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Abstract 

The Iowa Gambling Task (IGT) is one of the most common paradigms used to assess               

decision-making and executive functioning in neurological and psychiatric disorders. Several          

reinforcement-learning (RL) models were recently proposed to refine the qualitative and quantitative            

inferences that can be made about these processes based on IGT data. Yet, these models do not                 

account for the complex exploratory patterns which characterize participants’ behavior in the task.             

Using a dataset of more than 500 subjects, we demonstrate the existence of such patterns and we                 

describe a new computational architecture (Explore-Exploit) disentangling exploitation, random         

exploration and directed exploration in this large population of participants. The EE architecture             

provided a better fit to the choice data on multiple metrics. Parameter recovery and simulation               

analyses confirmed the superiority of the EE scheme over alternative schemes. Furthermore, using the              

EE model, we were able to replicate the reduction in directed exploration across lifespan, as               

previously reported in other paradigms. Finally, we provide a user-friendly toolbox enabling            

researchers to easily fit computational models on the IGT data, hence promoting reanalysis of the               

numerous datasets acquired in various populations of patients. 
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Introduction 

 

Many disorders are associated with alterations of learning and decision-making. Therefore,           

standardized cognitive paradigms are increasingly used to improve diagnosis and treatments in these             

clinical populations. Developed 25 years ago (Bechara et al., 1994), the Iowa Gambling Task (IGT)               

remains one of the most popular tools used for this purpose (Fig. 1A). Over the years, it has been                   

applied more or less successfully to many populations such as patients suffering from brain lesions,               

Parkinson disease, behavioral or substance addictions, mood disorders, personality disorders, etc. The            

IGT is thus of considerable importance for the development of scalable methods in cognitive science               

and in the emerging field of computational psychiatry. 

 

Yet, the classical analysis strategy for IGT data results in a crude estimate of decision-making               

deficits. Based on the relative preferences for “advantageous” decks (typically offering small gains             

but even smaller losses) over “disadvantageous” decks (typically offering big gains but even bigger              

losses), this approach does not leverage the full potential of the IGT. From a computational viewpoint,                

the IGT is indeed a highly complex task involving value-based learning, decision-making, working             

memory and different types of exploration. A series of computational models have thus been              

developed to better isolate these components, thereby offering clinicians and clinical neuroscientists            

more precise analytical tools to assess the cognitive profile of their patients. Computational             

neuroscientists interested in the IGT have first focused their efforts on the value-based learning and               

decision-making components of the task. Accordingly, the Expected Value (EV) or the Prospect             

Valence Learning (PVL, PVL-Delta) algorithms aimed at capturing distortions of reward and            

punishment processing. More recently, the Value Plus Perseveration (VPP) model was developed to             

capture systematic perseveration or alternation tendencies across successive decisions (Worthy et al.,            

2013). While the VPP model emerged as the most efficient model to describe choice data in the IGT,                  

it can be criticized for its high number of free parameters (8) given the relatively short number of                  
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trials in the IGT (100) as well as for the uncertain cognitive validity of its perseveration module                 

(Konstantinidis et al., 2014). 

 

Here, we adopted another modeling strategy accounting for the existence of directed            

exploration (DE) in the class of multi-armed bandit tasks to which the IGT belongs (Collins and                

Koechlin, 2012; Daw et al., 2006; Raja Beharelle et al., 2015). Wilson and colleagues defined directed                

exploration as “a strategy in which choices are explicitly biased toward information”, as opposed to               

undirected (or random) exploration corresponding to a “strategy in which decision noise leads to              

exploration by chance” (Wilson et al., 2014). Thus, DE can refer to any regular choice pattern which:                 

(i) maximize information about available options, (ii) cannot be readily explained by participants’             

sensitivity to gains and losses. In the context of the IGT, a straightforward DE strategy is to allocate                  

an “exploration bonus” to the behavioral options which are more uncertain, either because they have               

been sampled less often or because they have been sampled less recently than others.  

 

Thus, we designed a compact computational architecture named Explore-Exploit in order to            

simultaneously capture exploitation, random exploration and directed exploration in the IGT using            

only 5 parameters. Besides random exploration which simply corresponds to decision noise (the             

opposite of decision consistency), the core innovation of this new model is thus to articulate two types                 

of choice strategies: a reward-seeking strategy shaped by reinforcement history and an            

information-seeking strategy shaped by choice history (Fig. 1B). While the former is governed by the               

gains and losses delivered during the task, the latter depends on an exploration bonus specific to each                 

participant, which can be either positive or negative depending on whether a given participant tends to                

explore or avoid options which have not been sampled recently.  

