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Abstract

Introduction
Untargeted metabolomics datasets contain large proportions of uninformative features and are
affected by a variety of nuisance technical effects that can bias subsequent statistical analyses.
Thus, there is a need for versatile and data-adaptive methods for filtering and normalizing
data prior to investigating the underlying biological phenomena.

Objectives
Here, we propose and evaluate a data-adaptive pipeline for metabolomics data that are gen-
erated by liquid chromatography-mass spectrometry platforms.

Methods
Our data-adaptive pipeline includes novel methods for filtering features based on blank sam-
ples, proportions of missing values, and estimated intra-class correlation coefficients. It also
incorporates a variant of k-nearest-neighbor imputation of missing values. Finally, we adapted
an RNA-Seq approach and R package, scone, to select an appropriate normalization scheme
for removing unwanted variation from metabolomics datasets.

Results
Using two metabolomics datasets that were generated in our laboratory from samples of hu-
man blood serum and neonatal blood spots, we compared our data-adaptive pipeline with
a traditional filtering and normalization scheme. The data-adaptive approach outperformed
the traditional pipeline in almost all metrics related to removal of unwanted variation and
maintenance of biologically relevant signatures. The R code for running the data-adaptive
pipeline is provided with an example dataset at https://github.com/courtneyschiffman/
Data-adaptive-metabolomics.
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Conclusion
Our proposed data-adaptive pipeline is intuitive and effectively reduces technical noise from
untargeted metabolomics datasets. It is particularly relevant for interrogation of biological
phenomena in data derived from complex matrices associated with biospecimens.

Keywords: Metabolomics, Filtering, Normalization, Pre-processing, Data-adaptive

1 Introduction

Fig. 1 Flowchart of a data-adaptive
filtering and normalization pipeline for
untargeted metabolomics data.

Metabolomics represents the small-molecule phenotype
that can be objectively and quantitatively measured in
biofluids such as blood serum/plasma, urine, saliva, or
tissue/cellular extracts (Chen et al., 2011; Escriva et al.,
2017; Reinke et al., 2017; Want et al., 2013). Untargeted
metabolomics studies allow researchers to characterize
the totality of small molecules in a set of biospecimens
and thereby discover metabolites that discriminate across
phenotypes (Chen et al., 2011; Reinke et al., 2017; Scov-
ille et al., 2018). Among the techniques employed for un-
targeted metabolomics, liquid chromatography-high res-
olution mass spectrometry (LC-HRMS) has become the
analytical tool of choice due to its high sensitivity, sim-
ple sample preparation, and broad coverage of small
molecules (Spicer et al., 2017; Want et al., 2013). How-
ever, many of the thousands of features detected by
untargeted metabolomics are not biologically interest-
ing because they represent multiple signals arising from
the same analyte (adducts, isotopes, in-source fragmen-
tation) and background signals from sample processing
(Mahieu and Patti, 2017). Furthermore, metabolomic
features are measured with multiple sources of technical
variation, defined here as any random or fixed unwanted
variability related to the measurement process. Exam-
ples of technical variation include perturbations in LC-
HRMS runs (e.g., variation in retention times and mass
accuracy) and identifiable factors such as batch and run-
order (De Livera et al., 2015; Herman et al., 2017; Patterson et al., 2016). Technical variation
requires a set of preprocessing methods for filtering noise and normalizing features to adjust for
biases prior to investigating the biological phenomena of interest. Furthermore, while many normal-
ization techniques, such as linear regression (Ganna et al., 2016) and removal of unwanted variation
(RUV) (Risso et al., 2014), have been proposed for use with metabolomics data, they have not been
applied in a data-adaptive manner. In what follows, we present a series of steps (Fig. 1) represent-
ing a data-adaptive pipeline for filtering and normalizing untargeted metabolomics data prior to
discovering common metabolites of potential interest, i.e., those that are present in most samples
from contrasting populations. A data-adaptive pipeline is one which tailors filtering, imputation
and normalization to the specific characteristics of a given data set, rather than using predefined
methods. Using two untargeted LC-HRMS metabolomics datasets, we compare our approach to a
traditional preprocessing pipeline and show that it more successfully uncovers meaningful biological
phenomena.

