The genetics and genome-wide screening of regrowth loci, a key component of perennialism

 in Zea diploperennis

 in Zea diploperennis}

Anjun Ma ${ }^{\prime *}$, Yinjie Qiu ${ }^{\prime+}{ }^{\dagger}$, Tajbir Raihan', Bimal Paudel', Subha Dahal ${ }^{*}$, Yongbin Zhuang ${ }^{\prime s}$, Aravid Galla ${ }^{\text {s }}$, Donald Auger ${ }^{\text {\& }}$ Y Yang Yen ${ }^{*}$

Author Affiliation:

'Department of Biology and Microbiology, South Dakota State University, Brookings, SD
57007, USA
*: These authors made the equal contributions to this research
\dagger :Current address: Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
: Current address: Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada;
:Current address: College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
: Current address: Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA

Corresponding Author: Dr. Yang Yen, SNP 249C, Box 2140D, Brookings, SD 57007, USA; +1-605-688-4567; yang.yen@sdstate.edu

Classification:

Major: Biological Science
Minor: Plant Biology
Short Title: Regrowth loci in Zea diploperennis
Key Words: Perennial maize, teosinte, Zea mays, corn, genetics, perenniality, GBS

This manuscript was previously deposited as a preprint at http://dx.doi.org/10.1101/388256.

Abstract

Perennialism is common among the higher plants, yet little is known about its inheritance. To address this, six hybrids were made by reciprocally crossing perennial Zea diploperennis Iltis, Doebley \& R. Guzman with inbred lines B73 and Mo17 and Rhee Flint, a heirloom variety, of Z. mays L. ssp. mays. All the F_{1} plants demonstrated several cycles of growth, flowering, senescence and regrowth into normal flowering plants, indicating a dominant effect of the Z. diploperennis alleles. The regrowability (i.e. the plants' ability to regrow after senescence) was stably transmitted to progeny of the hybrids, so we focused on this trait. Segregation ratios in the F_{2} generations are consistent with the trait controlled by two dominant, complementary loci, but do not exclude the influence of other modifiers or environment. Genome-wide screening with genotyping-by-sequencing (GBS) indicated two major regrowth loci, regrowth 1 and regrowth 2, were on chromosomes 2 and 7, respectively. These findings lay the foundation for further exploration of the molecular mechanism of regrowth in Z. diploperennis.

Significance Statement: This study contributes to the general understanding of inheritance of perennialism in the higher plants. Previous genetic studies of the perennialism in Zea have yielded contradictory results. We take a reductionist approach by specifically focusing on one trait, the plant's ability to restart a new life cycle after senescence on the same body. While traits, such as rhizome formation, tillering and dormancy may be important to converting Z. mays to becoming truly perennial, understanding the conditions for regrowth after senescence will be substantial first step. Importantly, our data indicate that there is no major barrier to transferring
this trait into maize or other grass crops for perennial crop development with proper technology, which enhances sustainability of grain crop production in an environmentally friendly way.

Introduction

Perennialism is the phenomenon that a plant can live for more than two years; the ability of doing so is termed perenniality. Plants typically have a life cycle of growth, reproduction (sexual and/or vegetative) and senescence. Annuals and biennials have only one such cycle in their life, leaving behind seeds, bulbs, tubers, etc. to initiate another life cycle. Perennials maintain juvenile meristematic tissues capable of regrowth after senescence to start a new life cycle on the same body. How perennials do so remains as a mystery. Subterranean stems (such as rhizomes), polycarpy and tuberous roots are often cited as the means by which plants achieve perenniality. However, none of these traits is absolutely required by perennials. For instance, bamboos are essentially monocarpic perennial that regrow from rhizomes. Many perennial temperate grasses, such as switchgrass ${ }^{(1)}$, cordgrass ${ }^{(2)}$ and eastern gamagrass ${ }^{(3)}$, regrow from the crowns instead of rhizomes. On the other hand, some annual/biennial plants, such as radish (Raphanus sativus), grow tuberous roots.

Although perennialism is common among higher plants, the study of its genetics and molecular biology is sporadic. So far, the only published research in molecular mechanism of plant perennialism was conducted in Arabidopsis. Melzer et al. successfully mutated this annual herb to show some perennial habits, such as increased woody fiber in the stem, by downregulating two flowering genes coding for MADS-box proteins, SUPPRESSOR OF OVEREXPRESSION OF CONSTANT 1 and FRUITFUL ${ }^{\oplus}$. Unfortunately, this woody mutant was sterile, and no follow-up research was reported. Perennial-related genes and quantitative loci (QTL) have been reported in other species. Major QTL controlling rhizome development,
regrowth and tiller number have been mapped on sorghum linkage groups C (chromosome 1) and D (chromosome 4$)^{5.0}$, which are homoeologous to regions of maize chromosomes $1,4,5$ and 9, respectively ${ }^{\text {® }}$. Hu at al. mapped two dominant, complementary QTL Rhz2 (Rhizomatousness 2) and $R h z 3$ that control rhizome production on rice chromosomes 3 and 4 at the loci homoeologous to the sorghum QTL ${ }^{\oplus}$. Tuberous roots in a wild perennial mungbean (Vigna radiate ssp. sublobata) are conditioned by two dominant, complementary genes ${ }^{\text {si }}$. However, after years of effort these perennialism-related genes have yet to be cloned from any of the species despite that mapping data and complete genomic sequences of rice and sorghum are readily available. Therefore, no further research has been reported about these perennialism-related loci/genes. Recently, Ryder and the associates reported a set of 98 expressed contigs in Johnsongrass (S. halepense) that are likely associated with rhizome development ${ }^{\text {® }}$.

In the genus Zea L., most species, including maize (Z. mays ssp. mays), are annual. However, two closely related species, tetraploid Z. perennis [Hitchc.] Reeves and Mangelsdorf and diploid Z. diploperennis Iltis, Doebley \& R. Guzman, are perennial. Perenniality of these two teosintes is manifested as regrowth after seed production and senescence, which includes developing juvenile basal axillary buds and rhizomes, under favorable environment. A fertile F_{a} hybrid between Z. mays and Z. perennis was made by Emerson ${ }^{(1)}$ in the 1920s, and Z. mays, hybrids with Z. diploperennis were also obtained soon after the diploid perennial teosinte was discovered in the 1990s ${ }^{\left({ }^{(1)} \text {. Evergreen stalks, bulbils (highly-condensed rhizomes), basal shoot }\right.}$ development, stiff stalk and robust root system have all been cited as phenotypic features of perennialism in Z. diploperennis ${ }^{(2,14)}$. For example, evergreen stalks, which was proposed as a component of perennialism in Z. diploperennis ${ }^{(2)}$, appears to be linked to sugary 1 on the short arm of chromosome 4^{45}.

Conflicting conclusions have been reached in various studies on how perennialism is inherited in Zea. Shaver, who worked with tetraploid Z. perennis, proposed that a triple homozygous recessive genotype is needed for the perenniality in Zea ${ }^{\left({ }^{(6)}\right.}$. In this model, pe (perennialism), interacting with gt (grassy tillers) and id (indeterminate), plays a key role in conferring totipotency to the basal axillary buds and rhizomes in the perennial teosintes ${ }^{(6,6,1)}$. The nature of pe remains unknown and the Z.perennis-derived genotype from which pe was identified by Shaver ${ }^{(6)}$ was lost and never recovered despite decades of intensive efforts (Shaver, personal communication). Mangelsdorf and Dunn mapped $P e^{*}-d$, the maize allele of the $p e$ homologue in Z. diploperennis, to the long arm of maize chromosome $4^{(\pi)}$. The $g t$ gene (aka $g t l$), located on the short arm of maize chromosome 1, encodes a class I homeodomain leucine zipper that promotes lateral bud dormancy and suppresses elongation of lateral ear branches ${ }^{45}$. It appears that $g t l$ depends on the activity of a major maize domestication gene, teosinte branched 1 (tbl),
 and $i d l$ are located on the long arm of maize chromosome 1 and both encode transcription factors with zinc finger motifs ${ }^{(19,21)}$. Singleton believed that idl inhibits plantlet generation at the upper nodes of a maize stalk ${ }^{(20)}$. Mangelsdorf and the associates proposed that one or two dominant genes control annual growth habit in their Z. diploperennis-popcorn hybrid ${ }^{222}$.

In contrast to the recessive inheritance model, Galinat proposed that perennialism in Z. diploperennis is at least partially controlled by two dominant complementary genes ${ }^{45}$. Also, Ting and Yu obtained three perennial F_{1} hybrids by pollinating three Chinese field corn varieties with Z. diploperennis ${ }^{(23)}$, which indicate that perennial factors are dominant. Unfortunately, there is no further report about these hybrids or their derivatives.

Westerbergh and Doebley regarded perennialism in Z. diploperennis as a quantitative
trait and identified a total of 38 QTL for eight perennial-habit traits from a Z. diploperennis x Z. mays ssp. parviglumis (annual) mapping population ${ }^{(2)}$. Intriguingly, they did not identify any QTL that shows a singularly large effect. Murray and Jessup indicated that non-senescence and rhizomatousness are essential traits in their perennial maize breeding practice ${ }^{24}$.

