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Abstract  35	
  
A major challenge in genomics is the knowledge gap between sequence and its 36	
  
encoded function. Gain-of-function methods based on gene overexpression are 37	
  
attractive avenues for phenotype-based functional screens, but are not easily applied in 38	
  
high-throughput across many experimental conditions. Here, we present Dual Barcoded 39	
  
Shotgun Expression Library Sequencing (Dub-seq), a method that greatly increases the 40	
  
throughput of genome-wide overexpression assays. In Dub-seq, a shotgun expression 41	
  
library is cloned between dual random DNA barcodes and the precise breakpoints of 42	
  
DNA fragments are associated to the barcode sequences prior to performing assays. To 43	
  
assess the fitness of individual strains carrying these plasmids, we use DNA barcode 44	
  
sequencing (BarSeq), which is amenable to large-scale sample multiplexing. As a 45	
  
demonstration of this approach, we constructed a Dub-seq library with total Escherichia 46	
  
coli genomic DNA, performed 155 genome-wide fitness assays in 52 experimental 47	
  
conditions, and identified 813 genes with high-confidence overexpression phenotypes 48	
  
across 4,151 genes assayed. We show that Dub-seq data is reproducible, accurately 49	
  
recapitulates known biology, and identifies hundreds of novel gain-of-function 50	
  
phenotypes for E. coli genes, a subset of which we verified with assays of individual 51	
  
strains. Dub-seq provides complementary information to loss-of-function approaches 52	
  
such as transposon site sequencing or CRISPRi and will facilitate rapid and systematic 53	
  
functional characterization of microbial genomes. 54	
  
 55	
  
 56	
  
Importance  57	
  
Measuring the phenotypic consequences of overexpressing genes is a classic genetic 58	
  
approach for understanding protein function; for identifying drug targets, antibiotic and 59	
  
metal resistance mechanisms; and for optimizing strains for metabolic engineering. In 60	
  
microorganisms, these gain-of-function assays are typically done using laborious 61	
  
protocols with individually archived strains or in low-throughput following qualitative 62	
  
selection for a phenotype of interest, such as antibiotic resistance. However, many 63	
  
microbial genes are poorly characterized and the importance of a given gene may only 64	
  
be apparent under certain conditions. Therefore, more scalable approaches for gain-of-65	
  
function assays are needed. Here, we present Dual Barcoded Shotgun Expression 66	
  
Library Sequencing (Dub-seq), a strategy that couples systematic gene overexpression 67	
  
with DNA barcode sequencing for large-scale interrogation of gene fitness under many 68	
  
experimental conditions at low cost. Dub-seq can be applied to many microorganisms 69	
  
and is a valuable new tool for large-scale gene function characterization. 70	
  

71	
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INTRODUCTION 72	
  
 73	
  
Advances in DNA sequencing have had a tremendous impact on microbial genomics, 74	
  
as thousands of genomes have now been sequenced1. However, only a small fraction 75	
  
of these microorganisms have been experimentally studied and as such, our predictions 76	
  
of gene function, metabolic capability, and community function for these 77	
  
microorganisms are based largely on automated computational approaches2. 78	
  
Unfortunately, many of these computational predictions are incomplete or erroneous, 79	
  
especially in instances where the homology of a sequenced gene is too distant from any 80	
  
experimentally characterized relative3. To bridge this gap between sequencing and 81	
  
functional characterization, it is imperative that large-scale, inexpensive, and organism-82	
  
agnostic tools are developed and applied4. 83	
  
  84	
  
A number of large-scale approaches based on loss-of-function genetics have been 85	
  
developed for microorganisms including gene-knockout libraries5-9, recombineering 86	
  
based methods10,11, transposon mutagenesis coupled to next-generation sequencing 87	
  
(TnSeq)12,13, and CRISPR interference (CRISPRi)14. Collectively, these strategies all 88	
  
rely on measuring the phenotypic consequences of removing a gene from a 89	
  
microorganism and inferring protein function based on these phenotypes.  An 90	
  
adaptation of TnSeq that incorporates and uses random DNA barcodes (RB-TnSeq) to 91	
  
measure strain abundance in a competitive growth assay13 has recently been applied 92	
  
on a larger scale to identify mutant phenotypes for thousands of genes across 32 93	
  
bacteria15. Despite their utility, these loss-of-function approaches suffer some 94	
  
limitations: only CRISPRi is effective for interrogating essential genes under multiple 95	
  
conditions, it is challenging to identify phenotypes for genes with redundant functions 96	
  
using single mutants, and these approaches require some degree of genetic tractability 97	
  
in the target microorganism. 98	
  
  99	
  
A complimentary approach for studying gene and organism function is to generate gain-100	
  
of-function overexpression libraries and analyze the phenotypic consequences of 101	
  
increased gene dosage. Indeed, the impact of enhanced gene dosage on adaptation 102	
  
and evolution are well documented across all three kingdoms of life and have been 103	
  
shown to be an important contributor to numerous diseases and drug-resistance 104	
  
phenotypes16-18. Overexpression as a genetic tool has a rich history of connecting 105	
  
genes to cellular functions and has been exploited as a versatile screening technique to 106	
  
identify drug targets16,19,20, antibiotic and metal resistance genes17,21,22, virus-resistance 107	
  
genes23, genetic suppressors24,25, as well as for a number of chemical genomics8,9 and 108	
  
biotechnology applications26-28. While a number of technologies have been developed 109	
  
for overexpression screens including defined open reading frame (ORF) libraries6,20,29 110	
  
and activation modes of recombineering30,31, transposon insertions32 or CRISPR 111	
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systems33, these strategies are limited, either due to the need for expensive and 112	
  
laborious generation of archived strains or the need for organism-specific genetic tools. 113	
  
 114	
  
A simpler alternative for overexpression screens is a shotgun library-based approach in 115	
  
which random DNA is introduced into a host organism for phenotyping and functional 116	
  
assessment. This approach has been widely used for studying increased-copy number 117	
  
effects on a desired phenotype26,27 and for activity-based screening of metagenomic 118	
  
samples34,35. Nevertheless, most shotgun expression libraries have only been assayed 119	
  
in a small number of conditions looking for a specific gene-function, and are often 120	
  
performed as qualitative selections on a plate34-36. Furthermore, current shotgun-based 121	
  
approaches typically require tedious and expensive sequencing and sample preparation 122	
  
protocols for identifying the selected gene(s)26,27,37,38. With arrival of next-generation 123	
  
sequencing technologies, all positive candidates can be pooled, and cloned regions can 124	
  
be amplified and sequenced in parallel39,40. Unfortunately, sequencing the cloned 125	
  
regions (to identify the genes conferring the phenotype) is labor intensive and may 126	
  
become cost-prohibitive if the overexpression library is being assayed in many 127	
  
conditions. As such, there is a need for high-throughput gain-of-function technology that 128	
  
is simple, quantitative, agnostic to source DNA, and which facilitates multiplexed 129	
  
quantification of fitness under hundreds of experimental conditions. 130	
  
  131	
  
Here we present a new method termed Dub-seq, or dual barcoded shotgun expression 132	
  
library sequencing, for performing high-throughput and quantitative gain-of-function 133	
  
screens. Dub-seq requires an initial characterization of the overexpression library by 134	
  
linking the genomic breakpoints of each clone to a pair of random DNA barcodes. 135	
  
Subsequent screens are performed using a competitive fitness assay with a simple 136	
  
DNA barcode sequencing and quantification assay (BarSeq41). As a demonstration of 137	
  
this approach, we generated an E. coli Dub-seq library and assayed the phenotypic 138	
  
consequences of overexpressing nearly all genes on E. coli fitness under dozens of 139	
  
experimental conditions. We show that Dub-seq yields gene fitness data that is 140	
  
consistent with known biology and also provides novel gene-function insights. We 141	
  
validate some of these new findings by overexpressing individual genes and quantifying 142	
  
these strains’ fitness. Given that only DNA and a suitable host organism for assaying 143	
  
fitness are necessary, Dub-seq can be readily extended to diverse functional genomics 144	
  
and biotechnology applications. 145	
  
  146	
  
 147	
  
 148	
  
 149	
  
 150	
  
 151	
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RESULTS 152	
  
 153	
  
Overview of Dub-seq 154	
  
The Dub-seq approach is summarized in Figure 1 and can separated into four different 155	
  
steps. First, a plasmid library is generated with pairs of random 20 nucleotide DNA 156	
  
sequences, termed the UP and DOWN barcodes. To link the identities of the two-157	
  
barcode sequences on each plasmid, Barcode-Pair sequencing (BPseq) is performed 158	
  
(Fig. 1a, Methods). Second, sheared genomic DNA from an organism under 159	
  
investigation is cloned between the previously associated UP and DOWN barcodes 160	
  
(Fig. 1b).  Third, the genomic fragment endpoints are mapped and associated with the 161	
  
two-barcode sequences using a TnSeq-like protocol13. We term this step Barcode-162	
  
Association-with Genome fragment by sequencing or BAGseq and the resulting plasmid 163	
  
library as the “Dub-seq” library (Fig. 1c). The BAGseq step requires two sample 164	
  
preparations to separately map genomic fragment junctions to the UP and DOWN 165	
  
barcodes. The BAGseq characterization generates a table of barcode sequences and 166	
  
the cloned chromosomal breakpoints at single-nucleotide resolution. Because the two 167	
  
random DNA barcodes have been previously associated, we can infer the exact 168	
  
sequence of each plasmid in the Dub-seq library if the sequence of the source DNA is 169	
  
known. Lastly, we introduce the Dub-seq plasmid library into a host bacterium and 170	
  
monitor the fitness of strains carrying these plasmids in a competitive fitness assay 171	
  
under a particular condition by PCR amplifying and quantifying the abundance of the 172	
  
DNA barcode sequences (BarSeq41, Fig. 1d).  In these pooled fitness experiments, the 173	
  
barcode abundance changes depending upon the fitness phenotype imparted by the 174	
  
barcode-associated-genome fragments. A data analysis pipeline yields fitness scores 175	
  
for individual strains (or “fragments”) and for each gene. These gene scores provide an 176	
  
assessment of the phenotypic consequence of overexpressing nearly all of the genes 177	
  
represented in the cloned DNA fragments. The advantage of Dub-seq is that it 178	
  
decouples the characterization of a shotgun overexpression library (which is more 179	
  
laborious) from the cheaper and simpler fitness determination step using BarSeq.  As 180	
  
such, a Dub-seq library can be readily assayed in hundreds of different experimental 181	
  
conditions. Dub-seq can be viewed as an overexpression-based, gain-of-function 182	
  
version of our previously described method for random barcode transposon-site 183	
  
sequencing (RB-TnSeq)13.  184	
  
 185	
  
Generation of E. coli Dub-seq library 186	
  
To generate a Dub-seq library, we used a broad host range vector with a pBBR1 187	
  
replication origin. We used standard molecular biology techniques to insert two random 188	
  