 

In order to demonstrate the superiority of the EE model over existing alternatives, we              

reanalyzed an multi-study dataset of 504 participants who passed the standard version of the IGT               
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(Steingroever et al., 2015a). State-of-the-art model comparison, simulation and parameter recovery           

analyses were performed to demonstrate the superior of the EE model. Second, in order to evaluate                

the cognitive validity to our model, we then focused on the data corresponding to the study by Wood                  

and colleagues, which consisted in IQ-matched groups of old and young adults (Wood et al., 2005).                

Indeed, it was recently shown that directed exploration diminishes across lifespan (Mata et al., 2013;               

Schulz and Wu), so that the exploration bonus of older participants should be smaller than that of                 

young participants. Third, we provide an open-source, user-friendly Matlab toolbox which has been             

developed to obtain the current results and which shall enable researchers who are not experts in                

computational models to re-analyze IGT data using both our new model and previous ones (see               

Appendix 1 and https://github.com/romainligneul/igt-toolbox). 

 

 

Figure 1. Directed exploration in the IOWA Gambling Task. (A) In the IGT, participants must sample 4                 

decks of card associated with gains and losses whose magnitude varies in a probabilistic manner. Unbeknownst                

to participants, decks C and D are advantageous despite offering smaller gains, because the losses are                

respectively very low or rarely encountered. (B) Here, we propose a new computational model accounting for                

trial-by-trial choices in the IGT. The “Explore-Exploit” (EE) model consist of two learning modules tracking               

respectively the net amount of money generated (exploit value, top) and the exploration value of each deck.                 
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These two first-order values are then summed and turned into a probability of choosing each deck. As such, the                   

model implements a straightforward arbitration between reward- and information-seeking motivations. (C) The            

EE architecture was justified by the discovery of a peculiar choice pattern in the IGT. Namely, the probability of                   

choosing 4 different decks within 4 consecutive trials (i.e a quantity referred hereafter as the directed                

exploration (DE) index) was largely above chance levels, especially during the beginning of the task. 

 

Results 

 

Presence of directed exploration in the IGT 

 

First, we evaluated whether directed exploration (DE) occurred in the Iowa Gambling Task.             

To this end, we computed the DE index probing situations in which participants selected each of the                 

four different decks over four successive trials using 25 independent consecutive quadruplets: e.g 1-4,              

5-8, etc. In the 504 subjects dataset, we observed such pattern 1400 times (11.1%) while only 1182                 

occurrences would be expected under random exploration (i.e. 9.38%, binomial test: p<10-10). Note             

that this test is highly conservative, as the value-based exploration implemented by the softmax rule               

bias choices towards the most rewarded decks. Accordingly, a permutation approach in which trials              

were shuffled in time for each subject independently (total number of permutations: 5000) showed              

that the actual chance level was at 6.0%. 

 

The target pattern was much more frequent in the first 20-30 trials of the task and it                 

continuously declined as subjects formed more precise representation of each desk value and learned              

to exploit the reward structure of the task (Fig. 1C). Interestingly, DE had a complex but strong                 

relationship with decision-making performances in the IGT. A GLM analysis indicated that subjects             

with the highest overall performance had lesser DE indexes (linear effect: t(1,501)=-3.40, p<0.001).             

However, we also observed low DE indexes in the worst subjects, which translated into a significant                
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quadratic relationship between DE and performance (t(1,501)=2.13, p=0.034). Overall, the analysis of            

the DE index justified the development of the computational model capturing this important and              

previously overlooked exploration strategy  in the IGT.  

 

Model comparison 

 

The comparison of the EE architecture with the 4 aforementioned models was performed             

using the 504 subjects dataset. First, a fixed-effect analysis comparing summed Bayesian Information             

Criterion (BIC), Akaike Information Criterion (AIC) and Free Energy (F) metrics over the whole              

cohort demonstrated decisive evidence in favor of EE. In order to compare Free Energy with other                

metrics, it was transformed to -2*F for this analysis (Daunizeau et al., 2014). The difference between                

the EE model and other models was everywhere superior to 512 (Figure 2A; the least difference being                 

observed with the VPP model based on the AIC metric). Note that a difference superior to 100 is                  

generally considered as decisive evidence indicating that choosing the second-based fitting model            

would incur unacceptable information loss (Kass and Raftery, 1995). Going further, we performed a              

Bayesian Group Comparison (Stephan et al., 2009) based on the log-evidence of each model and               

treating model attribution as a random effect. In order to obtain log-evidences, we transformed AIC               

and BIC values to -AIC/2 and -BIC/2, respectively (Free Energy natively represents that quantity).              