2 Data-adaptive filtering and imputation

2.1 Log transformation and outlier detection
Feature abundances are transformed with the natural logarithm prior to filtering and normalization.
Next, outlier samples are removed using the pcaOutId function from the MetMSLine R package
(Edmands et al., 2015). This function uses a principle component score plot and Hotelling’s T-
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(a) All features (b) Features in 3 blank samples

Fig. 2 Filtering features based on blank sample abundances, NBS dataset. Mean-difference plots
(MD-plots) of log abundances for the first batch of the neonatal blood spot (NBS) dataset described
below (Petrick et al., 2017). (a) Four clusters of features are present: those detected in 3, 2, 1,
and none of the blank samples. (b) Filtering thresholds for the cluster corresponding to features
detected in all 3 blank samples.

squared distribution ellipses to identify outliers. If the dataset contains multiple batches of samples,
this procedure should be performed separately for each batch.

2.2 Filtering features based on blank samples
Blank control samples, which are obtained from the solvents and media used to prepare biological
samples, can pinpoint background features that contribute to technical variation (Chen et al., 2011;
Herman et al., 2017; Patterson et al., 2016; Want et al., 2013). A typical filtering method is to
use a fold-change (biological signal/blank signal) cutoff to remove features that are not sufficiently
abundant in biological samples (Chen et al., 2011). Rarely does the user examine the data to
determine a suitable cutoff and a predetermined value of two to five is typically applied. We
employ a data-adaptive procedure that takes into account the number of blank samples in which
each feature is detected and then assigns cutoffs according to the background noise. If the dataset
contains several batches, filtering is performed batch-wise.

We use a mean-difference plot (MD-plot) to visualize the relationship between feature abun-
dances in the blank and biological samples and assess background noise (Fig. 2). The mean
abundances of each feature in the biological and blank samples are calculated and the average
of and difference between these two means are then plotted on the x- and y-axes, respectively.
The horizontal zero-difference line (black line in Fig. 2) represents the cutoff between features
having higher mean abundances in the blank samples and those having higher mean abundances
in the biological samples. If there are n blank samples in a batch, then n + 1 clusters of features
will typically be visually identifiable in the MD-plot, where cluster i = 0, . . . , n is composed of
features that are detected in i blank samples (Fig. 2a). Filtering is performed separately for each
cluster and features that are detected in none of the blank samples (cluster 0) are retained. For
the remaining clusters, those that have non-uniform distributions of mean feature abundances are
partitioned based on quantiles (20th, 40th, 60th, and 80th percentiles) of the empirical distribution
of mean abundances (x-axis) (Fig. 2b). This ensures that each partition has the same number of
features and that the features are uniformly distributed throughout the dynamic range. Within
each partition, the empirical distribution of abundances below the zero-difference line is used to
estimate the technical variation above that line and the absolute value (green lines in 2b) of the
empirical first quartile of the negative mean differences (red lines in 2b) is used as a cutoff to
remove uninformative features. Although it is possible for background signal to modify biological
signal (e.g., via ion suppression), we do not consider this source of variability.

2.3 Filtering features by percent missing
Low-abundance metabolomic features tend to have large numbers of undetected values across
samples. A common way to handle undetected values is to use functions in standard metabolomics
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(a) Proportion undetected (b) ICC

Fig. 3 Filtering features by percent missing and ICC using Gaussian kernel density plots, NBS
dataset. Gaussian kernel density plots of (a) the proportion of undetected values and (b) the
estimated intra-class correlation coefficient (ICC) for each feature in the first batch of the NBS
dataset (Petrick et al., 2017). Features with more than 20% undetected values or ICC less than
0.2 are removed.

processing software, such as fillPeaks in the XCMS package, that impute values by integrating the
background signal in the chromatographic region of the peak group (Ganna et al., 2016; Smith et al.,
2006). However, in practice, some undetected values can remain unfilled even after using fillPeaks,
thereby motivating removal of features with more than a predefined threshold of undetected values
(e.g., 20%) (Reinke et al., 2017).