20 nucleotide barcode sequences on the plasmid, the UP and DOWN barcodes, that 189	
  
juxtapose a unique PmiI restriction enzyme site on the plasmid. Both the UP barcodes 190	
  
and DOWN barcodes contain common PCR priming sites for rapid amplification of all 191	
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barcodes from a pooled sample. We generated a dual barcoded vector library with 192	
  
~250,000 clones in E. coli and characterized this library by associating the barcode 193	
  
pairs using BPseq. The vector library of ~250,000 clones was sufficient to map unique 194	
  
barcode-pairs with confidence and also to yield a Dub-seq library in which each 195	
  
fragment will have a unique barcode (see below).  196	
  
 197	
  
To generate the E. coli Dub-seq library, we extracted E. coli (BW25113) genomic DNA, 198	
  
sheared to 3 kb fragment size, and cloned the fragments into the dual barcoded 199	
  
backbone vector digested with PmiI. The E. coli Dub-seq library encompasses ~40,000 200	
  
vectors, corresponding to about 8X coverage of the E. coli genome. In this study, we 201	
  
used the endogenous E. coli transcription and translation apparatus to drive the 202	
  
expression of the encoded gene(s) within each genomic fragment, although future 203	
  
studies could use inducible systems (for example, when the source of the cloned Dub-204	
  
seq DNA differs from the host bacterium for assaying fitness42). 205	
  
 206	
  
We next characterized the E. coli Dub-seq library using BAGseq, which identifies the 207	
  
cloned genome fragment and its pairings with the neighboring dual barcodes. As there 208	
  
are two barcodes for each Dub-seq library, we performed two separate BAGseq sample 209	
  
preparation steps, one for the UP barcodes and one for the DOWN barcodes. Briefly, 210	
  
BAGseq involves shearing of the Dub-seq plasmid library, end repair, Illumina adaptor 211	
  
ligation, PCR amplification of the junction between the barcode and genomic insert 212	
  
using primers that are complementary to one of the barcode-specific primer binding 213	
  
sites, and deep sequencing of these samples (modified from reference 11). After 214	
  
filtering out barcodes that mapped to more than one genomic fragment, we identified 215	
  
30,558 unique barcode pairs that we could confidently associate with a genomic 216	
  
fragment.  217	
  
 218	
  
In the E. coli Dub-seq library, the fragments are evenly distributed across the 219	
  
chromosome (Fig. 2a), the average fragment size is 2.6 kB (Fig. 2b), and the majority 220	
  
of fragments covered 2-3 genes in their entirety (Fig. 2c). 80% of genes in the E. coli 221	
  
genome are covered (from start to stop codon) by at least 5 independent genomic 222	
  
fragments in the Dub-seq library (Fig. 2d) and 97% of all genes are covered by at least 223	
  
one fragment. Just 135 genes are not covered in their entirety by any Dub-seq fragment 224	
  
(Supplementary Table 1). Many of these unmapped or uncovered genes encode 225	
  
membrane and ribosomal proteins and probably reflect the lethality of overexpressing 226	
  
these genes43. Other genes could not be confidently mapped because they are 227	
  
associated with repetitive regions. For example, we could not confidently map 228	
  
fragments covering ETT2 type III secretion system pathogenicity island and its regulator 229	
  
gene ygeH which has tetratricopeptide repeat motifs, while the neighboring protein-230	
  
coding genes are well mapped (Fig. 2a). Similarly, we could not map genes within 231	
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ribosomal RNA operons (example, rrlD, Fig. 2a), as E. coli encodes multiple nearly-232	
  
identical copies of these loci. Some large genes with length more than 3.5 Kb, such as 233	
  
rpoB, are not entirely covered by any fragments in our library, while other large genes 234	
  
such as acrB are covered by only one fragment (Fig. 2a).   235	
  
 236	
  
Of the E. coli protein-coding genes that are essential for viability when deleted5, 95% 237	
  
are completely covered by at least one fragment in the Dub-seq library (Supplementary 238	
  
Table 2). This demonstrates that the Dub-seq approach can interrogate genes that are 239	
  
not typically assayed for conditional phenotypes in loss-of-function approaches. There 240	
  
are only 17 protein-coding genes that are both essential for viability when deleted and 241	
  
absent from our Dub-seq library (Supplementary Table 2).  242	
  
 243	
  
Strain and gene fitness profiling using BarSeq 244	
  
The key advantage of Dub-seq is the ease of assessing the relative fitness contributions 245	
  
of all genes contained in the cloned genomic fragments using pooled, competitive 246	
  
growth assays. Depending on the assay condition and the gene(s) encoded by a 247	
  
genomic fragment, the relative abundance of a strain carrying that fragment can change 248	
  
due to its fitness advantage or disadvantage relative to strains carrying other fragments. 249	
  
Because the DNA barcodes have been previously associated to each genomic 250	
  
fragment, we can simply compare the relative abundance of each barcode before and 251	
  
after selective growth using DNA barcode sequencing or BarSeq41. 252	
  
 253	
  
As a demonstration of Dub-seq fitness assays and to illustrate our approach for 254	
  
calculating strain (fragment) and gene fitness scores, we recovered an aliquot of the E. 255	
  
coli Dub-seq library in LB to mid-log phase, collected a cell pellet for the “start” (or time-256	
  
zero sample), and used the remaining cells to inoculate an LB culture supplemented 257	
  
with 1.2 mM nickel. After growth in the presence of nickel, we collected a second cell 258	
  
pellet for the “condition” sample. We extracted plasmid DNA from the start and condition 259	
  
samples, PCR amplified the UP and DOWN DNA barcodes from each, and sequenced 260	
  
the DNA barcodes with Illumina. We calculate the fragment fitness score for each strain 261	
  
by taking the normalized log2 ratio of the number of reads for each barcode in condition 262	
  
sample versus the start sample (Fig. 1). Positive scores indicate that the gene(s) 263	
  
contained on that fragment lead to an increase in relative fitness, while negative values 264	
  
mean the gene(s) on the fragment reduced relative fitness. Scores near zero indicate no 265	
  
fitness reduction or benefit for the gene(s) under the assayed condition. As in previous 266	
  
work44, we find that fitness scores calculated with either UP barcodes or DOWN 267	
  
barcodes yield very similar results (r = 0.94, Supplementary Fig. 1ab). Therefore, we 268	
  
only sequenced the UP barcodes for all additional experiments in this study. 269	
  
 270	
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Given that multiple, causative and non-causative genes can be contained on a single 271	
  
fragment, to assign a fitness score to a particular gene it is necessary to examine the 272	
  
score of all fragments containing the gene. Here, we considered two different ways to 273	
  
estimate fitness score of a gene. The first approach was to simply take the average of 274	
  
all fitness scores for fragments that contained the gene in its entirety (the “mean” score). 275	
  
The second approach was to use a regression method for estimating gene fitness score 276	
  
so as to prevent genes from having artifactually high fitness scores if they were located 277	
  
near other causative genes. Specifically, we adopted non-negative least squares 278	
  
regression (the “regression” score) (see Methods). To illustrate how the mean and 279	
  
regression scores differ in practice, consider the gene fitness scores for two adjacent 280	
  
genes under elevated nickel stress, rcnA and rcnR (Fig. 3a and 3b). RcnA is a nickel 281	
  
efflux protein whose overexpression is known to lead to increased nickel tolerance45. 282	
  
Conversely, rcnR encodes a transcriptional repressor that weakly represses its own 283	
  
expression and that of rcnA, and the overexpression of rcnR alone is not expected to 284	
  
increase nickel tolerance45. While the mean and regression approaches both result in 285	
  
similar (and correct) high Dub-seq scores for rcnA (Fig. 3a), only the regression 286	
  
approach results in the correct, neutral fitness score for the rcnR (Fig. 3b). The mean 287	
  
score calculation approach leads to an artifactually high fitness score for rcnR because 288	
  
many of the fragments that contain this gene also contain the neighboring rcnA (Fig. 3b, 289	
  
Supplementary Figs. 2ab and 3ab). Based on these results and other examples 290	
  
(Supplementary Fig. 4) that we examined, we concluded that the optimal strategy was 291	
  
to use the regression method for calculating Dub-seq gene fitness scores (Methods).  292	
  
 293	
  
To assess the reproducibility of Dub-seq fitness assays, we compared the results 294	
  
obtained from independent samples. First, the number of sequencing read counts for 295	
  
each UP barcodes from the Dub-seq library from different start samples were highly 296	
  
correlated (Supplementary Fig. 1c). Likewise, between two biological replicates of the 297	
  
nickel stress experiment, we found a strong correlation for fragment fitness (r = 0.80; 298	
  
Fig. 3c) and for regression-based gene fitness (r =0.89; Fig. 3d). 299	
  
 300	
  
Fitness profiling across dozens of experimental conditions 301	
  
To demonstrate the scalability of Dub-seq, we performed 155 genome-wide pooled 302	
  
fitness experiments representing 52 different chemicals: 23 compounds as the sole 303	
  
source of carbon in a defined growth media and varying concentrations of 29 inhibitory 304	
  
compounds in rich media (Fig. 4). The inhibitory compounds included metals, salts, and 305	
  
antibiotics. For each of these assays, we compared the abundance of the UP barcodes 306	
  
before and after growth selection. We multiplexed 48 or 96 BarSeq PCR samples per 307	
  
lane of Illumina sequencing, at a sequencing cost of about $20 per genome-wide assay. 308	
  
In the typical condition sample, we obtained ~4.2 million BarSeq reads, representing 309	
  
~100 reads on an average for each clone in the Dub-seq plasmid library. We computed 310	
  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2018. ; https://doi.org/10.1101/387399doi: bioRxiv preprint 

https://doi.org/10.1101/387399
http://creativecommons.org/licenses/by-nd/4.0/


	
   9	
  

gene fitness scores (using the regression approach) for 4,027 protein-coding genes and 311	
  
for 124 RNA genes. The gene fitness scores were reproducible, with a median pairwise 312	
  
correlation of 0.80 across 64 biological replicates.  313	
  
 314	
  
We focused on the genes with positive fitness scores, as the overexpression of a gene 315	
  
that is important for a given process is usually expected to lead to a fitness 316	
  
advantage17,46, but we also examined the negative scores. To identify a subset of the 317	
  
effects that were likely to be reliable, we used three filters: the fitness effect was large 318	
  
relative to the variation between start samples (|score| >= 2); the fragments containing 319	
  
the gene showed consistent fitness across replicate experiments (using a t test); and 320	
  
the number of reads for those fragments was sufficient for the gene score to have little 321	
  
noise (see Methods). Effects that passed these filters were more likely to be consistent 322	
  
in replicate experiments (for example, see Fig. 3d). We considered an effect that 323	
  
passed these filters to be of high confidence if it was based on more than one fragment 324	
  
or if the gene had a large effect in another experiment for the compound. Overall, we 325	
  
identified 4,051 high-confidence effects, representing 813 of the 4,151 genes assayed 326	
  