Performed using all available metrics derived from the two fitting procedures (VB algorithm: BIC,              

AIC, F), this analysis showed that the estimated frequency of the EE Model was in every case superior                  

to 50% and that its approximate exceedance probability (Ep) was always superior to 0.99 (Figure 2B).                

Overall, both approaches to model comparison provided overwhelming evidence in favor of the EE              

architecture, the only architecture able to account for directed exploration.  

 

Regarding the relationship of model parameters with performance (defined as the number of             

advantageous minus disadvantageous deck selection), it appeared that value sensitivity was the            
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strongest predictor (ρ=0.39, p<0.001), followed by 𝜑 (ρ=-0.24, p<0.001), decay (ρ=0.23, p<0.001)            

and temperature (ρ=-0.12, p=0.006)(Figure S1A). Moreover, although a substantial interindividual          

variability was observed in DE, the parameter 𝜑 corresponding to the exploration bonus was              

significantly superior to 0 (z=4.78, p<0.001). A correlation approach then confirmed that this key              

parameter reflected to which extent participants engaged in directed exploration (correlation DE index             

~ 𝜑: Spearman ρ=0.76, p<0.001). Since the likelihood of observing DE depends on which extent               

participants exploited the reward structure of the IGT, other parameters also predicted DE, but to a                

much lesser extent (update of exploration values: ρ=-0.26, p<0.001; value sensitivity: ρ=-0.20,            

p<0.001; inverse temperature: ρ=0.13, p=0.003)(Figure S1B). 

 

 

Figure 2. Model comparison. (A) Model comparison treating model attribution as a fixed effect showed that                

the EE model outperformed all other models on the 3 goodness of fit metrics. The least difference, observed                  

with the VPP model using Free Energy, still reflected decisive evidence in favor of the EE model (Bayes Factor                   

> 100)(Kass and Raftery, 1995). (B) Bayesian model comparison treating model attribution as a random effect                

also showed that the EE model outperformed all other models on the 3 goodness of fit metrics (exceedance                  

probability superior to >0.99 in every case). 

 

Simulation and parameter recovery 

 

Next, we evaluated how the parameters estimated from individual choice data could be             

recovered for each model. Indeed, methodological studies in the field of computational modeling have              
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demonstrated that different combinations of parameters can account for a given sequence of decisions,              

and that small deviations in parameters values can conversely result in significantly different             

sequences of decisions, hence impeding the interpretability of best-fitting parameters in some cases.             

Thus, we used the 504 sets of parameters associated with each model to simulate 504 in silico agents                  

playing the IGT. For each deck, feedbacks were drawn randomly from their corresponding empirical              

distribution, hence keeping reward contingencies similar across actual and simulated tasks. Then, we             

applied the exact same fitting procedure to this simulated dataset. Parameter recovery was assessed by               

examining how the best-fitting parameters from this second-pass correlated with the best-fitting            

parameters from the first-pass (i.e that based the actual data).  

 

Overall, the recoverability of parameters of EE was superior to that of other models (mean               

R=0.81, range: 0.67-0.95). EV and PVL also showed good recoverability (EV, mean=0.76, range:             

0.66-0.83; PVL: mean=0.79, range 0.51-0.94), while PVL-delta and VPP were less stable (PVL-delta:             

0.71, range: 0.5-0.86; VPP, mean=0.70, range: 0.41-0.94). In particular, it must be noted that the               

parameter 𝜑 reflecting the exploration bonus had the highest recoverability (0.95), hence making it a               

relevant target for the study of inter-individual differences (Figure 3A-E). 

 

Then, we evaluated to which extent each model was able to reproduce participants’ choices              

using both first-pass and second-pass (i.e simulated) predictions (chance level: 25%, Fig. 3F). Again,              

the EE model was the most performant model. The first-pass (i.e fit on actual data) reproduced                

59.2+/-16% of the choices, whereas the second best model in this respect (VPP) reproduced              

58.7+/-17% of the choices. While the difference between EE and VPP was not significant (z=0.67,               

p=0.50), it must be noted that the VPP has 3 more free parameters which results in a greater chance of                    

overfitting. In this respect, it is interesting to note the difference observed when comparing how the                

choices derived from simulated data reproduced participants’ choices. Here, the advantage of EE was              

clear, with 42.5+/-17% of successful predictions against 39+/-16% for VPP (z=3.63, p<0.001). 
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Figure 3. Simulation and parameters recovery. (A-E) The linear regression curves linking the parameters              

initially estimated based on participants’ choices and those estimated based on simulated choices showed that               

the EE model had the highest recovery performance (i.e minimal deviation from the identity diagonal). (F) The                 

EE model was also the best model for predicting single decision, both for fitted and simulated choice data. 

