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Summary

Image-based deep learning systems, such as convolutional neural networks (CNNs),
have recently been applied to cell classification, producing impressive results;
however, application of CNNs has been confined to classification of the current
cell state from the image. Here, we focused on cell movement where current
and/or past cell shape can influence the future cell fate. We demonstrate that
CNNs prospectively predicted the future direction of cell movement with high
accuracy from a single image patch of a cell at a certain time. Furthermore, by
visualizing the image features that were learned by the CNNs, we could identify
morphological features, e.g., the protrusions and trailing edge that have been ex-
perimentally reported to determine the direction of cell movement. Our results
indicate that CNNs have the potential to predict the future cell fate from cur-
rent cell shape, and can be used to automatically identify those morphological
features that influence future cell fate.
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Introduction

Recent advances in microscope automation have enabled the acquisition of
large numbers of bioimages. Several approaches to analyzing these images
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are proposed. One successful approach is machine learning, which has been
used primarily in cell classification[1]. Cell classification using conventional
machine learning proceeds in two steps. Firstly, hand-crafted image features
are extracted for each cell from the image (e.g., using Scale-Invariant Feature
Transform[2], Histograms of Oriented Gradients[3], or CellProfiler[4]). Secondly,
these features are used to train a classification model (e.g., Support Vector
Machine[5], Adaptive Boosting[6]). As a result, the performance of these clas-
sifiers relies heavily on the appropriateness of the hand-crafted features chosen
empirically. Moreover, because feature extraction and classifier training are
independent of each other, they cannot work together to identify and use dis-
criminative information maximally.

In recent years, deep learning methods have been used to overcome this
limitation of conventional machine learning methods. Deep learning methods,
especially convolutional neural networks (CNNs), automatically learn feature
representations from the raw pixels of cell images. Therefore, CNNs can avoid
using hand-crafted features. Furthermore, CNNs are jointly optimized with
these feature representations to predict the class for each cell image. For gen-
eral visual recognition tasks, CNNs have substantially outperformed conven-
tional machine learning methods with hand-crafted features[7, 8] , and they
have been applied successfully to biological imaging[9, 10]. In cell classification,
use of CNNs has produced impressive results[11, 12, 13, 14, 15, 16, 17] : e.g., the
classification of abnormal morphology in MFC-7 breast cancer cells[13], the clas-
sification of cervical cells in cytology images[15]; the identification of malaria-
infected cells[16]; and the automatic classification of Hep-2 (human epithelial-2)
cell staining patterns[17].

The above applications of CNNs have focused on classification of the cur-
rent cell state from the image. However, recent studies have demonstrated that
the current and/or past cell shape influences the future cell fate even after the
original shape is lost. Akamura et al. (2016) demonstrated that the shape of
a V2 neural progenitor cell affects the stochastic fate decision-making of the
daughter cells even after the V2 cell loses the original geometry through mitotic
rounding and division[18]. Kozawa et al. (2016) used Bayesian inference to pre-
dict cell division-timing based on progressive cell-shape changes[19]. Therefore,
an interesting question is whether CNNs can be used to predict future cell fate
based on current and/or past cell shape.

Here, we focused on dynamic cell movement as a model system of cell shape
influencing future cell fate. In general, cell movement can be conceptualized
as a cyclic process[20]. The cell movement cycle begins with the formation of
protrusions by actin polymerization. Protrusions are stabilized by adhering to
the extracellular matrix (ECM). These adhesions serve as traction sites for the
movement as the cell moves forward over them. At the cell rear, the adhesions
with ECM are disassembled. Then the cell rear, the trailing edge, contracts
mainly due to the pulling force generated by myosin II. As a result, the cell
moves towards the protrusions. The motility and shape of individual migrating
cells are closely related[21]. Jiang et al. (2005) demonstrated that the polarity
of cell shape, i.e., wide front and a narrow rear, biases the direction of cell move-
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ment (i.e., moving direction)[22]. Ghosh et al. (2004) demonstrated that pro-
trusions formed locally by actin polymerization define the moving direction[23].
We therefore hypothesized that CNNs can learn which morphological features
influence moving direction and thus predict the future moving direction from
cell shape at a certain time.