(Supplementary Table 3). 400 different genes had a high-confidence fitness benefit 327	
  
when overexpressed in at least one condition, while the overexpression of 571 different 328	
  
genes led to a decrease in fitness in at least one condition. Nearly all experiments (153 329	
  
of 155) had at least one gene with a high-confidence effect. By shuffling the 330	
  
measurements for each fragment in each experiment, we estimated a false discovery 331	
  
rate of less than 2% (Methods). Among the E. coli genes essential for viability when 332	
  
deleted5, 46 have a high-confidence benefit in at least in one experiment, demonstrating 333	
  
that gain-of-function approaches like Dub-seq can identify conditional phenotypes for 334	
  
genes that are not typically interrogated by loss-of-function approaches such as Tn-seq. 335	
  
 336	
  
Some genes had positive fitness benefits across many conditions. In particular, five 337	
  
genes (recA, galE, dgt, rcnA, fabB) had high-confidence benefits in 10 or more different 338	
  
conditions. The most frequent benefits were found for recA and galE, which are 339	
  
disrupted in the DH10B derivative host strain we used47 (Methods). Even for pleiotropic 340	
  
genes, we find that they confer a more extreme beneficial phenotype in some 341	
  
conditions. For example, UDP-glucose 4-epimerase (galE) is highly beneficial to 342	
  
overexpress in the presence of 0.1 mM benzethonium chloride, with gene scores of +12 343	
  
or +14 in two replicate experiments. All of galE’s other scores were under +5. Similarly, 344	
  
strand exchange and recombination gene recA shows high fitness scores of +6 in the 345	
  
presence of cisplatin, lomefloxacin and sodium chloride. In addition to these examples, 346	
  
we found that 32 genes provide growth advantage in 5 or more antibiotics, metals or 347	
  
other stress conditions, as compared to 241 genes showing growth benefit in just one 348	
  
condition (Supplementary Table 3).  349	
  
 350	
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Some of the Dub-seq experiments identified dozens of putatively beneficial genes. For 351	
  
example, with potassium acetate as the carbon source, we identified 56 genes that had 352	
  
high-confidence benefits in both of two replicate experiments (Supplementary Table 353	
  
3). The two highest-scoring genes encode isozymes of aconitase (acnA and acnB), 354	
  
which are part of the tricarboxylic acid cycle for oxidizing acetate48. But the relationship 355	
  
between the other beneficial genes and acetate catabolism is not obvious. As another 356	
  
example, in copper (II) chloride stress at 2 mM, 120 genes had high-confidence 357	
  
benefits. The genes with the highest scores were envZ, mltD, citB/dpiA, mepM, mepS, 358	
  
cutC, and other high-scoring genes encode outer membrane porins (ompX, ompC, 359	
  
ompF) or lipoprotein nlpE (Supplementary Table 3). Overexpression of most these 360	
  
genes is known to activate the complex regulatory network of envelope stress response 361	
  
via cpxAR and sigma-E49,50. Specifically, it is known that the copper tolerance 362	
  
phenotype observed in the case of nlpE overexpression is due to activation of Cpx 363	
  
pathway51. In the case of cutC overexpression, sigma-E driven small RNA micL 364	
  
encoded within cutC is overproduced, leads to targeted downregulation of lpp and 365	
  
sufficient for copper tolerance phenotype52. Finally, dozens of genes show growth 366	
  
benefits in the presence of the membrane-disrupting cationic surfactants benzethonium 367	
  
and benzalkonium. Most of these genes are involved in membrane lipid homeostasis, 368	
  
envelope stress response pathways and drug efflux systems (Fig. 4, Supplementary 369	
  
Table 3).  370	
  
 371	
  
In total, we identified 41 instances where the Dub-seq fitness data is consistent with the 372	
  
known growth benefit imparted by the gene (Supplementary Table 4). These high 373	
  
confidence, known hits include genes encoding diverse functions such as efflux pumps, 374	
  
transporters, and regulators, as well as biosynthetic enzymes and small RNAs, each 375	
  
yielding enhanced fitness via diverse mechanisms. For example, overexpression of 376	
  
cysE (which encodes serine acetyltransferase) probably increases nickel tolerance 377	
  
through increased glutathione biosynthesis53, while overexpression of rnc (which 378	
  
encodes RNase III) yields a growth benefit in nickel and cobalt stress, as it down-379	
  
regulates the expression of corA, which encodes a transporter that mediates the influx 380	
  
of nickel and cobalt ions into the cell54. 381	
  
 382	
  
In addition to the known cases, we also identified hundreds of genes that had not been 383	
  
previously associated with a tolerance phenotype in a specific condition, including pssA, 384	
  
dcrA/sdaC, dcrB in sisomicin; pmrD in aluminum; treA, treB and phnM in phosphomycin; 385	
  
sRNAs chiX in nickel and ryhB in zinc; and many genes of unknown function (Fig. 4, 386	
  
Supplementary Table 3). To follow up some of the novel observations, we assayed the 387	
  
growth of strains overexpressing the genes individually with and without added stress. 388	
  
We used murA overexpression as a test case, as this is known to confer resistance to 389	
  
phosphomycin55 (Supplementary Fig. 5). Growth curves confirmed that the 390	
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overexpression of either pssA or dcrB confers resistance to the aminoglycoside 391	
  
antibiotic sisomicin, although the mechanism(s) by which this resistance is conferred 392	
  
remains unclear. The gene pssA encodes an essential phosphatidylserine synthase, 393	
  
while dcrB is a periplasmic protein with a role in phage infection48. Growth curves also 394	
  
confirm that the overexpression of the outer membrane protein MipA confers strong 395	
  
resistance to benzethonium chloride (Supplementary Fig. 5). mipA has previously 396	
  
been implicated in the resistance to other antibiotics56. 397	
  
 398	
  
Gene overexpression can also decrease host fitness16,17,46 and may indicate important 399	
  
function for those gene products. We identified 570 genes with a high-confidence 400	
  
negative effect on fitness in at least one experiment (Supplementary Table 3). Some of 401	
  
these genes appear to be more generally toxic when overexpressed or have a global 402	
  
regulatory role and compromise host fitness in multiple conditions. 24 genes had 403	
  
detrimental effects on fitness in 10 or more different conditions (ampH, arcZ, aroK, crr, 404	
  
gadY, hfq, hha, htpX, hupB, iraP, metJ, mtlA, nupG, rpoS, ruvA, tsx, wecA, ybjT, yceG, 405	
  
ydgA, ydjN, yibN, yjdC, and zinT). Conversely, some genes have negative gene scores 406	
  
in only one or a handful of conditions. For example, consistent with earlier studies we 407	
  
found that overexpression of glpT or uhpT increases susceptibility to phosphomycin57. 408	
  
These results also agree with clinical data, which shows that the main cause of 409	
  
phosphomycin resistance in patients is the down-regulation of GlpT via down-regulation 410	
  
of cAMP57. Accordingly, we also found that overexpression of cpdA (which encodes an 411	
  
enzyme that hydrolyzes cAMP) enhances fitness under phosphomycin stress (Fig. 4).  412	
  
 413	
  
Finally, we analyzed our data for ‘epistatic’ instances where multiple genes on a 414	
  
fragment are necessary for the observed phenotype. Specifically, we searched for 415	
  
evidence of synergy between genes by analyzing scores for fragments containing more 416	
  
than one gene that are significantly greater than the inferred sum of score of the 417	
  
constituent genes (Methods). In total, we found 6 high scoring epistatic-effect cases 418	
  
across 52 conditions in our Dub-seq dataset (fetA-fetB on nickel, ampD-ampE on 419	
  
benzethonium, ackA-pta on D-lactate, arcA-yjjY on sisomicin, hns-tdk on phosphomycin 420	
  
and yfiF-trxC on potassium acetate (Supplementary Fig.6abc)). Among these, 3 gene-421	
  
pairs have related functions (fetA-fetB form a complex, pta-ackA encode enzymes that 422	
  
catalyze adjacent reactions in the catabolism of lactate, and ampD-ampE are thought to 423	
  
be a signaling pathway48) and our data indicates, together they provide a larger growth 424	
  
benefit. Specifically, overexpression of fetAB together has been shown to improve 425	
  
survival during nickel stress58. 426	
  
 427	
  
Comparison to loss-of-function fitness data 428	
  
Integrating large-scale genetic gain and loss of function can provide added specificity to 429	
  
biological insights. For instance, genes with resistance phenotypes when 430	
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overexpressed and sensitivity phenotypes when deleted are often specifically involved 431	
  
in the condition of interest, as demonstrated by studies identifying drug targets in 432	
  
yeast59 or identifying small RNA regulators60 or antibiotic resistance factors in bacteria61. 433	
  
Furthermore, genes with opposing loss and gain-of-function phenotypes for stress 434	
  
compounds are more likely to be true resistance determinants as opposed to genes that 435	
  
have indirect effects when overexpressed16.  For 45 of the conditions that we profiled in 436	
  
this study with Dub-seq, we can systematically compare these phenotypic 437	
  
consequences of overexpression to loss-of-function mutations as determined by 438	
  
random barcode transposon site mutagenesis15. The two data sets studied the same 439	
  
growth media and compounds, but not necessarily at the same concentrations, and they 440	
  
used different strains of E. coli (DH10B or BW25113). Across these 45 conditions, we 441	
  
identified 625 high-confidence benefits of overexpression (or 0.3% of gene-condition 442	
  
pairs). Of the 625 high-confidence benefits, 480 are for genes with RB-TnSeq data, and 443	
  
in 62 cases (12%), that loss of function led to a significant disadvantage (RB-TnSeq 444	
  
fitness < -1 and t < -4, where t is a t-like test statistic13). By chance, we would expect 445	
  
just 2.5% agreement, which is significantly less (P < 10-15, chi-squared test of 446	
  
proportions). Overall, we found moderate overlap between genes that are beneficial 447	
  
when overexpressed and important for fitness when disrupted (Supplementary Table 448	
  