 

Aging 

 

In their study (included in the 504 participants dataset analyzed above), Woods and             

colleagues reported that old and young adults performed equally well on the Iowa Gambling Task, but                

resorted to different strategies. More precisely, old adults appeared to forget more rapidly about              

outcomes than healthy participants but compensated this forgetting by a better ability to translate what               

they learned into consistent choice patterns. 

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 7, 2018. ; https://doi.org/10.1101/387019doi: bioRxiv preprint 

https://doi.org/10.1101/387019
http://creativecommons.org/licenses/by/4.0/


 

Thus, we used this subset of the data to evaluate how well the EE model could capture                 

heterogeneities in IGT strategies and to validate our modeling approach (Figure 4A). In particular,              

based on the existing literature, we hypothesized that the exploration bonus should be lower in old as                 

compared to young participants. First, we observed that old participants indeed forgot more rapidly              

than young participants according to the EE model, as indicated by a lower decay parameter (young:                

0.55+/-0.27; old: 0.44+/-0.23; z=2.75, p=0.006). Second, the consistency parameter of old participants            

was indeed higher than that of young participants (young: 0.75+/-0.42; old: 0.92+/-0.41; z=2.71,             

p=0.007). Third and most importantly, young and old participants differed significantly in their 𝜑              

parameter controlling the intensity of directed exploration in the IGT (young:0.94+:-2.14; old:            

0.54+/-2.25; z=2.10, p=0.036). This latter result paralleled the model-free analysis of DE indexes             

which also revealed a reduction in directed exploration in the aging group (pattern frequency:              

young=16.5+/-14/6%, old=10.5+/-12.8% ; t(151)=2.61, p=0.0099; Figure 4B) Overall, these results          

demonstrate the ability of the EE model to capture effects previously detected using simpler analysis               

strategies, as well the existence of age-related changes in directed exploration.  

 

 

Figure 4. Model-based analysis of IGT behavior in a healthy aging cohort. (A) Using the EE model as a tool                    

to refine the characterization of age-related changes in risky decision-making, we observed that old and young                

healthy adults differed on 3 parameters. Relative to young adults, old adults had a lower decay parameter                 

(reflecting a faster forgetting of exploitation values), a higher consistency (reflecting a more deterministic              

choice policy) and a lower exploration bonus (reflecting a lower tendency to engage directed exploration). (B)                
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The age-related reduction in the exploration bonus was reflected into a significantly lower DE index in old as                  

compared to young participants. 

 

Discussion 

 

In this study, we uncovered a new choice pattern reflecting the presence of directed              

exploration within the standard version of the IGT. Indeed, the selection of 4 different decks over 4                 

consecutive trials — a phenomenon captured by the “directed exploration” index — largely exceeded              

chance levels in a group composed of 504 participants, especially in the initial phase of the task. This                  

discovery implies that the IGT might be used to study information-seeking behaviors within risky              

decision-making contexts. In order to better characterize and quantify this cognitive process within             

single individuals, we developed a new computational model (EE, for Explore-Exploit) able to             

articulate directed exploration with the motivation to optimize gains and losses, using only 5              

parameters. The EE model outperformed the 4 most prevalent models previously used to fractionate              

the cognitive processes engaged by the IGT in terms of goodness of fit, prediction accuracy and                

parameter recovery. We further demonstrated the potential of this architecture to capture fine-grained             

differences in IGT behavior between young and old participants. Last but not least, we published the                

scripts used to generate our results under the form of a user-friendly Matlab toolbox which shall                

enable the community of researchers and clinicians relying on the IGT as a routine assessment of                

risky decision-making, in order to help them reporting more informative and detailed results with              

minimal programming and mathematical skills (see Appendix 1).  

 

In the field of reinforcement-learning, most algorithms are oriented towards normative           

utility-maximization goals. To do so, they rely heavily upon reward prediction errors, a quantity              

widely used as a teaching signal enabling step-by-step convergence towards a utility maximum. Yet,              

likewise all gradient ascent methods, reinforcement-learning algorithms face the risk of reaching only             
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local, rather than global, utility maxima. Directed exploration aims at solving this problem by              

expanding knowledge about the environment, despite immediate opportunity costs. Thus, directed           

exploration is particularly valuable when an agent is required to perform numerous decisions within              

complex or volatile contexts, in which the optimal policy may not be immediately obvious. The IGT                

is a canonical example of such environment. Indeed, with 4 possible actions leading to highly variable                

outcomes, the IGT is typically characterized by several successive phases: a “pre-punishment” period             

during which all decks only produce gains but no losses, a “pre-hunch” period during which               

punishments start occurring, a “hunch” period during which most healthy participants start feeling that              

the decks offering the highest average gains actually entails even higher average losses (i.e. deck A                

and B) and a “conceptual” period during which these participants are able to verbalize that the decks                 

offering small gains (i.e. C and D) are actually the most advantageous ones (Bechara et al., 2005).  

