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ABSTRACT 18	

 19	

 We describe MULTI-seq: A rapid, modular, and universal scRNA-seq sample multiplexing 20	

strategy using lipid-tagged indices. MULTI-seq reagents can barcode any cell type from any 21	

species with an accessible plasma membrane. The method is compatible with enzymatic tissue 22	

dissociation, and also preserves viability and endogenous gene expression patterns. We 23	

leverage these features to multiplex the analysis of multiple solid tissues comprising human and 24	

mouse cells isolated from patient-derived xenograft mouse models. We also utilize MULTI-seq’s 25	

modular design to perform a 96-plex perturbation experiment with human mammary epithelial 26	

cells. MULTI-seq also enables robust doublet identification, which improves data quality and 27	

increases scRNA-seq cell throughput by minimizing the negative effects of Poisson loading. We 28	

anticipate that the sample throughput and reagent savings enabled by MULTI-seq will expand 29	

the purview of scRNA-seq and democratize the application of these technologies within the 30	

scientific community.  31	

 32	

INTRODUCTION 33	

 34	

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful technology for 35	

probing the heterogeneous transcriptional profiles of multicellular systems. Early scRNA-seq 36	

workflows utilized FACS or integrated microfluidics circuits to isolate individual cells and were 37	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 8, 2018. ; https://doi.org/10.1101/387241doi: bioRxiv preprint 

https://doi.org/10.1101/387241


	 2	

thus limited to quantifying 10s-100s of single-cell transcriptomes at a time (Tang et al., 2009; 38	

Ramsköld et al., 2012; Hashimony et al., 2012). Today, the advent and commercialization of 39	

microwell (Gierahn et al., 2017), split-pool barcoding (Rosenberg et al., 2018), and droplet-40	

microfluidics (Macosko et al., 2015; Klein et al., 2015; Zheng et al., 2017) methods has enabled 41	

the routine transcriptional analysis of 103-105 cells in parallel. The essential insight enabling 42	

these approaches is identical – pools of transcripts are linked to their cell-of-origin via DNA 43	

barcodes introduced during reverse transcription and/or ligation. This enormous increase in cell 44	

throughput enabled by these methods has catalyzed efforts to catalog the composition of whole 45	

organs (The Tabula Muris Consortium et al., 2018) and even entire organisms (Cao et al., 2017; 46	

Han et al., 2018). Indeed, ambitious efforts are now underway to create a cell-type atlas for the 47	

human body using the latest scRNA-seq techniques (Regev et al., 2017). However, much as 48	

research priorities shifted away from describing DNA sequences to functional genomics 49	

following the culmination of the Human Genome Project (Lander et al., 2001; ENCODE Project 50	

Consortium, 2012), the single-cell genomics field will soon expand beyond descriptive analyses 51	

of cell types to mechanistically characterizing how these diverse cell populations interact through 52	

space and time to regulate development, homeostasis, and disease.  53	

In order to utilize single-cell sequencing technologies to reveal mechanistic insights into 54	

complex multicellular biology, the enormous throughput of scRNA-seq methods must be 55	

redirected towards hypothesis testing. This requires integrating dynamical information, many 56	

experimental perturbations, and multiple replicates in order to draw strong conclusions. While 57	

existing methods are optimally configured to assay many thousands of cells, library preparation 58	

practices and the physical constraints of current commercially-available microfluidic devices 59	

(e.g., the Fluidigm C1 and 10X Genomics Single-Cell V2 systems) limit analyses to sets of 8 or 60	

fewer conditions in a typical scRNA-seq experiment. Experiments that attempt to compare large 61	

numbers of samples across multiple single-cell sequencing runs frequently suffer from batch 62	

effects (Stegle et al., 2015; Haghverdi et al., 2018). Furthermore, at current prices, the reagent 63	

and sequencing costs associated with analyzing large sample numbers is outside the means of 64	

typical research groups. One approach to circumvent these challenges would be to sequence 65	

large numbers of cells from diverse samples, but with relatively fewer cells from each sample. 66	

Encouragingly, recent studies suggest that scRNA-seq data from relatively few cells are 67	

sufficient to reconstruct the composition of complex biological tissues (Bhaduri et al., 2017). 68	
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Thus, techniques enabling the parallel processing of large sample numbers spanning diverse 69	

genetic backgrounds, experimental conditions, and/or time-points will ameliorate known 70	

technical limitations while expanding the purview of single-cell genomics to mechanism-oriented 71	

biological questions.  72	

Several new multiplexing methods enable parallel sample processing and, thus, more 73	

optimal utilization of scRNA-seq cell throughput. These approaches distinguish samples using 74	

pre-existing genetic diversity (Kang et al., 2018), or introduce sample-specific DNA barcodes 75	

using either genetic (Dixit et al., 2016; Adamson et al., 2016; Jaitin et al., 2016; Aarts et al., 76	

2017; Guo et al., 2018; Shin et al., 2018) or non-genetic (Stoeckius et al., 2017a; Gehring et al., 77	

2018) delivery mechanisms and achieve sample multiplexing via the co-association of sample 78	

and transcript barcodes with cell-specific barcodes. Each of these methods has unique liabilities, 79	

including sensitivity to proteolytic enzymes necessary to prepare single-cell suspensions, the 80	

necessity of reliable surface epitopes for barcoding, compatibility with the harsh transfection or 81	

reaction conditions needed to introduce barcodes, poor scalability, or the potential to introduce 82	

undesirable secondary perturbations to experiments. Thus, a more generalizable sample 83	

barcoding strategy would enable barcodes to be associated with experimental conditions 84	

quickly, with high signal-to-noise, and simultaneously on diverse cell lines and tissues from 85	

distinct species. This strategy would also be non-perturbative in nature – i.e., to maintain cell 86	

viability and endogenous gene expression patterns – and be easily scaled to hundreds or 87	

thousands of different samples,  88	

Towards such a generalizable strategy, we report the development of a highly scalable 89	

and universal platform for scRNA-seq sample multiplexing using lipid-tagged indices (MULTI-90	

seq). MULTI-seq utilizes lipid-modified oligonucleotides (LMOs), which we previously 91	

demonstrated to rapidly and stably incorporate into the plasma membrane of live cells via step-92	

wise assembly (Weber et al., 2014). Since LMOs target the plasma membrane, they can be 93	

used to barcode any cell or sub-cellular structure with an accessible plasma membrane 94	

regardless of species or genetic background. MULTI-seq is non-perturbative, rapid, and involves 95	

minimal sample processing, which enables its application to dissociated solid tissues and 96	

precious samples. MULTI-seq is also modular in design and, thus, scalable to large sample 97	

numbers, as inexpensive and commercially-available unmodified barcode oligonucleotides are 98	

localized to membranes via the universal LMO scaffold. We first describe the application of 99	
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MULTI-seq to multiplex distinct cell lines and culture conditions on a single 10X Genomics Single 100	

Cell V2 lane. We then dissociate, barcode, and pool frozen organs from multiple patient-derived 101	

xenograft (PDX) mouse models consisting of both mouse and human cells. Finally, we 102	

demonstrate scalability by applying MULTI-seq to a 96-sample experimental design where 103	

heterogeneous populations of human mammary epithelial cells (HMECs) are stimulated with a 104	

panel of growth factors and co-culture conditions. 105	

 106	

RESULTS 107	

 108	

MULTI-seq enables scRNA-seq sample demultiplexing: MULTI-seq localizes sample barcode 109	

oligonucleotides to cellular plasma or nuclear membranes via hybridization to a complementary 110	

‘anchor’ LMO targeted to the plasma membrane by a 5’ lignoceric acid amide. Sample barcodes 111	

include a 3’ poly-A capture sequence, an 8bp sample barcode, and a 5’ PCR handle necessary 112	

for library preparation and anchor LMO hybridization. The off-rate of the anchor LMO from the 113	

cell membrane is reduced by subsequent hybridization to an additional ‘co-anchor’ LMO 114	

incorporating a 3’ palmitic acid amide that increases the overall hydrophobicity of the complex 115	

(Fig. 1B). The same basic strategy can be applied to commercially-available cholesterol-116	

oligonucleotide conjugates, albeit with decreased membrane residence time (Fig. S1D). During 117	

droplet microfluidics-based scRNA-seq, cells carry membrane-associated MULTI-seq barcodes 118	

into emulsion droplets where, after lysis, the 3’ poly-A domain mimics endogenous transcripts 119	

by hybridizing to the oligo-dT regions on co-encapsulated mRNA capture beads. Endogenous 120	

transcripts and MULTI-seq barcodes are then linked to a common cell-specific barcode during 121	

reverse transcription, which enables sample demultiplexing in the final dataset.  122	