3).  449	
  
 450	
  
To illustrate the biological insights that can be derived by systematically comparing gain 451	
  
and loss-of-function data on a genomic scale, we present 3 examples: growth in the 452	
  
presence of elevated nickel, cobalt, or sodium chloride (Fig. 5abc). Under each 453	
  
condition, we find that a number of genes that are both necessary for resisting the 454	
  
stress when knocked-out and sufficient for a resistance phenotype when singly 455	
  
overexpressed. These instances include known examples such as the aforementioned 456	
  
metal exporter RcnA45 and RNase III for cobalt and nickel tolerance54, as well as the 457	
  
osmolyte transporter ProP62 and envelope biogenesis factor YcbC (ElyC)63 for tolerance 458	
  
to osmotic stress imposed by sodium chloride. (In our Dub-seq data, proP and ycbC 459	
  
failed to pass the filters for high-confidence effects). In addition to these known 460	
  
examples, there are more novel observations (Fig. 5abc). Under nickel and cobalt 461	
  
stress, the uncharacterized protein YfgG (DUF2633) is important for tolerance, a finding 462	
  
that is supported by RB-Tnseq data15 and by individual growth curve analysis of an yfgG 463	
  
overexpression strain (Fig. 5d). While the precise biochemical function of YfgG is 464	
  
unclear, a close homolog of this protein in Klebsiella michiganensis is also important for 465	
  
fitness under nickel and cobalt stress15. As a second example, we find that ProY is 466	
  
important for nickel resistance. A ProY homolog in the related bacterium K. 467	
  
michiganensis is also important for nickel resistance15. Using individual strain growth 468	
  
curve analysis, we confirmed that overexpression of proY alone can confer nickel 469	
  
resistance to E. coli (Fig. 5e). While ProY is currently annotated as a cryptic proline 470	
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transporter, we suspect that its function is to transport histidine as it can suppress 471	
  
histidine auxotrophy25 and homologs of this protein are required for histidine utilization 472	
  
in other bacteria15. In light of this, we speculate that the nickel resistance phenotype of 473	
  
ProY is due to increased sequestration of nickel ions by a higher intracellular 474	
  
concentration of histidine. As a final example, we found that the porphyrogen oxidase 475	
  
YfeX confers sodium chloride resistance in E. coli, a finding confirmed by an individual 476	
  
growth curve analysis (Fig. 5f). While we are unsure how this protein manifests this 477	
  
phenotype, we note that yfeX homologs are important for resisting sodium chloride in 478	
  
multiple bacteria15.  We have provided a general working hypothesis for many of other 479	
  
genes with high fitness scores in Supplementary Table 5. 480	
  
 481	
  
DISCUSSION 482	
  
 483	
  
Here we describe Dub-seq, a technology for performing parallelized gain-of-function 484	
  
fitness assays across diverse conditions. Dub-seq couples shotgun cloning of random 485	
  
DNA fragments with competitive fitness assays to assess the phenotypic importance of 486	
  
the genes contained on those fragments in a single tube assay. We demonstrate that 487	
  
Dub-seq is reproducible, economical, scalable, and identifies both known and novel 488	
  
gain-of-function phenotypes. By decoupling the library creation and characterization 489	
  
step from the screening step with BarSeq, Dub-seq provides a quantitative and rapid 490	
  
tool for experimentally assessing gene function via overexpression phenotypes of DNA 491	
  
cloned into an expression vector. This approach can improve overall repeatability and 492	
  
reproducibility of genome-wide gain-of-function experiments, and facilitate open 493	
  
distribution of libraries among researchers64. 494	
  
 495	
  
In this proof-of-concept study, we generated a Dub-seq library of E. coli genomic DNA 496	
  
in a broad-range expression vector and assayed the phenotypic importance of 497	
  
overexpressing cloned genes using E. coli as the host bacterium. From 152 genome-498	
  
wide assays, we identified 400 different genes with a high-confidence fitness benefit 499	
  
when overexpressed in at least one experimental condition. The majority of these gene-500	
  
phenotype associations have not previously been reported including, as far as we know, 501	
  
for yfgG, proY, and yfeX (Supplementary Table 3). We found 241 genes confer a 502	
  
fitness benefit in just one condition, indicating a condition-specific phenotype. Overall, 503	
  
32 genes enhanced fitness in 5 or more conditions, suggesting their broader role in host 504	
  
fitness and importance in cross-resistance phenotypes observed between metals, 505	
  
antibiotics, antiseptics and other stresses65. Dub-seq recapitulated 41 known instances 506	
  
of positive fitness effects, wherein the fitness phenotypes stem from diverse 507	
  
mechanisms, including overexpression of a compound target, active efflux of heavy 508	
  
metals, decreased uptake of metals and antibiotics, increased uptake of nutrients, and 509	
  
the regulatory effects of both protein-coding genes and small RNAs. We also identified 510	
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enhanced susceptibility due to overexpression. Finally, we show that systematically 511	
  
comparing gain and loss-of-function datasets provide additional insights into those 512	
  
genes that are both necessary and sufficient for stress tolerance phenotypes.  513	
  
 514	
  
Dub-seq can be readily extended to DNA from other sources and many cultured 515	
  
bacteria could be adapted as hosts for the genome-wide fitness assays. In particular, 516	
  
our vectors should be suitable to build Dub-seq libraries of microbial isolates and can be 517	
  
mobilized to new bacteria via conjugation because of its broad-host range replication 518	
  
origin. By using other hosts, we can overcome gene expression and toxicity issues 519	
  
associated with expressing heterologous DNA in model hosts34-36. To extend the Dub-520	
  
seq methodology for functional profiling of DNA isolated from the environment, we 521	
  
would need to generate a higher diversity of barcoded vectors so that we would have a 522	
  
large library of unique barcode pairs and the largest percentage of metagenomic 523	
  
diversity can be captured and mapped confidently. In addition, to ensure reliable 524	
  
expression of heterologous genes, a number of approaches can be used to activate 525	
  
transcription or translation of genes encoded within foreign DNA34,42,66.  526	
  
 527	
  
In this work, we generated a Dub-seq library with a ~2.6 kb insert size and therefore by 528	
  
design, the library only covers fragments encoding 2-3 genes on an average. Therefore, 529	
  
phenotypes that are only conferred by the activity of a larger group of genes (such as 530	
  
multisubunit complexes) will not be detected. Nevertheless, we did detect 6 instances of 531	
  
‘epistatic’ interactions in which two neighboring genes show greater fitness score as 532	
  
gene-pairs than the inferred sum of score of the individual genes. By adapting the Dub-533	
  
seq strategy to fosmids, cosmids and bacterial-artificial-chromosomes, future efforts can 534	
  
clone larger size genomic fragments to create Dub-seq libraries for the discovery of 535	
  
activities encoded by multiple genes, including secondary metabolites.  536	
  
 537	
  
Given the increasing knowledge gap between genomic sequence and function, and the 538	
  
limited ability of computational approaches to accurately predict gene function from 539	
  
sequence, high-throughput experimental methods are needed to assign gene function 540	
  
and resolve roles of uncharacterized genes. Recently, a number of loss-of-function 541	
  
methods have been developed5-8,10-14, but only a fraction of genes from genetically 542	
  
tractable microbes can be readily annotated with a specific function using these 543	
  
approaches. We envision that multiple, complementary experimental approaches that 544	
  
can be applied en masse are ultimately necessary to uncover the roles of most poorly 545	
  
annotated genes from microbial isolates and microbiomes. The Dub-seq approach we 546	
  
presented here is another valuable tool in this toolkit.  547	
  
 548	
  
 549	
  
 550	
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 570	
  
FIGURES 571	
  
 572	
  
 573	
  

 574	
  
 575	
  
Figure 1. Schematic overview of the Dub-seq approach. (a) A pair of random 20 576	
  
nucleotide DNA sequences, the UP and DOWN (DN) barcodes are cloned into an 577	
  
expression vector. Deep sequencing of the dual barcoded vector (BPseq) associates 578	
  
UP and DOWN barcode sequences. (b) Target genomic DNA is randomly sheared and 579	
  
cloned between the UP and DOWN barcodes to create the Dub-seq plasmid library. (c) 580	
  
To characterize the Dub-seq library, a “Tn-seq” like protocol is performed to precisely 581	
  
map the two genomic breakpoints of each insert and to associate each breakpoint with 582	
  
its random DNA barcode sequence. If the source genome(s) has been sequenced, then 583	
  
BAGseq can be used to define the exact sequence of each plasmid in the library. (d) 584	
  
The fitness of bacteria carrying different plasmids can be measured with pooled growth 585	
  
assays and deep sequencing of the DNA barcodes (BarSeq). Strain (or fragment) 586	
  
fitness is defined as the log2 ratio of barcode abundance after selection (end) versus 587	
  
before (start). Gene fitness is estimated from the fragments’ fitness by a constrained 588	
  
regression. 589	
  

590	
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 591	
  

 592	
  
 593	
  
Figure 2. E. coli Dub-seq library characterization. (a) Center: genomic coverage of 594	
  
the E. coli BW25113 Dub-seq library in 10 kB windows (blue track). Black and red line-595	
  
tracks represent genes essential for viability when deleted5 that are encoded on the 596	
  
negative and positive strands, respectively and are covered in the Dub-seq library. Left 597	
  
and right: regions of the E. coli chromosome covering acrB, ompF, yfgG, ygeH, rrlD and 598	
  
rpoB. Each purple line represents a Dub-seq genomic fragment (the y-axis is random). 599	
  
(b) The fragment insert size distribution in the E. coli Dub-seq library. (c) The distribution 600	
  
of number of genes that are completely covered (start to stop codon) per genomic 601	
  
fragment in the E. coli Dub-seq library. (d) Cumulative distribution plot showing the 602	
  
percentage of genes in the E. coli genome (y-axis) covered by a number of independent 603	
  
genomic fragments (x-axis).  604	
  
 605	
  
 606	
  
 607	
  
 608	
  
 609	
  
 610	
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 611	
  
 612	
  
Figure 3. Fragment and gene fitness Dub-seq scores. (a) Dub-seq fragment (strain) 613	
  
data for region surrounding rcnA under elevated nickel stress (y-axis). Each line shows 614	
  
a Dub-seq fragment. Those that completely cover rcnA are in red. Both the mean and 615	
  
regression scores reflect the known biology of rcnA as a nickel resistance 616	
  
determinant45. (b) Same as (a) for the neighboring rcnR, which encodes a 617	
  
transcriptional repressor of rcnA. Fragments that cover rcnR are in red. (c) Comparison 618	
  
of fragment fitness scores for two biological replicates of 1.2 mM nickel stress. (d) Same 619	
  
as (c) for gene fitness scores calculated using the regression approach. Genes are 620	
  
highlighted if their data passed our statistical filters for reliable effects (see Methods); 621	
  
we also show whether the gene score is based on just one fragment.  622	
  

623	
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 624	
  
 625	
  
 626	
  

 627	
  
 628	
  
Figure 4. Heatmap of Dub-seq fitness data for 53 conditions and for 67 genes with 629	
  
large benefits. Only genes with a high-confidence effect and gene fitness score >= 6 in 630	
  
at least one condition are shown. Gene scores from replicate experiments were 631	
  
averaged. 632	
  
 633	
  
 634	
  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2018. ; https://doi.org/10.1101/387399doi: bioRxiv preprint 

https://doi.org/10.1101/387399
http://creativecommons.org/licenses/by-nd/4.0/


	
   20	
  

 635	
  
 636	
  
Figure 5. Comparing genome-wide loss and gain-of-function phenotype 637	
  
data.  Comparison of RB-TnSeq fitness data15 (x-axis) and Dub-seq gene fitness data 638	
  
for E. coli genes under growth with inhibitory concentrations of cobalt (a), nickel (b), and 639	
  
sodium chloride (c). Selected genes are highlighted. (d) Growth of E. coli 640	
  
overexpressing yfgG under cobalt stress; pssA is a control. (e) Growth of E. coli 641	
  
overexpressing proY under nickel stress; ybjE is a control. (f) Growth of E. coli 642	
  
overexpressing yfeX under sodium chloride stress; yfgG is used as a control. 643	
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METHODS: 644	
  
