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ABSTRACT 

Microbial diversity is strongly affected by the bottom-up effects of resource availability. 24 

However, because resource pools often exist as heterogeneous mixtures of distinct molecules, 

resource heterogeneity may also affect community diversity. To test this hypothesis, we surveyed 26 

bacterial communities in lakes that varied in resource concentration. In addition, we 

characterized resource heterogeneity in these lakes using an ecosystem metabolomics approach. 28 

Overall, resource concentration and resource heterogeneity affected bacterial resource–diversity 

relationships. We found strong relationships between bacterial alpha-diversity (richness and 30 

evenness) and resource concentration and richness, but richness and evenness responded in 

different ways. Likewise, we found associations between the composition of the bacterial 32 

community and both resource concentration and composition, but the relationship with resource 

composition was stronger. Last, in the surveyed communities the presence of resource generalists 34 

may have reduced the effect of resource heterogeneity on community composition. These results 

have implications for understanding the interactions between bacteria and organic matter and 36 

suggest that changes in organic matter composition may alter the structure and function of 

bacterial communities.  38 
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INTRODUCTION 40 

 Resource availability is a bottom-up control that has strong effects on the diversity of 

consumer communities. Theory suggests that resource enrichment promotes diversity and food-42 

web complexity (Rosenzweig, 1971; Hairston and Hairston, 1993; Abrams and Roth, 1994; Polis 

and Strong, 1996; Worm et al., 2002), and empirical studies have shown that, in the absence of 44 

top-down control, ecosystems with higher resource concentrations support more diverse and 

productive communities (Leibold et al., 1997; Leibold, 1999; Hulot et al., 2000; Waldrop et al., 46 

2006). However, the relationship between resources and diversity can be complex (Mittelbach et 

al., 2001; Tilman et al., 1982). For example, while diversity often increases linearly with 48 

resource concentration (Stevens and Carson, 2002), it can also exhibit more complex, non-linear 

relationships where diversity peaks at intermediate concentrations (Leibold, 1999). Such 50 

responses have been attributed to a range of processes including variation in competitive ability 

among consumers (Leibold, 1999), shared limitations across species (Stevens and Carson, 2002), 52 

and trophic interactions (Holt et al., 1994; Carpenter et al., 2001).  

 Another feature that may influence resource–diversity relationships is the heterogeneity 54 

of the resource pool. Resources are often considered as homogenous pools, but many resources 

exist as heterogeneous mixtures of multiple forms (Ashton et al., 2010; Schoener, 1974; Turner, 56 

2008). Resource heterogeneity has the potential to promote consumer diversity via niche 

partitioning (Schoener, 1974; Finke and Snyder, 2008). For example, plants have been shown to 58 

partition different forms of nitrogen (e.g., NH4, NO3, organic N) in ways that may promote 

species coexistence (McKane et al., 2002; Schimel and Bennett, 2004; Andersen and Turner, 60 

2013). Likewise, different phosphorus resources (e.g., phosphate vs. phytic acid) can alter the 

diversity and function of aquatic bacterial communities (Muscarella et al., 2014), taxa in 62 
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microbial biocrusts have non-overlapping resource preferences (Baran et al., 2015), and 

phytoplankton are capable of partitioning the light spectrum in ways that allow for species 64 

coexistence (Stomp et al., 2004).  

The effects of resource heterogeneity may depend on the degree to which communities 66 

are comprised of generalist or specialists. If communities are made up primarily of resource 

generalists, then the total concentration of a resource should have a stronger influence on 68 

diversity because species do not differ in their response to different resources (Stevens and 

Carson, 2002). In contrast, if communities are made up of resource specialists, then resource 70 

heterogeneity may promote consumer diversity by providing unique resource niches for 

consumers to partition (Glasser, 1984; Levine and HilleRisLambers, 2009). Together, resource 72 

heterogeneity and resource acquisition strategy (i.e., generalists versus specialist) may help 

resolve unexplained variation in resource–diversity relationships. 74 

 For heterotrophic organisms, an important resource used for growth and physiological 

maintenance is organic matter. Organic matter is heterogeneous and consists of molecules that 76 

differ in chemical structure, origin, and age (Stevenson, 1994). In aquatic ecosystems, dissolved 

organic matter (DOM) is often classified based on origin (autochthonous vs. allochthonous) and 78 

bioavailability (labile vs. recalcitrant). DOM can also be characterized based on its optical 

properties (Fellman et al., 2009; Weishaar et al., 2003) and functional groups (e.g., humic acids) 80 