In general, it is not clear how and why CNNs arrive at a particular prediction
decision, although several groups have attempted to interpret CNN predictions
and propose possible methods for explaining CNNs decisions[24, 25, 26, 27].
These methods can visualize the features of the image that contribute to the
CNN predictions. Application of these methods is expected to identify morpho-
logical features that influence moving direction.

Here, we demonstrate that CNNs prospectively predict the future direction
of cell movement with high accuracy from a single image patch of a cell at a cer-
tain time. Furthermore, to reveal how and why CNN models can predict future
moving direction, we visualized the features of the cell images that were learned
by the CNN models and contributed to their prediction: e.g., the protrusions
and trailing edge.

Results

Training and validation of CNNs for predicting the future
direction of cell movement

To illustrate that CNNs can predict cell fate based on current cell shape, we set
out to construct a CNNmodel that predicts the future direction of cell movement
from a single image patch of a cell at a certain time. Firstly, we prepared
image datasets from time-lapse phase-contrast microscopic images of migrating
NIH/3T3 cells and U373 cells, respectively (see Materials and Methods). We
manually tracked the positions of the migrating cells. Then, each cell in each
frame was annotated with the moving direction: i.e., toward upper right, upper
left, lower left, or lower right. The annotation was determined based on the
displacement at the time the net displacement exceeded the average diameter
of NIH/3T3 cells (18 µm∗). For each annotated cell in each frame, we created
an image patch of 128 × 128 pixels centered on its position coordinate. The
NIH/3T3 dataset comprised 785 image patches for 40 cells (Table 1); the U373
dataset comprised 795 image patches for 12 cells (Table 1).

We used these datasets to train and test CNN models for predicting the
direction of cell movement. In CNN models, input image patches are processed
through multiple convolutional layers and max-pooling layers. In convolutional
layers, trainable sets of filters are applied at different spatial locations using a
stride of a certain size, thereby extracting features associated with moving di-
rection as feature maps. In max-pooling layers, feature maps are down-sampled
by computing the maximum value of a feature map over a region, which reduces

∗http://bionumbers.hms.harvard.edu/bionumber.aspx?id=108905
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variance and increases translational invariance[28]. After repeating the process-
ing through convolutional layers and max-pooling layers, two fully connected
layers are used for prediction. Our CNN models arrange 14 layers into eight
convolutional layers, four max-pooling layers, and two fully connected layers,
consisting of 162,704 trainable parameters in total (more detail in Material and
Methods, network architecture shown in Fig. 1 and Table 2).

To assess the generalization performance of CNN models, we trained and
tested them in 4-fold cross-validation using the NIH/3T3 and U373 datasets.
We evaluated the performance of trained CNN models by calculating the av-
erage classification accuracy (ACA) and the mean class accuracy (MCA) (see
Materials and Methods); the results are presented below as means ± standard
deviation (n = 4 folds). While the expected value of ACA and MCA, if the
data were randomly predicted, are 25%, our CNN models achieved high ACA of
87.3% ± 3.0% and high MCA of 85.9% ± 3.1% for the NIH/3T3 dataset. Our
CNN models also achieved high ACA of 89.1% ± 0.4% and high MCA of 86.7%
± 1.1% for the U373 dataset.