 645	
  
Strains and growth conditions 646	
  
Escherichia coli BW25113 was purchased from the E. coli Genetic Stock Center.  All 647	
  
plasmid manipulations were performed using standard molecular biology techniques67. 648	
  
All enzymes were obtained from New England Biolabs (NEB) and oligonucleotides were 649	
  
received from Integrated DNA Technologies (IDT). Escherichia coli strain DH10B 650	
  
(DH10B derivative, NEB 10-Beta) was used for plasmid construction and as host for 651	
  
Dub-seq fitness assays. Unless noted, all strains were grown in LB supplemented with 652	
  
30 µg/ml chloramphenicol at 37ºC and shaking at 200 rpm. The primers, plasmids and 653	
  
strains used in this study are listed in Supplementary Tables 6, 7 and 8 respectively. 654	
  
 655	
  
Construction of dual barcoded Dub-seq vector 656	
  
To construct a double barcoded vector, we used pFAB5477 an in-house plasmid with 657	
  
pBBR1 replication origin and a chloramphenicol resistance marker68. pBBR1 based 658	
  
broad-host plasmids are relatively small, mobilizable and have been widely used for a 659	
  
variety of genetic engineering applications in diverse microbes69. To insert a pair of DNA 660	
  
barcodes on the plasmid we used phosphorylated oFAB2853 and oFAB2854 primers to 661	
  
amplify the entire plasmid pFAB5477, removed the plasmid backbone using DpnI (as 662	
  
per manufacturing instructions, NEB), and ligated the amplified and pure product using 663	
  
T4 ligase (as per manufacturing instructions, NEB). The random N’s in oFAB2853 and 664	
  
oFAB2854 (Supplementary Table 6) represent the UP and DOWN barcode 665	
  
sequences. The ligated product, pFAB5491, was column purified using the Qiagen PCR 666	
  
purification kit, transformed into DH10B electro-competent cells (NEB 10-Beta E. coli 667	
  
cells, as per manufacturing instructions, NEB) and transformants were selected on LB-668	
  
agar plates supplemented with 30 ug/ml chloramphenicol.  The next day, ~250,000 669	
  
colony forming units (CFU) were estimated and scraped together into 20 ml LB with 30 670	
  
ug/ml chloramphenicol. The culture library was diluted to an optical density at 600 nm 671	
  
(OD600) of 0.2 in fresh LB medium supplemented with 30 ug/ml chloramphenicol and 672	
  
grown to a final OD600 of ~1.2. We added glycerol to a final concentration of 15%, 673	
  
made multiple 1 ml glycerol stocks, and stored them at -80ºC. We also collected cell 674	
  
pellets to prepare plasmid DNA of pFAB5491 for further characterization of the library 675	
  
(BPseq).  676	
  
 677	
  
BPseq to characterize dual barcoded Dub-seq vector 678	
  
To associate the pair of DNA barcodes, we performed Barcode-Pair sequencing 679	
  
(BPseq) of the plasmid pFAB5491 library. For deep coverage of the library, we 680	
  
performed 10 different PCR reactions using primers VM_barseq_P1 and VM_Barseq-681	
  
P2. The forward primers VM_Barseq-P2 contains different 6-bp TruSeq indexes, and 682	
  
were automatically demultiplexed by the Illumina software.    683	
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 684	
  
We performed PCR in a 100-ul total volume with 5 ul common reverse primer 685	
  
VM_barseq_P1 (4 uM), 5 ul forward primer VM_Barseq-P2 _IT001 to IT010 (4 uM), 38 686	
  
ul of sterile water, 2 ul template pFAB5491, and 50 ul of 2X stock of Q5 DNA 687	
  
Polymerase mix (500 ul of 2X stock of Q5 DNA Polymerase mix consists of 200 ul Q5 688	
  
buffer, 20 ul dNTP, 50 ul DMSO, 10 ul Q5 DNA Polymerase enzyme and 220 ul water) 689	
  
under following PCR conditions: 98ºC for 4 minutes, followed by 15 cycles of 30 sec at 690	
  
98ºC, 30 sec at 55ºC, 30 sec at 72ºC and final extension at 72ºC for 5 minutes. Finally, 691	
  
we ran the PCR products on an analytical gel to confirm amplification. We pooled equal 692	
  
volumes (10 ul) of BarSeq PCR products, purified the combined product using Qiagen 693	
  
PCR purification kit, and eluted in 40 ul of sterile water. We quantified the DNA product 694	
  
with a Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) assay kit (Invitrogen). 695	
  
The BPseq samples were sequenced first on Illumina MiSeq and then HiSeq 2500: both 696	
  
with 150 bp single-end runs. 697	
  
 698	
  
BPseq data analysis 699	
  
BPseq reads were analyzed with bpseq script from the Dub-seq python library with 700	
  
default parameters (code available at https://github.com/psnovichkov/DubSeq). The 701	
  
script looks for the common flanking sequences around each barcode (UP and DOWN) 702	
  
and requires an exact match of 9 nucleotides on both sides.  By default, these flanking 703	
  
sequences may be up to 2 nucleotides away from their expected positions. The script 704	
  
also requires that each position in each barcode have a quality score of at least 20 (that 705	
  
is, an estimated error rate of under 1%). This gives an initial list of pairs of barcodes 706	
  
with the correct length and reliable sequence quality.  707	
  
 708	
  
We applied two additional filters to minimize the number of erroneous barcode pairs that 709	
  
can be caused by PCR artifacts or sequencing errors.  First, we check whether a given 710	
  
barcode can be a result of a single nucleotide substitution introduced in a real barcode 711	
  
and filter out all such barcodes. We perform a pairwise sequence comparison of all 712	
  
extracted barcodes (UP and DOWN barcodes are treated separately) and search for 713	
  
“similar” barcodes. Two barcodes are considered to be similar if they are different by 714	
  
only one nucleotide. A given barcode passes the filter if it does not have similar 715	
  
barcodes or it is at least two times more frequent than the most abundant similar 716	
  
barcode. 717	
  
 718	
  
Second, we check whether a given barcode pair can be a result of chimeric PCR and 719	
  
filter out all such pairs. As the region between and around UP and DOWN barcodes are 720	
  
identical in all plasmids in our library, we expected artifacts from formation of chimeric 721	
  
BPseq PCR products13. We perform a pairwise comparison of all barcode pairs and 722	
  
search for “related” pairs. Two barcode pairs are considered to be related if they have 723	
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either the same UP or DOWN barcodes. The presence of the same UP (or DOWN) 724	
  
barcode in multiple barcode pairs is potentially a sign of chimeric PCR. To distinguish 725	
  
the true barcode pair from the chimeric one, we check the frequency of all the related 726	
  
barcode pairs.  A given barcode pair passes the filter and is considered to be non-727	
  
chimeric if it does not have related pairs or it is at least two times more frequent than the 728	
  
most abundant related barcode pair. As a result, the ‘reference set’ of barcode pairs is 729	
  
created. From the BPseq step we obtained 5,436,798 total reads. Among these, total 730	
  
usable reads (reads that support barcode pairs from the reference set) were 2,933,702 731	
  
and represent about 54% of total reads. 732	
  
 733	
  
Dub-seq vector preparation for cloning genomic fragments 734	
  
To prepare the Dub-seq vector pFAB5491 for cloning, we made 900 ul or about 100 ug 735	
  
of plasmid preparation (Qiagen plasmid miniprep kit), and performed two rounds of PmiI 736	
  
digestion. Restriction digestion reaction included 900 ul (total 100 ug) of pFAB5491 737	
  
plasmid, 100 ul PmiI enzyme, 400 ul 10X cutsmart buffer, and water to make up the 738	
  
volume of 4000 ul. We incubated the reaction at 37ºC on a heating block for 4 hours 739	
  
and then checked the reaction progress on an analytical 1% agarose gel. To 740	
  
dephosphorylate the restriction-digested vector, we added 1 unit of rSAP for every 1 741	
  
pmol of DNA ends (about 1 µg of a 3 kb plasmid), and incubated at 37ºC for 2 hours in 742	
  
a PCR machine. We stopped the reaction by heat-inactivation of rSAP and restriction 743	
  
enzyme at 70ºC for 20 minutes. The cut and dephosphorylated vector library was then 744	
  
gel purified (Qiagen gel extraction kit). To remove any uncut vector, we repeated the 745	
  
entire process of restriction digestion, dephosphorylation, and purification. The final 746	
  
concentration of cut and pure barcoded vector library used for cloning genome 747	
  
fragments was about ~30 ng/ul.   748	
  
 749	
  
Construction of E. coli Dub-seq library 750	
  
To construct Dub-seq library of E. coli genomic fragments, we extracted E. coli 751	
  
BW25113 genomic DNA and 1 ug was fragmented by ultrasonication to an average size 752	
  
of 3000 bp with a Covaris S220 focused ultrasonicator. The sheared genomic DNA was 753	
  
then gel purified and end-repaired using End-IT kit (Epicentre, as per manufacturer 754	
  
instruction). Briefly the 50 ul reaction included: 34 ul sheared DNA (1.0 ug total), 5 ul 755	
  
ATP 10 mM, 5 ul dNTP mix (10 mM), 5 ul EndIt buffer 10X and 1-2 ul EndIT enzyme.  756	
  