 

Although the term exploration is often applied to choices which are not maximizing utility              

according to a given computational model (a process now termed “undirected” or “random             

exploration”), the recent rise of predictive coding has recently completed this conceptualization            

(Clark, 2013; Friston et al., 2015; Huang and Rao, 2011). Indeed, this framework postulates that               

uncertainty-minimization constitutes a driving principle of our cognitive systems alongside          

utility-maximization, such that modeling the dynamics of exploratory decisions became an important            

endeavour in the field of reinforcement-learning. Accordingly, many recent studies have investigated            

uncertainty-minimizing behaviors in multi-armed bandit tasks using the Bayesian formalism. In this            

formalism, options whose mean value is the least precise (or, equivalently, associated with the largest               

variance) are the best candidates for exploration. Although the existence of uncertainty-driven            

exploration was confirmed by some of these studies (Badre et al., 2012; Boorman et al., 2009; Raja                 

Beharelle et al., 2015), the type of directed exploration described here does not involve uncertainty               

computations. Instead, it relies on a simpler recency approach which promote the exploration of              

options which have not been selected for a while, independently of the objective uncertainty bound to                
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their pay-offs. This methodology can be justified in three ways. First, despite its mathematical              

elegance, uncertainty-driven exploration does not provide a fully normative solution to the            

exploration-exploitation trade-off in multi-armed bandits (the process being heavily dependent upon           

higher-order priors regarding the structure of tasks). Second, the recency method implemented here             

might still reflect an uncertainty-based mechanism, if the subjective uncertainty associated with a             

given option increases with the duration elapsed since that option was tested for the last time. Third,                 

the seminal study of Daw and colleagues had shown that uncertainty-driven exploration was not              

useful to describe exploratory patterns in a 4-armed bandit tasks sharing many commonalities with the               

IGT (Daw et al., 2006), hence keeping the door open for alternative algorithms. 

 

The exploration module of our EE architecture helped going beyond existing models used to              

account for healthy participants’ decisions in the IGT. This differential performance contributes to             

ascertain the presence of directed exploration in the IGT. Combined with the model-free analysis of               

the DE index, this finding expand the heuristic value of the IGT beyond the study of exploitation and                  

reward-seeking behaviors. Moreover, the fact that EE parameters were on average more recoverable             

than parameters of previous models facilitate the interpretation of inter-individual and inter-group            

differences. Numerous studies which had used the IGT to characterize clinical population may thus              

benefit from re-analyzing their data using the toolbox associated with the current paper. Once the               

trial-by-trial IGT data is converted to the appropriate Matlab format, this toolbox make such              

re-analysis extremely simple and intuitive, thanks to its compact but informative documentation and             

its densely commented scripts (see also Appendix 1). With minimal programming knowledge, the five              

models described hereinabove can be fitted to any standard IGT dataset, compared and evaluated with               

respect to parameter recoverability and prediction accuracy. These variables as well as other             

model-free measures (net scores, directed exploration indices, choice entropy, etc.) can also be             

calculated, plotted and compared across different groups.  
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Finally, in order to further validate our model and illustrate its utility for the analysis of group                 

differences, we investigated how aging influenced EE parameters and more particularly the            

exploration bonus parameter. The results of this analysis were well aligned with those reported in the                

study of Wood and colleagues (Wood et al., 2005), in that the EE model still evidenced the                 

exacerbated forgetting of previous outcomes in older adults, as well as the reduction in random               

exploration (i.e increased choice consistency) thought to compensate faster forgetting rates in these             

participants. More importantly, old adults also displayed a lower exploration bonus than young adults.              

This effect paralleled the reduction in directed exploration observed when computing directly the             

frequency of choosing 4 different decks over 4 consecutive trials (DE index). It is also highly                

consistent with recent papers showing that directed exploration reduces across lifespan (Mata et al.,              

2013; Schulz and Wu). Since directed exploration requires the retention of the last few choices made                

in the task, the phenomenon may be related to the decline of working memory performances               

sometimes observed in aging patients (Gazzaley et al., 2005).  