(Croué, 2004). However, these characterizations may not adequately describe DOM composition 

because other chemical features, including molecular weight, oxidation state, stoichiometry, and 82 

chemical structure, can influence the metabolism of organisms that consume DOM, (Cory and 

McKnight, 2005; Cherif and Loreau, 2007; Lennon and Pfaff, 2005; Berggren et al., 2010). 84 

However, recent technological advances have made it possible to more thoroughly characterize 
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DOM diversity at the molecular level (Moran et al., 2016; Petras et al., 2017; Broeckling et al., 86 

2008). Therefore, there is now the opportunity to understand the linkages between DOM 

heterogeneity and consumer diversity and characterize resource-diversity relationships (Töpper 88 

et al., 2012; Alonso-Sáez and Gasol, 2007; Gómez-Consarnau et al., 2012; Osterholz et al., 

2018). 90 

 In this study, we measured aquatic microbial communities and DOM chemistry to 

understand how resource heterogeneity contributes to resource–diversity relationships. We 92 

measured bulk resource concentration measurements and used high-resolution mass 

spectrometry to quantify resource heterogeneity. We also characterized aquatic bacterial 94 

community diversity using 16S rRNA sequencing. Furthermore, we used species-resource co-

occurrence to test the hypothesis that communities dominated by specialists would respond 96 

stronger to resource heterogeneity than to resource availability. Our results support the view that 

resource heterogeneity promotes bacterial community diversity, but the contribution of DOM 98 

resource heterogeneity may be dampened when DOM generalists dominate bacterial 

communities.  100 

 

METHODS 102 

Study System and Sampling — The Huron Mountains nature preserve is a 5300 ha tract of 

private land in the upper peninsula of Michigan, USA. The area is part of the Superior Bedrock 104 

Uplands region (Schaetzl et al., 2013). The surrounding forests are primarily old-growth 

hemlock-northern hardwoods (Woods, 2000), and the inland water bodies are part of the Pine 106 

River Watershed, which drains into Lake Superior. Using a van Dorn sampler, we obtained 

surface water samples (0.5 m) from 10 lakes in the Huron Mountains during July 2011 (Fig. S1, 108 
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Table 1). In addition, we measured dissolved oxygen concentrations, temperature, pH, and 

conductivity at the time of sampling using Quanta Hydrolab water quality sonde, and we 110 

measured chlorophyll a concentration in the lab after cold ethanol extraction of 0.7 µm-filtered 

(Whatman GF/F) water samples using a Turner Biosystems Fluorometer (Table 1).  112 

 

Resource Concentrations — With the water samples, we measured the concentrations of 114 

dissolved organic carbon (DOC), total nitrogen (TN) and total phosphorus (TP). We measured 

DOC concentrations by oxidation and non-dispersive infrared detection on 0.7 µm-filtered 116 

(Whatman, GF/F) samples using a Shimadzu TOC-V carbon analyzer. We measured TN on 

unfiltered samples using a Lachat FIA 8500 auto-analyzer (Hach, Loveland CO) after 118 

ammonium peroxydisulfate/sulfuric acid digestion (Lachat, 2005). We measured TP on 

unfiltered samples spectrophotometrically using the ammonium molybdate method and oxidation 120 

by persulfate digestion (Wetzel and Likens, 2000).  

 122 

Resource Heterogeneity — To estimate resource heterogeneity, we characterized the 

composition of dissolved organic matter (DOM) for each lake using ecosystem metabolomics.  124 

We extracted DOM from each sample using solid phase extraction (SPE) (Dittmar et al., 2008). 

Briefly, we acidified 1 L of 0.7 µm-filtered (Whatman, GF/F) water to pH 3.0 with 4N HCl. We 126 

then passed the water sample through an SPE cartridge (Discovery-18, Supelco, Bellefonte PA) 

at a flow rate ≤ 5 mL min-1 using vacuum pressure. Columns were pre-conditioned using 6 mL 128 

100% methanol followed by 6 mL pH 3.0 ultra-pure H2O. We filtered the sample until no sample 

remained or until the cartridge became clogged (recording the final volume filtered) and dried 130 

the filter with N2 gas for 5 minutes. We eluted the DOM from the column using 100 % methanol 
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and evaporated the methanol at 25 °C using vacuum centrifugation. A consistent amount of 132 

purified DOM was then separated on Waters Acquity ultra-performance liquid chromatography 

T3 column (1.8 µM, 1.0 x 100 mm) using water with a 0.1% formic acid-acetonitrile gradient 134 

and analyzed using negative electrospray ionization with quadrupole time of flight mass 

spectrometry (Q-TOF MS; Waters G2 Q-TOF) and indiscriminate tandem MS (idMS/MS) at the 136 