Before applying MULTI-seq to a full scRNA-seq experiment, we used flow cytometry to 123	

demonstrate that LMOs minimally exchange between cells at 4°C (Fig. S1B,C). Similar 124	

experiments were performed using freshly purified cell nuclei (Fig. S1D,E), raising the possibility 125	

that this method is equally applicable to single-nucleus RNA sequencing (Habib et al., 2017). 126	

Next, we performed a proof-of-principle scRNA-seq experiment to assess whether MULTI-seq 127	

can demultiplex distinct cell lines and culture conditions in a non-perturbative fashion. We 128	

therefore barcoded and sequenced cultures of HEK293 cells (HEKs) or HMECs with and without 129	

stimulation with the growth factor TGF-β on one 10X lane (Fig. 1A). We also sequenced un-130	
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barcoded replicates in parallel in order distinguish whether MULTI-seq barcoding influences 131	

gene expression. Notably, MULTI-seq barcoding takes 10 minutes at 4° and introduces minimal 132	

extra washing steps relative to standard scRNA-seq workflows (Experimental Methods).  133	

We identified clusters in gene expression space according to known markers for HEKs 134	

as well as the two primary cellular components of HMECs, myoepithelial (MEPs) and luminal 135	

epithelial (LEPs) cells (Fig. 1C, top left; Fig. S2A). Projecting barcode proportions onto gene 136	

expression space demonstrates that barcodes are restricted to their intended cell type clusters 137	

(Fig. 1C). Furthermore, comparison of barcode counts between cell types also shows minimal 138	

background barcode signal, corroborating our previous flow cytometry experiments (Fig. 1D). 139	

Importantly, expression profiles for barcoded and control cells are highly similar, demonstrating 140	

that MULTI-seq does not alter the cell’s transcriptional state (Fig. 1E; Fig. S2B-C; Supplemental 141	

Table S1). To assess whether MULTI-seq demultiplexes culture conditions, we performed sub-142	

clustering and marker analysis on MEPs and LEPs (Fig. S3). Consistent with the culture 143	

conditions, LEPs and MEPs classified as TGF-β-stimulated (Computational Methods) express 144	

the known TGF-β-induced genes TGFBI and FN1, respectively (Fig. 1F; Hocevar et al., 1999). 145	

Collectively, these results illustrate that MULTI-seq accurately demultiplexes distinct cell types 146	

and culture conditions without perturbing endogenous gene expression patterns.  147	

 148	

MULTI-seq applied to precious, multi-species PDX samples: An ideal scRNA-seq sample 149	

multiplexing platform would be able to simultaneously barcode heterogeneous pools of cells from 150	

multiple organisms and tissue types. Moreover, such a technique should involve minimal sample 151	

preparation to enable its application to primary and precious tissue sources. To demonstrate 152	

these features, we applied MULTI-seq to frozen, dissected tissues from PDX mouse models of 153	

triple-negative breast cancer (DeRose et al., 2011; Dobrolecki et al., 2016; Zhang et al., 2013) 154	

using a workflow optimized relative to our previous proof-of-principle experiment (Experimental 155	

Methods; Fig. S4). Specifically, we barcoded seven samples comprising human primary tumor 156	

cells and their associated mouse stroma, matched tumor lung metastases and associated 157	

mouse lung stroma, as well as lung stroma from a non-PDX mouse (Fig. 2A). After FACS 158	

enrichment for live hCD298+ and mCD45+ cells, we pooled pre-defined proportions of mouse 159	

and human cells together before “super-loading” the 10X Genomics Single Cell V2 system (as 160	

in Stoeckius et al., 2017a; Kang et al., 2018), targeting 15,000 cells/lane. 161	
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To demultiplex PDX samples in a fashion that both enables doublet identification and 162	

takes into account inter-sample barcode variability, we implemented a sample classification 163	

workflow inspired by previous work (Stoeckius et al., 2017a; Adamson et al., 2016; Dixit et al., 164	

2016; Computational Methods; Fig. S5). Briefly, we first modeled the probability density function 165	

for each sample barcode and identified local maxima corresponding to positive and background 166	

cells (As in Adamson et al., 2016; Dixit et al., 2016). Barcode-specific thresholds were then 167	

defined by finding the distance between maxima that generates the largest number of singlet 168	

classifications across all barcodes. Using this set of barcode-specific thresholds, cells were 169	

assigned to a sample group if they surpassed its unique threshold, and cells surpassing more 170	

than one threshold were defined as doublets (As in Stoeckius et al., 2017a). Sample 171	

demultiplexing illustrates that cells from each MULTI-seq reaction representing both human and 172	

mouse cells were detected in the final dataset (Fig. 2B,C). Moreover, comparisons of the 173	

proportion of human and mouse cells loaded into the 10X microfluidics device relative to the 174	

species proportions in the final dataset generally match expectations (Fig. 2D; Supplemental 175	

Table S2). Collectively, these results demonstrate that MULTI-seq can be applied to frozen and 176	

solid primary tissue samples while preserving viability and avoiding bias towards specific cell 177	

types or species.  178	

 179	

96-Sample MULTI-seq enables HMEC sample demultiplexing and doublet identification: After 180	

demonstrating that MULTI-seq can multiplex scRNA-seq experiments involving both cell lines 181	

and primary samples, we next sought to demonstrate the method’s scalability by applying it to 182	

96-distinct samples. To this end, we exposed duplicate cultures consisting of MEPs, LEPs, and 183	

a mixture of MEPs and LEPs grown in full M87A media but without EGF (Garbe et al., 2009) to 184	

15 distinct growth factors or growth factor combinations with one control (Fig. 3A). We 185	

supplemented this media with growth factors that act within the in vivo mammary epithelial 186	

microenvironment (e.g., EGF, IGF-1, RANKL, AREG, and WNT4; Brisken, 2013). We barcoded 187	

each sample before pooling and “super-loading” four 10X lanes. Pooling resulted in a 24-fold 188	

reduction in reagent use relative to standard practices (Experimental Methods), and also 189	

minimizes technical noise due to variation between 10X lanes while ensuring that all samples 190	

are accounted for in the case of chip failure (e.g., clogged channels, polydisperse droplets, etc.)  191	
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After applying our sample classification workflow to this new dataset, we identified 78 192	

high-confidence barcode thresholds which, due to the inclusion of replicates, spanned every 193	

distinct experimental condition (Fig. S6A). Each barcode group was associated with an average 194	

of 270 cells and each group was enriched for a single barcode ~190-fold above the most 195	

abundant off-target barcode and ~1300-fold over the average of all off-target barcodes (Fig. 3B; 196	

Fig S6B,C). To test the accuracy of MULTI-seq demultiplexing, we first analyzed the distribution 197	

of barcodes associated with different cell compositions (e.g., MEP-alone, LEP-alone, and 198	

LEP+MEP samples) in gene expression space. Unsupervised clustering and marker analysis of 199	

transcriptome data distinguishes LEPs from MEPs along with a subset of putative doublets 200	

expressing markers for both cell types (Fig. 3C, left). MULTI-seq sample classifications match 201	

their expected cell type clusters (Fig. 3C, right), while cells co-expressing MEP and LEP markers 202	

are predominantly defined as doublets via significant enrichment for multiple MULTI-seq 203	

barcodes. Moreover, MULTI-seq doublet classifications are enriched in regions that would have 204	

normally been overlooked when predicting doublets using marker genes (Fig. 3C, right). This 205	

exemplifies the utility of MULTI-seq and sample multiplexing methods in general for identifying 206	

doublets in biological systems where such marker genes are unknown or unavailable. 207	

Encouragingly, MULTI-seq classified 3224 total doublets, which closely matches the 208	

expected number of doublets (3046) based on Poisson loading of the 10X microfluidics device. 209	

Interestingly, application of an alternative sample classification pipeline (Stoeckius et al., 2017a) 210	

to our MULTI-seq data resulted in a 62.4% doublet prediction rate, which is far above the rates 211	

estimated by our classification workflow or Poisson statistics (Fig. S6D). We suspect the 212	

increased complexity of 96-plex experiments, which alters the relative distribution of singlets and 213	

doublets in barcode space compared to smaller-scale experiments (Fig. 3D; Fig. 2B), underlies 214	

the requirement for our unique classification pipeline. To further test MULTI-seq doublet 215	

classifications, we benchmarked our results against computational identification tools such as 216	

