we further investigated how ongoing excitation affects the mode of nigrothalamic transmission.421

As before, we simulated the model neuron with movement-related inhibitory inputs, but added422

a background excitation in the form of a Poisson spike train with the firing rate of 100 Hz and423

examined the effect of changing excitatory strength (Figure 6). In an idealised scenario the model424

neuron spikes exclusively after the SNr movement-related decrease for both the rebound and425

disinhibition transmission modes. These spikes are either post-inhibitory rebound spikes (in the426

rebound mode), or the result of depolarisation through excitation (in the disinhibition mode).427
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Figure 6. Smooth transition from rebound to disinhibition transmission mode. (A) The probability of rebound spikes only gradually

decreased with stronger excitatory inputs, indicating a large parameter regime in which the rebound and disinhibition transmission

modes coexisted. The yellow area marks the regime in which transmission was exclusively mediated by rebound spiking, while in

dark blue areas the basal ganglia output only disinhibited cortical excitation. The white isolines illustrate the baseline firing rate of

the model neuron (i.e. the firing rate before the onset of the movement-related decrease in the input). In the small grey region (bottom

left) the model neuron did not fire. (B) The standard deviation of the latency (across trials) of the first thalamocortical spike relative

the movement-related decrease distinguished rebound from disinhibition transmission modes. For the rebound mode (i.e. yellow area

in A) the standard deviation was almost always the lowest, and the regime in which rebound and disinhibition coexisted the standard

deviation was markedly higher. White contour line shows the boundaries of the yellow area in panel (A), where the transmission was

exclusively mediated by rebound spiking. (C-E) Sample firing rate profiles and corresponding raster plots show the activity of the

thalamocortical neuron in different parts of the parameter regime (as indicated by the corresponding letters in A) with rebound spiking

only (C), coexistence of rebound and disinhibition (D-E) and disinhibition only (F).
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However, we found that rebound and disinhibition modes could also coexist in regimes in which428

the model neuron has non-zero baseline firing rates (Figure 6A).429

We characterised the nigrothalamic transmission mode (see Materials and Methods) according to430

the proportion of trials with rebound spikes for a range of inhibitory and excitatory inputs strengths431

(Figure 6A). Motor signals were transmitted via rebound spikes even in the presence of weak432

excitatory inputs (gCX→TC ≤ 1.5 nS/µm2; Figure 6A). Interestingly, the transition from rebound to433

disinhibition mode was not abrupt, but there was a region where disinhibition and rebound spikes434

coexisted (Figure 6B). In these overlapping regions rebound spiking seemed to be the dominant435

firing pattern with a strong, transient firing rate increase in response to the movement-related436

decrease, a phenomenon which was already observed in anesthetised songbirds (Kojima and437

Doupe, 2009; Figure 6D, E; see also Discussion). We also examined the effects of varying the438

firing rate of the excitatory inputs (200, 500, and 1000 Hz). While the rebound and disinhibition439

spiking mode still overlapped, the corresponding parameter region was shifted towards lower440

excitatory conductances. For moderate excitatory input firing rates (100 and 200 Hz), rebound441

spiking occurred also in regions in which the model neuron was spontaneously active (Figure 6E).442

This overlap was present for spontaneous activity up to 3 Hz in line with the average spontaneous443

firing of motor thalamus neurons in rats during open-field behavior (Bosch-Bouju et al., 2014).444

However, for higher spontaneous activity (>7 Hz) rebound spiking vanished (Figure 6F). We445

conclude that the model neuron can transmit motor signals in the rebound mode in the presence of446

excitatory inputs.447
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We also characterised the transmission precision for different transmission modes by computing448

the standard deviation of the timing of the first spike after the movement-related decrease across449

trials (Figure 6B). For the rebound transmission mode, the transmission precision was maximal450

(i.e. minimal timing standard deviation), but as the proportion of trials with disinhibition mode451

increased, the transmission precision decreased. In the weak inhibition and excitation regime,452

where rebound and disinhibition modes coexisted and the baseline firing rate of the model neuron453

was low (< 7 Hz), the precision was smallest. This is important because the spiking variability454

can be characterised in electrophysiological recordings and may thus provide an indication of the455

transmission mode in vivo.456

In summary, our computational model points to new functional roles for uncorrelated basal ganglia457

output in the clear transmission of motor signals. Furthermore, we have characterised how motor458

signals transmitted via rebound spikes could either be suppressed or promoted through sensory459

responses indicating that thalamocortical neurons may be a key site for the integration of sensory460

and motor signals. Finally, we showed that excitatory inputs to the thalamocortical neurons do not461

necessarily prevent rebound spiking, but may as well support the generation of rebound spikes.462