Colorado State University Proteomics and Metabolomics Facility. Q-TOF MS provides high 

resolution, accurate mass quantification and idMS/MS provides high collision energy 138 

fragmentation without precursor ion selection acquired concurrently with low-collision energy 

MS data. For each sample, raw data files were converted to .cdf format, and a matrix of 140 

molecular features as defined by retention time and ion mass (m/z) was generated using the 

XCMS package in R (Smith et al., 2016) for feature detection and alignment. Raw peak areas 142 

were normalized to total ion signal, and the mean area of the chromatographic peak was 

calculated from duplicate injections. Features were grouped based on an in-house clustering tool, 144 

RAMClustR, which groups features into spectra based co-elution and covariance across the full 

dataset, whereby spectra are used to determine the identity of observed compounds in the 146 

experiment (Broeckling et al., 2014). We used field-prepared ultrapure water as controls and 

subtracted control peaks from sample peak heights. We multiplied control peaks by 1.1 to 148 

provide conservative blank subtraction. A subset of the clustered dataset was referenced to the 

NISTv14 tandem (MS/MS) library, which contains 193,119 spectra of 43,912 precursor ions 150 

from 8,531 chemical compounds, and also screened for matches in Metlin for putative compound 

identification. Retention time was used as a proxy for polarity, and the heaviest ion (m/z) in the 152 

clustered spectra was used as a proxy for molecular weight. We recognize that the heaviest ion 

may not be representative of the molecular weight in all cases due to, for example, the formation 154 
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of dimers and potential in-source fragmentation, however, electrospray is the gentlest type of 

ionization and is often related to the mass of the analytes. We define “DOM components” as the 156 

chemical features identified in DOM samples by ecosystem metabolomics.  

 158 

Microbial Composition — We used an RNA based approach to characterize bacterial 

community composition by sequencing the 16S rRNA gene transcript. We extracted total nucleic 160 

acids using the MoBio Power Water RNA extraction kit (Carlsbad, CA). Nucleic acid extracts 

were cleaned via ethanol precipitation and RNA extracts were treated with DNase I (Invitrogen) 162 

to degrade residual DNA. We synthesized cDNA via the SuperScript III First Strand Synthesis 

Kit using random hexamer primers (Invitrogen). Once cDNA samples were cleaned and 164 

quantified, we amplified the 16S rRNA gene transcript (cDNA) using barcoded primers (515F 

and 806R) designed to work with the Illumina MiSeq platform (Caporaso et al., 2012). We 166 

purified the sequence libraries using the AMPure XP purification kit, quantified using the 

QuantIt PicoGreen kit (Invitrogen), and pooled libraries at equal molar ratios (final 168 

concentration: 20 ng per). After pooling, we sequenced the libraries on the Illumina MiSeq 

platform using 250 x 250 bp paired end reads (Illumina Reagent Kit v2) at the Indiana University 170 

Center for Genomics and Bioinformatics Sequencing Facility. Paired-end raw 16S rRNA 

sequence reads were assembled into contigs and filtered based on quality score, length, and 172 

ambiguous base calls. After filtering, we aligned our sequences to the Silva Database (version 

123). Chimeric sequences were detected and removed using the VSEARCH algorithm (Rognes 174 

et al., 2016). We then created operational taxonomic units OTUs by first splitting the sequences 

based on taxonomic class (using the RDP taxonomy) and the binning sequences in OTUs based 176 
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on 97% sequence similarity. All initial sequence processing was completed using the software 

package mothur (version 1.40.5; Schloss et al., 2009). 178 

 

Resource Heterogeneity and Community Diversity — First, we tested the hypothesis that 180 

resource heterogeneity affects bacterial community alpha diversity. We used linear models to 

determine if higher resource concentrations or more types of DOM resources (i.e., resource 182 

richness) would affect the richness and evenness of bacterial communities. We transformed 

(Box-Cox), centered, and scaled (i.e., divided by standard deviation) resource concentration and 184 

species richness to meet model assumptions of equal variance and normality (Neter et al., 1996). 

We subsampled bacterial communities using rarefication to correct for differences in sample size 186 

due to sequencing depth (Hughes and Hellmann, 2005; James and Rathbun, 1981). We rarefied 

communities and calculated species richness as the number of OTUs observed and species 188 

evenness using Simpson’s evenness (Smith and Wilson, 1996). We used the Box-Cox-

transformed DOC concentration as the measure of resource concentration and we calculated 190 

resource richness as the number of distinct DOM peaks observed in each sample.  