DoubletFinder (McGinnis et al., 2018; DePascale et al., 2018; Wolock et al., 2018). 217	

DoubletFinder identifies putative doublets by measuring each cell’s proximity to computationally-218	

generated synthetic doublets in gene expression space. DoubletFinder and MULTI-seq doublet 219	

predictions significantly overlap in gene expression space, with one putative DoubletFinder 220	

false-positive region (Fig. 3E). Collectively, these results indicate that barcode-mediated sample 221	
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multiplexing is the preferred solution for doublet identification, enabling further increases in cell 222	

throughput via droplet-microfluidics device “super-loading.”  223	

 224	

MULTI-seq identifies transcriptional responses to co-culturing and growth factor perturbations: 225	

Following sample demultiplexing and doublet removal, we re-analyzed a final scRNA-seq 226	

dataset including only MULTI-seq-defined singlets and uncovered three pronounced 227	

transcriptional differences driven by variable culture conditions. First, we observed that LEPs co-228	

cultured with MEPs are significantly enriched in the proliferative LEP transcriptional state relative 229	

to LEPs cultured alone (Fig. 4A; Supplemental Table S3). In contrast, MEPs were equally 230	

proliferative when cultured alone or with LEPs (Fig. 4B). Second, we observed that non-231	

proliferative co-cultured MEPs and LEPs are significantly enriched for TGF-β signaling-induced 232	

genes relative to MEPs and LEPs cultured alone (Fig. 4C; Supplemental Table S4). This result 233	

indicates that TGF-β signaling in our in vitro system cannot be solely maintained via autocrine 234	

mechanisms, but, rather, requires paracrine signaling between MEPs and LEPs.  235	

Third, relative to the co-culture results, we noticed that the transcriptional responses 236	

linked to growth factor supplementation were less pronounced. To assess these more nuanced 237	

transcriptional effects, we performed hierarchical clustering on the average gene expression 238	

profile of MEP and LEP subsets grouped according to growth factor exposure. Interestingly, 100 239	

ng/mL RANKL, WNT4, and IGF-1 did not drive transcriptional signatures that varied significantly 240	

from control conditions when added as supplements to M87A (-EGF) growth media (Fig. 4D). In 241	

contrast, HMECs exposed to the EGFR ligands AREG and EGF exhibited gene expression 242	

profiles that are significantly different from control cells (Supplementary Table S5). Specifically, 243	

AREG- and EGF-stimulated MEPs express high levels of the known EGFR-targets (e.g., 244	

ANGPTL4, PTHLH, and TFPI2; Savage et al., 2017; Foley et al., 2012; Liao et al., 2015), while 245	

unperturbed cells are enriched for known MEP markers involved in contractility (e.g., MYL9, 246	

TAGLN, and TPM1/2) and extracellular matrix remodeling (e.g., KRT17 and KLK6/7). AREG- 247	

and EGF-stimulated LEPs express high levels of genes known to participate in EGFR signaling 248	

negative feedback (e.g., DUSP4; Chitale et al., 2009) or genes up-regulated in HER2+ breast 249	

cancers (e.g., KRT81 and PHLDA1; Fearon et al., 2018; von der Heyde et al., 2015), while 250	

unstimulated LEPs are enriched for known LEP markers (e.g., RARRES1 and NEAT1; Pellacani 251	

et al., 2016; Standaert et al., 2014). Collectively, these results demonstrate how MULTI-seq can 252	
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be applied to study transcriptional responses to varying culture conditions across large numbers 253	

of samples. 254	

 255	

DISCUSSION 256	

 257	

 Recent advances in scRNA-seq cell throughput have facilitated ambitious efforts to 258	

catalog the cellular diversity found in whole tissues, organs, and organisms. However, limited 259	

sample throughput, high reagent costs, and technical artifacts have slowed the application of 260	

scRNA-seq to address more mechanistic biological questions. scRNA-seq sample multiplexing 261	

approaches increase the technical and economic feasibility of tackling these questions while 262	

removing the confounding influences of batch effects and doublets. We describe here a sample 263	

multiplexing strategy – MULTI-seq – that utilizes LMOs to stably localize barcodes to cellular 264	

plasma and nuclear membranes.  265	

MULTI-seq has four key characteristics that make it an ideal scRNA-seq multiplexing 266	

strategy. First, MULTI-seq sample preparation is rapid, requiring less than 10 minutes to barcode 267	

large cell pools at 4°C. This feature, combined with its modular design and the ability to deliver 268	

LMOs during proteolytic dissociation, makes MULTI-seq highly scalable and prospectively 269	

amenable to automated liquid-handling integration. Further increases in MULTI-seq sample 270	

throughput will enable the analysis of drug libraries and/or chemical-genetic screens at single-271	

cell resolution. Unlike traditional small molecule screens that focus on granular read-outs such 272	

as cell death or growth rate, highly multiplexed scRNA-seq will provide insight into how small 273	

molecules perturb distinct cell types within a multicellular system and drive emergent, 274	

population-level responses. 275	

Second, our comparison of barcoded HEKs and HMECs to un-barcoded controls 276	

demonstrates that MULTI-seq operates in a non-perturbative fashion on live cells, removing the 277	

possibility of incorporating confounding effects associated with fixation, poor viability, 278	

genetically-distinct samples, or viral infection. Third, MULTI-seq is universally applicable to all 279	

cells with accessible plasma membranes, allowing the same reagents to be applied to multiple 280	

cell types from diverse organisms without significant optimization. Together, these two features 281	

facilitated our processing of primary dissected tissue from PDX mouse models comprising 282	

heterogeneous mouse and human cells that can be challenging to study due to low viability. 283	
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Fourth, MULTI-seq exhibits tremendous signal over background (e.g., ~190-fold 284	

enrichment for on-target over the most prevalent off-target barcodes), enabling high-confidence 285	

sample classification and doublet identification. The ability to detect doublets allows for droplet-286	

microfluidics devices to be “super-loaded”, and thereby further increases scRNA-seq cell 287	

throughput by nearly an order of magnitude. Moreover, by benchmarking MULTI-seq doublet 288	

classifications against computational doublet identification algorithms, we illustrate how doublets 289	

can optimally be handled in scRNA-seq data. Specifically, since many computational doublet 290	

prediction algorithms utilize synthetic doublets generated from existing data, false-positives can 291	

result when these techniques are applied to datasets with limited transcriptomic diversity (e.g., 292	

low numbers of cell types) or cells with gene expression profiles that mimic synthetic doublets 293	

(e.g., differentiation intermediates). Such algorithms are also sensitive to false-negatives present 294	

in barcode-mediated doublet classifications that arise due to doublets formed from cells labeled 295	

with the same sample barcode. Therefore, doublet detection should ideally involve a synergy of 296	

computational and molecular approaches, especially in experimental contexts with small 297	

numbers of distinct sample barcodes. 298	

In addition to these four desirable technological characteristics, our ability to multiplex a 299	

96-sample HMEC perturbation experiment highlights noteworthy aspects of multiplexed scRNA-300	

seq experimental design. For example, comparison of the transcriptional responses linked to 301	

MEP and LEP co-culturing relative to growth factor supplementation demonstrates that 302	

transcriptional variation may be dominated by the cell type composition of experimental systems. 303	

For instance, co-cultured MEPs and LEPs engage in paracrine-mediated TGF-β signaling that 304	

is completely absent in the associated monocultures. In contrast, MEPs and LEPs did not exhibit 305	

significant transcriptional changes in rich media supplemented with RANKL, WNT4, and IGF-1 306	

despite the established role of these factors in mammary gland biology. We speculate that the 307	

difference in the magnitude of response between co-culturing and small-molecule perturbations 308	

can be linked to two distinct phenomena. First, relative to single or combination growth factor 309	

perturbations, co-culturing represents a highly complex milieu of stimuli. For example, the pro-310	

proliferative effect of MEP co-culturing in LEPs may be a collective consequence of direct 311	

physical interactions and the secretion of extracellular matrix and/or paracrine signaling proteins. 312	

Second, rich media formulations likely buffer cells against responding to certain environmental 313	

perturbations that the cells are otherwise responsive to in vivo. This notion is supported by the 314	
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observation that the only growth factor supplements that caused significant transcriptional 315	

divergence from control cells grown in rich media without EGFR ligands were the EGFR ligands, 316	