Perennialism appears to be a complex trait, strongly influenced by genetic and environmental factors. A perennial plant in one environment usually cannot survive in another due to the lack of the required adaptability. For example, Z. diploperennis, which is perennial in the highlands of Mexico, cannot survive the harsh winter in the American Midwest. The various criteria for what constitutes perennialism in Zea may have contributed to contradictory observations. Traits such as rhizome formation, evergreen stalks, and dormancy are important adaptive features that support the viability of various perennial plants in various environments. In this study, we take a reductionist approach and specifically focus on a plant's regrowability (i.e. the ability to maintain some juvenile meristematic tissues after each life cycle that can initiate a new life cycle). Although this trait by itself is insufficient for functional perenniality, it appears to be an essential component of perenniality in Zea L. Here we report the results of our genetic analysis and genome-wide screening of the regrowth trait with genotyping-by-sequencing (GBS) technology.

Results and Discussion

The production and growth of the hybrids

We made reciprocal crosses of Z. diploperennis (Zd, hereafter in a cross combination) with the following three maize lines: B73, Mo17 and Rhee Flint (RF, hereafter in a cross combination). B73 and Mo17 are inbred lines and Rhee Flint is an heirloom maize variety. The first F_{1} was made with Rhee Flint in a greenhouse. Rhee flint is small, fast-growing and usually
has tillers, which affords serial plantings with an increased opportunity of a plant simultaneously flowering with Z. diploperennis. Because Rhee Flint is an open-pollinated variety, later F_{s} were made with B 73 and Mo17 to facilitate molecular analysis. All the F_{1} plants are fertile and completed multiple cycles of growth, reproduction and senescence (Fig. 1; Supplementary Fig. S1). Regrowth (as opposed to accidental replanting from seed) of F_{1} plants was insured by inspection that new shoots were attached to the base of the F_{1} and confirmed by the heterozygosity of polymorphic PCR markers (examples shown in Supplementary Fig. S2). Regrowth of these F_{t} originates from basal axillary buds after stem senescence in all the crosses (Figs. 1D, 1E, 1F).

Some of the basal regrowth immediately developed into a female (Fig. 2A) or a male (Fig. 2B) inflorescence, or a forest of them (Fig. 2D). These Fl plants with abnormal regrowth most often can later undergo normal regrowth in an alternative environment, such as being moved from the greenhouse to the field, etc., which suggests a strong environmental influence. No such abnormal growth has been seen in advanced generations. Sometimes, plantlets also can develop at the upper nodes of some hybrid plants when B13 and Mo17 were used as the parent (Fig. 2C). The plantlets developed at the upper nodes, however, can only survive if transplanted into soil. This indicates that the senescent stalks do not function to provide the necessary nutrients to the plantlets.

Because the F_{1} plants and their perennial derivatives are not winter hardy, the regeneration cycles were alternated between the greenhouse and the field (Supplementary Figs. S1 \& S3). Interestingly, the ears and kernels of the F_{S} of the six crosses all were more teosintelike (i.e. two rows of oppositely positioned spikelets with paired kernels encased by woody rachides and glumes) when grown in greenhouse but were more maize-like (i.e. multiple rows of
naked kernels with short soft glumes and rachides around a silica-filled soft core) when grown in the field (Fig. 3). In the F_{2} and higher generations, ear morphology segregated even under greenhouse condition (Fig. 3). These observations suggest that environmental factors are important in the preferential expression of the teosinte or the maize alleles of the genes influencing ear morphogenesis in the hybrids. These observations also indicate that it should be possible to breed regrowable maize with maize-like ears and kernels.

The contrast between our observations and those of some previous reports is remarkable. While we focus on a single trait, regrowth after senescence, previous studies were interested in perennialism generally using varying criteria. Conclusions that perennialism in Zea is recessive might have resulted from the hypothesis that traits such as tiller number at tasseling (TNT) or rhizome development are indispensable components of perennialism in Zea. Indeed, other studies have used rhizome development as an indicator of perennialism in Zea ${ }^{11,1,1,1,1,2,25)}$ and we have not observed rhizomes in any of our F_{s} or the derived plants. When regrowth occurs, it is always from an axillary bud. Indeed, it is also our observation that the regrowth of Z. diploperennis is mainly from basal axillary buds, and only occasionally from rhizomes. The Z. perennis - 4 X maize F_{s} s made by R . A. Emerson also were all "weekly perennial" under the environmental conditions with few or no rhizomes ${ }^{100}$.

Other possible explanations for contrasting results is that the perennial teosinte plants used in those studies were polymorphic for one or more regrowth genes, that the experimental environments were unfavorable for regrowth to happen, or that some plants needed more time to break up their dormancy. Shaver ${ }^{40}$ and Camara-Hernandez and Mangelsdorf ${ }^{25}$ observed that some of their F_{1} plants eventually regrew from basal axillary buds after a period of dormancy. Indeed, some of our F_{2} plants need about two months of dormancy before regrowth. This observation
reinforces the view that even regrowth is a complex trait that is modified by genetics and environment.

TNT has been associated with perennialism in several studies ${ }^{(4,41,2,2,27)}$, so we investigated the relationship of TNT with regrowth in the Zd-RF F_{2} s. One-way ANOVA of TNT by regrowth (Supplementary Table S1), however, revealed no significant difference of TNT $(F=0.897, p=$ 0.353) between the regrowth and the non-regrowth $\mathrm{F}_{2} \mathrm{~s}$. Indeed, we observed regrowth from several single-stalked hybrid derivatives (Fig. 4A) and non-regrowth of some multi-stalked plants (Fig. 4B). These results suggest that TNT is not essential to regrowth in Zea.

The genetics of regrowth

All our F_{1} plants regrew and underwent several life cycles alternating between the greenhouse and the field. This indicates that, with our materials and in our environment, regrowth is a dominant trait. Although this contrasts with some reports, regrowable F_{1} hybrids of maize with perennial teosintes were previously obtained by Emerson ${ }^{*}$, Shaver ${ }^{109}$, Galinat ${ }^{(4)}$, Ting and $\mathrm{Yu}^{(2)}$ and Camara-Hernandez and Mangelsdorf ${ }^{(2)}$. Brewbaker suggested cytoplasm may contribute to perennialism ${ }^{2 \pi}$, but our reciprocal F_{S} performed similarly.

To analyze the genetics of regrowth further, $134 \mathrm{~B} 73-\mathrm{Zd} \mathrm{F}_{2} \mathrm{~s}$ (derived from several F_{1} plants where B 73 was the female) and $159 \mathrm{Zd}^{2}-\mathrm{RF} \mathrm{F}_{2} \mathrm{~S}$ (derived from a single F_{1} plant where Zd was the female) were tested. Among the $134 \mathrm{~B} 73-\mathrm{Zd} \mathrm{F}_{2} \mathrm{~s}, 81$ regrew and $53 \operatorname{did}$ not (Table 1).
 B73-Zd F ${ }_{3}$ population (Supplementary Table S 1) and three Zd -RF F F_{3} populations (Table 2), each of which was derived from a single regrowth F_{2} plant, were also evaluated for their regrowth.

A chi square $\left(\chi^{2}\right)$ goodness-of-fit test suggests that both of the F_{2} populations and one Zd $R F F_{3}$ population (Zd-RF $\mathrm{F}_{3}-5$) we tested best fit a 9:7 regrowth to non-regrowth ratio (Table 3),
and the $\mathrm{B} 73-\mathrm{Zd} \mathrm{F}_{3}$ population and the remaining two $\mathrm{Zd}-\mathrm{RF}_{3}$ populations best fit a 3:1 ratio (Table 3). The simplest model that explains these results is that regrowth in the F_{I} and their derivatives is mainly controlled by two dominant, complementary regrowth (reg) loci. A two dominant, complementary gene model parallels what has been found in other species, such as rice (Oryza sativa) ${ }^{(6)}$, Johsongrass (Sorghum halepense) ${ }^{5(6,20)}$, basin wildrye (Leymus cinereus) ${ }^{(60)}$ and wild mungbean (Vigna radiate ssp. sublobata) $)^{\star \infty}$, for perennialism-related traits.

The Zd-RF F, was also backcrossed to each parental line. All plants from the F_{1}-to-Zd backcross regrew, showing dominant effect of the Zd alleles. However, only one of the 20 plants from the F_{1}-to-RF backcross showed regrowth. Therefore, alternative models, such as one or three dominant complementary genes, two major genes with a few minor modifiers, or that regrowth is a complex trait controlled by many QTL, are not eliminated by this genetic analysis, but are less probable.

The number of regrowth plants observed in any generation might be understated, because some plants initially recorded as non-regrowth eventually regrew after about two months of dormancy. Therefore, some plants recorded as non-regrowth and discarded to open up greenhouse space may have possessed the ability to regrow. Furthermore, transplanting from the field to the greenhouse and vise versa is very stressful so that some regrowable plants may have been killed this way.