Discussion463

We used computational modelling to study the impact of spike train correlations in the basal464

ganglia output on the transmission of motor signals. Based on previous studies (Hikosaka465

and Wurtz, 1983; Schultz, 1986; Leblois et al., 2007; Schmidt et al., 2013), we focused our466
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description on movement-related pauses in SNr that potentially drive rebound spikes in motor467

thalamus. However, as e.g. also neurons in the superior colliculus can respond with a rebound468

spike after prolonged hyperpolarisation (Saito and Isa, 1999), our modelling results might469

apply more generally. Furthermore, while previous studies identified the important role of470

excitation in determining regimes in which rebound spikes can occur (Goldberg et al., 2013;471

Edgerton and Jaeger, 2014), our model produced rebound spikes in a wider parameter regime,472

also in the presence of excitation (Figure 6). In addition, rebound spiking overlapped with the473

disinhibition transmission mode, indicating that rebound spiking might apply more widely for474

nigrothalamic communication in line with recent experimental evidence (Kim et al., 2017). In475

our model, the impaired nigrothalamic transmission of motor signals for correlated inputs also476

indicates a potential functional role of active decorrelation in basal ganglia output regions (Wilson,477

2013).478

Functional role of active decorrelation in the basal ganglia479

One prominent feature of neural activity in the healthy basal ganglia is the absence of spike480

correlations (Bar-Gad et al., 2003). This might be due to the autonomous pacemaking activity481

of neurons in globus pallidus externa/interna (GPe/GPi), subthalamic nucleus (STN) and SNr,482

as well as other properties of the network such as heterogeneity of firing rates and connectivity483

that actively counteracts the synchronisation of activity (Wilson, 2013). While uncorrelated484

basal ganglia activity may maximise information transmission (Wilson, 2015), our simulations485

demonstrate that it further prevents the occurrence of random pauses in SNr/GPi activity that486
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could drive thalamic rebound spikes. Thereby, uncorrelated basal ganglia output activity may487

ensure that rebound spikes in motor thalamus neurons occur only upon appropriate signals such488

as the movement-related decreases in basal ganglia output firing rate. In contrast, correlated basal489

ganglia output activity leads to rebound activity in motor thalamus also at baseline SNr activity,490

i.e. in absence of any motor signal. This decrease in the signal-to-noise ratio of motor signals may491

cause problems in motor control.492

Evidence for the functional relevance of uncorrelated basal ganglia activity originates from the493

prominent observation that basal ganglia activity becomes correlated e.g. in Parkinson’s disease494

(Bergman et al., 1998; Nevado-Holgado et al., 2014). Therefore, our simulations with correlated495

basal ganglia output activity capture a key aspect of neural activity in Parkinson’s disease.496

Interestingly, our finding that basal ganglia correlations increase the rate of motor thalamus497

rebound spikes is in line with recent experimental findings. In dopamine-depleted mice with498

Parkinson-like motor symptoms, the rate of motor thalamus rebound spikes was also increased499

compared to healthy controls (Kim et al., 2017). Furthermore, an increased trial-to-trial variability500

of rebound spikes was found in dopamine-depleted mice, similar to our simulations (Figure 3).501

Therefore, our results support a functional role for active decorrelation in the clear transmission502

of motor signals with low trial-to-trial variability from the basal ganglia to motor thalamus. In503

contrast, pathological correlations may lead to unreliable and noisy transmission of motor signals504

with high trial-to-trial variability, potentially contributing to motor symptoms in Parkinson’s505

disease.506
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Role of rebound spikes for motor output507

In our simulations we only examined the activity of a single thalamocortical neuron. However,508

for motor signals propagating further downstream, the coordination of activity among different509

thalamocortical neurons might be relevant. Due to the low trial-to-trial variability of the response510

latency of rebound spikes in the model (Fig. 6B), pauses in population SNr activity would511

lead to synchronous rebound spikes among thalamocortical neurons. In contrast, excitatory,512

Poisson inputs from cortex enhanced trial-to-trial variability (Fig. 6B) and thus would not lead to513

synchronous activity among thalamocortical neurons. Even though downstream regions cannot514

directly distinguish thalamic rebound spikes from excitation-driven spikes, they might read out515

synchronous activity that occurs primarily for rebound spikes. Thereby, only coordinated activity516

in different thalamocortical neurons may lead to movement initiation (Gaidica et al., 2018) or517

muscle contraction (Kim et al., 2017). This is in line with the experimental finding showing that,518

despite no significant difference in the peak or average firing rates of single unit recordings from519

intact and knockout neurons lacking T-type Ca2+ in the motor thalamus, multi unit recordings520

from intact neurons reached a stronger peak firing rate earlier than the knockout neurons (Kim521

et al., 2017). This early activation of a greater proportion of intact neurons after the termination522

of the inhibition, which indicates a coordinated activity across neurons, was accompanied by a523

muscular response whereas no muscular response was observed in the knockout state (Kim et al.,524