Next, we tested the hypothesis that resource heterogeneity affects community beta 192 

diversity by comparing resource concentrations and DOM composition to bacterial community 

composition. We used distance-based redundancy analysis (dbRDA; Legendre and Anderson, 194 

1999) to test for relationships between: 1) resource concentration and community composition 

and 2) resource composition and community composition. dbRDA is a multivariate linear model 196 

technique that uses quantitative factors explaining differences in multivariate community 

composition data. We used the Box-Cox-transformed DOC concentration as the measure of 198 

resource concentration. To use DOM composition as a predictor in our dbRDA model, we used 
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principal coordinates analysis (PCoA), based on relative abundances and Bray-Curtis 200 

dissimilarity, to decompose DOM composition into orthogonal linear components (Legendre and 

Legendre, 2012). To represent the DOM composition, we used the DOM PCoA axis scores for 202 

each sample. As the response in the dbRDA model, we relativized OTU abundances and used 

Bray-Curtis distances to compare community composition across samples. Significance tests of 204 

our dbRDA model were conducted based on 10,000 permutations. All calculations were done in 

the R statistical environment (R Core Team, 2012) using the ‘vegan’ package (Oksanen et al., 206 

2013).  

 208 

Consumer-Resource Specialization — To test the hypothesis that the response to resource 

heterogeneity depends on whether communities were dominated by generalists or specialists, we 210 

used consumer-resource co-occurrence to define generalists and specialists. We defined resource 

generalists and specialists based on co-occurrence analysis, which was performed using 212 

Spearman’s rank correlations between DOM components and bacterial OTUs. We used the 

relative abundances of DOM components and the relative transcript abundances of bacterial 214 

OTUs. We inferred interactions based on correlations with coefficients >  |0.7| (Williams et al., 

2014), and we tested for significance using a permutation test based on randomizations with the 216 

independent-swap algorithm (Gotelli, 2000). We defined resource generalists as those taxa with 

four or more significant negative resource interactions. We used the negative interaction as a 218 

proxy for potential resource consumption. To understand the spatial extent of individual taxa, we 

defined cosmopolitan taxa as those found in ≥ 90 % of the sampled lakes and we determined 220 

how many resource generalists were also cosmopolitan taxa. All calculations were done in the R 

statistical environment.  222 
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RESULTS 

Resource Composition and Heterogeneity — The lakes sampled captured a range of bulk 224 

resource concentrations (Table 1), and many bulk resource concentrations were correlated. For 

example, the concentrations of dissolved organic carbon (DOC) and total nitrogen (TN) were 226 

highly correlated (rho = 0.97, p < 0.001, Fig. S2). Using ecosystem metabolomics, we 

characterized the dissolved organic matter (DOM) pool and detected 712 compounds across the 228 

sites. We refer to these molecules as DOM components. Based on the relative abundances of 

DOM components, sites were on average 37 % dissimilar in DOM composition. Using principal 230 

coordinates analysis (PCoA), we could explain 71 % of the variation in DOM composition 

across sites using three dimensions (Fig. 1). The variation in DOM composition was significantly 232 

related to DOC (r2 = 0.68, p = 0.01), TN (r2 = 0.70, p = 0.01), Chl a (r2 = 0.69, p = 0.02), and pH 

(r2 = 0.58, p = 0.03), but there were no significant relationships with TP (r2 = 0.27, p = 0.34) or 234 

surface area (r2 = 0.30, p = 0.26). In addition, we found a negative relationship between the 

richness of DOM components and the concentration of DOC (p < 0.01). We used DOC to 236 

represent resource concentration and the DOM PCoA scores to represent DOM composition in 

further analyses. We identified influential DOM components as those correlated (rho > |0.70|) 238 

with variation in the DOM PCoA axes (Fig. S3). We identified 172 influential DOM 

components. 240 

 