The F_{2} and F_{3} plants afforded an opportunity to investigate whether some factors previously implicated in perennialism may contribute to the regrowth trait. The rice rhizomatousness gene $R h z 2$ has been mapped to rice chromosomes $3{ }^{(6)}$ and sorghum chromosome $1^{5 \cdot 6,29)}$, which are both homoeologous to parts of maize chromosome 1^{\top}. Additionally, $g t l$ and $i d l$, which have been implicated with perenniality in $Z e a^{\text {® }}$, and $t b l$, which controls $g t l^{\left({ }^{(9)}\right)}$, are all on
chromosome 1 in Zea ${ }^{(0,2)}$. Therefore, we investigated the allele compositions of these three genes in the $\mathrm{B} 73-\mathrm{Zd} \mathrm{F}_{2} \mathrm{~S}$ (Table 1), and $26 \mathrm{Zd}-\mathrm{RF} \mathrm{F}_{2}$ plants and the three $\mathrm{Zd}-\mathrm{RF} \mathrm{F}_{3}$ populations (Supplementary Table S2), and assayed their association with regrowth. Of the 134 regrowth hybrid derivatives we examined, 5,33 and 115 were homozygous for the maize $g t 1, t b 1$ or $i d 1$ alleles, respectively (Table 1 and Supplementary Table S2). Zd-RF F ${ }_{3}$ family Zd-RF F ${ }_{3}-5$ is homozygous for the $g t l$ allele of Z. diploperennis (Supplementary Table S2) but segregates approximately 9:7 for regrowth and non-regrowth (Table 2). Therefore, our results are inconsistent with the model of Shaver ${ }^{164}$, and show that gtl and idl do not control regrowth in our Fis and their derivatives. Z. diploperennis's gtl allele may be helpful to regrowth because the majority of the plants that regrew had at least one copy, but it is not indispensable because some plants regrew without it.

Interestingly, we observed no heterozygosity for idl and very low heterozygosity for $t b 1$ in all the hybrid derivatives that were examined, regardless of regrowth (Tables 1;

Supplementary Table S2). Of 134 B73-Zd F F_{2} plants, only 16 had the Z. diploperennis id1 allele (Table 1). Similar phenomena were observed in the derivatives of the Zd-RF cross (Supplementary Table S2). It seems that the maize chromosome fragment that carries idl was preferentially transmitted to the hybrid derivatives. Excess homozygosity of the maize idl allele indicates some sort of selection. It could be that a deficiency or other rearrangement adjacent to the teosinte $i d 1$ allele causes it not to transmit efficiently, or it could be that the teosinte $i d 1$ or tightly linked allele causes the plant not to grow well or flower in our experimental conditions.

Identifying regrowth loci with genotyping-by-sequencing assay

A genome-wide mining of single nucleotide polymorphisms (SNPs) was conducted in a randomly selected sub-population of 94 (55 regrowth and 39 non-regrowth) $\mathrm{B} 73-\mathrm{Zd} \mathrm{F}_{2}$ plants
with GBS technology (Table 1). We conducted the GBS assays to identify QTL for the regrowth trait. To prepare for these assays, a total of $2,204,834$ (85.14%) Illumina sequencing tags that passed routine quality control filtrations were aligned with the B73_v4 reference genome. A total of 714,158 SNPs, covering all ten chromosomes with an average of 71,416 SNPs per chromosome, were then called from 83 (46 regrowth and 37 non-regrowth, labeled in bold in Table 1) of the $94 \mathrm{~F}_{2}$ plants using TASSEL 3 pipeline ${ }^{61,32}$. SNP-calling for the excluded 11 plants probably failed due to an error in barcode addition before sequencing. These SNPs were first subjected to a two-step filtration in TASSEL 3 (MergeDuplicateSNPsPlugin and GBSHapMapFiltersPlugin) to remove SNPs with poor qualities (see the Materials \& Methods section and Supplementary Table S3 for the details), which resulted in 37,925 SNPs (Table 4, 1^{*} filtration). The 37,925 SNPs were then manually filtered with high missing data rate $>20 \%$, which resulted in 10,432 remaining SNPs among all ten chromosomes (Table 4, $2^{\text {n }}$ filtration).

To explore which chromosomal regions may control the regrowth phenotype, the 10,432 SNPs from the 2 ${ }^{\text {na }}$ filtration step were pooled for QTL analysis using R/qtl (version 1.42-8) (Supplementary Table S4). The result is shown in Figure 5A. A total of 126 SNPs (104 real sites and 22 simulated sites) showed LOD scores higher than 3.00. A permutation test of 1,000 with the p-value of 0.05 resulted in a significant LOD score of 5.23 (Fig. 5A). This significance threshold revealed two major QTL with one at $33,041,409 \mathrm{bp}$ (the nucleotide position in the B73_v4 reference genome sequence) on chromosome 2 with a LOD score of 5.46 and one at $4,284,633 \mathrm{bp}$ on chromosome 7 with a LOD score of 5.53 , respectively.

To test if the two strongest QTL correspond to two dominant and complementary loci suggested by the genetic analysis, we applied a χ^{2} test with 9:7 allele segregation ratio model to the 10,431 SNPs to investigate if the observed and the expected genotypes are significantly
different ($p \leq 0.05$). This is based on our hypothesis that, if a SNP is associated with a reg locus, the teosinte allele of the SNP should be carried by all the regrowable F2s but only by three sevenths non-regrowable F2s. This step kept 946 SNPs (Table 4, $3^{\text {s filtration). Finally, to }}$ simplify the mapping effort, the 946 SNPs were filtered once more by collapsing immediately neighboring SNPs that share the same haplotypes into one cluster. This step resulted in 597 SNP cluster with each being represented by the first SNP in the cluster (Table 4, 4" filtration). Locus mapping was then conducted with a threshold of $\mathrm{LOD}_{s s x}=4.17$. This analysis revealed two significant loci with one on chromosome 2 in the interval from $24,244,192 \mathrm{bp}$ to $28,975,747 \mathrm{bp}$ with the peak at 27,934,739 bp and another on chromosome 7 in the interval from 2,862,253 bp to $6,681,861 \mathrm{bp}$ with the peak at $5,060,739 \mathrm{bp}$ (Fig. 5B). These two loci were mapped closely to the two major QTL indicated by the mapping without imputation. These results are consistent with the two-factor model, which warrants further investigation. To that end we are naming the factor underlying the chromosome 2 QTL regrowth 1 (reg1) and the factor underlying the chromosome 7 QTL as regrowth 2 (reg2).

Our LOD analysis located two minor peaks on chromosome 1 that are associated with regrowth (Fig. 5B). We wanted to know if these two loci are related to $g t l$ and $i d 1$, respectively. The SNPs at the peak of these loci are at $82,273,951 \mathrm{bp}$ and $177,235,112 \mathrm{bp}$, far away from idl (around 243,201,405 bp) and gtl (around 23,625,801 bp) (Fig. 6). These observations further indicate that $i d l$ and $g t l$ are not related to regrowth. Also, previous studies reported that Z. diploperennis carried perennialism-related $P e^{*}-d$ and an evergreen gene on chromosome $4^{(s, 1)}$. However, our data could not support these observations since no SNP on chromosome 4 is significantly associated with regrowth (Figs. 5 and 6).

In summary, the results presented here indicate that regrowth in Zea is inherited
dominantly in our experimental conditions. Both the genetic and GBA analyses support a model where the regrowth trait is mainly controlled by two major regrowth loci, regl and reg2 on chromosomes 2 and 7, respectively. Even so, the data do not eliminate more complex models. Identification and functional study of the candidate genes for reg1 and reg2 and their possible modifiers will initiate an understanding about the molecular mechanism of perenniality in Zea L. We recognize that adaptability is very important for a plant to realize perennialism in a certain environment. However, this issue can be addressed separately after we understand molecularly how Z. diploperennis is regrowable.

Materials and Methods

Plant materials and phenotyping

Zea diploperennis (PI 462368) and Z. mays cv. Rhee Flint (PI 213764) were obtained from the USDA North Central Region Plant Introduction Station, Ames, IA. B73 and Mo17 inbreds were from the collection of D. Auger and are traceable back to the Maize Genetics Cooperation Stock Center, Urbana/Champaign, IL. In our designations of F_{I} and their derivatives, the female parental is shown first. All the plants used in this study were grown in the greenhouse during the winter and in the field during the summer in Brookings, SD. Controlled pollinations were done by covering tassels and ears with paper bags before and after the pollination was made. In the greenhouse, plants were maintained with a 16 h -light/8 h-dark cycle and $20 / 16^{\circ} \mathrm{C}$ day/night temperature except that two-month old Z. diploperennis and its hybrid plants were treated with a 10 h light $/ 14 \mathrm{~h}$ dark cycle for four weeks to induce the floral transition.

Plants were scored as regrowth if they produced shoots from the basal axillary buds after the original stalks finished flowering and senesced. Rhizome and tuber development were visually investigated on plants that were dug from the soil after senescence. TNT was
investigated by counting numbers of tillers per plant when the tassel had fully emerged. Ear and kernel morphology was visually examined and photographed.