Visualizing image features learned by the CNN models

Next, to identify the morphological features influential in the prediction of CNN
models, we quantified and visualized the image features learned by the CNN
models. Firstly, we used guided backpropagation (GBP)[27], which visualizes
the local feature of the input image that most strongly activates a CNN’s par-
ticular neuron (see Material and Methods). For each dataset, we presented each
test image to the trained CNN models. Then, GBP was applied to a single max-
imum activation in each feature map of the last convolutional layer, producing
local features of the input image patch. As a result, local features correspond-
ing to the protrusion and the trailing edge contracting in the moving direction
were identified for both the NIH/3T3 and U373 datasets (lower parts of each
image group, Fig. 2). Next, we quantified and visualized global features of
the image patches contributing to the CNN prediction of the moving direction
by using deep Taylor decomposition (DTD)[26]. DTD quantifies the degree of
contribution to the CNN prediction (relevance) of the input image patch (see
Materials and Methods) on a pixel-by-pixel basis. For each dataset, we pre-
sented each test image to the trained CNN models. Then, by applying DTD to
the prediction result, pixel-wise relevances were calculated. We visualized these
pixel-wise relevances as heatmaps (Fig. 2, lower right). For both the NIH/3T3
and U373 datasets, pixels corresponding to the protrusion and trailing edge
simultaneously contributed to the prediction of the CNN models.

Discussion

Previous applications of CNNs to cell classification have focused on classification
of the current cell state from an image[11, 12, 13, 14, 15, 16, 17]. In contrast,
here, we focused on images of dynamic cell movement and demonstrated that
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CNNs can prospectively predict the future direction of cell movement with high
accuracy.

Average speed and directionality are important parameters that define cell
motility[29]. Both these parameters were significantly different between the
NIH/3T3 and the U373 datasets (Supplementary Fig. 1). The apparent mor-
phology of migrating cells also differed qualitatively between the two datasets:
e.g., the protrusions were prominent and broad in U373 cells compared with
NIH/3T3 cells (Fig. 2, Movie 1 and 2 in Supplementary Material). Despite
these differences, our CNN models achieved the same degree of prediction ac-
curacy for both cell types. This might be because our CNN models could learn
the morphological features, such as the protrusion and the trailing edge (Fig.
2), which are known to be characteristic features of cell movement regardless of
cell type or substrate, except for some specific cell types[20, 30].

Because cell classification using conventional machine learning is built upon
the extraction of hand-crafted features[1, 2, 3, 4], the features affecting the
classification result depend on the choice of hand-crafted features. These hand-
crafted features are abstract representations of the cell image and are therefore
diffcult to intuitively relate to visual inspection of the cell image. In contrast,
because CNNs automatically and jointly learn optimal feature representations
and the prediction task directly from the raw pixels of the cell image, the fea-
tures affecting the prediction result do not depend on the feature selection and
are optimized for the prediction. Furthermore, because these features can be
visualized on the cell image by using the approach used in this study, they can
be intuitively related to visual inspection of the cell image. Here, we identi-
fied morphological features, such as protrusions and trailing edge, which are
known experimentally to influence the moving direction[for review, see [20]]: for
instance, protrusions generated locally by actin polymerization determine the
moving direction[23], and the position of the trailing edge influences the mov-
ing direction via stress fiber organization[31]. Our results indicate that such
important morphological features that can influence cell fate can be identified
automatically, by using CNNs to predict cell fate and then visualizing the image
feature(s) contributing to this prediction.