Community Composition and Resource-Diversity Relationships — Across the 10 lakes, we 242 

identified 5,085 bacterial operational taxonomic units (OTUs) based on 16S rRNA transcript 

sequencing. When rarified, lakes varied in taxonomic richness and evenness (Fig. 2). Using 244 
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Bray-Curtis distances and relative transcript abundances, lakes were on average 62 % dissimilar 

to one another based on bacterial community composition.  246 

First, we tested for relationships between resources and bacterial alpha-diversity. We 

used linear regression to test for resource-diversity relationships between bacterial community 248 

diversity (richness and evenness) and both resource concentration and DOM richness. As 

predicted, bacterial alpha-diversity was affected by resource concentration (Fig. 2). OTU 250 

richness was positively related to resource concentration (r2 = 0.66, p = 0.008) but 

negatively related to DOM richness (r2 = 0.50, p = 0.023). In contrast, OTU evenness was 252 

positively related to DOM richness (r2 = 0.67, p = 0.003) but negatively related to resource 

concentration (r2 = 0.49, p = 0.022).  254 

Next, we tested for relationships between resources (concentrations and composition) and 

bacterial beta-diversity using distance-based redundancy analysis (dbRDA). Based on the 256 

dbRDA models, resource concentrations explained 28 % of the variation in bacterial community 

composition (p = 0.002), and DOM composition explained 45 % of the variation in bacterial 258 

community composition (p = 0.03, Fig. 3). However, when we partitioned the explained 

variation among the DOM PCoA axes, only DOM Axis 2 was significant (r2 = 0.70, p = 0.017). 260 

In addition, this DOM axis was correlated to variation along OTU PCoA Axis 1 (rho = 0.83, 

p = 0.002; Fig. 3). Last, we tested for relationships between resource concentration and DOM 262 

composition. We found a significant correlation between resource concentration and DOM Axis 

2 (rho = 0.69, p = 0.03).  264 

 

Consumer–Resource Specialization — Based on consumer-resource co-occurrence analysis 266 

and spatial occurrence, we classified generalist and cosmopolitan bacteria. We found that 1.3% 
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of taxa (68 OTUs) were resource generalists, and 4.5 % (233 OTUs) were cosmopolitan taxa. Of 268 

the resource generalists, 74 % were also found to be cosmopolitan taxa. Proportionally, resource 

generalists and cosmopolitan taxa were substantial across all lakes (Fig. 4). For both groups, 270 

there was a significant negative relationship between relative abundance and resource 

concentration (Fig. 4). In addition, the proportion of resource generalists was related to DOM 272 

composition based on DOM Axis 2 (rho = 0.81, p = 0.004), but not DOM Axis 1 (rho = 0.08, 

p = 0.82). Taxonomically, both resource generalists and cosmopolitan taxa were diverse. For the 274 

resource generalists, the majority belonged to the classes Alphaproteobacteria (14) and 

Planctomycetacia (11), but Verrucomicrobiae (8) and Actinobacteria (7) were also common. At 276 

the family level, the resource generalists represented groups including Acetobacteraceae, 

Caulobacteraceae, Planctomycetaceae, Sphinomonadaceae, and Verrucomicrobiaceae. For the 278 

cosmopolitan taxa, the majority belonged to the classes Alphaproteobacteria (58) and 

Betaproteobacteria (50), but Gammaproteobacteria (14), Actinobacteria (21), Planctomycetacia 280 

(17), and Sphingobacteria (12) were also common. At the family level, the cosmopolitan taxa 

represent groups including Acetobacteraceaea, Alcaligenaceae, Bulkholderiaceae, 282 

Caulobacteraceae, Chitinophagaceae, Comomonadaceae, Flavobacteriaceae, Planctomycetaceae, 

Rhodobacteraceae, Spartobacteria, Sphinomonadaceae, and Verrucomicrobiaceae.  284 

 

 286 

DISCUSSION 

 We found evidence that resource concentration and resource heterogeneity affect 288 

bacterial resource–diversity relationships. Our data suggest that there is a significant relationship 

between resources (concentration and richness) and bacterial community alpha diversity. 290 
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Likewise, resource concentration and composition explained variation in bacterial community 

composition (beta-diversity), although to differing degrees. Last, DOM generalists were 292 

prevalent in the surveyed microbial communities and that there was a negative relationship 

between the proportion of generalists and the concentration and composition of DOM. Together, 294 

our results suggest that DOM resource heterogeneity affects aquatic microbial communities, and 

that DOM resources may influence aspects of community diversity (e.g., species evenness) and 296 

community composition. However, when generalists dominate communities, the effects may be 

limited potentially due to complex food-web interactions. Based on our findings, we argue that 298 

organic matter composition plays an important role in structuring aquatic microbial communities, 

and that changes in organic matter composition owing to land use modifications and changing 300 

terrestrial plant communities may alter the structure and function of aquatic bacterial 

communities. 302 

 

Resource Heterogeneity in Microbial Food Webs 304 

Resource heterogeneity affected the diversity of aquatic bacterial communities. We found that 