 

At the neurobiological level, directed exploration likely depends on the prefrontal cortex            

(PFC), and more particularly on its rostrolateral portions (rlPFC). Indeed, several neuroimaging            

studies of directed exploration found that the rlPFC is more active during exploratory decisions              

(Badre et al., 2012; Boorman et al., 2009; Daw et al., 2006). Brain stimulation studies further showed                 

that the disrupting or facilitating of rlPFC activity can significantly diminish or increase directed              

exploration, respectively (Raja Beharelle et al., 2015; Zajkowski et al., 2017). One may thus predict               

that disrupting rlPFC activities would similarly lower directed exploration and exploration bonuses in             

the IGT too. This involvement of the rlPFC might also explain the decrease in directed exploration                

seen in aging individuals, as grey matter density in this area is significantly reduced in old as                 

compared to young adults (Tisserand et al., 2004). Yet, other neural systems certainly interact with the                

rlPFC to orchestrate information-seeking in reinforcement-learning tasks, including the dmPFC which           

may control the switch from exploitation to exploration strategies (Domenech and Koechlin, 2015/2).             
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The prefrontal turn-over of dopamine might also play a pivotal role in regulating directed exploration               

(Frank et al., 2009; Kayser et al., 2015), whereas noradrenaline seems involved in the control of                

random but not directed exploration (Warren et al., 2017). Hopefully, investigating the wealth of data               

already existing for the IGT using the methodology proposed here might help elucidating more              

thoroughly the neural underpinnings of directed exploration in the near future. 

 

To conclude, our study leveraged the power of an open “many labs” dataset in order to                

demonstrate the existence — and characterize the influence — of an overlooked behavior in the IGT.                

Building on previous work and more particularly on the Prospect Valence Learning (PVL) model              

(Ahn et al., 2008), the EE architecture represents not only a quantitative but also a qualitative                

improvement upon alternative models by shedding light on directed exploration. Besides enabling any             

experimenter to fit the EE and its ancestors (EV, PVL, PVL-Delta, VPP) on IGT data, the toolbox                 

accompanying this paper might be used as an environment to develop even better models in the future.                 

It must be acknowledged that this toolbox relies heavily on two other open-source packages for               

Matlab: modeling analyses largely depend on the VBA toolbox by Daunizeau and colleagues             

(Daunizeau et al., 2014) whereas visualizations take advantage on the Gramm toolbox by Morel              

(Morel, 2018). Last but not least, this study is fully aligned with the ideals of reproducibility and                 

transparency in science: the dataset used is both large and freely available, while the scripts used to                 

generate figures and statistics are available online alongside a clear documentation. 

 

Methods 

 

Dataset and participants 

 

The dataset comes from a ‘many labs’ initiative grouping 10 studies and containing data from               

617 healthy participants (Steingroever et al., 2015a). Here, we restricted the analysis to the subset of 7                 
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studies which used the classical 100 trials version of the IGT, resulting in 504 participants (age range:                 

18-88 years old; for the 5 studies with available information about sex: 54% of females). Within this                 

dataset, 153 participants come from a single study on aging (Wood et al., 2005). Among these                

participants, 63 are older adults (61-88 years old; 17 males) and 90 are younger adults (18-35 years                 

old; 22 males) matched in terms of education level and intelligence (WASI vocabulary).  

 

Directed exploration index 

 

In order to quantify directed exploration in the IGT, we computed the probability of choosing               

the 4 different decks during series of 4 consecutive trials. We refer to the frequency of such choice                  

pattern as “DE index”. We used this metrics because the occurrence of such events has a probability                 

of only 9.38% under purely random exploration (note that exploitation makes this probability even              

smaller by introducing an imbalance in the choice probability of different decks). Although directed              

exploration is certainty governed by more complex heuristics (resulting in more complex choice             

patterns), this index was used to ascertain its presence and provide an estimation of its intensity.                

Inferences about the presence of directed exploration used independent quadruplets of successive            

trials (i.e: 1-4, 4-8, etc.), whereas inferences about interindividual differences used dependent            

quadruplets to maximize sensitivity (i.e: 1-4, 2-5, 3-6, etc.). 

 

Previous models 

 

Previous models have been exhaustively and excellently described in previous publications by            

Steingroever and colleagues (Steingroever et al., 2016). Therefore I will only provide a brief overview               

of their characteristics and then focus mainly on describing the features of the new EE model. 
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- The Expected Value (EV) model consists in a simple delta rule allowing for asymmetric              

consideration of gains and losses when updating the exploitation value of decks. It has thus a                

learning rate ɑ (∈ [0,1]) parameter and a reward-punishment asymmetry parameter ⍵ termed             

“attention weight” (∈ [0,1]).  