AREG and EGF. For these reasons, future large-scale scRNA-seq analyses aiming to 317	

understand environmental perturbations in in vitro systems should be performed in minimal 318	

media with careful control of the purity and relative proportions of cell types. 319	

 320	
EXPERIMENTAL METHODS 321	
 322	
Design and synthesis of LMOs and barcodes: Anchor and co-anchor LMO designs were adapted 323	
from (Weber et al., 2014). Briefly, the Anchor LMO has a 5’ lignoceric acid modification with two 324	
20-nucleotide domains. The 5’ end is complimentary to the Co-Anchor LMO, which bears a 3’ 325	
palmitic acid, and the 3’ end is complimentary to the PCR handle of the Barcode strand. The 326	
Barcode oligonucleotide was designed to have three components (as in Stoeckius et al., 2017b): 327	
(1) A 5’ PCR handle for barcode amplification and library preparation, (2) An 8 bp barcode with 328	
Hamming distance >3 relative to all other utilized barcodes, and (3) A 30bp poly-A tail necessary 329	
for hybridization to the oligo-dT region of mRNA capture bead oligonucleotides (Fig. S6).  330	
 331	
Anchor LMO:                      5’-GTAACGATCCAGCTGTCACTTGGAATTCTCGGGTGCCAAGG-3’ 332	
Co-Anchor LMO:                      5’-AGTGACAGCTGGATCGTTAC-3’ 333	
Barcode Oligo:                     5’-CCTTGGCACCCGAGAATTCCANNNNNNNNA30-3’  334	
 335	
Anchor LMO and co-anchor LMO synthesis: Oligonucleotides were synthesized on an Applied 336	
Biosystems Expedite 8909 DNA synthesizer, as previously described (Weber et al., 2014). 337	
Hexadecanoic (palmitic) acid, tetracosanoid (lignoceric) acid, N,N-diisopropylethylamine 338	
(DIPEA), N,N-diisopropylcarbodiimide (DIC), N,N-dimethylformamide (DMF), methylamine, 339	
ammonium hydroxide, and piperidine were obtained from Sigma-Aldrich. HPLC grade 340	
acetonitrile (CH3CN), triethylamine (NEt3), acetic acid, and anhydrous dichloromethane (CH2Cl2) 341	
were obtained from Fisher Scientific. 6-(4-Monomethoxytritylamino)hexyl-(2-cyanoethyl)-(N,N-342	
diisopropyl)-phosphoramidite (5’-Amino-Modifier C6 Phopshoramidite) , standard 343	
phosphoramidites, and DNA synthesis reagents were obtained from Glen Research. Controlled 344	
pore glass (CPG) supports (2-Dimethoxytrityloxymethyl-6-fluorenylmethoxycarbonylamino-345	
hexane- 1-succinoyl)-long chain alkylamino-CPG (3'-Amino-Modifier C7 CPG 1000), 5'-346	
Dimethoxytrityl-N-dimethylformamidine-2'-deoxyGuanosine, 3'-succinoyl-long chain alkylamino-347	
CPG (dmf-dG-CPG 1000), and 5'-Dimethoxytrityl-N-Acetyl-2'-deoxyCytidine, 3'-succinoyl-long 348	
chain alkylamino-CPG (Ac-dC-CPG 1000) synthesis columns were obtained from Glen 349	
Research. All materials were used as received from manufacturer. 350	

For the anchor LMO, after synthesis of the DNA sequence, the 5’ end was modified with 351	
an amine using 5’-Amino-Modifier C6 Phopshoramidite (100 mM) and a custom 15-minute 352	
coupling protocol. After synthesis of 5′ amino-modified DNA, the MMT protecting group was 353	
removed manually on the synthesizer by priming alternately with deblock and dry CH3CN at least 354	
three times until yellow color disappears. CPG beads were dried by priming several times with 355	
dry Helium gas. For the 3′ FMOC-protected amino-modified CPG, prior to oligonucleotide 356	
synthesis, the FMOC group was removed by suspending the CPG in a solution of 20% piperidine 357	
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in dimethylformamide for 10 minutes at room temperature. The beads were then washed three 358	
times each with DMF and CH2Cl2. This procedure was repeated twice more to ensure complete 359	
deprotection of the FMOC protecting group prior to coupling to the fatty acid. Residual solvent 360	
was removed with reduced pressure on a SpeedVac.  361	

Fatty acid conjugation was performed on solid support by coupling the carboxylic acid 362	
moiety of the fatty acid to the 3’ or 5’ free amine—lignoceric acid and palmitic acid for the anchor 363	
and co-anchor, respectively. The solid support was transferred to a microcentrifuge tube and 364	
resuspended in a solution of anhydrous dichloromethane containing 200 mM fatty acid, 400 mM 365	
DIPEA, and 200 mM DIC. The microcentrifuge tubes were sealed with parafilm, crowned with a 366	
cap lock, and shaken overnight at room temperature. The beads were then washed 3X with 367	
CH2Cl2, 3X with DMF, and 2X CH2Cl2. Oligonucleotides were then deprotected and cleaved from 368	
solid support by suspending the resin in a 1:1 mixture of ammonium hydroxide and 40% 369	
methylamine (AMA) for 15 minutes at 65°C with a cap lock followed by evaporation of AMA with 370	
a Speedvac system. Cleaved oligonucleotides were dissolved in 0.7 mL of 0.1 M 371	
triethylammonium acetate (TEAA) and filtered through 0.2 μM Ultrafree-MC Centrifugal Filter 372	
Units (Millipore) to remove any residual CPG support prior to HPLC purification. 373	

Fatty acid modified oligonucleotides were purified from unmodified oligonucleotides by 374	
reversed-phase high-performance liquid chromatography (HPLC) using an Agilent 1200 Series 375	
HPLC System outfitted with a C8 column (Hypersil Gold, Thermo Scientific) and equipped with 376	
a diode array detector (DAD) monitoring at 230 and 260 nm. For HPLC purification, Buffer A was 377	
0.1 M TEAA at pH 7 and buffer B was CH3CN. running a gradient between 8 and 95% CH3CN 378	
over 30 minutes. Pure fractions were collected manually and lyophilized. The resulting powder 379	
was then resuspended in distilled water and lyophilized again two more times to remove residual 380	
TEAA salts prior to use. Purified fatty acid-modified oligonucleotides were resuspended in 381	
distilled water and concentrations were determined by measuring their absorbance at 260 nm 382	
on a Thermo-Fischer NanoDrop 2000 series. 383	

Cell Culture: For proof-of-principle experiments, HEK293 cells were cultured at 37°C with 5% 384	
CO2 in Dulbecco’s Modified Eagle’s Medium, High Glucose (DME H-21) containing 4.5 g/L 385	
glucose, 0.584 g/L L-glutamine, 3.7 g/L NaHCO3, supplemented with 10% fetal bovine serum 386	
and 100 μg/mL penicillin/streptomycin. Human mammary epithelial cells (HMECs) were cultured 387	
at 37°C with 5% CO2 in M87A media (Garbe et al., 2009) with or without 24 hours of stimulation 388	
with 5 ng/mL human recombinant TGF-β (Peprotech). 389	
 390	

For the 96-sample HMEC experiment, fourth passage HMECs were lifted using 0.05% 391	
trypsin+EDTA for 5 minutes. The cell suspension was passed through a 0.45 μm cell strainer to 392	
remove any clumps. The cells were washed with M87A media once and resuspended at 107 393	
cells/mL. The cells were incubated with 1:50 APC/Cy-7 anti-human/mouse CD49f (Biolegend, 394	
#313628) and 1:200 FITC anti-human CD326 (EpCAM) (Biolegend, #324204) antibodies for 30 395	
minutes on ice. The cells were washed once with PBS and resuspended in PBS with 2% BSA 396	
with DAPI at 2-4 million cells/mL. Cells were sorted on BD FACSAria III. DAPI+ cells were 397	
discarded. LEPs were gated as EpCAMhi/CD49flo and MEPs were gated as EpCAMlo/CD49fhi 398	
(Lim et al., 2009; Fig. S7). Notably, this gating strategy results in trace numbers of MEPs and 399	
LEPs sorted incorrectly. HMEC sub-populations were sorted into 24-well plates such that wells 400	
contained LEPs only, MEPs only, or a 2:1 ratio of LEPs to MEPs. Sorted cell populations were 401	
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cultured for 48 hours in M87A media before culturing for 72 hours in M87A media (-EGF) 402	
supplemented with different growth factors or growth factor combinations. Specifically, M87A 403	
media (-EGF) was supplemented with 100 ng/mL RANKL (Peprotech), 100 ng/mL WNT4 404	
(Peprotech), 100 ng/mL IGF-1 (Peprotech), 113 ng/mL AREG (Peprotech), and/or 5 ng/mL EGF 405	
(Peprotech) alone or in all possible pairwise combinations. 406	
 407	