PCR assay
DNA samples were isolated from young leaves using the CTAB procedure ${ }^{(33)}$ and used for PCR-based marker assay. Table 5 lists all the PCR primers used in this study. PCR assays were done using GoTaq Green Master Mix (Catalog\# M7505, Promega, Madison, WI) at the following conditions: $95^{\circ} \mathrm{C}, 35$ cycles of $95^{\circ} \mathrm{C}$ for $45 \mathrm{sec}, 55 \sim 62^{\circ} \mathrm{C}$ (primer dependent, see Table 6 for detail) for 1 min and $72^{\circ} \mathrm{C}$ for 1 min , and $72^{\circ} \mathrm{C}$ for 10 min . The annealing temperatures were determined using a $1^{\circ} \mathrm{C}$-touchdown PCR step starting from $65^{\circ} \mathrm{C}$.

SNP discovery

The GBS assay was conducted according to Elshire and the associates ${ }^{(1)}$. The preparation and sequencing of the library were conducted by the University of Wisconsin Biotechnology Center (UWBRC). Generally, DNA samples were digested with ApeKI restriction enzyme (RE), and unique barcodes were annealed to each DNA fragments. A single-end 100 bp (1 x 100 bp) sequencing run was carried out on an Illumina HiSeq 2500 platform. The raw data were pooled as a single fastq file and downloaded from UWBRC.

The TASSEL (Trait Analysis by Association, Evolution and Linkage) 3 pipeline was used under the guidance of TASSEL manual ${ }^{82>}$ for the discovery of SNPs between Z. diploperennis and Z. mays (Supplementary Table S3). The barcoded sequence reads were collapsed into a set of unique sequence tags with counts. The tag count files were filtered for a minimum count threshold and merged into the master tag count file. The B73_RefGen_V4 reference genome sequence was downloaded from MaizeGDB and processed with Bowtie2 for alignment ${ }^{(23)}$. Master tags were aligned to the B73 reference genome to generate a "Tags On

Physical Map" (TOPM) file, which contains the genomic position of each tag with the best unique alignment. The occupancies of tags for each taxon were observed from barcodes information in the original FASTQ files. Tag counts were stored in a "Tags by Taxa" (TBT) file. The TOPM and TBT files were used to call SNPs at the tag locations on the genome. The SNPs were filtered by minimum tag counts of 5, genotype mismatch rate of 0.1 , minimum taxon coverage of 0.01 , minimum site coverage of 0.2 and minimum minor allele frequency of 0.01 . Fastq files containing sequences of chromosomes 1 to 10 were merged by FASTX_Toolkit and indexed. All commands for SNP discovery were executed in Ubuntu 16.04 LTS platform.

SNPs resulted from TASSEL filters plugin with a minimum minor allele frequency of 0.01 were filtered again by removing sites that had missing data in more than 20% of the $\mathrm{B} 73-\mathrm{Zd}$ F_{2} plants. For those SNPs that have missing data in less than 20% of the $\mathrm{B} 73-\mathrm{Zd} \mathrm{F}_{2}$ plants, the missing data were imputed by treating them as heterozygote since both two alleles can be embodied and considered to be moderate. The SNPs from the $2^{\text {nid }}$ filtration identification were used for QTL mapping. To understand the relationship between the mapped QTL with the genetic factors revealed by the genetic analysis, the SNPs from the $2^{\text {n }}$ filtration were further filtered (the $3^{\text {a }}$ filtration) with $\chi^{2}(p<0.05)$. For each regrowth-associated SNP, we expected, in the regrowable subpopulation, 33.3% plants to carry the homozygous Zd alleles (AA) and 66.6% to have the Zd - B 73 heterozygous allele combination (AB) and none with the B 73 homozygous alleles (BB) and, in the non-regrowable subpopulation, 14% of the plants with AA, 28.6% with AB and 57.1% with BB . Altogether, a χ^{2} contingency table were generated with expected $\chi_{0.05,4}^{2}=9.49$. Any SNPs with $\chi^{2}<9.49$ were kept fitting the $9: 7$ segregation model. The $4^{4 \pi}$ SNP filtration was performed to keep the first SNP and remove the rest in a cluster in which all the SNPs in the range of 100 bp share the same haplotypes. In the locus analysis with the chi-square
imputation, such a cluster of SNPs was treated as one locus. Removing the redundant SNPs makes the locus analysis more precise because repeated SNP sites would affect the LOD value and influence the interval estimation.

The SNPs after the 2nd and the 4th filtrations were used for candidate locus/QTL estimation, respectively. The locus analysis was executed by a standard QTL procedure in R using the $R /$ qtl package (version 1.40-8) ${ }^{\text {as }}$ to better observe the contribution of each SNP and its neighbors. The R codes used for the analyses are listed in Supplementary Table S4. Position simulation was drawn with a maximum distance of 1.0 cM and an error probability of 1×10^{4}. The conditional genotype probability (calc.genoprob), as well as simulated genotypes (sim.geno with n.draw=32), were calculated. The "haldane" function was used to convert genetic distances into recombination fractions. Genome scan with a single locus model (scanone) was performed with a binary model using the expectation-maximization algorithm ${ }^{\text {s3 }}$. A permutation test with 1000 replicates was performed in scanone to visualize the LOD thresholds. We determined a locus interval by selecting the first and last SNP sites with significant LOD value. Genes within the intervals were identified by searching the corresponding region on the Gramene website.

Statistical analyses

For statistical analyses, all genotypes and phenotypes were transformed into numeric values. For phenotypes, the regrowth plants were scored as " 1 " and the non-regrowth plants were scored as " 2 ". For genotypes, the plants that were homozygous to the Z. diploperennis allele were scored as " 1 "; those that were homozygous to the B73 or Rhee Flint allele were scored as " 2 "; and those that were heterozygous were scored as " 3 ". When conducting locus analysis, genotype " 1 " was transformed to "AA", " 2 " to "BB" and " 3 " to "AB".

A chi square goodness-of-fit test was used to find the best-fit model or linkage in the
genetic analysis and reveal candidate loci on chromosomes. To determine if TNT has any correlation with regrowth, a One-Way ANOVA of TNT by regrowth was performed in JMP (JMP® 11.2.0).

Sequencing Data availability

All raw fastq data from this study are available at NCBI data deposition site (https://www.ncbi.nlm.nih.gov/bioproject/) with accession number PRJNA477673.

Acknowledgement This research was partially supported by funds from USDA-NIFA via South Dakota Experiment Station and Department of Biology and Microbiology, South Dakota State University. We greatly appreciate Dr. Frank M. You of Agriculture and Agri-Food Canada for his help in statistics.

Author Contributions Y.Y. designed and supervised this project and all the experiments, and drafted the manuscript; Y.Q., A.M, T.R., B.P., A.G., Y.Z., Y.Y. \& D.A. performed the experiments and collected data; Y.Q., A.M., T.R., D.A. \& Y.Y. analyzed the data; all authors discussed the results and communicated on and approved the final manuscript.

Competing financial interests The authors declare no competing financial interests.

References

1. Haferkamp MR, Copeland TD (1984) Shoot growth and development of Alamo switchgrass as influenced by mowing and fertilization. J Range Management 37: 406-412.
2. Boe A, Owens V, Gonzalez-Hernandez J, Stein J, Lee DK,Koo BC. (2009) Morphology and biomass production of prairie cordgrass on marginal lands. GCB Bioenergy 1:240-250.
3. Jackson LL, Dewald CL (1994) Predicting evolutionary consequences of greater
reproductive effort in Tripsacum dactyloides, a perennial grass. Ecology 75:627-641.
4. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489-1492.
5. Paterson AH, Schertz KF, Lin Y, Liu S, Chang Y (1995) The weediness of wild plants: Molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. PNAS 92:6127-6131.
6. Hu FY, Tao DY, Sacks E, Fu BY, Xu P, Li j, Yang Y, McNally K, Khush GS, Paterson AH, Li ZK (2003) Convergent evolution of perenniality in rice and sorghum. PNAS 100:40504054.
7. Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, et al. (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3: e123.
8. Nguyen TD, Lawn RJ, Bielig LM (2012) Expression and inheritance of perenniality and other qualitative traits in hybrids between mungbean cultivars and Australian wild accessions. Crop \& Pasture Sci 63:619-634.
9. Ryder N, Dorn KM, Huitsing M, Adams M, Ploegstra J, DeHaan L, Larson S, Tintle N (2018) Transcriptome assembly and annotation of johnsongrass (Sorghum halepense) rhizomes identify candidate rhizome-specific genes. Plant Direct 2:e00065.
10. Emerson RA, Beadle GW (1930) A Fertile Tetraploid Hybrid Between Euchlaena perennis and Zea mays. Am Nat 64:190-192.
11. Srinivasan G, Brewbaker, JL (1999) Genetic analysis of hybrids between maize and perennial teosinte. I. Morphological traits. Maydica 44:353-369.
12. Galinat WC (1981a). Evergreen stalks as an indicator of perennialism. MNL 55:107. (personal communication per the policy of MNL)
13. Mangelsdorf PC, Dunn ME (1984a) Various expressions and dominance relations of perennialism. MNL 58:53. (personal communication per the policy of MNL)
14. Westerbergh A, Doebley J (2004) Quantitative trait loci controlling phenotypes related to the perennial versus annual habit in wild relatives of maize. Theor Appl Genet 109:1544-1553.
15. Galinat WC (1981b) The inheritance and linkage of perennialism derived from diploperennis. MNL 55:107. (personal communication per the policy of MNL)
16. Shaver DL (1967) Perennial maize. J. Hered 58:271-273.
17. Shaver DL (1964) Perennialism in Zea. Genetics 50:393-406.
18. Mangelsdorf PC, Dunn ME (1984b) Linkage relations of Pe^{*}-d. MNL 58:54. (personal communication per the policy of MNL)
19. Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, Meeley R, Schmidt R, Doebley J, Brutnell T, Jackson DP (2011) grassy tillersl promotes apical dominance in maize and responds to shade signals in the grasses. PNAS 108:E506-E512.
20. Singleton WR (1946) Inheritance of indeterminate growth in maize. J Hered 37:61-64.
21. Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593-603.
22. Mangelsdorf PC, Roberts LM, Rogers S (1981) Crosses of Zea diploperennis with corn. MNL 55:19-21. (personal communication per the policy of MNL)
23. Ting YC, Yu MK (1982) Further studies of F1 hybrids of maize x diploid perennial teosinte. MNL 56:35-36. (personal communication per the policy of MNL)
24. Murry SC, Jessup RW. 2013. Breeding and genetics of perennial maize: Progress, opportunities and challenges. In: Perennial Crops for Food Security, Proceedings of the FAO Expert Workshop, August 28-30, 2013, Rome, Italy, pp103-111.
25. Camara-Hernandez J, Mangelsdorf PC (1981) Crosses of Zea diploperennis with corn. MNL 55:15-17. (personal communication per the policy of MNL)
26. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485-488.
27. Camara-Hernandez J, Mangelsdorf PC (1981) Crosses of Zea diploperennis with corn. MNL 55:15-17. (personal communication per the policy of MNL)
28. Brewbaker JL (2007) Grassy tiller and sweet corn. MNL 81:12. (personal communication per the policy of MNL)
29. Washburn JD, Murray SC, Burson BL, Klein RR, Jessup R. 2013. Targeted mapping of quantitative trait locus regions for rhizomatousness in chromosome SBI-01 and analysis of overwintering in a Sorghum bicolor X S. propinquum population. Mol Breed 31:153-162.
30. Yun L, Larson SR, Mott IW, Jensen KR, Staub JE (2014) Genetic control of rhizomes and genomic localization of a majoreffect growth habit QTL in perennial wildrye. Mol Genet Genomics 289:383-397.
31. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379.
32. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. (2014) TASSELGBS: A high capacity genotyping by sequencing analysis pipeline. PLoS ONE 9: e90346.
33. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13-15.
34. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357-359.
35. Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890.