DOM resources were heterogeneous across lakes — on average lakes were 37 % dissimilar in 306 

their DOM composition. As such, resource heterogeneity may help explain the variation in 

resource-diversity relationships along resource concentration gradients. We tested this hypothesis 308 

and found that while resource concentration explained 28 % of the variation, DOM resource 

composition explained 45 % of the variation in bacterial community composition across lakes. 310 

These findings suggest that different types of bacteria use and potentially specialize on different 

types of resources, which has been observed elsewhere. For example, it has been shown that 312 

some bacteria primarily use algal-derived resources (Sarmento and Gasol, 2012; Jaspers and 
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Overmann, 2004) while others primarily use terrestrial-derived resources (Guillemette et al., 314 

2015; Roehm et al., 2009). Therefore, lakes receiving different resource inputs may be expected 

to contain different bacterial communities. Thus, DOM resource heterogeneity is a potential 316 

mechanism to explain the diversity within and between bacterial communities.  

 Resource diversity (i.e., DOM richness) was positively correlated with OTU evenness, 318 

but negatively correlated with OTU richness (Fig. 2). Resource diversity is likely to influence 

OTU evenness because evenness, a measure of equitability among taxa, may reflect the 320 

frequency of species traits (Hillebrand et al., 2008; Hill, 1973), such as enzymes needed to 

uptake and metabolize different DOM components. Furthermore, changes in evenness have been 322 

linked to altered species-interactions, coexistence, and ecosystem functions (Hillebrand et al., 

2008). If resources represented niches to be partitioned, resource diversity should promote 324 

species diversity because resource diversity provides unique niches to species to partition 

(Werner, 1977; Glasser, 1984; Schoener, 1974).  Because we observed an increase in evenness 326 

but not in richness with greater resource diversity, our findings suggest that the increased 

evenness observed in communities represents changes in abundances but not the addition of new 328 

taxa. Furthermore, the change in evenness — an increase — suggests that the changes in 

abundance benefit intermediate rank taxa. Together, our results support the hypothesis that 330 

resource heterogeneity contributes to observed resource-diversity relationships. In addition, we 

propose that DOM resource heterogeneity may promote more diverse communities by increasing 332 

species equitability and benefiting taxa that comprise the middle ranks of the bacterial 

community – “The Microbial Middle Class”. 334 

 

 336 
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Resource Substitutability 

One possible explanation for why resource heterogeneity may only have weak effects in some 338 

habitats is that many resources are substitutable. Two resources are substitutable when either can 

each be used for growth and reproduction while the other is absent (Tilman, 1980). For example, 340 

some plants are able to grow using ammonium, nitrate, or even organic nitrogen as a source of 

nitrogen (Haynes and Goh, 1978; McKane et al., 2002; Schimel and Bennett, 2004), and 342 

zooplankton such as Daphnia can use algae, cyanobacteria, and bacteria independently as food 

sources (Demott, 1998). Likewise, aquatic ecosystems contain numerous phosphorus resources 344 

but some have similar effects on the structure and function of aquatic microbial communities 

(Muscarella et al., 2014).  346 

In this study, we found numerous DOM components that appear to have similar 

consumer-resource co-occurrence patterns (Fig. S4). One explanation is that many DOM 348 

components are substitutable. At a chemical level, resources with the same core molecule can be 

substitutable. For example, vanillate and ferulate share an internal benzene structure and are used 350 

by the same metabolic pathways (Buchan et al., 2000). In addition, extracellular enzymes often 

degrade aliphatic polymers of different lengths into identical monomers (Rojo, 2009). As such, 352 

many DOM components are likely substitutable. We used chemical databases to identify the 

resources captured by our mass spectrometry and group possible substitutable resource; however, 354 

we were unable to make positive identifications for many resource components in part due to the 

low representation of environmental samples in the available databases. In addition, we tested for 356 

patterns based on the polarity and molecular weight estimates but found no significant 

relationships. This does not mean relationships between DOM and bacterial composition are 358 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 8, 2018. ; https://doi.org/10.1101/387803doi: bioRxiv preprint 

https://doi.org/10.1101/387803
http://creativecommons.org/licenses/by/4.0/


 

 

indescribable, but methods need to be developed to classify and group DOM components into 

meaningful categories based on functional and metabolic forms.  360 

 

Generalist Communities 362 

Our results suggest that resource generalists may dominate many aquatic microbial communities, 

and thus may explain why the effect of resource heterogeneity on community composition is 364 

stronger is some lakes than others. Specifically, resource heterogeneity had a weak effect on the 

composition of bacteria in lakes that separate along OTU PCoA Axis 2 (Fig. 3). Across our 366 

lakes, we found a negative relationship between the abundance of generalists and the 

concentrations of resources. This relationship is also correlated with the second axis of the DOM 368 