Single-cell RNA-seq sample preparation: Distinct sample preparation protocols were employed 408	
for the proof-of-principle, 96-plex HMEC, and PDX experiments. For the proof-of-principle 409	
experiments, cells were first trypsinized for 5 minutes at 37°C in 0.05% trypsin-EDTA before 410	
quenching with appropriate cell culture media. Single-cell suspensions were then pelleted for 4 411	
minutes at 160 x g and washed once with PBS before resuspension in 90 μL of a 200nM solution 412	
containing equimolar amounts of anchor LMO and sample barcode oligonucleotides in PBS. 413	
Anchor LMO-barcode labeling was performed for 5 minutes on ice before 10 μL of 2μM co-414	
anchor LMO in PBS was added to each cell pool. Following gentle mixing, the labeling reaction 415	
was continued on ice for another 5 minutes before cells were washed twice with PBS, 416	
resuspended in PBS with 0.04% BSA, filtered and pooled before emulsion using the 10X 417	
Genomics Single Cell V2 system. 418	
 419	
 For the 96-plex HMEC experiment, LMO labeling was performed during trypsinization in 420	
order to minimize wash steps and thereby limit cell loss and preserve cell viability. Specifically, 421	
HMECs cultured in 24-well plates were labeled for 5 minutes at 37°C and 5% CO2 in 190 μL of 422	
a 200nM solution containing equimolar amounts of anchor LMO and sample barcode 423	
oligonucleotides in 0.05% trypsin-EDTA. 10 μL of 4uM co-anchor LMO in 0.05% trypsin-EDTA 424	
was then added to each well and labeling/trypsinization was continued for another 5 minutes at 425	
37°C and 5% CO2 before quenching with appropriate cell culture media. Cells were then 426	
transferred to a 96-well plate for washing with 0.04% BSA in PBS. Finally, cells were pooled into 427	
a single aliquot, filtered through a 0.45 μm cell strainer, and counted before generating 428	
emulsions using the 10X Genomics Single Cell V2 system. The current cost for one 10X 429	
microfluidics lane-worth of reagents is ~$1250. For this experiment, we split our pool of 96 430	
samples across 4 10X microfluidics lanes for $5000. In comparison, analyzing 96 samples 431	
without multiplexing (i.e., one sample/lane) would therefore cost $120,000.  432	
 433	

 For the PDX experiment, tissues from primary tumor, lung metastases, and normal lung 434	
from PDX models HCI-001, HCI-002 (Derose et al., 2011) and HCI-4272 (Zhang et al., 2013) 435	
were generated in NOD-scid gamma (NSG) mice as described previously (Lawson et al., 2015). 436	
The UCSF Institutional Animal Care and Use Committee (IACUC) reviewed and approved all 437	
animal experiments. Frozen tissue was dissociated in digestion media containing 50 μg/mL 438	
Liberase TL (Sigma-Aldrich) and 2x104 U/mL DNase I (Sigma-Aldrich) in DMEM/F12 (Gibco) 439	
using standard GentleMacs protocols. Single cell suspensions were stained for FACS sorting 440	
with Zombie NIR (BioLegend, #423105) and the following antibodies: Fc-block (Tonbo, #70-441	
0161-U500), anti-mouse TER119 (ThermoFisher, #11-5921-82), anti-mouse CD31 442	
(ThermoFisher, #11-0311-85), anti-mouse CD45 (Tonbo, #75-0451-U100), anti-mouse MHC-I 443	
(eBioscience, #17-5999-82) and anti-human CD298 (BioLegend, #341704). MULTI-seq labeling 444	
was performed using 100uL of a 2.5uM solution containing equimolar amounts of anchor LMO 445	
and sample barcode oligonucleotides in PBS. LMO labeling was performed for 5 minutes on ice 446	
before 20uL of 15uM co-anchor LMO in PBS was added to each cell pool. LMO labeling was 447	
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continued for another 5 minutes on ice before cells were washed once with PBS containing 2% 448	
FBS prior to live-cell enrichment and separation of mouse CD45+ and human tumor cells 449	
(CD298+ mTER119- mCD31- mMHC-I-) via FACS, as described previously (Lawson et al., 2015). 450	
MULTI-seq indexed samples were then filtered, counted, and pooled before generating 451	
emulsions using the 10X Genomics Single Cell V2 system. 452	
 453	

scRNA-seq Library Preparation: Sequencing libraries were prepared using a custom protocol 454	
based on the 10X Genomics Single Cell V2 (10X Genomics, 2017) and CITE-seq (Stoeckius et 455	
al., 2017b) workflows. Briefly, the 10X workflow was followed up until cDNA amplification, where 456	
1 μL of 2.5 μM MULTI-Seq additive primer (sequence below) was added to the cDNA 457	
amplification master mix. This primer increases barcode sequencing yield by enabling the 458	
amplification of barcodes that successfully primed reverse transcription on mRNA capture beads 459	
but were not extended via template switching (Fig. S8C). Following amplification, barcode and 460	
endogenous cDNA fractions were separated using a 0.6X SPRI size selection. The endogenous 461	
cDNA fraction was then processed according to the 10X workflow until sequencing on two HiSeq 462	
4000 lanes (proof-of-principle) or one Nova-Seq lane (96-sample HMEC and PDX).  463	
 464	
MULTI-seq Additive Primer:                5’-CCTTGGCACCCGAGAATTCC-3’ 465	
 466	

Contaminating oligonucleotides remaining from cDNA amplification were then removed 467	
from the barcode fraction using an established small RNA enrichment protocol (Beckman 468	
Coulter). Specifically, we increased the final SPRI ratio in the barcode fraction to 3.2X reaction 469	
volumes and added 1.8X reaction volumes of 100% isopropanol (Sigma-Aldrich). Beads were 470	
then washed twice with 400uL of 80% ethanol and allowed to air dry for 2-3 minutes before 471	
elution with 50.5μL of Buffer EB (Qiagen, USA). Eluted barcode cDNA was then quantified using 472	
QuBit before library preparation PCR (95°C, 5’; 98°C, 15”; 60°C, 30”; 72°C, 30”; 8 cycles; 72°C, 473	
1’; 4°C hold). Each reaction volume was a total of 50μL containing 26.25μL KAPA HiFi master 474	
mix (Roche), 2.5μL TruSeq RPIX primer (Illumina), 2.5μL TruSeq Universal Adaptor primer 475	
(Illumina), 3.5ng barcode cDNA and nuclease-free water.  476	
 477	
TruSeq RPIX: 478	