- The Prospect Valence Learning (PVL) model is a working memory model in which past              

outcomes are discounted with a decay parameter 𝛿 (∈ [0,1]). Lower decay values imply              

faster discounting of past outcomes. Outcomes themselves are transformed based on the            

principles of prospect theory (Trepel et al., 2005): value sensitivity 𝑣 and loss aversion ɭ (∈                

[0,5]).  

- The PVL-delta model applies the same transformation than the PVL model to outcomes, but it               

uses a delta rule to update exploitation values and therefore has no decay parameter but a                

learning rate (as in EV).  

- Finally, the Value Plus Perseverance (VPP) model is the PVL-delta model extended with a              

“perserverance module”. This module has 3 parameter: a “persistance after gains” parameter            

ɛgain (∈ [0,1]), a “persistance after losses parameter” ɛloss (∈ [-1,1]), and decay parameter 𝛿pers               

(∈ [-1,1]) controling to which extend past persistance values are discounted. At the decision              

stage, persistance values and exploitation values are combined thanks to an expectancy weight             

parameter ⍵Ev (∈ [0,1]).  

 

All the models described above have in a addition a consistency parameter determining to              

which extend choices are driven by learned values (or any type). This consistency parameter c is                

allowed to fluctuate in the [0,5] interval and is transformed before being used as an inverse                

temperature parameter β (β = 3c-1), except for the EV model where c is allowed to fluctuate in the                   

[-2,2] interval and is transformed differently (β = (t/10)c with t corresponding to current trial number).                

In sum, the EV model has 3 parameters, the PVL and PVL-delta models have 4 parameters and the                  
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VPP model has 8 parameters. Note that the consistency parameter capture the exact opposite of               

“random exploration” which corresponds to decision noise (or temperature). 

 

Explore-Exploit model 

 

Like all other models, the Explore-Exploit (EE) model updates “exploitation values”, keeping            

track of the recent trends in gains and losses associated with each deck. Like the VPP model, the EE                   

model also consists of two separate modules learning different values for each deck. However, the EE                

model differs from the VPP model in that it does not update “perseveration values” after gain and                 

losses but a single “exploration value” for each deck, which depends only upon choice (rather than                

gains/losses) history. On each trial, these two values are simply summed in a deck-wise fashion before                

being transformed by a conventional softmax step into choice probabilities. Hereafter, we describe the              

seven equations and the five parameters which fully characterize EE. 

 

The exploitation module is inspired by the PVL model (Steingroever et al., 2013) although it               

includes no “loss aversion” parameter: value sensitivity, controlled by θ (bound between 0 and 1), is                

instead applied to both wins and losses.  

  

 (1) 

 

On each trial, the exploitation value of each desk d is updated according to the following                

equations: 

 

  (2.a) 

 

 (2.b)  
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Equation (2.a) controls the update of the deck chosen, by adding the feedback just              

experienced to the (decayed) value of this deck. Equation (2.b) controls the update of unchosen decks,                

whose exploitation value progressively returns to 0 at a rate controlled by the decay parameter Δ                

(bound between 0 and 1). Note that a decay of 1 indicate that exploitation values are integrated over                  

all previous trials, while a decay parameter of 0 indicate that subjects decisions rely mostly on the last                  

feedback obtained in each deck. 

 

The main innovation provided by EE consists in modeling directed exploration in the IGT.              

Exploration values reflect the attractiveness of each deck as a function of the number of trials for                 

which the deck has not been selected, implying that exploration values are agnostic regarding the               

monetary feedbacks experienced in the task. As such, they capture a pure information-seeking             

process, hence contrasting with Bayes-based uncertainty-minimization algorithms as well as random           

exploration modeled by the softmax temperature or e-greedy rules (Daw et al., 2006). Exploration              

values are thus controlled by the following equations: 

 

(4.a) 

  

 (4.b) 

 

Equation (4.a) controls the update of exploration values for the selected deck, which fall to               

zero as soon as the outcome of that deck is sampled. Equation (4.b) controls the update of unselected                  

decks, which is governed by a simple delta-rule. The learning rate 𝛿 (bound between 0 and 1)                 

determines at which speed the exploration values return to the initial value of the exploration bonus 𝜑                 

(unbounded). A positive exploration bonus implies that the participant is attracted by decks which              

have not been explored recently, whereas a negative exploration bonus implies that the participant              
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tends to favor familiar decks. Importantly, the exploration bonus 𝜑 therefore reflects the strength of               

directed exploration, so that a more positive value will translate into higher probability of reproducing               

the aforementioned pattern of 4 different choices over 4 consecutive trials (all being equal otherwise). 