PCoA, but not the first DOM PCoA axis which explains the majority of the DOM variation. One 

possibility is that the majority of DOM resources are substitutable. Alternatively, consumers 370 

could have multiple metabolic pathways for resource acquisition. For example, evidence from 

comparative genomics suggests that aquatic bacteria capable of using complex organic matter 372 

also have the potential to use numerous different resources, and may thus be generalists 

(Livermore et al., 2013; Newton et al., 2010; Lauro et al., 2009). As such, we propose that 374 

resource generalists may be more common in aquatic ecosystems than previously thought 

(Mariadassou et al., 2015).  376 

It is often assumed that most bacteria are specialists. For example, multiple studies have 

identified taxa that specialize on particular resources (Hunt et al., 2008; Mccarren et al., 2010; 378 

Gómez-Consarnau et al., 2012; Jaspers and Overmann, 2004; Bird, 2012). The ability to use 

multiple resources requires the production of extra enzymes and transporters; therefore, it is 380 

costly to use numerous resources (Johnson et al., 2012). As such, specialists may be 
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energetically favored in some environments. Likewise, numerous studies have indicated that 382 

habitat specialists (e.g., sediment and aquatic) dominate bacterial communities (Székely and 

Langenheder, 2013; Mariadassou et al., 2015; Langenheder and Ragnarsson, 2007). However, 384 

our results suggest that generalists are common in the lakes surveyed (Fig. 4). These findings are 

supported by another study which found that resource generalists dominated coastal bacterial 386 

communities (Mou et al., 2008). It should be noted though, that we found both resource 

generalists and specialists (Fig. S4) and therefore we are not suggesting that resource specialists 388 

do not contribute to resource-diversity relationships. Instead, we argue that generalist may limit 

the ability of resource heterogeneity to promote diversity when generalists are more dominant 390 

than specialists.   

We do acknowledge, however, that the method used to characterize DOM has some 392 

limitations. First, the DOM extraction and detection may be biased towards some groups of 

molecules (Dittmar et al., 2008). While we may have missed some important components of the 394 

DOM pool, we likely captured the complex terrestrial-derived organic matter that often 

dominates aquatic ecosystems (Wilkinson et al., 2013). This DOM has been shown to be 396 

important for bacterial community structure and function (Lapierre et al., 2013; Lennon and 

Pfaff, 2005; Muscarella et al., 2016). However, these are not the only important components of 398 

the DOM pool, and we may have missed less complex labile molecules that can also affect 

bacterial communities (Sarmento and Gasol, 2012). However, many labile molecules would be 400 

consumed rapidly, and thus we may not have been able to detect them. Second, our consumer-

resource interaction results are based on a single time point and therefore only suggest possible 402 

bacteria-resource interactions. We use these correlations to make inferences about the degree to 

which taxa are generalists. To make stronger inferences, we would need to conduct time-course 404 
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experiments during resource fluctuations and perform experimental manipulations of DOM 

concentration and composition. Last, we assume that microbial communities are under local 406 

selection due to resource availability, but other factors such as dispersal, predation, and the 

physical environment can affect community composition. For example, high dispersal rates can 408 

overwhelm local selection due to mass effects (Leibold et al., 2004) which is especially 

important in aquatic microbial communities that receive organisms from the neighboring 410 

terrestrial landscape (Ruiz-Gonzalez et al., 2015; Crump et al., 2012). Regardless, our results, 

and other genomic studies, suggest that resource generalist may dominate aquatic microbial 412 

communities, and this should be investigated further. 

 414 

Conclusions 

Resource heterogeneity influenced the resource-diversity relationship and the 416 

contribution of heterogeneity can be greater than concentration; however, when resource 

generalists dominated communities the resource-diversity relationship was dampened. These 418 

findings do not mean that there are no specialists in bacterial communities, because we find 

evidence of resource specialist and others have found strong evidence for resource and habitat 420 

specialists (Székely and Langenheder, 2013; Mariadassou et al., 2015; Langenheder and 

Ragnarsson, 2007; Bird, 2012; Muscarella et al., 2016). These findings support the hypothesis 422 

that generalist taxa may limit the affect resource heterogeneity has on local communities; 

furthermore, we propose that consumer properties (i.e., generalist) and resource properties (i.e., 424 

availability) determine how strong communities respond to resource heterogeneity. In addition, 

in order to understand how bacterial communities will respond to environmental changes, such 426 

as changes in organic matter inputs due to changes in plant community distributions or global 
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climate change, we need to consider which resources are substitutable and which resources will 428 

change in similar and predictive ways. In doing so, we will be able to understand how microbial 

communities will respond to alterations in the available resources.  430 
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TABLES 
 648 