We incubated the reaction at room temperature for 45 mins, and inactivated the enzyme 757	
  
by incubating the reaction at 70ºC for 10 minutes. The end-repaired genome fragments 758	
  
were purified with PCR clean-up kit (Qiagen), and quantified on Nanodrop. 759	
  
 760	
  
The end-repaired genomic fragments were then ligated to the restriction-digested, 761	
  
sequence-characterized dual barcoded backbone vector (pFAB5491) at 8:1 762	
  
insert:vector ratio using Fast-link Ligase enzyme (Epicentre, as per manufacturer 763	
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instruction). The total 60 ul ligation reaction consists of 4 ul of restriction-digested 764	
  
pFAB5491, 20 ul End-repaired DNA, 3 ul ATP (10 mM), 6 ul 10X ligase buffer, 19 ul 765	
  
water and 8 ul Fast-link-ligase. The ligation was incubated overnight (18 hrs) at 16ºC, 766	
  
inactivated at 75ºC for 15 minutes, and purified using PCR purification kit (Qiagen).  767	
  
  768	
  
For transforming the ligation reaction, 60 ul of column-purified ligation reaction was 769	
  
mixed gently with 1500 ul of NEB DH10B electrocompetent cells on ice and then the 770	
  
mix was dispensed 60 ul per cuvette. Electroporation was done using parameters 771	
  
supplied by NEB. Transformed cells were recovered by adding 1 ml SOC recovery 772	
  
media (as per competent cell manufacturer instruction, NEB). We pooled all recoveries 773	
  
and added additional 10 ml of fresh SOC. Transformants were then incubated at 37ºC 774	
  
with shaking for 90 minutes. We spun down the pellets and resuspended the pellet in 6 775	
  
ml SOC. Different volumes of 6 ml resuspended pellets were then plated on overnight-776	
  
dried bioassay plates (Thermo Scientific # 240835) of LB agar supplemented with 30 777	
  
ug/ml chloramphenicol. We also did dilution series for estimating CFUs.  778	
  
 779	
  
We determined the number of colonies required for 99% coverage of E. coli genome 780	
  
using the formula N = ln(1-0.99)/ln(1-(Insert size/Genome Size)) to ensure that genome 781	
  
fragments are present in the cloned library70. For example, to cover the E. coli genome 782	
  
(of size 4.7 Mb) with fragments of 3 kb, we need about 4,610 strains for 99% coverage. 783	
  
We collected ~40,000 colonies by scraping the colonies using a sterile spatula into 20 784	
  
ml LB supplemented with 30 ug/ml chloramphenicol in a 50 ml Falcon tube and mixed 785	
  
well. This E. coli Dub-seq library was then diluted to an optical density at 600 nm 786	
  
(OD600) of 0.2 in fresh LB supplemented with 30 ug/ml chloramphenicol and grown to a 787	
  
final OD600 of ~1.2 at 37ºC. We added glycerol to a final concentration of 15%, made 788	
  
multiple stocks of 1 ml volume, and stored the aliquots at -80C. We also made cell 789	
  
pellets to store at -80ºC and to make large plasmid preparation (Qiagen) for BAGseq 790	
  
library preparation.  791	
  
 792	
  
BAGseq to characterize barcoded genomic fragment junctions 793	
  
We characterized the final plasmid library pFAB5516 using a TnSeq-like protocol13, 794	
  
which we call Barcode-Association-with Genome fragment sequencing or BAGseq. 795	
  
BAGseq identifies the cloned genome fragment and its pairings with neighboring dual 796	
  
barcodes. This step of associating the dual barcodes with each library of genomic 797	
  
fragments is only done once (by deep sequencing) and used as a reference table to 798	
  
derive connections between observed functional/fitness traits with specific cloned 799	
  
genomic fragment (Fig. 1).  800	
  
 801	
  
To generate Illumina-compatible sequencing libraries to link both UP and DOWN 802	
  
random DNA barcodes to the ends of the cloned genome fragments, we processed two 803	
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samples per library. The plasmid library (1 ug) samples were fragmented by 804	
  
ultrasonication to an average size of 300 bp with a Covaris S220 focused ultrasonicator. 805	
  
To remove DNA fragments of unwanted size, we performed a double size selection 806	
  
using AMPure XP beads (Beckman Coulter) according to the manufacturer’s 807	
  
instructions. The final fragmented and size-selected plasmid DNA was quality assessed 808	
  
with a DNA 1000 chip on an Agilent Bioanalyzer. Illumina library preparation involves a 809	
  
cascade of enzymatic reactions, each followed by a cleanup step with AMPure XP 810	
  
beads. Fragmentation generates plasmid DNA library with a mixture of blunt ends and 811	
  
5’ and 3’ overhangs. End repair, A-tailing, and adapter ligation reactions were 812	
  
performed on the fragmented DNA using the NEBNext DNA Library preparation kit for 813	
  
Illumina (New England Biolabs), according to the manufacturer’s recommended 814	
  
protocols. For the adapter ligation, we used 0.5 ul of a 15uM double-stranded Y 815	
  
adapter, prepared by annealing Mod2_TS_Univ (ACGCTCTTCCGATC*T) and 816	
  
Mod2_TruSeq (Phos-GATCGGAAGAGCACACGTCTGAACTCCAGTCA). In the 817	
  
preceding oligonucleotides, the asterisk and Phos represent phosphorothioate and 5’ 818	
  
phosphate modifications, respectively.  819	
  
 820	
  
To specifically amplify UP barcodes and neighboring genomic fragment terminus by 821	
  
PCR, we used the UP-tag-specific primer oFAB2923_Nspacer_barseq_universal, and 822	
  
P7_MOD_TS_index1 primer. For the DOWN-tag amplification we used oFAB2924_ 823	
  
Nspacer_barseq_universal and P7_MOD_TS_index2 primer. For the BAGseq UP 824	
  
barcode and DOWN barcode site enriching PCR, we used JumpStart Taq DNA 825	
  
polymerase (Sigma) in a 100 ul total volume with the following PCR program: 94ºC for 2 826	
  
minutes and 25 cycles of 94ºC 30 seconds, 65ºC for 20 seconds, and 72ºC for 30 827	
  
seconds, followed by a final extension at 72ºC for 10 minutes.  The final PCR product 828	
  
was purified using AMPure XP beads according to the manufacturer’s instructions, 829	
  
eluted in 25 ul of water, and quantified on an Agilent Bioanalyzer with a DNA-1000 chip. 830	
  
Each BAGseq library was then sequenced on the HiSeq 2500 system (Illumina) with a 831	
  
150 SE run to map UP and DOWN barcodes to genomic inserts in the Dub-seq E. coli 832	
  
library.   833	
  
 834	
  
BAGseq data analysis 835	
  
BAGSeq reads were analyzed with bagseq script from the Dub-seq python library with 836	
  
default parameters (code available at https://github.com/psnovichkov/DubSeq). Fastq 837	
  
files for UP and DOWN barcodes with associated (cloned) genomic fragments are 838	
  
processed separately. For each read, the script looks for the flanking sequences around 839	
  
a barcode and requires an exact match of 9 nucleotides on both sides and a minimum 840	
  
quality score of 20 for each nucleotide in a barcode. The sequence downstream of the 841	
  
identified barcode is considered to be a candidate genomic fragment and is required to 842	
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be at least 15 nucleotides long for further processing. As a result, the initial list of the 843	
  
extracted barcodes and candidate genomic fragments is constructed.  844	
  
 845	
  
All extracted genomic fragments were compared to the E. coli genome sequence with 846	
  
BLAT using default parameters. Only hits with alignment block size of at least 15 847	
  
nucleotides and at most one indel were considered. It is also required that the extracted 848	
  
genomic fragment is mapped to one location in the genome. Thus, mappings to repeat 849	
  
regions were ignored. We applied two additional filters to minimize the number of 850	
  
erroneous associations between barcode and genomic location.  First, we applied the 851	
  
same type of filter that we use for the analysis of BPSeq reads to filter out barcodes with 852	
  
a 1-nucleotide error. 853	
  
 854	
  
Second, the same barcode can be associated with different genomic fragments 855	
  
because of PCR artefacts (chimeras) or because multiple fragments were cloned 856	
  
between the same pair of barcodes. To filter out erroneous barcode mappings, the 857	
  
number of reads supporting different locations for the same barcode were calculated.  858	
  
To distinguish the true location from the false one, the frequency of the most abundant 859	
  
location (the number of supported reads) was compared with frequencies of all other 860	
  
locations for the same barcode. A given association between the barcode and the 861	
  
genomic location is considered to be true if the barcode does not have any other 862	
  
associated locations or the abundance of this association is at least two times more 863	
  
frequent than any other associations for the same barcode. As a result, the reference 864	
  
set of associations between UP (and separately for DOWN) barcodes and genomic 865	
  
locations is created, which we call ‘BAGseq reference set’. 866	
  
 867	
  
The BPseq reference set of barcode pairs and BAGseq reference set are combined 868	
  
together to associate pairs of barcodes with genomic regions (to create the final ‘Dub-869	
  
seq reference set’). This step is done using the bpag script from the Dub-seq python 870	
  
library with default parameters. For each BPseq barcode pair, the script checks if the 871	
  
associations between UP and DOWN barcodes with genomic locations are present in 872	
  
the BAGSeq reference set. If both UP and DOWN barcodes (from BPseq reference set) 873	
  
are mapped to the genome, then the script checks the length of the region between the 874	
  
mapped locations and requires it to be between 100 nt and 6 kb. As a result, the final 875	
  
Dub-seq reference list of barcode pairs associated with genomic regions is created. 876	
  
Among total 10,600,088 reads for UP barcodes, usable reads were 3,884,931 (BAGseq 877	
  
UP barcode reads supporting the Dub-seq reference set), representing about 36.65% of 878	
  
total reads, whereas for total 9,671,635 reads for DOWN barcodes, usable reads were 879	
  
2,499,399, representing about 25.84% of total reads (BAGseq DOWN barcode reads 880	
  
supporting the Dub-seq reference set). 881	
  
 882	
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Competitive growth experiments: 883	
  
For genome-wide competitive growth experiments, a single aliquot of the Dub-seq 884	
  
library in E. coli DH10B was thawed, inoculated into 25 ml of LB medium supplemented 885	
  
with chloramphenicol (30 ug/ml) and grown to mid-log phase. At mid-log phase, we 886	
  
collected cell pellets as a common reference for BarSeq (termed start or time-zero 887	
  
samples) and we used the remaining cells to set up competitive fitness assays under 888	
  
different experimental conditions at a starting OD600 of 0.02. For carbon source growth 889	
  
experiments, we used M9 defined medium supplemented with 0.3 mM L-leucine (as 890	
  