Because here we are focusing on common metabolites, we bypass the fillPeaks function and
instead remove features with a high proportion of missing values. A data-adaptive cutoff is defined
based on a Gaussian kernel density plot of the proportion of undetected values across all biological
samples. Interestingly, both of the datasets evaluated in the results section, as well as other datasets
collected in our laboratory, have density plots showing a similar bimodal pattern and suggesting a
natural cutoff at 20% of undetected values for common features, retaining features near the first
mode (Fig. 3a). It is not clear if this is a general or instrument-specific cutoff because all of our
datasets were collected on the same analytical platform. Regardless, this density plot can easily
be generated to determine an appropriate percent-missing cutoff for any dataset.

2.4 Data imputation
The next step is to impute values for undetected features. Common imputation methods in
metabolomics employ the limit of detection, the minimum abundance detected for each feature,
k-nearest-neighbor (k-NN) imputation, or probabilistic principal component analysis (PPCA) (Xia
and Wishart, 2016).

We prefer k-NN imputation because it is data-adaptive and has performed well for high-
dimensional and left-censored datasets (Do et al., 2018; Troyanskaya et al., 2001). To arrive
at the imputed value, our pipeline seeks all k nearest-feature neighbors that are non-missing and
averages their values (see Online Resource). Since features with undetected values tend to have
low abundances, we select k as follows: randomly sample features (we used 100) among those with
the lowest average abundances, set their abundances as missing in certain biological samples, im-
pute these abundances using several values of k, and choose the k with the smallest mean squared
error. We have found k = 5 to be a reasonable choice for untargeted metabolomics datasets in our
laboratory.

2.5 Filtering features by ICC
Typically, the coefficient of variation (CV) across pooled quality control (QC) samples is calculated
for each feature and those with a CV above a predetermined cutoff (e.g., 20-30%) are removed
(Patterson et al., 2016; Reinke et al., 2017; Want et al., 2013). However, filtering features based
solely on CV can remove some that are informative regarding the biology of interest. Instead, we
propose examining the proportion of between-subject variation to total variation, otherwise known
as the intraclass correlation coefficient (ICC) (Searle et al., 2006). A large ICC for a given feature
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would suggest that much of the total variation is due to biological variability and vice versa.
The method for estimation of the ICC employs the following one-way random effects model:

Yi,j = µj + bi,j + εi,j,k, (1)

where Yi,j is the abundance of feature j in subject i, µj is the overall average abundance of feature j,
bi,j is a random effect for feature j in subject i, and εi,j,k is a random error for replicate measurement
k for feature j in subject i. The ICC is calculated by taking the ratio of the estimated variance of
bi,j (between-subject variance) to the estimated variance of bi,j + εi,j,k (total variance). If replicate
specimens or LC-MS injections are analyzed for each subject, then application of Equation (1) is
straightforward. However, since metabolomics data are often collected with single measurements of
each biospecimen and employ repeated measurements of pooled QC samples to estimate precision,
then Equation (1) can be fit by treating the pooled QC samples as repeated measures from a
’pseudo-subject’.

As with the percent undetected values, a Gaussian kernel density plot of the estimated ICC
values is used to select a cutoff for filtering features. For our two benchmarking datasets described
in Section 4 and other datasets from our laboratory, we have observed a natural ICC cutoff of 0.2
(Fig. 3b), but an ICC density plot can be used to determine a suitable cutoff for a given dataset.
If multiple batches are involved, the final feature list represents the intersection of features from
all batches.

3 Data-adaptive normalization with scone
Each untargeted metabolomics dataset has a unique and often complex set of normalization require-
ments, such as adjustment for sample batch, run-order, processing and storage, dilution factors
(e.g., creatinine for urine or potassium for dried blood spots), and known experimental contami-
nants (Pupillo et al., 2016). Therefore, to objectively select a suitable scheme for normalizing a
given metabolomics dataset, we use the Bioconductor R package scone (Cole and Risso, 2017).
While originally developed for single-cell RNA-Seq, scone implements the following normalization
procedures that are immediately applicable to metabolomics data:

• global-scaling normalization, e.g., upper-quartile, DESeq (Anders and Huber, 2010), TMM
(Robinson and Oshlack, 2010);

• full-quantile normalization;

• regression of scaled and logged feature abundances on

– biological covariates of interest (e.g., disease status),
– known factors of unwanted variation (e.g., batch),
– estimated unknown factors of unwanted variation, as in RUV (Risso et al., 2014).