 

(5) 

 

Finally, equation (5) models decision-making as a stochastic process influenced by the            

consistency parameter C: a higher C value indicates that choices are strongly driven by the composite                

values derived from Equations 1-4, whereas a C value of zero indicate random selection of each deck.                 

Note that C results from the transformation of an inverse temperature β (bound between 0 and 5), in                  

order to match PVL, PVL-Delta and VPP models (where C = 3β -1 as well). 

 

The architecture of EXPLORE can account for purely random exploration (β=0), for purely             

value-based exploitation (β>>0, θ>0 and 𝜑=0), for purely directed exploration (β>>0, θ=0, and 𝜑>0)              

and for a mixture of value-based exploitation, directed exploration and random exploration. Note that              

under purely directed exploration (β>>0, θ=0, and 𝜑>0), the model predicts that the 4 decks should be                 

successively selected in a cyclical manner during the whole task (e.g. 3,2,4,1,3,2,4,1,3,etc.). Indeed,             

on each trial, the deck with the highest exploration value would always be the deck which has not                  

been selected for the longest period of time. 

 

Fitting procedures 

 

A validated toolbox (http://mbb-team.github.io/VBA-toolbox) was used to optimize model         

parameters (Daunizeau et al., 2014). This toolbox relies on a Variational Bayesian (VB) scheme.              

Compared to non Bayesian methods, this approach has the advantage of accounting for the uncertainty               

related to estimated model parameters and of informing the optimization algorithm about prior             
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distributions of parameters’ values. All priors were innately defined as Gaussian distribution of mean              

0 and variance 3, which approximates the uniform distribution over the [0-1] interval after sigmoid               

transformation. Depending on the range of values in which each parameter was allowed to vary, the                

sigmoid-transformed parameters were further stretched or shifted to cover different intervals while            

preserving the flatness of their prior distribution (e.g. “multiplied by 2, minus 1”, to obtain the interval                 

[-1,1]). Model comparison results were replicated using a non-Bayesian model fitting procedure            

which relied on the standard fminunc function of Matlab (line-search algorithm).  

 

All hidden states (i.e values) were initialized at 0 except for exploration values which were               

initialized at 1 (since no deck has been sampled at the beginning of the task). The VB algorithm was                   

not allowed to update the initial values for hidden states.  

 

Model comparison  

 

Comparison of EE model with the 4 alternatives was first based on a classical fixed-effect               

analysis comparing summed Bayesian Information Criterion (BIC), Akaike Information Criterion          

(AIC) and Free energy (F) metrics over the whole group. In this approach, it is classically considered                 

that a difference of 10 units between the models with the lowest and the second lowest criterion value                  

reflects very strong evidence in favor of the model with lowest value (corresponding to a Bayes Factor                 

of 150). 

 

Then, a Bayesian Group Comparison was performed which treated model attribution as a             

random-effect varying from subject to subject. Also based on BIC, AIC and F, this type of analysis                 

produces an exceedance probability corresponding to the probability that a given model is more likely               

than any other candidate model (Stephan et al., 2009).  
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Parameter recovery and simulation 

 

There is a growing consensus among computational neuroscientists that evaluating models           

only based on goodness of fit metrics like the AIC or BIC is not sufficient (Palminteri et al., 2017;                   

Steingroever et al., 2015b). The problem is particularly salient when one aims at drawing inferences               

about cognitive processes from estimated parameters (which is most often the case), because the same               

choice pattern can sometimes be explained by very different combinations of parameters and because              

models with better goodness of fit metrics do not always better reproduce qualitative choice patterns.               

To address these issues and ensure that the EE model performed equivalently or better than the VPP                 

model in this respect, we performed simulation and parameter recovery analyses detailed below. 

 

We used the best-fitting parameters of each subject to simulate an artificial decision-maker             

confronted to the IGT. Simulated choices were generated stochastically according to the consistency             

parameter, and feedbacks (gains/losses) were drawn from the distributions of feedbacks actually            

encountered by the participants. Then, we reran model estimations based on these simulated choicesn,              

which resulted in a new set of parameters. The quality of parameter recovery for the EE and VPP                  

models could then be assessed by examining the correlation of this second set of parameters with the                 

parameters initially obtained by fitting real choices. Finally, we examined to which extent the initial               

choices predicted by the model and the choices performed by the simulated participants matched the               

actual choices of the participants, across models. In this latter analysis, we restricted our statistical               

inference and compare the EE model with the second-best fitting model only. 
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