             479	
5’-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA-3’ 480	

 481	
TruSeq P5 Adaptor:      482	
   483	

5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’ 484	
 485	

Following library preparation PCR, remaining sequencing primers and contaminating 486	
oligonucleotides were removed via a 1.6X SPRI clean-up and sequencing on one HiSeq4000 487	
lane. Representative Bionalayzer traces at different stages of MULTI-seq library preparation are 488	
documented in Fig. S8.  489	
 490	
Live-Cell LMO Exchange Experiments: The BD FACSCalibur instrument was used to performed 491	
analytical flow cytometry experiments assessing the kinetics of LMO and cholesterol-modified 492	
oligonucleotide (CMO) exchange on live HEK293 cells (Fig. S1A-C). Data analysis was 493	
performed in FlowJo and R. Identical sample preparation protocols were employed for the proof-494	
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of-principle scRNA-seq experiment (discussed above) and live-cell flow cytometry experiments, 495	
with one key exception. Instead of pre-hybridizing anchor LMOs or CMOs to barcode 496	
oligonucleotides, anchor LMOs or CMOs were pre-hybridized to equimolar concentrations of 497	
FAM- or AlexaFluor647-conjugated oligonucleotides. Fluorophore-conjugated oligonucleotides 498	
were identical to the barcode oligonucleotide 5’ PCR handle and did not include the barcode or 499	
poly-A regions. FAM- and Alexa647-labeled HEK293 cells or nuclei were mixed immediately 500	
prior to analysis and kept on ice for 2 hours in PBS with 0.04% BSA. 501	
 502	
Nuclei Isolation and LMO Exchange Experiments: Nuclei were isolated from HEK293 cells using 503	
a protocol adapted from 10x Genomics. Briefly, HEK293 cells were cultured, trypsinized, and 504	
washed once with PBS. Cells were pelleted (300 rcf, 4˚C, 4 minutes) and suspended in chilled 505	
lysis buffer (0.5% Nonidet P40 Substitute, 10 mM Tris-HCl, 10 mM NaCl, and 3 mM MgCl2 in 506	
milliQ water) to a density of 2.5 x 106 cells/mL. Lysis proceeded for 5 minutes on ice, after which 507	
the lysate was pelleted (500 rcf, 4˚C, 4 minutes) and washed three times in chilled resuspension 508	
buffer (1X PBS, 2% BSA). Nuclei were then diluted to a concentration of ~106 nuclei/mL prior to 509	
LMO labeling, as described above. Following LMO labeling, nuclei were washed times in 1mL 510	
resuspension buffer (500 rcf, 4 minutes). LMO exchange experiments were performed as 511	
described previously. 512	
 513	
COMPUTATIONAL METHODS 514	
 515	
scRNA-seq Data Processing: Expression library FASTQs were processed using CellRanger 516	
(10X Genomics) and aligned either to the hg19 or concatenated hg19-mm10 reference 517	
transcriptomes. High-confidence cells were distinguished from background using a nUMI cut-off 518	
of 1000. MULTI-seq barcode library FASTQ files were converted into a barcode UMI count matrix 519	
using CITE-seq Count (https://github.com/Hoohm/CITE-seq-Count).  520	
 521	
MULTI-seq Sample Classification: For the 96-sample HMEC and PDX experiments, sample 522	
classification was performed using a workflow inspired by previous scRNA-seq multiplexing 523	
approaches (Stoeckius et al., 2017a; Adamson et al., 2016; Dixit et al., 2016; Fig. S5). First, raw 524	
barcode reads were log2-transformed before barcode abundance normalization via mean 525	
subtraction. Following normalization, the probability density function (PDF) for each barcode was 526	
defined by applying the ‘approxfun’ R function to the Gaussian kernel density estimation 527	
produced using the ‘bkde’ function from the ‘KernSmooth’ R package. We then sought to classify 528	
cells according to the assumption that groups of cells that are positive and negative for each 529	
barcode should manifest as local PDF maxima. To this end, we trimmed the top and bottom 530	
0.1% of data from each barcode set and chose the lowest and highest maxima as initial 531	
solutions. To avoid noisy maxima identification, we then adjusted the low maxima to the maxima 532	
with the largest number of associated cells.  533	
 534	

With these positive and negative approximations in hand, we next sought to define 535	
barcode-specific thresholds. To find the best inter-maxima quantile for threshold definition (e.g., 536	
an inter-maxima quantile of 0.5 corresponds to the mid-point), we iterated across 0.01 quantile 537	
increments and chose the value that maximized the number of singlet classifications. Optimal 538	
inter-maxima distances vary across different MULTI-seq datasets and likely reflect technical 539	
noise resulting from variable cell numbers and labeling efficiency between samples. Sample 540	
classifications were then made using these barcode-specific thresholds by discerning which 541	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 8, 2018. ; https://doi.org/10.1101/387241doi: bioRxiv preprint 

https://doi.org/10.1101/387241


	 16	

thresholds each cell surpasses, with doublets being defined as cells surpassing >1 threshold. 542	
Negative cells (i.e., cells surpassing 0 thresholds) were discarded. The process then was 543	
repeated on the remaining cells, typically for a total of 3 rounds, until no more cells were 544	
classified as negatives. Barcode visualizations using t-SNE were generated using the ‘Rtsne’ 545	
function with the ‘initial_dims’ argument set to the total number of unique barcodes. 546	
 547	
 For the proof-of-principle HEK and HMEC experiment, a simpler classification scheme 548	
was used. Specifically, raw barcode counts were first converted to proportions before cells were 549	
assigned to HEK, stimulated HMEC or unstimulated HMEC samples according to whichever 550	
barcode represented >50% of the total barcode UMIs. Such a classification strategy precludes 551	
doublet identification and is sensitive to inter-barcode variability. However, for low-sample 552	
experiments where doublets are not a large concern, it is appropriate. 553	
 554	

Expression Library Analysis: CellRanger outputs were analyzed using the ‘Seurat’ R package, 555	
as described previously (Butler et al., 2018). Stastically-significant PCs were selected using 556	
inflection point estimation on corresponding PC elbow plots. Cell types were defined using 557	
Louvian clustering with established marker genes. Analysis of transcriptional responses due to 558	
variable culture conditions (e.g., cell type compositions and growth factors for the 96-sample 559	
HMEC experiment) were performed using PCA to allow for gene loading interpretation. Genes 560	
specific to sample assignments were defined using the ‘bimod’ (REF) and ‘roc’ arguments in the 561	
‘FindMarker’ function. Sample groups exhibiting correlated gene expression profiles were 562	
defined using the ‘BuildClusterTree’ function. 563	
 564	

DATA AVAILABILITY 565	
 Raw gene expression and barcode count matrices were uploaded to the Gene Expression 566	
Omnibus (GSE…). An R implementation of the MULTI-seq sample classification pipeline can be 567	
found at https://github.com/chris-mcginnis-ucsf/MULTI-seq. 568	
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Figure 1: MULTI-seq non-perturbatively demultiplexes cell types and culture conditions 
(A) Schematic overview of proof-of-principle MULTI-seq experiment. Three samples (HEKs and HMECs with 

and without TGF-β stimulation) were barcoded and sequenced alongside unlabeled controls. Labeling 
involves stepwise assembly of the LMO scaffold on the plasma membrane, where the barcode-hybridized 
anchor and co-anchor LMOs are added sequentially. Cells are pooled together prior to an augmented 
scRNA-seq workflow and analysis, producing UMI count matrices corresponding to both gene expression 
and barcode abundance data.  


(B) Schematic diagram of the anchor/co-anchor LMO scaffold (black) with hybridized sample barcode 
oligonucleotide (red). 


(C) Cell type assignments from marker analysis (top left) largely agree with expected MULTI-seq classification 
results. HEK-associated clusters are highly enriched for HEK barcodes (top right), while LEP and MEP 
clusters exhibit enrichment for unstimulated (bottom left) and TGF-β-stimulated (bottom right) barcodes. 
Cells unclassified via marker analysis (top left, grey) show no barcode specificity. 


(D) Scatter plot describing the number of barcode UMIs in each cell type. Cell types are highly enriched for their 
expected barcode and exhibit barcode abundance orthogonality.


(E) MULTI-seq barcoded cells (orange) and unlabeled controls (grey) are interspersed in gene expression space.

(F) PCA distinguishes stimulated and unstimulated subsets of LEPs and MEPs enriched for transcripts known 

to be induced (e.g., TGFBI and FN1) in response to TGF-β in HMECs. 
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Figure 2: MULTI-seq enables scRNA-seq multiplexing of primary PDX tissue 
(A) Schematic overview of PDX experiment. Primary tumors and lung tissue from PDX mouse models were 

dissected and cryopreserved until the day of the experiment. These tissues were then thawed and 
dissociated prior to labeling with viability dyes, species-specific antibodies, and sample-specific MULTI-
seq barcodes. Live hCD298+ and mCD45+ cells were then FACS-enriched and pooled prior to 
sequencing.


(B) MULTI-seq sample classifications mapped onto barcode space. 

(C) Species and mouse/human doublet classifications from transcriptome data mapped onto barcode space.

(D) Bar plots describing the proportion of mouse (tan) and human (green) cells loaded into the droplet 

microfluidic device (IN) compared to the species proportions in the final dataset (OUT).
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Figure 3: Large-scale MULTI-seq barcoding demultiplexes HMEC culture conditions 
and identifies doublets  
(A) Schematic overview of 96-sample HMEC experiment. 96 distinct HMEC cultures 

consisting of LEPs alone, MEPs alone, or both cell types together were grown in 
media supplemented with 15 distinct growth factors or growth factor combinations 
with one control. 


(B) Barcode UMI abundance mapped onto barcode space demonstrates that cells 
cluster according to barcode profiles. LMO barcode #3 is employed as a 
representative example.