In conclusion, we focused on dynamic cell movement as a model system in
which cell shape influences cell fate. Our findings indicate that use of CNNs
can enable not only the prediction of the cell fate but also the identification of
morphological features that can influence the cell fate. Based on these findings,
we believe that our approach could be applied to the analysis of other cell mech-
anisms where cell shape can influence future processes, such as cell division[19]
and differentiation[32]. This approach could reveal unknown biological phenom-
ena and be useful for pathologic and/or clinical diagnosis.
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Figure 1: Architecture of CNN models that predict the future direction
of cell movement using a single image patch of a cell at a certain time.
In the flowchart, an image patch of a NIH/3T3 cell annotated on the upper
right (Input) is presented to a CNN model. The input is processed through a
series of repeating convolutional layers (orange) and max-pooling layers (yellow).
In the convolutional layer, the activation images illustrate extracted feature
maps of the sample image patch (Input). The red boxes and lines illustrate
the connections within the CNN model. After repeating processing through
convolutional layers and max-pooling layers, fully connected layers are used for
prediction (green). The network output (Output) represents the distribution
over four moving directions.
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Figure 2: Visualized image features learned by the CNN models. (A)
NIH/3T3 dataset. (B) U373 dataset. For each moving direction, each group
of images shows exemplary results (i.e., those for a correctly predicted test
image patch). The upper row of each group of images comprises—from left to
right—the frame corresponding to the input image patch, the frame imaged in
the middle between the left frame and the right frame, and the frame when
the moving direction was annotated (scale bars, 20 µm). The time under each
frame shows the elapsed time since the leftmost frame was imaged. The blue
bounding box indicates the area corresponding to the input image patch. The
red dot indicates the position of the cell obtained by manual tracking. The
red line indicates the trajectory of cell movement starting from the position of
the cell at 0 min. The lower row of each group of images comprises—from left
to right—the input image patch, the local features visualized by GBP for the
feature maps whose maximum activations were top three, and the heatmap of
pixel-wise relevance calculated by DTD.
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Figure 3: Annotation of the moving direction. (A) Exemplary time-lapse
images of a migrating cell (scale bars, 20 µm). The time under each frame shows
the elapsed time since the leftmost frame (annotation target) was imaged. ∆t is

the time when the net displacement
√
∆x2 +∆y2 exceeded the average diameter

of NIH/3T3 cells. The red dot indicates the position of the cell obtained by
manual tracking. The red line indicates the trajectory of cell movement starting
from the position of the cell at 0 min. The radius of the cyan circle is the average
diameter of NIH/3T3 cells. (B) Annotating one of the four moving directions.
According to the value of cell displacement (∆x,∆y) at the time ∆t, the moving
direction was annotated as shown in the figure. The red line and the cyan circle
are the same as those of the frame at ∆t min in (A).
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Tables

Table 1: Number of image patches per moving direction

Moving direction
Number of image patches
in the NIH/3T3 dataset

Number of image patches
in the U373 dataset

upper right 179 165
upper left 188 253
lower left 242 96
lower right 176 281
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Table 2: CNN model-relevant hyperparameters
Layer Type Description
1 Convolution Filter size = 3 × 3, Number of filters = 16, Stride size = 1
2 Convolution Filter size = 3 × 3, Number of filters = 16, Stride size = 1
3 Max-pooling Filter size = 2 × 2, Stride size = 2
4 Convolution Filter size = 3 × 3, Number of filters = 16, Stride size = 1
5 Convolution Filter size = 3 × 3, Number of filters = 16, Stride size = 1
6 Max-pooling Filter size = 2 × 2, Stride size = 2
7 Convolution Filter size = 3 × 3, Number of filters = 32, Stride size = 1
8 Convolution Filter size = 3 × 3, Number of filters = 32, Stride size = 1
9 Max-pooling Filter size = 2 × 2, Stride size = 2
10 Convolution Filter size = 3 × 3, Number of filters = 64, Stride size = 1
11 Convolution Filter size = 3 × 3, Number of filters = 64, Stride size = 1
12 Max-pooling Filter size = 2 × 2, Stride size = 2
13 Fully connected Number of neurons = 100
14 Fully connected Number of neurons = 4
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Materials and Methods

Time-lapse phase-contrast microscopic images

To create datasets for training CNN models, we prepared time-lapse phase-
contrast microscopic images of cell movement in different ways for each dataset;
details are provided below.

NIH/3T3 dataset

NIH/3T3 fibroblasts were plated on glass-based dishes precoated with 5 µg/cm2

fibronectin at a density of 500 cells/cm2. After overnight incubation, cell move-
ments were monitored with an inverted microscope (IX81, Olympus) equipped
with an on-stage incubation chamber that maintained the temperature at 37◦C
and the CO2 concentration at 5%, using a 20× objective (0.45 numerical aper-
ture). Phase-contrast images were collected with CCD video cameras (ORCA-
Flash4.0 or ORCA-R2; Hamamatsu) at 5-min intervals, digitized and stored as
image stacks by using Micro-Manager software (Open Imaging).