Table 1.  Lake Properties and Chemistry – Latitude, longitude and surface area (hectares), pH, 
temperature (Temp.), dissolved oxygen concentration (DO), chlorophyll a concentration (Chl a), 650 

TN: total nitrogen, TP: total phosphorus, DOC: dissolved organic carbon. 
 652 

Lake Latitude Longitude Area  
(ha) 

pH Temp 
(°C) 

DO  
(mg L-1) 

Chl a 
(µg L-1) 

Ann 46.8715 87.9220 25 7.86 27.44 7.22 1.25 

Canyon 46.8334 87.9224 1.1 7.02 23.9 7.24 1.63 

Howe 46.8916 87.9470 69 7.78 26.4 7.22 1.85 

Ives 46.8440 87.8483 191 8.10 25.4 7.62 1.39 

Lily 46.8475 87.8302 1.6 5.51 26.2 5.7 3.55 

Mountain 46.8692 87.9063 338 8.31 26.5 7.93 2.14 

Pony 46.8874 87.9175 0.5 5.39 25.3 7.04 16.35 

Rush 46.8882 87.9067 127 8.14 25.7 7.74 1.23 

Second Pine 46.8682 87.8572 69 8.09 26.2 7.17 3.76 

Upper Pine 46.8624 87.8502 16 7.79 26.6 7.12 8.55 

 
 654 
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Table 1 Cont.  Lake Chemistry. TN: total nitrogen, TP: total phosphorus, DOC: dissolved 656 

organic carbon.  
 658 

Lake DOC (mg C L-1) TP (µg P L-1) TN (mg N L-1) 

Ann 5.97 7.27 0.43 

Canyon 7.23 2.64 0.38 

Howe 7.04 5.21 0.57 

Ives 6.91 9.15 0.38 

Lily 14.35 11.55 0.93 

Mountain 5.27 5.87 0.34 

Pony 28.99 17.04 1.86 

Rush 4.22 3.84 0.41 

Second Pine 6.26 12.92 0.44 

Upper Pine 7.84 11.21 0.57 
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FIGURE LEGENDS 
 662 

Fig. 1: Principal coordinates analysis (PCoA) ordination of dissolved organic matter (DOM). 

The distances between symbols represent the dissimilarity between DOM in each lake. Using 664 

three axes, we can explain 71% of the variation in DOM composition. The third axis (not shown) 

captures 14% of the variation. Symbol sizes reflect variation in the concentration of dissolved 666 

organic carbon (DOC). Vectors represent the correlations between DOM composition and 

various physical and chemical attributes of each lake including: pH, area, DOC, total nitrogen 668 

(TN), total phosphorus (TP), and chlorophyll a (Chl).  

 670 

Fig. 2:  Bacterial community diversity relationships with resource concentration and resource 

richness. Resource (DOC) concentration and species richness have been Box-Cox transformed to 672 

meet model assumptions. There are significant positive relationships between species richness 

and resource concentration and between species evenness and dissolved organic matter (DOM) 674 

richness. There are significant negative relationships between species evenness and resource 

concentration and between species richness and DOM richness. Dashed line represents linear 676 

regression fit along with 95% confidence intervals. 

 678 

Fig. 3:  Principal coordinates analysis (PCoA) ordination of bacterial communities. Vectors 

represent the correlation between the dissolved organic matter (DOM) heterogeneity and the 680 

bacterial community composition. The two vectors are based on correlations between community 

composition and the site scores from the DOM PCoA axes one and two. We used distance-based 682 

redundancy analysis to test the relationship between DOM site scores and bacterial community 

composition.  684 
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Fig. 4: The proportion of generalists and cosmopolitan taxa in aquatic bacterial communities. We 686 

defined operational taxonomic units (OTUs) as generalists using consumer-resource co-

occurrence (top) and as cosmopolitan based on spatial occurrence (top). We used OTU relative 688 

abundances to calculate the proportion in each community. For both, we used a linear model to 

determine if there was a relationship between the proportion of generalists and the concentration 690 

of dissolved organic carbon (DOC). For both, we found a significant negative relationship. 

Dashed line represents linear regression fit along with 95% confidence intervals. The light gray 692 

dotted line represents 50% of the community and is used as a reference.  
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Figure 1: 698 
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