(C) Marker analysis identifies LEPs, MEPs, and ambiguous cells in gene expression 
space (left). MULTI-seq cell-composition classifications (right) match expectations 
from marker analysis. Region of discordance indicated with the arrow. 


(D) MULTI-seq doublet classifications mapped onto barcode space illustrates how 
doublets localize to the peripheries of barcode groups in large-scale sample 
multiplexing experiments.


(E) Doublet classifications produced using MULTI-seq (left) and DoubletFinder (right) 
mapped onto gene expression space. Region of discordance indicated with the 
arrow.
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Figure 4: Cell composition and growth factor 
stimulation drive transcriptional changes in HMECs 
(A) Gene expression PCA colored by cell composition 

demonstrates separation of LEPs according to the 
presence or absence of co-cultured MEPs. LEPs 
derived from co-cultured samples are highly 
enriched in a proliferative cluster marked by high 
levels of MKI67 expression. 


(B) Gene expression PCA colored by cell composition 
demonstrates even mixing of MEPs cultured alone 
or with LEPs across proliferative and resting 
clusters. Proliferative MEPs are marked by high 
levels of HMGA1 expression. MEPs assigned to 
sample barcodes associated with LEP-only culture 
conditions are due to the inexact nature of EPCAM 
and CD49f FACS gating (Experimental Methods). 


(C) Gene expression PCA of subsetted resting LEPs 
(top) and MEPs (bottom) colored by cell 
composition demonstrates enrichment for TGF-β 
signaling targets in co-culturing conditions.


(D) Hierarchical clustering and heat map analysis of 
LEPs (top) and MEPs (bottom) grouped by growth 
factor conditions highlights an EGFR signaling-
related transcriptional response present specifically 
in AREG- and EGF-stimulated HMECs. DEGs = 
differentially-expressed genes.
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Figure S1: Flow cytometry demonstrates robust LMO labeling efficiency and negligible exchange kinetics at 4˚C on living 
cells and nuclei, related to Figure 1 
(A) MULTI-seq live-cell labeling efficiency varies predictably across a titration curve of anchor and co-anchor LMO 

concentrations.

(B) Schematic overview of LMO and cholesterol-modified oligonucleotide (CMO) exchange experiments. Cells or nuclei were 

labeled with LMOs or CMOs hybridized to AF647- or FAM-conjugated oligonucleotides prior to mixing. Mixed populations 
were kept on ice and analyzed using flow cytometry every 30 minutes for 2 hours.


(C) Time-course analysis of LMO exchange following mixing of live cell populations labeled with FAM- or AF647-conjugated 
barcode oligonucleotides. Control samples receiving nothing (-/-) or fluorophore-conjugated barcode oligonucleotides alone 
(-/+) exhibit minimal background signal relative to samples receiving both LMO and fluorophore (+/+). FAM+ and AF647+ cell 
populations exchange barcodes at a negligible frequency over 2 hours.


(D) Time-course analysis of cholesterol-modified oligonucleotide (CMO) exchange, as depicted in Fig. S1B. Signal loss is more 
pronounced in CMO-labeled samples than in LMO-labeled samples.


(E) Time-course analysis of LMO exchange in nuclei. Control (-/-) samples exhibit no background signal while samples receiving 
fluorphore alone (-/+) exhibit higher background than live cell experiments. Samples receiving both LMO and fluorophore (+/
+) are labeled with higher efficiency and exchange less rapidly.


(F) Quantification of results in Fig. S1E. Normalization of fluorescence intensity to levels present in unmixed fluorophore-only (-/+) 
and LMO plus fluorophore (+/+) samples illustrates that LMO plus fluorophore samples retain barcodes more robustly over 
time compared to fluorophore-only controls. 
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Figure S2: MULTI-seq preserves endogenous gene expression, related to Figure 1. 
(A) Violin plots describing the expression distribution for marker genes used to 

delineate HEKs (HSPA1A), MEPs (KRT14), and LEPs (KRT19) as shown in Fig. 1B. 

(B) Violin plot comparing the number of UMIs, number of detected genes, and 

percentage of mitochondrial gene expression in MULTI-seq and control cell 
populations. 


(C) Unsupervised clustering identifies 8 distinct cell sub-populations. Cluster 
occupancy rates for equal numbers of randomly sampled barcoded and control 
HEKs and HMECs illustrates that MULTI-seq does not influence endogenous gene 
expression.
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PC1

Figure S3: PCA delineates transcriptional differences due to TGF-β-stimulation in 
subsetted MEPs and LEPs, related to Figure 1.  
Marker analysis of stimulated and unstimulated MEPs and LEPs uncovers differentially 
expressed genes between culture conditions that recapitulate known TGF-β targets. 
Stimulated and unstimulated subsets are resolvable in PC space, and the top five 
differentially expressed genes for each subset match known TGF-β functions related to 
microenvironment remodeling (e.g., TGFBI, FN1, LAMC2), as well as acknowledged 
regulatory interactions (e.g., KRT15, LY6E, SERPINE1). PC1 primarily distinguishes MEPs 
and LEPs according to proliferation status, as is demonstrates by MKI67 expression 
enrichment in PC space, whereas PC2 distinguishes TGF-β induction status. 
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Figure S4: Optimized MULTI-seq workflow enables 
combinatorial indexing, related to Figure 2 
(A) Schematic overview of combinatorial indexing experiment. 

HEKs were labeled either with an equimolar combination of 
three barcode LMOs or with a singular barcode LMO.


(B) Barcode UMIs in multi-labeled HEKs are highly correlated, 
suggesting variability in labeling efficiency is primarily 
biological in nature. Comparison of single-labeled and multi-
labeled HEKs demonstrates the orthogonality of labeling.


(C) Combinatorial indexing experiment exhibits bimodal 
background barcode distributions. Exploration of gene 
expression features that cause bimodality do not yield any 
clear correlations. Bimodality cannot be linked to changes in 
cell size due to cell cycle (as measured by MKI67), changes 
in cell size manifesting as increased RNA content, or 
apoptotic cells (as measured by the percentage of 
mitochondrial gene expression). Moreover, the region of 
relatively high background barcode signal cannot be traced 
to any particular cell state.


(D) MULTI-seq barcode abundances vary predictably across a 
titration series of anchor and co-anchor LMO concentrations.
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Figure S5: MULTI-seq sample classification workflow, related to Figure 2  
Raw barcode UMI count matrices were normalized via Log2 transformation and barcode-oriented mean centering. Using 
normalized barcode counts, the probability density function (PDF) for each barcode is then defined using Gaussian 
kernel density estimation (KDE). The lowest and highest local maxima in each PDF are then defined, serving as 
approximations for cell populations negative or positive for each barcode, respectively. The low maxima is then adjusted 
to the maxima below the initial threshold with the highest density. Following adjustment, the optimal quantile distance 
between maxima is determined across all barcodes by finding the quantile which produces the maximum number of 
singlet classifications. This quantile is then used to set barcode-specific thresholds, which are subsequently utilized to 
generate a binary classification matrix in which cells are assigned a ‘1’ if they surpass a given threshold. The row-sums 
of this classification matrix are then used to classify cells, where negative cells, singlets and doublets surpass 0, 1, and 
>1 threshold, respectively. The pipeline is repeated until all cells are classified as singlets or doublets, with negative cells 
removed between iterations.
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B

Figure S6: HMEC sample classification results, related to 
Figure 3  
(A) Heatmap showing the number of cells assigned to each 

sample barcode group arranged according to their position 
on the 96-well plate utilized during sample preparation. The 
predominant lack of samples arising from column 2 indicates 
that technical error during sample preparation likely caused 
sample drop-outs. 


(B) Heatmap showing the enrichment within each sample 
classification group for a single MULTI-seq barcode. 
Doublets are enriched for multiple barcodes.


(C) Violin plots describing the signal:noise for negative cells, 
doublets and singlets. In singlets, on-target barcodes are an 
average of 189-fold higher than the most abundant off-target 
barcode. Doublets have much lower signal:noise but higher 
total nUMIs, which matches expectations based on the 
pooling of multiple unique barcodes that occurs during 
doublet formation. Negative cells exhibit very low total 
nUMIs, indicating that negative cells were not sufficiently 
barcoded to enable sample classification.