The scone package then evaluates each candidate scheme with metrics that gauge the removal of
unwanted variation and retention of wanted variation. See Section 4 for detailed descriptions of
the scone metrics.

4 Results and discussion
We compared our data-adaptive filtering and normalization pipeline to a more traditional pipeline,
based on web servers like MetaboAnalyst (Xia and Wishart, 2016), popular software such as XCMS
(Smith et al., 2006), and recent untargeted metabolomics studies (Cordeiro et al., 2018; De Livera
et al., 2015; Ganna et al., 2016; Want et al., 2013). This traditional pipeline employs the following
sequence:

1. The fillPeaks function from the XCMS software imputes most of the undetected values.

2. The pcaOutid function from the metsmline package removes outliers.

3. Features that remain undetected in more than 20% of the samples are removed.

4. Features with fold-changes (in biological vs. blank samples) less than five are removed.
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5. Pooled QC samples are normalized by median scaling and features with CV greater than 30
% are removed.

6. The remaining missing values are imputed with half of the minimum detected value.

7. Biological samples are scaled by their median value for normalization purposes.

8. The abundance of each normalized feature is natural log-transformed.

We compared the data-adaptive and traditional pipelines with two untargeted metabolomics
datasets generated in our laboratory with an LC-HRMS platform consisting of either an Agilent
1100 series or 1290 series LC coupled to an Agilent 6550 QToF mass spectrometer. One of these
datasets represents the metabolomes of 4.7-mm punches from archived neonatal blood spots (NBS)
of 400 control subjects that were obtained for the California Childhood Leukemia Study (Metayer
et al., 2013) from the California birth registry , as described in Petrick et al. (2017). The second
dataset contains the metabolomes of 122 serum samples from incident colorectal cancer (CRC) case-
control pairs as described in Perttula et al. (2016). For comparison purposes, we define a binary
biological factor of interest for each dataset, i.e., breastfeeding for the NBS (newborn infants are
fed at least once prior to collection of NBS) and CRC diagnosis for the serum samples. To compare
the two pipelines, we followed De Livera et al. (2015) and considered the presence and strength of
association of positive control metabolites relative to the other features for either breast feeding
(NBS) or case-control status (serum). Nominal p-value rankings were used to assess the relative
ranks of the positive controls. However, since the two pipelines resulted in different sets of final
features, the relative rankings should not be compared directly between the two pipelines. See the
Online Resource for details of p-value calculations.

The filtered and normalized datasets from the two pipelines were compared based on several
metrics borrowed from the scone package (referred to here as biosil, batchsil, pamsil, expqccor, and
expuvcor). The metrics biosil and batchsil employ the average silhouette width of sample clusters (a
measure of cluster ’tightness’) to assess the degree to which the pipeline maintains the biological
signal of interest (high biosil score) while reducing unwanted batch effects (low batchsil score).
The metric pamsil assesses the preservation of sample clustering structure in terms of the average
silhouette width of clusters obtained by applying partitioning around medoids (PAM) (Kaufman
and Rousseeuw, 1990) to the first three principal components of normalized abundances (a large
pamsil is preferred). The metrics expqccor and expuvcor represent R2 values from regressions of the
first three principal components of the final feature abundances on the first k principal components
of the known factors of unwanted variation or the first k estimated factors of unwanted variation,
respectively (lower scores for expqccor and expuvcor are preferred). See the Online Resource for
more details on the scone metrics.