Table legends:

Table 1. The regrowth (R) and the non-regrowth (NR) phenotypes and the marker genotypes of Zea diploperennis (Zd), Z. mays B73 and their $134 \mathrm{~F}_{2}$ plants*.

Table 2. Segregation of regrowth among the Zea diploperennis-Z. mays cv Rhee Flint $\mathrm{F}_{2} \mathrm{~s}$ and $\mathrm{F}_{3} \mathrm{~s}$.
Table 3. Results of the χ^{2} goodness-of-fit tests of three genetic models.
Table 4. The actions taken and the numbers of SNPs revealed in each filtration step of SNP analysis of Zea mays B 13 - Z. diploperennis F_{2} plants.

Table 5. PCR primers used in this study.

Figure legends:

Figure 1. Photos of Zea mays and Z. diploperennis (Zd) Fi plants. A: reciprocal Mo17-Zd (right) and Zd-Mo17 (left) Fı plants; B: reciprocal B73-Zd (right) and Zd-B73 (left) Fi plants; C: RF-Zd Fi plant; D: regrowth of a Mo17-Zd Fi plant; E: regrowth of a B73-Zd Fi plant; and F: regrowth of a RF-Zd Fi plant. B73, Mo17 and RF represent, respectively, inbred lines B73 and Mo17 and cultivar Rhee Flint of Z. mays.

Figure 2. Photos of abnormal F , plants of crosses of Zea diploperennis with Z. mays inbred lines B73 (A \& B) and Mo17 (C) or cv. Rhee Flint (D).

Figure 3. Photos of the ears produced from a Zea mays cv Rhee Flint x Z. diploperennis $\mathrm{F}_{\mathrm{\prime}}$ plant in different seasons (the upper panel) and from F_{2} in summer 2014 in greenhouse (the lower
panel).

Figure 4. Photos of Zea mays Mo17-Z. diploperennis F_{2} plants, showing regrowth from the basal node of a single-stalked plant (A) or non-regrowth from a multi-stalked plant (B).

Figure 5. Graphics showing LOD scores of the QTL mapping the B73-Zd F2 population without (A) or with (B) chi-square imputation. The 95% threshold lines (the parallel red dash lines) were calculated with 1,000 permutation. Significant QTL/loci are indicated by the location of the peak SNPs of the loci.

Figure 6. Genetic map of 30 representing SNPs and genes $g t l$, $i d l$, and $t b 1$. Each SNP represents a one- Mbp region except of SNP S2_27934739, which represent a SNP cluster.

Supplementary documents:

Supplementary Table S1. Segregation of regrowability among the B73-Zd F_{3}.

Supplementary Table S2. Phenotypes and the $g t 1$, idl and $t b 1$ haplotypes of $26 \mathrm{~F}_{2}$ plants and three F_{3} populations of the Zea mays cv . Rhee Flint x Z. diploperennis cross.

Supplementary Table S3. Steps and codes in TASSEL pipeline including example command lines and brief descriptions. Parameters are highlighted and described when first be used.

Supplementary Table S4. R codes used for candidate locus/QTL analyses.

Supplementary Figure S1. A photo showing the growth of Zea diploperennis and its F_{1} with Z . mays B73 or Mo17 in the field in the Summer 2017.

Supplementary Figure S2. An agarose gel image showing that two molecular markers confirmed
the heterozygosity of a Z. diploperennis-Z. mays cv . Rhee Flint F_{1} plant over three life-cycles.

Supplementary Figure S3. A photo showing the regrowth of the B73-Z. diploperennis F_{4} in the summer, 2017.

Table 1. Phenotypes and genotypes of the Zea mays B73-Z. diploperennis F2s

Plant*	PT	gtl	tb1	id1	Plant*	PT	gtl	$t b 1$	id1	Plant*	PT	gtl	tb1	id1
Zea diploperennis	1	1	1	1	BZ2-006-9	1	1	1	2	BZ2-009-6	1	1	1	2
B73	2	2	2	2	BZ2-006-10	1	1	3	2	BZ2-009-7	2	1	-	2
BZ2-001-1	1	1	3	2	BZ2-006-11	2	3	2	2	BZ2-009-8	2	3	2	2
BZ2-001-2	1	3	3	1	BZ2-006-12	2	3	3	2	BZ2-009-9	1	3	1	2
BZ2-001-3	1	1	3	2	BZ2-006-13	2	3	2	1	BZ2-009-10	2	1	3	2
BZ2-001-4	1	1	3	2	BZ2-006-14	1	3	2	2	BZ2-009-11	1	1	3	2
BZ2-001-5	1	1	1	2	BZ2-007-1	2	3	2	2	BZ2-009-12	1	3	3	2
BZ2-002-1	2	1	3	2	BZ2-007-2	2	3	2	2	BZ2-010-1	1	3	2	2
BZ2-002-2	2	1	2	2	BZ2-007-3	1	1	2	2	BZ2-010-2	2	-	3	2
BZ2-002-3	1	3	3	2	BZ2-007-4	1	3	2	2	BZ2-010-3	1	3	1	2
BZ2-002-4	1	3	2	1	BZ2-007-5	1	3	3	2	BZ2-010-4	1	3	2	1
BZ2-002-5	2	3	3	2	BZ2-007-6	2	3	3	2	BZ2-010-5	2	3	1	2
BZ2-002-6	2	3	2	2	BZ2-007-7	1	1	3	2	BZ2-010-6	1	3	2	2
BZ2-002-7	2	3	2	2	BZ2-007-8	1	3	1	2	BZ2-010-7	2	3	1	2
BZ2-002-8	1	1	-	2	BZ2-007-9	1	3	1	2	BZ2-010-8	1	3	2	2
BZ2-002-9	1	3	2	2	BZ2-007-10	2	1	3	2	BZ2-010-9	1	1	3	2
BZ2-002-10	1	3	3	2	BZ2-007-11	2	3	1	2	BZ2-010-10	1	3	2	2
BZ2-002-11	2	1	2	1	BZ2-007-12	1	1	2	2	BZ2-010-11	1	2	3	2
BZ2-002-12	1	1	2	2	BZ2-007-13	1	3	1	2	BZ2-010-12	2	2	3	2
BZ2-002-13	1	3	3	2	BZ2-007-14	2	1	3	2	BZ2-010-13	1	3	3	2
BZ2-002-14	2	1	1	2	BZ2-007-15	2	3	1	2	BZ2-010-14	1	1	2	2
BZ2-002-15	1	1	3	1	BZ2-007-16	1	1	3	2	BZ2-010-15	2	3	3	2
BZ2-002-16	1	3	3	1	BZ2-007-17	2	1	-	1	BZ2-010-16	2	1	3	2
BZ2-002-17	2	3	2	2	BZ2-007-18	1	1	1	2	BZ2-010-17	1	1	3	2
BZ2-002-18	1	1	2	2	BZ2-007-19	1	3	2	2	BZ2-010-18	2	3	3	2
BZ2-002-19	1	1	2	2	BZ2-007-20	1	3	2	2	BZ2-010-19	1	2	2	1
BZ2-002-20	1	1	2	2	BZ2-007-21	2	3	2	2	BZ2-010-20	2	1	2	1
BZ2-002-21	1	1	2	1	BZ2-008-1	1	1	1	2	BZ2-010-21	2	3	3	2
BZ2-002-22	1	3	2	2	BZ2-008-2	1	3	1	2	BZ2-011-1	2	1	-	1
BZ2-002-23	1	3	2	1	BZ2-008-3	1	3	1	2	BZ2-011-2	1	3	2	2
BZ2-002-24	1	3	2	2	BZ2-008-4	2	3	2	2	BZ2-011-3	1	2	3	2
BZ2-002-25	2	1	2	2	BZ2-008-5	1	3	3	2	BZ2-011-4	1	3	1	2
BZ2-004-1	1	3	1	2	BZ2-008-6	2	3	2	2	BZ2-011-5	1	1	-	1
BZ2-004-2	1	1	3	2	BZ2-008-7	2	3	3	2	BZ2-011-6	2	3	2	2
BZ2-004-3	2	3	2	2	BZ2-008-8	1	3	2	2	BZ2-011-7	2	1	2	2
BZ2-004-4	1	1	3	2	BZ2-008-9	2	3	2	2	BZ2-011-8	2	2	1	1
BZ2-004-5	1	3	2	2	BZ2-008-10	1	1	1	2	BZ2-011-9	1	3	2	2
BZ2-004-6	1	3	1	2	BZ2-008-11	2	3	2	2	BZ2-011-10	1	3	1	2
BZ2-006-1	2	3	1	2	BZ2-008-12	1	3	3	2	BZ2-011-11	1	1	2	2
BZ2-006-2	2	1	1	2	BZ2-008-13	1	1	2	2	BZ2-011-12	1	1	3	2
BZ2-006-3	1	3	3	2	BZ2-008-14	2	1	3	2	BZ2-011-13	1	3	1	2
BZ2-006-4	1	3	2	2	BZ2-009-1	2	3	3	2	BZ2-011-14	2	3	1	2
BZ2-006-5	1	3	3	2	BZ2-009-2	1	1	3	1	BZ2-011-15	2	3	3	2
BZ2-006-6	2	3	3	2	BZ2-009-3	2	3	2	2	BZ2-011-16	2	1	2	2
BZ2-006-7	1	3	1	2	BZ2-009-4	1	1	3	2					
BZ2-006-8	1	3	1	2	BZ2-009-5	2	3	3	2					