(D) Comparison of sample classification results for the MULTI-
seq workflow relative to the Cell Hashing classification 
strategy (Stoeckius et al., 2017a). Cell Hashing sample 
classification does not produce as many negative calls, but 
highly over-estimates the number of doublets.
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Figure S7: FACS purification of LEP and MEP cells from bulk HMECs, related to Experimental Methods  
Bulk HMECs were labeled with FITC anti-EpCAM and APC-Cy7 anti-CD49f to identify and isolate LEPs and MEPs. 
LEPs are identified as EpCAM high and CD49f low, while MEPs are CD49f high and EpCAM low. Gating strategy 
causes minor cell type impurities in final sorted population. See methods for full details.
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Figure S8: Bioanalyzer traces of representative MULTI-seq barcode library, related to Experimental Methods  
(A) Bioanalyzer traces following cDNA amplification and MULTI-seq barcode enrichment using 3.2X SPRI with 1.8X 

100% isopropanol exhibits two distinct peaks. The first peak (p1) is an average of 65-70bp in length and likely 
corresponds to barcodes amplified via the MULTI-seq additive primer. The second peak (p2) is an average of 
100bp in length and likely corresponds to barcodes that successfully underwent MMLV-RTase template switching 
and were subsequently amplified by the standard 10X Genomics Single Cell V2 primer. Considering the low 
efficiency of template switching relative to processive reverse transcription, the abundance difference of the two 
peaks fits expectations. 


(B) Bioanalyzer analysis following library preparation PCR exhibits one distinct peak (p3) with an average length of 
173bp, matching expectations.


(C) Schematic illustrating the two species of reverse-transcribed MULTI-seq barcodes with and without template 
switching. Processive reverse-transcription without template switching (p1) is more likely than reverse-transcription 
with template switching (p2), resulting in relative enrichment of the 65-70bp product following cDNA amplification.
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Sample %Human IN %Human OUT %Mouse IN %Mouse OUT

A 66.7 91.7 33.3 8.3

B 71.4 91.9 28.6 8.1

C 62.7 55.6 37.3 44.4

D 17.9 4.1 81.1 95.9

E 7.6 3.5 92.4 96.5

F 0.4 1.4 99.6 98.6

G 0.9 2.2 99.1 97.8

Table S2: Proportion of mouse and human cells loaded into the 10X  
microfluidics device relative to in the final dataset, related to Figure 2

GeneID p (bimod) Description

MIF 0 Macrophage Migration Inhibitory Factor

TOMM5 0 Translocase of outer mitochondrial membrane 5

RPL17 0 Ribosomal Protein L17

NME1-NME2 0 Nucleoside Diphosphate Kinase (NME1-NME2) Read-Through

KRTCAP2 3.7E-305 Keratinocyte Associated Protein 2

RPS10 1E-277 Ribosomal subunit protein

RPL36A 2.9E-123 Ribosomal subunit protein

Table S1: List of all differentially expressed genes between MULTI-seq  
barcoded and un-barcoded control cells, related to Figure 1

Table S3: Marker analysis on full MEP and LEP subsets detects proliferative and resting cell states,  
related to Figure 4

LEP — Proliferative
Gene ID p (Bimod) ROC AUC

H2AFZ 0 0.007

TUBA1B 0 0.015

HMGN2 0 0.016

KIAA0101 0 0.023

RANBP1 0 0.024

BIRC5 0 0.039

DEK 0 0.041

ANP32B 0 0.045

DTYMK 0 0.049

HMGB1 9.6E-286 0.058

Gene ID p (Bimod) ROC AUC

NEAT1 0 0.954

MALAT 2.3E-258 0.929

PERP 8.3E-257 0.923

ALDH1A3 2.2E-267 0.921

FN1 4.2E-274 0.911

CDKN2B 3.5E-216 0.902

CST6 6.9E-205 0.897

ITGB6 1.9E-204 0.895

DSP 2.9E-187 0.886

LEP — Resting
Gene ID p (Bimod) ROC AUC

FN1 0 0.084

FBXO32 0 0.111

PSAP 0 0.121

CPA4 0 0.171

MYLK 0 0.14

TAGLN 0 0.125

FTH1 0 0.062

CTGF 0 0.191

SERPINE1 0 0.213

TIMP3 0 0.202

Gene ID p (Bimod) ROC AUC

HIST1H4C 0 0.865

H2AFZ 0 0.866

DEK 0 0.868

HMGA1 0 0.92

HMGB1 0 0.882

HMGN2 0 0.859

TOP2A 0 0.756

KIAA0101 0 0.844

MT1E 0 0.86

MT2A 0 0.885

MEP — Resting MEP — Proliferative
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Table S4: Marker analysis on resting MEPs and LEPs grouped by co-culture status detects TGF-β
signaling-associated transcriptional response in co-cultured MEPs and LEPs, related to Figure 4

Gene ID p (Bimod) ROC AUC

KRT6A 9.3E-57 0.368

CAST 5.5E-56 0.312

LGALS1 9E-49 0.34

KRT5 3.1E-45 0.327

SPARC 1.4E-44 0.364

CPA4 3E-40 0.358

GAPDH 1.4E-35 0.346

LDHA 3;1E-34 0.345

TGFBI 1.1E-31 0.363

THBS1 1.4E-31 0.369

Gene ID p (Bimod) ROC AUC

ANKRD36C 8.4E-57 0.636

REL 1.3E-54 0.64

CENPW 2.4E-51 0.575

CTSH 4.5E-47 0.629

MEIS2 9.2E-45 0.592

TMC5 1E-44 0.605

CST6 4.6E-43 0.664

BHLHE41 2E-40 0.62

SMS 2.6E-37 0.615

CEACAM6 7E-36 0.6

LEP — LEP aloneLEP — LEP+MEP
Gene ID p (Bimod) ROC AUC

TGFBI 2E-76 0.245

NNMT 1.5E-39 0.294

CTSB 5.8E-36 0.348

KRT18 3E-35 0.31

IFITM3 1.1E-33 0.301

C12orf75 3.3E-32 0.309

CCDC80 1.8E-29 0.34

CALD1 2.1E-22 0.339

KRT8 2.6E-21 0.346

RBP1 7.1E-21 0.338

Gene ID p (Bimod) ROC AUC

IGFBP2 5.3E-38 0.676

S100A6 1.4E-32 0.678

ALDH1A3 6.6E-28 0.662

U47924.27 4E-27 0.634

SNORA76 3.5E-23 0.625

ENC1 1.2E-16 0.635

C10ORF10 4E-14 0.628

CYP1B1 6E-12 0.627

CRYAB 1.8E-07 0.605

MEP — MEP aloneMEP — LEP+MEP

Table S5: Marker analysis on MEPs and resting LEPs grouped by growth factor supplementation detects  
EGFR-associated transcriptional responses in AREG- and EGF-stimulated cultures, related to Figure 4

Gene ID p (Bimod) ROC AUC

CCND1 2.3E-195 0.717

DCBLD2 3E-99 0.662

DUSP4 1E-92 0.660

F3 1.1E-69 0.635

MALL 2.5E-69 0.636

PHLDA1 9.3E-66 0.636

THBS1 2.5E-59 0.626

LAMC2 3.7E-44 0.602

KRT81 7.8E-38 0.605

SERPINE1 2.1E-16 0.565

Gene ID p (Bimod) ROC AUC

CCDC80 2.9E-131 0.361

FBX032 1E-116 0.338

CENPW 4.5E-113 0.391

GPX4 4.6E-88 0.344

SPTSSA 7.8-85 0.418

TMC5 3.7E-75 0.406

MMP7 7.1E-72 0.382

REL 4.7E-71 0.413

RARRES1 2.3E-61 0.368

NEAT1 2E-60 0.370

LEP — EGFRLEP — Control
Gene ID p (Bimod) ROC AUC

ANGTPL4 0 0.674

ADIRF 0 0.698

UPP1 0 0.706

SLC20A1 0 0.701

FERMT1 0 0.63

HMGA1 5.2E-269 0.666

PTHLH 7.9E-195 0.636

TFPI2 3.3E-180 0.596

S100A6 3.9E-177 0.63

G032 2.6E-145 0.59

Gene ID p (Bimod) ROC AUC

CALD1 0 0.296

TPM1 0 0.286

HSPB1 0 0.25

MYLK 0 0.361

TPM2 6.9E-305 0.319

TAGLN 2.7E-278 0.324

MYL9 2.2E-277 0.327

KRT17 1E-269 0.332

KLK7 1.97E-251 0.353

CDC42EP3 1.6-242 0.382

MEP — EGFRMEP — Control
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