Appropriately filtered and normalized datasets from a given pipeline should have relative log
abundances (RLA) centered at zero with small variability (De Livera et al., 2015). Therefore,
four additional metrics (rlemed1, rlemed0, rleiqr1, and rleiqr0 ) were used to measure the median
RLA and variance of the inter-quartile range within biological groups of interest. When data are
suitably normalized, the distribution of p-values from testing associations of feature abundances
with a given biological factor should be mostly uniform, with a peak near zero for associated
features (De Livera et al., 2015). Thus, we assessed the uniformity of the distribution of p-values
using quantile-quantile plots (QQ-plots). Visualization of the first and second principal components
of the final filtered and normalized abundances were also used to assess the removal of unwanted
variation.

4.1 Metabolomics of neonatal blood spots
Over 60,000 features were initially measured in each of 400 NBS samples that were analyzed in four
batches (along with blank and QC samples). Because the biological factor of interest is breastfeed-
ing, two fatty acids that are abundant in breast milk, i.e., palmitoleic acid and docosahexaenoic
acid (DHA) (Chuang et al., 2013; Gardner et al., 2017), were used as positive controls, selected
prior to any analysis. Known sources of technical variation in these samples include NBS age,
potassium level (a measure of hematocrit), run-order, and batch (De Kesel et al., 2014; Pupillo
et al., 2016).
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4.1.1 Traditional pipeline

For the traditional pipeline, the vast majority of features passed the maximum 20% missing values
cutoff (Fig. 5a) because the fillPeaks function imputed most undetected values. However, because
features with large proportions of imputed values had low average abundances, filtering by a fold-
change cutoff of five reduced the number of features (Fig. 5a) from over 60,000 to 8,726, and
further filtering by a CV cutoff of 30% resulted in a final set of 1,349 features. The positive control
metabolite palmitoleic acid was not included in this final dataset because its CV of 36% exceeded
the preassigned cutoff of 30%. The other positive control (DHA) was present in the final dataset at
an average level that was 1.3 times higher in breastfed babies and ranked 32nd among all features
in terms of strength of association with breastfeeding.

4.1.2 Data-adaptive pipeline

For the data-adaptive pipeline, filtering by blank samples reduced the number of features from
60,000 to 25,000, subsequent filtering by a cutoff of 20% missing in each batch (Fig. 3a) resulted
in 1,607 features, and the final filtering by an ICC cutoff of 0.2 resulted in a total of 1,070 features
(Fig. 3b). Palmitoleic acid had the eighth smallest p-value among all features when testing for
association with breastfeeding and was present at an average level that was 1.4 times higher in
breastfed infants. DHA was also present in the final dataset and ranked 97th among all features for
association with breastfeeding, with an average level that was 1.2 times higher in breastfed infants.
The top normalization scheme ranked by scone included no global-scaling and regression-based
adjustment for six estimated factors of unwanted variation.

4.1.3 Pipeline comparison

The data-adaptive pipeline outperformed the traditional pipeline for eight out of the nine scone and
RLA metrics, which assessed the degree to which unwanted variation from batch, run-order, spot
age, and potassium level was removed, and thereby enhanced associations with breastfeeding status
(see Online Resource). Only the scone metric pamsil, a measure of sample heterogeneity based
on PAM clustering, was ranked more highly for the traditional pipeline. Although the QQ-plots
were similar for both pipelines, the p-value distribution was more uniform for the data-adaptive
pipeline, with a departure near zero related to features associated with breastfeeding (see Online
Resource). Principal component plots also show that the data-adaptive pipeline was more effective
at removing unwanted variation by filtering and normalization (Fig. 4a,b). Both positive-control
metabolites were retained by the data-adaptive pipeline and were ranked relatively highly (i.e.,
among the smallest p-values), whereas the traditional pipeline only retained DHA that was also
ranked relatively highly.

4.2 Metabolomics of serum samples
Over 20,000 features were detected in the 122 serum samples (61 incident cases, 61 controls) that
were analyzed in two batches (Perttula et al., 2016). Fifty-two of the samples in the first batch
were contaminated by additives that resulted from gelled serum, thereby introducing an additional
known source of technical variation into the data. Sample age was not considered as a source of
variation, because all specimens were collected during a small time window and were stored in
liquid nitrogen soon after collection. As positive controls for CRC, we used eight ultra-long-chain
fatty acids (ULCFA 446, 448, 466, 468, 492, 494, 538, 594), that had previously been shown to be
present at lower levels in CRC cases than controls in several cross-sectional studies as well as in
this set of samples (summarized by Perttula et al. (2016)).