* Bold: used for SNP calling in GBS; 1: homozygous Zd allele; 2:homozygous B73 allele; 3: heterozygous; -: missing data

Table 2. Segregation of regrowth among the Zea mays cv Rhee Flint-Z. diploperennis F2s and F3s.

Plant	PT												
ZR2-001-1	1	ZR2-001-33	2	ZR2-001-69	0	ZR2-001-102	1	ZR2-001-132	2	ZR2-001-162	2	ZR3-005-7	1
ZR2-001-2	2	ZR2-001-34	1	ZR2-001-71	1	ZR2-001-103	1	ZR2-001-133	1	ZR2-001-163	1	ZR3-005-8	1
ZR2-001-3	1	ZR2-001-35	2	ZR2-001-72	0	ZR2-001-104	1	ZR2-001-134	1	ZR2-001-164	1	ZR3-005-9	1
ZR2-001-4	2	ZR2-001-36	2	ZR2-001-73	1	ZR2-001-105	1	ZR2-001-135	2	ZR2-001-165	2	ZR3-005-10	1
ZR2-001-5	1	ZR2-001-37	2	ZR2-001-74	1	ZR2-001-106	1	ZR2-001-136	2	ZR2-001-166	1	ZR3-005-11	2
ZR2-001-6	1	ZR2-001-38	2	ZR2-001-75	1	ZR2-001-107	2	ZR2-001-137	1	ZR2-001-167	2	ZR3-005-12	2
ZR2-001-7	2	ZR2-001-39	1	ZR2-001-77	0	ZR2-001-108	2	ZR2-001-138	1	ZR2-001-168	2	ZR3-005-13	1
ZR2-001-9	1	ZR2-001-40	2	ZR2-001-78	0	ZR2-001-109	2	ZR2-001-139	1	ZR2-001-169	2	ZR3-005-14	2
ZR2-001-10	2	ZR2-001-42	2	ZR2-001-79	1	ZR2-001-110	1	ZR2-001-140	2	ZR2-001-171	1	ZR3-005-15	2
ZR2-001-11	1	ZR2-001-43	1	ZR2-001-80	1	ZR2-001-111	2	ZR2-001-141	1	ZR3-003-1	1	ZR3-005-16	2
ZR2-001-12	1	ZR2-001-44	1	ZR2-001-81	1	ZR2-001-112	1	ZR2-001-142	1	ZR3-003-2	1	ZR3-009-1	1
ZR2-001-13	2	ZR2-001-45	1	ZR2-001-82	0	ZR2-001-113	2	ZR2-001-143	1	ZR3-003-3	1	ZR3-009-2	1
ZR2-001-14	2	ZR2-001-47	2	ZR2-001-83	0	ZR2-001-114	2	ZR2-001-144	2	ZR3-003-4	2	ZR3-009-3	1
ZR2-001-15	1	ZR2-001-48	2	ZR2-001-84	1	ZR2-001-115	2	ZR2-001-145	1	ZR3-003-6	1	ZR3-009-4	1
ZR2-001-16	2	ZR2-001-49	1	ZR2-001-85	1	ZR2-001-116	1	ZR2-001-146	1	ZR3-003-7	1	ZR3-009-5	1
ZR2-001-17	1	ZR2-001-51	2	ZR2-001-86	1	ZR2-001-117	1	ZR2-001-147	1	ZR3-003-8	1	ZR3-009-6	2
ZR2-001-18	2	ZR2-001-53	2	ZR2-001-87	0	ZR2-001-118	2	ZR2-001-148	1	ZR3-003-9	1	ZR3-009-7	1
ZR2-001-19	2	ZR2-001-54	1	ZR2-001-88	0	ZR2-001-119	1	ZR2-001-149	1	ZR3-003-10	1	ZR3-009-8	1
ZR2-001-20	1	ZR2-001-55	1	ZR2-001-89	0	ZR2-001-120	1	ZR2-001-150	1	ZR3-003-11	2	ZR3-009-9	1
ZR2-001-21	2	ZR2-001-56	1	ZR2-001-90	1	ZR2-001-121	2	ZR2-001-151	1	ZR3-003-12	1	ZR3-009-10	1
ZR2-001-22	2	ZR2-001-57	1	ZR2-001-91	1	ZR2-001-122	1	ZR2-001-152	2	ZR3-003-13	1	ZR3-009-11	1
ZR2-001-23	1	ZR2-001-58	2	ZR2-001-92	1	ZR2-001-123	2	ZR2-001-153	1	ZR3-003-14	1	ZR3-009-12	1
ZR2-001-24	1	ZR2-001-59	1	ZR2-001-93	1	ZR2-001-124	1	ZR2-001-154	1	ZR3-003-15	1	ZR3-009-13	1
ZR2-001-25	2	ZR2-001-60	1	ZR2-001-94	0	ZR2-001-125	1	ZR2-001-155	2	ZR3-003-16	2	ZR3-009-14	2
ZR2-001-26	1	ZR2-001-62	1	ZR2-001-95	0	ZR2-001-126	2	ZR2-001-156	1	ZR3-005-1	1	ZR3-009-15	2
ZR2-001-27	2	ZR2-001-63	1	ZR2-001-97	1	ZR2-001-127	2	ZR2-001-157	2	ZR3-005-2	1	ZR3-009-16	1
ZR2-001-28	2	ZR2-001-64	1	ZR2-001-98	1	ZR2-001-128	2	ZR2-001-158	2	ZR3-005-3	2	PT: phenotype 1: regrowth 2: non-regrowth	
ZR2-001-30	1	ZR2-001-65	1	ZR2-001-99	1	ZR2-001-129	1	ZR2-001-159	2	ZR3-005-4	2		
ZR2-001-31	1	ZR2-001-67	2	ZR2-001-100	1	ZR2-001-130	2	ZR2-001-160	1	ZR3-005-5	1		
ZR20-01-32	1	ZR2-001-68	2	ZR2-001-101	1	ZR2-001-131	2	ZR2-001-161	1	ZR3-005-6	1		

Table 3. Results of the $\chi 2$ goodness-of-fit tests of three simple genetic models

Generations	Observed			No. dominant genes (the expected R to $N R$ ratio) and $\mathbf{P}(\gamma 2)^{*}$		
	Total	R	NR	1 (3:1)	2 (9:7)	3 (27:37)
B73-Zd F2	134	81	53	0.0001	0.2964	0.0001
B73-Zd F3	72	52	20	0.5862	0.0063	0.0001
Zd-RF F_{2}	160	92	68	0.0001	0.7499	0.0001
Zd-RF F3-3	15	12	3	0.6547	0.0639	0.3000
Zd-RF F3-5	16	9	7	0.0833	1.0000	0.2547
Zd-RF F3-9	16	13	3	0.5637	0.0438	0.0016