DH10B is auxotrophic for L-leucine)47 and chloramphenicol. For experiments with stress 891	
  
compounds, we used an inhibitory but sublethal concentration of each compound, as 892	
  
determined previously15. All stress experiments were done in LB with chloramphenicol. 893	
  
All pooled fitness experiments were performed in 24-well microplates with 1.2 mL of 894	
  
media per well and grown in a multitron shaker. We took OD readings periodically in a 895	
  
Tecan M1000 instrument to ensure that the cells were growing and to confirm growth 896	
  
inhibition for the stress experiments. The assayed Dub-seq library cell pellets were 897	
  
stored at -80C prior to plasmid DNA extraction. 898	
  
 899	
  
BarSeq  900	
  
Plasmid DNA from Dub-seq library samples was extracted either individually using the 901	
  
Plasmid miniprep kit (Qiagen) or in 96-well format with a QIAprep 96 Turbo miniprep kit 902	
  
(Qiagen). Plasmid DNA was quantified with the Quant-iT dsDNA BR assay kit 903	
  
(Invitrogen). The BarSeq PCR of UP barcodes was done as previously described13 with 904	
  
~50 ng of plasmid template per BarSeq PCR reaction. To quantify the reproducibility of 905	
  
both UP and DOWN barcodes in competitive growth experiments, we collected plasmid 906	
  
DNA from nickel and cobalt experiments, and amplified both UP and DOWN barcodes 907	
  
in two separate PCRs using the same plasmid library template. For BarSeq PCR of 908	
  
DOWN barcodes, we used universal-forward-primer DT_BarSeq_p1_FW and reverse 909	
  
primer DT_BarSeq_IT017. The PCR cycling conditions and purification steps were 910	
  
same as for the UP barcodes13. All experiments done on the same day and sequenced 911	
  
on the same lane are considered as a ‘set’.  912	
  
 913	
  
BarSeq data analysis and fragment score calculation 914	
  
From HiSeq 4000 runs we obtained ~400 million of reads per lane, or 4.2 million reads 915	
  
per sample (for multiplexing 96 samples) typically >60% reads were informative after 916	
  
filtering out reads for sequencing errors and unmapped barcodes. BarSeq reads were 917	
  
analyzed with barseq script from the Dub-seq python library with default parameters. 918	
  
For each read, the script looks for the flanking sequences around each barcode and 919	
  
requires an exact match of 9 nucleotides on both sides and a minimum quality score of 920	
  
20 for each nucleotide in a barcode. The number of reads supporting each barcode is 921	
  
calculated. We apply the same type of filter that we use for the analysis of BPSeq reads 922	
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to filter out barcodes with single nucleotide substitutions relative to real barcodes (see 923	
  
BPSeq section). As a result, the list of barcode and their counts is created. 924	
  
 925	
  
Calculation of fragment scores (fScores) 926	
  
Given a reference list of barcodes mapped to the genomic regions (BPSeq and 927	
  
BAGSeq), and their counts in each sample (BarSeq), we estimate fitness values of each 928	
  
genomic fragment (strain) using fscore script from the Dub-seq python library with 929	
  
default parameters. First, the script identifies a subset of barcodes mapped to the 930	
  
genomic regions that are well represented in the time-zero samples for a given 931	
  
experiment set. We require that a barcode have at least 10 reads in at least one time-932	
  
zero sample to be considered a valid barcode for a given experiment set. Then the 933	
  
fscore script calculates fitness score only for the strains with valid barcodes. 934	
  
 935	
  
Strain fitness (𝑓!) is calculated as a normalized log! ratio of counts between the 936	
  
treatment (condition or end) sample s! and sum of counts across all (start) time-zero 𝑡! 937	
  
 938	
  
𝑓! = log!(  

!!!!
!!!!

) 939	
  

 940	
  
Then the strain fitness scores are normalized so that the median in each experiment is 941	
  
zero. 942	
  
 943	
  
Calculating gene-score (gScore) 944	
  
Given the fitness scores calculated for all Dub-seq fragments, we estimate a fitness 945	
  
score for each individual gene that is covered by at least one fragment. As mentioned in 946	
  
the Results, simply averaging the scores for the fragments that cover a gene gives 947	
  
spurious results for non-causative genes that are adjacent to a causative gene. To 948	
  
overcome this problem we modeled the fitness score of each fragment as the sum of 949	
  
the fitness scores of the genes that are completely covered by this fragment. Our model 950	
  
for estimating gene scores assumes that genes contribute independently to fitness, that 951	
  
most genes have little impact on fitness, and that intergenic regions have no effect on 952	
  
host fitness.   953	
  
 954	
  
To estimate gene scores, we cannot use ordinary least squares (OLS), the most 955	
  
common type of regression, because of over fitting, which would produce unrealistic 956	
  
high positive and low negative scores for many genes. We also considered 957	
  
regularization methods (Ridge, LASSO, and ElasticNet), but these suffered from either 958	
  
too much shrinkage of fitness scores (biasing them towards zero) or failed to eliminate 959	
  
over fitting (see Supplementary note). Instead, we use Non-Negative Least Squares 960	
  
(NNLS) regression71, where the predicted gene scores are restricted to take only 961	
  
nonnegative values. If a gene with a potential benefit is next to (but not covered by) a 962	
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fragment with negative fitness, most regression methods would inflate the benefit of the 963	
  
gene and assign a negative score to the nearby gene. NNLS instead ignores the (often 964	
  
noisy) negative scores for the nearby fragments. To estimate negative gene scores, we 965	
  
also used NNLS, but with the signs of the fragment scores flipped. 966	
  
 967	
  
In our model, the expected fitness of a fragment is given by 968	
  

𝑓! = 𝑔!"
!

 

were 𝑔!"   is a fitness score of a gene covered by 𝑖-th fragment completely. The NNLS 969	
  
minimizes 970	
  
 971	
  

||𝐴𝑔 − 𝑓||!!, subject  to  𝑔 ≥ 0 
 972	
  
where 𝑔 a vector of gene fitness scores to be estimated, 𝑓 is vector of the “observed” 973	
  
fitness scores of fragments, 𝐴 a matrix of ones and zeros defining which gene is 974	
  
covered by which fragment completely. Gene scores were calculated using the gscore 975	
  
script from the Dub-seq python library with default parameters, which uses the nnls 976	
  
function from the optimize package of the scipy python library.  977	
  

High-confidence gene scores and estimating the false discovery rate 978	
  

We used several filters to identify gene scores that were likely to be of high-confidence 979	
  
and reliable. Whereas the non-negative regression was used to determine if the high 980	
  
fitness of the fragments covering the gene are due to this gene or a nearby gene, these 981	
  
filters were intended to ensure that the fragments covering the gene had a genuine 982	
  
benefit. The first filter was |gene score| >= 2, as such a large effect occurred just 4 times 983	
  
in 17 control comparisons between independently-processed but identical “start” 984	
  
samples (0.2 per experiment). In contrast the actual conditions gave 40 large effects per 985	
  
experiment on average (over 150 times more). 986	
  
 987	
  
Second, we noticed that some genes had high scores because of a single fragment with 988	
  
a very high score. These fragments did not have high scores in replicate experiments, 989	
  
so their high scores might be due to secondary mutations. To filter out these cases, we 990	
  
performed a single-sample t test on the fragment scores (for the fragments that covered 991	
  
the gene) and required P < 0.05. This test asks if the mean is significantly different from 992	
  
a reference value. To handle uncertainty in the true centering of the fragment scores 993	
  
(which were normalized to have a median of zero), we considered the mean of all 994	
  
fragment scores for the experiment. We used this as the reference value (instead of 995	
  
zero) if this mean had the same sign as the gene’s score. This makes the filter slightly 996	
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more stringent. If the gene has just one fragment, then we cannot apply the t test, so we 997	
  
instead require that |fragment score| be in the top 1% for this experiment. 998	
  
 999	
  
Third, we checked that the effect was larger relative to the expected noise in the mean 1000	
  
of the fragment scores that cover the gene. The expected noise for each fragment can 1001	
  
be estimated as sqrt(1/(1+count_after) + 1/(1+count_start)) / ln(2). This approximation is 1002	
  
derived from the best case that the noise in the counts follows a Poisson distribution. 1003	
  
The expected noise for the mean of the fragment scores is then 1004	
  
sqrt(sum(fragment_noise2)) / nfragments. Note that z = mean(fragment score) / noise 1005	
  
would (ideally) follow the standard normal distribution. We use |z| >= 4 as a filter; with 1006	
  
4,303 genes being assayed, we would expect about 0.3 false positives per experiment.  1007	
  
 1008	
  
"Filtered effects" (that passed all three filters) were considered to be reliable. Reliable 1009	
  
effects were considered to be high-confidence if the gene was covered by multiple 1010	
  
fragments. Because of the risk of secondary mutations, a measurement for a gene with 1011	
  
a single fragment was only considered high-confidence if it was reliable and was also 1012	
  
supported by a large effect (|score| >= 2) in another experiment for that compound. 1013	
  
 1014	
  
The filtered effects were usually consistent across replicate experiments and represent 1015	
  
reliable scores. We had two biological replicates for 64 of the 82 conditions (a 1016	
  
compound at a given concentration) that we studied. Across these 64 pairs of replicate 1017	
  
experiments, 85% of genes with filtered effects in one replicate were consistent (|score| 1018	
  
>= 1.5 and the same sign) in the other replicate. Large effects (|score| >= 2) were more 1019	
  
likely to replicate if they were filtered (85% vs. 59% otherwise). Among filtered effects 1020	
  
for genes covered by more than one fragment, 39% of the effects that did not replicate 1021	
  
were from a single condition (zinc sulfate stress at 1 mM). We did not identify any 1022	
  
obvious issue for the data from this condition. In total, 4,303 genes are covered by at 1023	
  
least one fragment, but there are only 4,151 genes with at least one gene score 1024	
  
(adequate representation in at least one start sample). 1025	
  
 1026	
  
To estimate the false discovery rate for high-confidence effects, we randomly shuffled 1027	
  
the mapping of barcodes to fragments, recomputed the mean scores for each gene in 1028	
  
each experiment, and identified high-confidence effects as for the genuine data. This 1029	
  
shuffling test will probably overestimate the FDR because it assumes that all of the 1030	
  
variability in the fragment scores is due to noise. Also, we used the mean score, rather 1031	
  
than regression-based gene score, in this test. This might also lead to an overestimate 1032	
  
of the FDR. We repeated the shuffle procedure 10 times. On average, each shuffled 1033	
  
data set had 75 high-confidence effects, while the actual data had 4,051 high-1034	
  
confidence effects, so we estimated the false discovery rate as 75/4051 = 1.9%. 1035	
  