4.2.1 Traditional pipeline

In the traditional filtering pipeline, most features (20,830) again passed the 20% missing cutoff
(Fig. 5a). However, filtering by a fold-change of five reduced the number of features to 13,391
and filtering by CV less than 30% further reduced the number to 2,536. Five of the eight positive
controls (ULCFA 446, 466, 468, 492, 494) were removed because their CV values were above
30% (34.6%, 41.6%, 34.5%, 42.5%, 33.2%, respectively). The three remaining positive controls
(ULCFA 448, 538, 594) ranked 1210th, 1039th, and 2045th in terms of p-values, respectively, with
case-control fold-changes of 0.87, 0.85, and 0.94.
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(a) Traditional, NBS (b) Data-adaptive, NBS

(c) Traditional, serum samples (d) Data-adaptive, serum samples

Fig. 4 Traditional and data-adaptive filtering and normalization, NBS and serum datasets. Prin-
cipal component plots for the NBS (Petrick et al., 2017) and serum (Perttula et al., 2016) datasets
after traditional and data-adaptive filtering and normalization. Samples are color-coded by batch.

4.2.2 Data-adaptive pipeline

In the data-adaptive pipeline, filtering based on blank abundances left 17,692 features; the ma-
jority of these (around 17,000) were then removed because more than 20% of their values were
missing (Fig. 5b). Filtering by ICC values removed an additional 77 features, leaving 378 in the
final dataset. The top normalization scheme ranked by scone included DESeq global scaling and
regression-based adjustment for batch, gel contamination, and run-order. Four positive controls
(ULCFA 446, 468, 538, 594) were retained in the final dataset, with p-values ranking 22nd, 2nd,
12th, and 187th and case-control fold-changes of 0.75, 0.73, 0.79, and 0.90, respectively. Three
of the positive controls (ULCFA 466, 492, 494) were removed because they contained over 80%
missing values in the second batch and one was removed with an ICC of 0.18 (ULCFA 448).

4.2.3 Pipeline comparison

The data-adaptive pipeline outperformed the traditional pipeline for six of the nine metrics con-
cerning removal of unwanted variation (e.g., batch, gel contamination, run-order) and charac-
teristics of RLA distributions, and tied with the traditional pipeline for the rleiqr1 metric (see
Online Resource). The traditional processing had higher scores for only the biosil and pamsil
metrics. Although QQ-plots of p-values for both pipelines showed heterogeneous distributions, the
lack of homogeneity was more severe for the traditional pipeline (see Online Resource). Principal
component plots showed pronounced batch and gel-contamination effects in the dataset from the
traditional pipeline, but not in that from the data-adaptive pipeline (Fig. 4c,d). All three positive
controls retained by the traditional pipeline had relatively low ranking p-values (1040th, 1199th,
and 2045th), whereas three of the positive controls retained by the data-adaptive pipeline had high
ranking p-values (2nd, 12th, and 22nd). ULCFAs 468 and 446, which ranked 2nd and 22nd in the
data-adaptive pipeline, were removed by the traditional pipeline because their CV were above 30%.
ULCFA 448 was retained by the traditional pipeline but not the data-adaptive pipeline because it
had a small ICC value (0.18) and unsurprisingly ranked 1210th in terms of p-values.
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(a) Traditional (b) Data-adaptive

Fig. 5 Traditional and data-adaptive filtering steps, NBS and serum datasets. The percentage of
total features retained in each step of the (a) traditional and (b) data-adaptive filtering pipelines,
for the NBS (Petrick et al., 2017) and serum (Perttula et al., 2016) datasets.