[^0]Table 4. Numbers of SNPs revealed in each chromosome of the B73-ZD F2 population after each filtering step

Chr	Raw SNP number	$\mathbf{1}^{\text {st }}$ filter	$\mathbf{2}^{\text {nd }}$ filter	$\mathbf{3}^{\text {rd }}$ filter	$\mathbf{4}^{\text {th }}$ filter
$\mathbf{1}$	109,543	5,751	1,628	82	51
$\mathbf{2}$	85,283	4,966	1,476	120	77
$\mathbf{3}$	81,625	4,708	1,200	120	75
$\mathbf{4}$	75,832	3,376	942	112	82
$\mathbf{5}$	77,314	4,409	1,197	198	111
$\mathbf{6}$	58,195	2,938	761	87	49
$\mathbf{7}$	62,280	3,108	877	144	98
$\mathbf{8}$	57,748	3,210	877	20	16
$\mathbf{9}$	57,231	2,982	741	29	16
$\mathbf{1 0}$	49,107	2,477	732	34	22
Total	$\mathbf{7 1 4 , 1 5 8}$	$\mathbf{3 7 , 9 2 5}$	$\mathbf{1 0 , 4 3 1}$	$\mathbf{9 4 6}$	$\mathbf{5 9 7}$

Table 5. PCR primers used in this study

Primers	Sequences
tb1MF	5^{\prime}-AGTAGGCCATAGTACGTAC-3'
tb1MR	5^{\prime}-CTCTTTACCGAGCCCCTACA-3'
tb1ZF	5^{\prime}-ACTCAACGGCAGCAGCTACCTA-3'
tb1ZR	5^{\prime}-CGTGTGTGTGATCGAATGGT-3'
tga1cF:	5^{\prime}-AATAAAATAGAGGAACGTCA-3'
tgalcR:	$5^{\prime}-$-TGCTGCAAAGGATTACTGAT-3'
mmc0381F	5^{\prime}-GTGGCCCTGTTGATGAG-3'
mmc0381R	5^{\prime}-CGACGAGTACCAGGCAT-3'
gt1-ZF:	$5^{\prime}-$ TCGCCTACATGACCGAGTAC-3'
gt1-ZR:	5^{\prime}-ATACTCTCAGCTGCTACGCG-3'
gt1-MF:	5^{\prime}-GAGACCGAGCTGCTGAAGAT-3'
gtl-MR:	$5^{\prime}-$ TGTAGCTGTTGTAGGCGTACT-3'

Supplementary Table S1. Segeagation of regrowability among the B73-Zd F3s

Plant	PT	Plant	PT	Plant	PT	Plant	PT
BZ3-010-1-1	1	BZ3-010-1-20	2	BZ3-010-1-46	2	BZ3-010-1-69	1
BZ3-010-1-2	1	BZ3-010-1-22	1	BZ3-010-1-47	1	BZ3-010-1-70	1
BZ3-010-1-3	1	BZ3-010-1-23	1	BZ3-010-1-48	1	BZ3-010-1-71	1
BZ3-010-1-4	1	BZ3-010-1-24	1	BZ3-010-1-50	1	BZ3-010-1-72	1
BZ3-010-1-5	1	BZ3-010-1-25	1	BZ3-010-1-51	2	BZ3-010-1-73	1
BZ3-010-1-6	1	BZ3-010-1-26	1	BZ3-010-1-52	1	BZ3-010-1-74	1
BZ3-010-1-7	1	BZ3-010-1-27	1	BZ3-010-1-53	1	BZ3-010-1-75	1
BZ3-010-1-8	2	BZ3-010-1-30	1	BZ3-010-1-54	1	BZ3-010-1-76	2
BZ3-010-1-9	2	BZ3-010-1-31	1	BZ3-010-1-56	1	BZ3-010-1-77	2
BZ3-010-1-11	2	BZ3-010-1-32	1	BZ3-010-1-57	1	BZ3-010-1-78	1
BZ3-010-1-12	1	BZ3-010-1-33	2	BZ3-010-1-68	2	BZ3-010-1-79	1
BZ3-010-1-13	2	BZ3-010-1-34	1	BZ3-010-1-59	1	BZ3-010-1-80	1
BZ3-010-1-14	2	BZ3-010-1-35	1	BZ3-010-1-61	2	BZ3-010-1-81	2
BZ3-010-1-15	1	BZ3-010-1-38	2	BZ3-010-1-62	1	BZ3-010-1-82	2
BZ3-010-1-16	1	BZ3-010-1-39	1	BZ3-010-1-63	1	BZ3-010-1-83	2
BZ3-010-1-17	1	BZ3-010-1-40	1	BZ3-010-1-64	2	BZ3-010-1-84	1
BZ3-010-1-18	1	BZ3-010-1-41	2	BZ3-010-1-67	1	BZ3-010-1-85	1
BZ3-010-1-19	1	BZ3-010-1-42	2	BZ3-010-1-68	1	BZ3-010-1-87	1

[^1]Suplementary Table S2. Phenotypes and the gt1, id1 and tb1 haplotypes of 26 F 2 plants and three F3 populations of the Zea mays cv Rhee Flint x Z. diploperennis cross*.

Line	PT	tb1	id1	gt1	Line	PT	tb1	id1	gt1	Line	PT	tb1	id1	gt1
$\mathrm{F}_{2}-1$	1	3	1	3	F_{3}-3-2	1	1	2	1	$\mathrm{F}_{3}-5-13$	1	1	2	1
$\mathrm{F}_{2}-2$	2	2	2	2	F_{3}-3-3	1	1	2	1	$\mathrm{F}_{3}-5-14$	2	1	2	1
F_{2}-3	1	1	2	3	F_{3}-3-4	2	1	2	3	$\mathrm{F}_{3}-5-15$	2	1	2	1
$\mathrm{F}_{2}-4$	2	2	2	2	$\mathrm{F}_{3}-3-6$	1	1	2	3	$\mathrm{F}_{3}-5-16$	2	1	2	1
$\mathrm{F}_{2}-5$	1	1	2	1	$\mathrm{F}_{3}-3-7$	1	1	2	1	$\mathrm{F}_{3}-9-1$	1	1	2	1
$\mathrm{F}_{2}-6$	1	3	1	1	F_{3}-3-8	1	1	2	3	$\mathrm{F}_{3}-9-2$	1	1	2	2
$\mathrm{F}_{2}-7$	2	2	2	2	F_{3}-3-9	1	1	2	3	$\mathrm{F}_{3}-9-3$	1	1	2	2
$\mathrm{F}_{2}-9$	1	1	2	3	$\mathrm{F}_{3}-3-10$	1	1	2	3	$\mathrm{F}_{3}-9-4$	1	1	2	3
$\mathrm{F}_{2}-10$	2	3	1	3	$\mathrm{F}_{3}-3-11$	2	1	2	3	$\mathrm{F}_{3}-9-5$	1	1	2	1
$\mathrm{F}_{2}-11$	1	2	2	3	$\mathrm{F}_{3}-3-12$	1	1	2	1	$\mathrm{F}_{3}-9-6$	2	1	2	2
$\mathrm{F}_{2}-12$	1	3	1	1	$\mathrm{F}_{3}-3-13$	1	1	2	3	$\mathrm{F}_{3}-9-7$	1	1	2	3
$\mathrm{F}_{2}-13$	2	3	1	3	$\mathrm{F}_{3}-3-14$	1	1	2	1	$\mathrm{F}_{3}-9-8$	1	1	2	1
$\mathrm{F}_{2}-14$	2	2	2	3	$\mathrm{F}_{3}-3-15$	1	1	2	1	$\mathrm{F}_{3}-9-9$	1	1	2	3
$\mathrm{F}_{2}-15$	1	3	1	1	$\mathrm{F}_{3}-3-16$	2	1	2	2	$\mathrm{F}_{3}-9-10$	1	1	2	3
$\mathrm{F}_{2}-16$	2	2	2	1	$\mathrm{F}_{3}-5-1$	1	1	2	1	$\mathrm{F}_{3}-9-11$	1	1	2	1
$\mathrm{F}_{2}-17$	1	3	1	3	$\mathrm{F}_{3}-5-2$	1	1	2	1	$\mathrm{F}_{3}-9-12$	1	1	2	3
$\mathrm{F}_{2}-18$	2	3	1	2	$\mathrm{F}_{3}-5-3$	2	1	2	1	$\mathrm{F}_{3}-9-13$	1	1	2	1
$\mathrm{F}_{2}-19$	2	3	1	2	$\mathrm{F}_{3}-5-4$	2	1	2	1	$\mathrm{F}_{3}-9-14$	2	1	2	3
F_{2}-20	1	3	1	3	$\mathrm{F}_{3}-5-5$	1	1	2	1	$\mathrm{F}_{3}-9-15$	2	1	2	3
$\mathrm{F}_{2}-21$	2	2	2	3	$\mathrm{F}_{3}-5-6$	1	1	2	1	$\mathrm{F}_{3}-9-16$	1	1	2	1
$\mathrm{F}_{2}-22$	2	2	2	3	$\mathrm{F}_{3}-5-7$	1	1	2	1	$\mathrm{F}_{3}-12-1$	1	1	2	1
$\mathrm{F}_{2}-23$	1	2	2	3	$\mathrm{F}_{3}-5-8$	1	1	2	1	$\mathrm{F}_{3}-12-2$	1	1	2	1
$\mathrm{F}_{2}-24$	1	1	2	3	F_{3}-5-9	1	1	2	1	$\mathrm{F}_{3}-12-3$	1	1	2	1
$\mathrm{F}_{2}-25$	1	2	1	1	$\mathrm{F}_{3}-5-10$	1	1	2	1	$\mathrm{F}_{3}-12-4$	1	3	1	1
$\mathrm{F}_{2}-26$	1	3	2	1	$\mathrm{F}_{3}-5-11$	2	1	2	1	$\mathrm{F}_{3}-12-5$	1	3	1	1
$\mathrm{F}_{3}-3-1$	1	1	2	3	$\mathrm{F}_{3}-5-12$	2	1	2	1					