U373 dataset

Time-lapse phase-contrast microscopic images of glioblastoma–astrocytoma U373
cells were obtained from the dataset used in the ISBI (International Symposium
on Biomedical Imaging) cell tracking challenge 2015[33, 34]. U373 cells moving
on a polyacrylamide substrate were monitored with a microscope (Nikon) us-
ing a 20× objective (0.5 numerical aperture), and phase-contrast images were
acquired at 15-min intervals.

Annotation of the moving direction

For each dataset, we manually tracked the positions of migrating cells by us-
ing the Manual Tracking plugin of ImageJ (National Institutes of Health). For
each cell in each frame, we annotated one of the four moving directions ac-
cording to the value of displacement (∆x,∆y) at the time the net displacement√
∆x2 +∆y2 (the distance between the initial and final positions) exceeded the

average diameter of NIH/3T3 cells (18 µm†)(Fig. 3). The four moving directions
were defined as follows: ( i ) ∆x ≥ 0,∆y ≤ 0 = upper right; (ii) ∆x < 0,∆y ≤ 0
= upper left; (iii) ∆x < 0,∆y > 0 = lower left; and (iv) ∆x ≥ 0,∆y > 0 = lower
right. Regarding the NIH/3T3 dataset, the net displacement was evaluated at
15-min intervals according to the shooting interval of the U373 dataset. For
each annotated cell, we cropped the image to a bounding box of 256 × 256 pix-
els for the NIH/3T3 dataset or 170 × 170 pixels for the U373 dataset, centered
on the cell x, y coordinates. Cropped image patches were resized to 128 × 128
pixels for each dataset.

†http://bionumbers.hms.harvard.edu/bionumber.aspx?id=108905
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CNNs for predicting the future direction of cell movement

To prospectively predict the future direction of cell movement from a single
image patch of a cell at a certain time, we used CNN models[35, 36] with the
architecture shown in Fig. 1 and Table 2. Each of our CNN models comprised
consecutive convolutional layers, max-pooling layers, and fully connected lay-
ers. The last fully connected layer consisted of four neurons, with each neuron
corresponding to the future direction of cell movement. We applied the soft-
max function to the activations of the last fully connected layer to produce a
distribution over four moving directions. Each convolutional layer and the first
fully connected layer was followed by a nonlinear activation function. We used
rectified linear units, which have been shown to introduce nonlinearities without
suffering from the vanishing gradient problem[37]. To enable the CNN models
to predict the future moving direction for image patches with various intensity
values, the pixel values of each input image patch were normalized to within the
range of 0 to 1 by first subtracting the minimum intensity value of the image
patch, and then dividing by the maximum intensity value of the resulting image
patch[17].

Training and validation of CNN models

We trained CNN models and tested them in 4-fold cross-validation. At each fold,
we used a softmax loss function and trained the CNN model for 50 epochs, using
stochastic gradient descending with stratified batches of 32 images. To reduce
the influence of imbalanced moving directions in the datasets, we multiplied the
loss function by the class weight expressed by the following equation:∑n

k Nk

nNk

where n is the number of classes (moving directions), and Nk is the number of
training data of class k. We initialized all weights in a CNN model by using
the HeNormal algorithm, which sets the weights of each layer according to a
scaled Gaussian distribution whose standard deviation corresponds to the input
size of each layer[38]. We used standard values for the base learning rate (0.01)
and momentum (0.9). For each epoch, we evaluated the prediction accuracy of
a CNN model using test data. The evaluation criteria were the ACA and the
MCA: ACA is the overall correct prediction rate of all test data, and MCA is
the average of the per-class accuracies defined as follows:

MCA =
1

n

n∑
k=1

CCRk

where CCRk is the prediction accuracy of class (moving direction) k and n is
the number of classes. If the MCA was not improved for the best score in
the previous epoch, the learning rate was decreased by multiplying by 0.9. To
prevent the CNN models from overfitting to training data, we (a) trained the
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models using vertical and horizontal reflections of the image patches as well as
rotations by 90◦, 180◦, and 270◦, in addition to the original training data; and
(b) applied dropout[39] to the first fully connected layer (dropout rate, 0.5). For
each fold, we used the best score of each criterion for 50 epochs as the prediction
accuracy of the models.