 1036	
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Calculating gene-pair fitness score 1037	
  
Although our model assumes that the genes on a fragment contribute independently to 1038	
  
fitness, there are cases where multiple nearby genes work together to confer a 1039	
  
phenotype. For estimating such ‘epistatic’ synergistic fitness contribution by neighboring 1040	
  
pair of genes, we included additional variables in our fitness calculation to account for 1041	
  
the contribution of pairs of adjacent genes (and their intergenic regions). For a gene-pair 1042	
  
to qualify to be valid hit, the score for the gene-pair has to be more than the individual 1043	
  
gene scores from single-gene regression model, scores should be consistent across 1044	
  
replicates and should be supported by more than one fragment. After manual filtering, 1045	
  
we found 6 high scoring epistatic-effect instances where gene-pairs positively contribute 1046	
  
to the host fitness under specific condition (Supplementary Table 5). Among these, 3 1047	
  
gene-pairs have related functions (fetA-fetB on nickel, ampD-ampE on benzethonium, 1048	
  
ackA-pta on D-lactate48) and make biological sense. However, in the other 3 high 1049	
  
scoring gene-pairs arcA-yjjY, hns-tdk and yfiF-trxC, each gene is divergently transcribed 1050	
  
and the reason behind combined fitness phenotype is not obvious. We speculate, the 1051	
  
fitness phenotype in these cases may be function of intergenic regions in addition to the 1052	
  
encoded genes. 1053	
  
 1054	
  
Experimental validation of single genes 1055	
  
To experimentally validate some of top hits in our Dub-seq results we used the ASKA 1056	
  
ORF collection29. The ASKA library consists of E. coli ORFs cloned on a pMB1 1057	
  
replication origin plasmid and driven by an IPTG-inducible promoter. We extracted 1058	
  
individual ASKA ORF plasmids from the collection, sequence confirmed and 1059	
  
transformed the plasmids into our assay strain E. coli DH10B. As the plasmid copy 1060	
  
number and the strength of promoter and ribosome binding site used in the ASKA ORF 1061	
  
collection is different from the broad-host pBBR1 plasmid system used in E coli Dub-seq 1062	
  
library, we screened for an optimum IPTG levels to induce the expression of specific 1063	
  
gene in order to study the host fitness.  We grew the individual strains in 96-well 1064	
  
microplates with 150 uL total volume per well. These plates were grown at 30ºC with 1065	
  
shaking in a Tecan microplate reader (either Sunrise or Infinite F200) with optical 1066	
  
density readings every 15 minutes.  1067	
  
 1068	
  
Library visualization tools 1069	
  
We used the Dub-seq viewer tool from the Dub-seq python library 1070	
  
(https://github.com/psnovichkov/DubSeq) to generate regions of the E. coli chromosome 1071	
  
covering fragments (landscape mode) presented in Fig 2a. To generate fitness score 1072	
  
plots as shown in Fig. 3a and 3b, and Supplement Figs. 4, 6 and 7, we used gene-1073	
  
browser mode. We used Circa software (OmGenomics) to generate genome coverage 1074	
  
plot shown in Fig. 2a.  1075	
  
 1076	
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Code and metadata availability 1077	
  
Code for processing and analyzing Dub-seq data is available at 1078	
  
https://github.com/psnovichkov/DubSeq  1079	
  
 1080	
  
Complete data from all experiments (read counts per barcode, fragment scores and 1081	
  
gene scores) is deposited here: https://doi.org/10.6084/m9.figshare.6752753.v1 1082	
  
 1083	
  
Link to website with supplementary information and bulk data downloads: 1084	
  
http://morgannprice.org/dubseq18/ 1085	
  
 1086	
  
 1087	
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Supplementary Fig. 1. BarSeq reproducibility: Comparison of UP and DOWN 1313	
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barcode reads for two independent start (time-zero) samples. 1315	
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Supplementary Fig. 2. Fragment score comparisons: Fragment score (fscore) 1320	
  
comparisons for all fragments in LB (x-axis) and LB with nickel (y-axis). (a) Fragments 1321	
  
fully covering rcnA are highlighted in red. (b) Fragments fully covering rcnR are 1322	
  
highlighted in red. 1323	
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Supplementary Fig. 3. Comparison of gene scores from regression analysis and 1330	
  
mean gene scores: Comparison between gene fitness scores calculated using Non-1331	
  
Negative Least Squares regression (NNLS) method and the mean score method under 1332	
  
nickel stress  (a) Fitness score for rcnA (red circle) (b) Fitness score for rcnR (red 1333	
  
circle). 1334	
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 1339	
  
Supplementary Fig. 4. Fragment and gene Dub-seq scores: Dub-seq fragment 1340	
  
(strain) data for different regions under elevated nickel stress (y-axis). Each line shows 1341	
  
a Dub-seq fragment with those that completely cover the indicated gene are in red. The 1342	
  
mean and regression scores for each indicated gene are shown below each plot. 1343	
  
Compare scores for (a) yfgG with (b) yfgH, and  (c) cysE with (d) trmL. Note that the 1344	
  
mean and regression scores for yfgH and trmL are different. The mean score is 1345	
  
incorrectly high for yfgH and trmL and is due to the presence of yfgG and cysE on a 1346	
  
number of fragments. 1347	
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 1351	
  
 1352	
  
Supplementary Fig. 5. Additional validation growth curves for Dub-seq high 1353	
  
scoring genes.  (a) Growth of E. coli overexpressing murA under phosphomycin stress; 1354	
  
emrE is a control. (b) Growth of E. coli overexpressing dcrB under sisomicin stress; 1355	
  
yfeX is a control. (c) Growth of E. coli overexpressing mipA under benzethonium 1356	
  
chloride stress; valS is used as a control. (d) Growth of E. coli overexpressing pssA 1357	
  
under sisomicin stress; sugE is used as a control. 1358	
  

1359	
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 1360	
  
 1361	
  
 1362	
  

 1363	
  
 1364	
  
Supplementary Fig. 6. Dub-seq gene-pair fitness scores: Dub-seq fragment (strain) 1365	
  
data (y-axis) for region surrounding gene-pair of interest (x-axis). The covered 1366	
  
fragments are shown in red and partially covered gene-pair-neighborhood fragments 1367	
  
are shown in gray. The regression scores each gene-pair of interest are shown next to 1368	
  
each plot. Compare scores for (a) fetA and fetB with fetA-fetB pair with (b) ampD and 1369	
  
ampE, with ampD-ampE pair and  (c) ackA and pta with ackA-pta pair. We looked for 1370	
  
the scores for fragments containing more than one gene that are significantly greater 1371	
  
than the inferred sum of score of the constituent genes.  1372	
  
 1373	
  

1374	
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Supplementary note: 1375	
  

Ridge, Lasso, and Elastic Net 1376	
  

The Ridge, Lasso, and Elastic Net regressions were implemented using the scikit-learn 1377	
  
python library for machine learning. The regression was done on sparse representation 1378	
  
of matrix A, without calculation of intercept since fragment scores were normalized (to 1379	
  
set the median to zero). The regularization parameters were estimated using 3-fold 1380	
  
cross validation (RidgeCV, LassoCV, and ElasticNetCV classes from the 1381	
  
sklearn.linear_model package). The parameters were first estimated for each of 155 1382	
  
experiments, and then the parameters that deliver the highest R-square across all 1383	
  
samples were selected as optimal.  1384	
  
  1385	
  
The objective functions to be minimized and optimal regularization parameters for 1386	
  
Ridge, Lasso, and Elastic Net are described below. 1387	
  
 1388	
  
Ridge 1389	
  
 1390	
  
Ridge is 𝐿! regularization with objective function: 1391	
  
 1392	
  
||𝐴𝑔 − 𝑓||!! +   𝛼||𝑔||!! 
 1393	
  
where  ∝  controls the amount of regularization (shrinkage). The optimal 𝛼  =1.0 1394	
  

Lasso 1395	
  

Lasso is 𝐿! regularization with objective function: 1396	
  
 1397	
  
||𝐴𝑔 − 𝑓||!! +   𝛼||𝑔||!  
 1398	
  
where 𝛼 controls the amount of regularization (shrinkage) and variable selection. The 1399	
  
optimal 𝛼 =3.4 1400	
  
 1401	
  

Elastic Net 1402	
  

Elastic Net is regularization with linear combination of 𝐿! and 𝐿! terms and objective 1403	
  
function: 1404	
  
||𝐴𝑔 − 𝑓||!! +   𝛼  𝛾||𝑔||! +   

!(!!!)
!

||𝑔||!!  1405	
  
 1406	
  
where  𝛼 controls the amount of regularization and 𝛾 defines the relative contribution of 1407	
  
𝐿! and 𝐿!  terms/ The optimal parameters:  𝛼 =3.6; 𝛾 =0.7 1408	
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The regression analysis was run using optimal parameters and then manual inspection 1409	
  
of regression results obtained from all three methods (Ridge, Elastic Net and LASSO) 1410	
  
was performed for known gene-function associations. We observed that Ridge and 1411	
  
Elastic Net with optimal parameters tends to significantly underestimate the fitness 1412	
  
scores for causative genes that expected to have high positive or negative fitness 1413	
  
scores. This underestimation is caused by shrinkage effect introduced by both 1414	
  
regularization approaches. At the same time, the LASSO, when used with optimal 1415	
  
parameters, seems to lack this problem and produces the most accurate scores across 1416	
  
all three approaches. As an example, this is shown for rcnA gene (condition: 1.2 mM 1417	
  
Nickel) scores calculated from Ridge, Elastic Net and LASSO approaches 1418	
  
(Supplementary Fig. 7a). However, LASSO with optimal parameters still did not solve 1419	
  
OLS over fitting problem completely, and still gave the unrealistic extreme positive and 1420	
  
extreme negative scores for neighboring genes (for example, comparison of rcnB and 1421	
  
yehA, condition: 1mM Cobalt, Supplementary Fig. 7bc). In comparison, NNLS had no 1422	
  
regularization parameters, and we did not observe over fitting issues.   1423	
  
 1424	
  
 1425	
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 1426	
  
 1427	
  
Supplementary Fig. 7: Gene score estimation approaches: Example gene scores 1428	
  
for (a) rcnA (b) rcnB and (c) yehA showing data over fitting and shrinkage by ridge, 1429	
  
lasso and elastic net regularization methods. Left, Dub-seq viewer for fragments 1430	
  
covering a specific gene completely (red), compared to partially covering or gene-1431	
  
neighborhood fragments (gray). The gene scores estimated using different methods are 1432	
  
shown on right. The gene scores highlighted in blue lines indicate issues of 1433	
  
regularization methods (see Supplementary note). 1434	
  
 1435	
  
 1436	
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