4.3 Discussion
Comparisons between our data-adaptive pipeline and a more traditional approach for preprocessing
metabolomics data suggest that the data-adaptive pipeline offers several advantages. Although
both pipelines have ’high-impact’ filtering steps that remove large proportions of data (Fig. 5), the
traditional pipeline is more likely to remove biologically informative features. For example, of the
roughly 21,000 features in the NBS dataset that were not detected in any of the blank samples, only
6,000 were retained by the traditional pipeline after fold-change filtering with a cutoff of five (Fig.
5a). This massive loss of potentially interesting features would only have been partially rectified by
reducing the fold-change cutoff from five to two or three because the median fold-change for these
21,000 features was 2.43. In contrast, the data-adaptive pipeline necessarily retained all features
that were not detected in any of the blank samples (Fig. 5b).

Filtering by the coefficient of variation (a measure of relative variability) in the traditional
pipeline also greatly reduced the number of potentially important features (Fig. 5a). Indeed, a CV
cutoff of 30% removed positive controls from both datasets (palmitoleic acid and ULCFA 446, 466,
468, 492, 494 for the NBS and serum samples, respectively). In contrast, data-adaptive filtering by
the proportion of between-subject variation to total variation (ICC) removed fewer features (Fig.
5 b) while retaining both positive controls in the NBS samples and four of the eight ULCFAs in
the serum samples. We interpret this to mean that some imprecisely-measured features differed
substantially across subjects and, therefore, held meaningful biological information.

Besides the high-impact filtering steps, another notable difference between the two pipelines is
the inclusion of the scone framework to objectively normalize features abundances prior to statis-
tical analyses such as feature selection or sample-class prediction. As is typical with untargeted
metabolomics, both datasets contained considerable technical variation due to long sample runs,
batch effects, contamination, etc. Such complex sources of unwanted variation require normaliza-
tion schemes that are more aggressive than global scaling as applied by the traditional pipeline
(Fig. 4a,c), and demand a framework for objectively comparing different approaches. Indeed, for
both datasets, scone motivated informed normalization that outperformed the traditional pipeline
for all metrics involving removal of unwanted variation (see Online Resource).

The handling of undetected features also has important implications. Whereas the traditional
pipeline employed the fillPeaks function to impute baseline abundances for undetected samples,
the data-adaptive pipeline employed k-NN to impute abundances for features with fewer than 20%
missing values. By invoking fillPeaks at the outset, the traditional pipeline inflates the percentage
of imputed values in any final list of features beyond an arbitrary cutoff of say 20%, a cutoff we
found to be reasonable for our two datasets (Fig. 3). For example, after applying the traditional
pipeline to the NBS dataset, half (675) of the final 1,349 features had more than 34% values
imputed by fillPeaks in at least one of the four batches compared to only nine of the 1,070 final
features from the data-adaptive pipeline having 20% values imputed by k-NN. Furthermore, we
have observed that metabolomic features with large proportions of undetected values tend to
have poorly integrated peaks and low mean abundances that can complicate subsequent analyses.
By removing such features, the data-adaptive pipeline arguably provides more robust data for
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statistical analyses and enhances the prospects for annotation (see Online Resource).
The data-adaptive pipeline can be modified to suit the specific goals of each untargeted metabolomics

study, such as the discovery of rare metabolites. In such a study, the minimum number of samples
required for a peak group to be present in (e.g., the minfrac parameter in the XCMS software)
can be lowered, the absolute value of the empirical median (rather than the first quartile) can be
used as a cutoff when filtering by blank sample abundances, and a higher proportion of undetected
values can be allowed (e.g., 80% in Fig. 3a). A step can also be added to the data-adaptive
pipeline to retain features with missing values that are differentially expressed across biological
groups of interest, e.g., features that are mostly missing among controls but not incident cases.
These modifications to the data-adaptive pipeline would result in considerably more features, but
with higher proportions of missing values that can complicate subsequent statistical analyses.

5 Conclusions
Untargeted metabolomics generates data with varied sources of technical noise – some unique to a
given study – that benefit from data-adaptive preprocessing prior to statistical analyses. Here, we
provide one such pipeline and demonstrate that it removes unwanted variation while maintaining
biological variability in metabolomic features. When compared to a traditional metabolomics
pipeline, the data-adaptive approach performed better for essentially all objective criteria including
scone metrics, RLA metrics, lack of clustering of samples by unwanted factors in PC plots, and
retention of positive-control metabolites.
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