For the following analysis of image features learned by CNN models, we used
those models with the best MCA for the test data at each fold. We implemented
and trained the CNNmodels by using Chainer[40], which is open-source software
for machine learning.

Visualizing image features learned by CNN models

We quantified and visualized features learned by the CNN models as described in
the Results. GBP[27] was used to visualize local features of input image patches
specific to the annotated moving direction. In this method, an input image is
presented to a CNN, and high-level feature maps are computed throughout the
layers. Typically, a single neuron activation is left non-zero in the high-level
feature map. The single non-zero activation is back-propagated to input pixel
space. Finally, the part of the input image that is most strongly activating
the single non-zero neuron (i.e., the part that is most discriminative) is recon-
structed. For each dataset, we presented each test image patch to trained CNN
models, and a single maximum activation in each feature map of the last convo-
lutional layer was back-propagated to input pixel-space, resulting in producing
local features of the input image.

To quantify and visualize global features of input image patches contributing
to the CNN prediction of moving direction, we used DTD[26], which can be
summarized as follows. As a premise, each neuron of a CNN is viewed as a
function that can be expanded and decomposed on its input variables. A CNN
prediction of the moving direction is obtained by forward-propagation of input
pixel values {xp} and is encoded by the output neuron xf . The output neuron
is assigned a relevance score Rf = xf representing the total evidence for the
specific moving direction. Relevance is then decomposed and back-propagated
from the top layer down to the input. As a result, the pixel-wise relevance (i.e.,
the degree of contribution to the CNN prediction) is calculated for each pixel
of the input image. The pixel-wise relevances can be visualized as a heatmap.
For each dataset, we presented each test image patch to trained CNN models,
and DTD was applied to the CNN prediction output.

Data availability

The image datasets used to train the CNN models, the raw time-lapse phase
contrast images, metadata text files of Micro-Manager, and tracking results are
available using bash scripts in: https://github.com/funalab/PredictMovingDirection.
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Code availaility

The code for performing the experiments is available at: https://github.com/fun
alab/PredictMovingDirection.

Supplementary Material

Supplementary Figure 1. Motility values calculated for the NIH/3T3
and U373 datasets. (A) Boxplot of the average speed of the cell, v. (B)
Boxplot of the directionality of the cell, k (n = 785 cell images in the NIH/3T3
dataset and 795 cell images in the U373 dataset). P-value is from two-sided
Mann-Whitney rank test. For each image in the datasets, we first measured
the time required until the net displacement ∆r exceeded the average diameter
of NIH/3T3 cells, which is the time interval ∆t until the moving direction was
annotated. Then, we calculated the total distance

∑
∆d traveled by the cell

in the time interval ∆t. Regarding the NIH/3T3 dataset, the net displacement
∆r and movement distance ∆d were calculated at 15-min intervals according to
the shooting interval of the U373 dataset. The average speed was calculated by
the equation v =

∑
∆d/∆t[22]. The directionality was calculated by dividing

the net displacement ∆r by the total distance
∑

∆d[22]. The directionality was
used to measure how often the cell tended to turn. Cells that frequently make
turns will yield a k value close to 0, whereas cells that persistently move along
one direction will yield a k value close to 1.

Movie 1. Time-lapse phase-contrast images of migrating NIH/3T3
cells used to create the NIH/3T3 dataset (AVI). Images were acquired
as described in Materials and Methods.

Movie 2. Time-lapse phase-contrast images of migrating U373 cells
used to create the U373 dataset (AVI). Images were acquired as described
in Materials and Methods.
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