2017). Therefore, rebound activity in an individual motor thalamus neuron may not lead to muscle525

contraction, but instead synchronous rebound spikes in several motor thalamus neurons may be526
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required.527

Impact of sensory responses on the transmission of motor signals528

SNr neurons that decrease their activity during movement also respond to salient sensory stimuli529

such as auditory “Go” stimuli cueing movement (Pan et al., 2013; Schmidt et al., 2013). One530

proposed functional role for this brief firing rate increase is to prevent impulsive or premature531

responses during movement preparation in SNr neurons (Schmidt et al., 2013). In addition, in532

our model we observed that, depending on the precise timing, sensory responses may also promote533

thalamocortical rebound spikes and movement. This effect was present when the sensory responses534

preceded the movement-related decrease by up to 40 ms (Figure 4).535

In rats performing a stop-signal task the same SNr neurons that responded to the “Go” stimulus536

also responded to an auditory “Stop” signal, which prompted the cancellation of the upcoming537

movement (Schmidt et al., 2013). These responses were observed in trials, in which the rats538

correctly cancelled the movement, but not in trials where they failed to cancel the movement.539

These SNr responses to the “Stop” signal may delay movement initiation, allowing another540

slower process to completely cancel the planned movement (Mallet et al., 2016). In line with541

this “pause-then-cancel” model of stopping (Schmidt and Berke, 2017), we observed that the542

SNr sensory responses can also prevent rebound spikes when they occur close to the time of the543

motor signal. In our model this suppression effect was present up to 40 ms after the onset of the544

movement-related decrease in SNr activity (Figure 4). Thereby, our model provides a prediction545
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for the temporal window of the functional contribution of sensory responses in SNr to behaviour.546

Importantly, sensory responses could either promote or suppress movements, depending on their547

relative timing to the motor signal, providing a highly flexible means to integrate sensory and548

motor signals in nigrothalamic circuits.549

Effects of deep brain stimulation550

In our model correlated basal ganglia activity increased the number of rebound spikes in thalamocortical551

neurons. In particular, higher-order correlations lead to pauses in the SNr population activity552

promoting rebound spikes, while pairwise correlations alone did not affect the nigrothalamic553

transmission of motor signals (Figure 2B). This suggests that in Parkinson’s disease higher-order554

correlations are relevant for motor symptoms, which offers some insight into the potential555

mechanisms by which deep-brain stimulation (DBS) might alleviate some of the motor symptoms556

such as rigidity and tremor. DBS in the STN and GPi has complex and diverse effects on the557

firing rate of neurons in SNr/GPi (Bar-Gad et al., 2004; Zimnik et al., 2015) and thalamus558

(Muralidharan et al., 2017). According to our model strong increases in SNr and GPi firing559

rates observed after STN DBS (Hashimoto et al., 2003; Maurice et al., 2003), would decrease560

the duration of the spontaneous pauses in the population activity (Figure 3C). Thereby, even561

for correlated SNr activity, the duration of the pauses would not be long enough to allow the562

generation of a rebound spike in the thalamocortical neuron. This conclusion also holds when a563

subset of neurons in SNr and GPi decrease their firing rate during STN DBS (Hahn et al., 2008;564

Humphries and Gurney, 2012). The decrease in the firing rate would decrease the degree of565
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correlation by eliminating or displacing the synchronous spike times and therefore weaken the566

inhibition preceding the pauses that could have potentially evoked rebound spikes.567

Integration of decision making systems568

In our model the generation of a rebound spike in thalamocortical neurons was strongly affected569

by single excitatory cortical input spikes (Figure 5). This means that the transmission of a basal570

ganglia motor signal could be prevented by a single, precisely-timed cortical spike preceding571

the SNr movement-related decrease by up to 20 ms (Figure 5C). This indicates a powerful572

mechanism by which cortex could affect basal ganglia motor output signals. It has previously573

been argued that different decision making systems, incorporating different strategies, might574

co-exist in the brain (Redgrave et al., 1999; Daw et al., 2005) and that the thalamus might be a key575

site for their integration (Haber and Calzavara, 2009). Our model offers a potential mechanism576

by which conflicts between different decision-making systems could be resolved. In this case577

the precisely-timed cortical excitation would allow the cancellation of a basal ganglia motor578

signal. Furthermore, it is possible that thalamocortical neurons integrate habitual and goal-directed579

decision systems (Daw et al., 2005; Redgrave et al., 2010), and that cancellation of basal ganglia580

motor signals serves as a means to prevent conflicting responses. Finally, the same mechanism for581

cancelling basal ganglia motor signals could also be used to exert cognitive control to overcome582

a habitual response. While this remains speculative at this point, our model provides a clear583

description of the inhibitory and excitatory inputs that would enable the modulation of a basal584

ganglia motor signal in thalamocortical neurons.585
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