* For phenotype (PT), " 1 " is for regrowth and " 2 " is for non-regrowth; for genotypes, " 1 " is homozygous for the Zea diploperennis allele, " 2 " is homozygous for the Z. mays's allele and " 3 " is for heterozygous.

Supplementary Table S3. Steps and codes in TASSEL pipeline including example command lines and brief descriptions. Parameters are highlighted and described when first be used.

Step 1	FastqToTagCountPlugin		
	Description	Derives a tagCount list for each FASTQ file. Keeps only good reads having a barcode and a cut site and no N's in the useful part of the sequence. Trims off the barcodes and truncates sequences that (1) have a second cut site, or (2) read into the common adapter.	
	Code	/home/tassel/run_pipeline.pl-forkl-Xms8G-Xmx16GFastqToTagCountPlugin -i fastq -k key.txt -e ApeKI -o tagcounts endPlugin -runfork1	
	Parameters	$\begin{aligned} & \text {-Xms8G, } \\ & \text {-Xmx16G } \end{aligned}$	Set minimum and maximum usage of RAM.
MergeMultipleTagCountPlugin			
Step 2	Description	Merges each tagCount file into a single "master" tagCount list.	
	Code	/home/tassel/run_pipeline.pl -Xms8G -Xmx16G -fork1 - MergeMultipleTagCountPlugin -i tagcounts -o mergedtagcounts/BCA965ANXX_4.cnt -c 5 -endPlugin -runforkl	
	Parameters	-c 5	Minimum number of times a tag must be present to be output, typically between 5 and 20. The lower value is, the more sequencing errors will be included analysis. Default: 1
	Note:	Sequencing errors can be tolerated and will be removed by following steps.	
TagCountToFastqPlugin			
Step 3	Description:	Converts a master tagCount file containing all the tags of interest from binary (.cnt) format into a FASTQ format file (.fq) that can then be used as input to bowtie2.	
	Code	/home/tassel/run_pipeline.pl-Xms8G -Xmx16G -fork1 - TagCountToFastqPlugin -i mergedtagcounts/BCA965ANXX_4.cnt -o BCA965ANXX_4.fq -c 5 -endPlugin -runfork1	
Bowtie2 Index			
	Description	Creates a series of support files needed to operate bowtie2.	
Step 4	Code	bowtie2-build chr1.fa,chr2.fa,chr3.fa,chr4.fa,chr5.fa,chr6.fa,chr7.fa,chr8.fa,chr9.fa,chr1 0.fa /home/gbs/b73ref/b73_ref.fa	
	Notes	Chromosome 1 to 10 from B73_Ref_V4 genome are used to create index files.	
Alignment with bowtie2			
Step 5	Description	Aligns the master set of GBS tags to the reference genome.	
	Code	bowtie2-p 8 -N 0 -L 20 -i S,1,0.50 -D 20 -R 3 -x/home/b73ref/b73_ref.fa U /home/gbs/analysis/BCA965ANXX_4.fq -S /home/gbs/analysis/BCA965ANXX_4.sam	
	Parameters	-p 8	The number of processors to be used.
		-N 0	The number of mismatches to allowed in a seed alignment during multiseed alignment. Can be set to 0 or 1. Higher value makes alignment slower but increases sensitivity. Default: 0 .
		-L 20	The length of the seed substrings to align during multiseed alignment. Smaller values make alignment slower but more sensitive. Default: 20.
		-I S, 1, 0.50	Sets a function governing the interval between seed substrings to use during multiseed alignment. Decide the seed frame length and interval which can influence the accuracy of alignment.

		-D 20	The times that consecutive seed extension attempts can "fail" before Bowtie 2 moves on. Default: 15.
		-R 3	the maximum number of times Bowtie 2 will "re-seed" reads with repetitive seeds. Default: 2 .
	Note	Arguments and values used here are identical to -very-sensitive-local.	
	SAMConverterPlugin		
Step 6	Description	Converts a SAM format alignment (.sam) file produced by bowtie2 into a binary tagsOnPhysicalMap (.topm) file that can be used by the TagsToSNPByAlignmentPlugin for calling SNPs.	
	Code	/homeltassel/run pipeline.pl-Xms 8 G -Xmx 16G -fork1 SAMConverterPlugin -i BCA965ANXX 4.sam -o topm/BCA965ANXX 4.topm -endPlugin -runfork1	
	FastqToTBTPlugin		
	Description	Generates a TagsByTaxa file to parse FASTQ files containing raw GBS sequence data for good reads	
Step 7	Code	/home/tassel/run_pipeline.pl -Xms8G -Xmx 16G -fork1 -FastqToTBTPlugin -i fastq -k key.txt -e ApeKI -o tbt -y -t mergedtagcounts/BCA965ANXX 4.cnt-endPlugin -runfork1	
	Parameters	-y	Output in TBTByte format (counts from 0-127) instead of TBTBit (0 or 1).
	MergeTagsByTaxaFilesPlugin		
Step 8	Description	Merges all .tbt.bin and/or (preferably) .tbt.byte files present in the input directory.	
	Code	/home/tassel/run _pipeline.pl -Xms8G -Xmx 16G -fork1 - MergeTagsByTaxaFilesPlugin -i tbt -o mergedtbt/BCA965ANXX_4.tbt.byte -endPlugin -runforkl	
	TagsToSNPByAlignmentPlugin		
	Description	Aligns tags from the same physical location against one another, calls SNPs from each alignment, and then outputs the SNP genotypes to a HapMap format file (one file per chromosome).	
Step 9	Code	/home/tassel/run _pipeline.pl -Xms8G -Xmx 16G -fork1 - TagsToSNPByAlignmentPlugin -i mergedtbt/BCA965ANXX_4.tbt.byte - y m topm/BCA965ANXX_4.topm -o hapmap/raw/BCA965ANXX_4_chr+.hmp.txt-mnF"-0.1"-ref /home/b73ref/b73 chr.fastq-sC 1 -eC 10 -endPlugin -runfork1	
	Parameters	-mnF "-0.1"	Minimum value of F . Samples that are not inbreed line should invoke this to be negative value.
		-sC 1	Start chromosome.
		-eC 10	End chromosome.
	Note	This command is only available in TASSEL 3. The DiscoverySNPCaller in TASSEL 5 replaces this command and remains the same SNP calling functions but generate a db file rather than hapmap file. Except listed parameters, all others were used as default.	
Step 10		MergeDuplicateSNPsPlugin	
	Description	Finds duplicate SNPs in the input HapMap file, and merges them if they have the same pair of alleles	
	Code	/homeltassel/run_pipeline.pl-Xms8G -Xmx 16G -fork1 - MergeDuplicateSNPsPlugin -hmp hapmap/raw/BCA965ANXX_4_chr +.hmp.txt -o hapmap/mergedSNPs/BCA965ANXX_4_chr + .hmp.txt misMat 0.1 -callHets -sC 1 -eC 10 -endPlugin -runfork 1	
	Parameters	-misMat 0.1	Threshold genotypic mismatch rate above which the duplicate SNPs won't be merged. Default: 0.05 . For lines not fully inbred, value of 0.1 is recommended.
		-callHets	When two genotypes at a replicate SNP disagree for a taxon, call it a heterozygote. If the germplasm is not fully

			inbred and contains residual heterozygosity, then callHets should be on.
	Note	The -callHets parameter is to guarantee heterouzygotes can be correctly output, rather than omitted as errors.	
Step 11	GBSHapMapFiltersPlugin		
	Description:	Filtering SNPs with specific requirements.	
	Code:	/homeltassel4/run_pipeline.pl-Xms10G-Xmx16G -forkl GBSHapMapFiltersPlugin -hmp hapmap/mergedSNPs/BCA965ANXX_4 _chr+.hmp.txt -o hapmap/filt/BCA965ANXX_4_chr+.hmp.txt -mnTCov 0.01 -mnSCov 0.2 -mnMAF 0.01 -hLD -mnR2 0.2 -mnBonP $0.005-s C 1$ eC 10 -endPlugin -runfork1	
	Parameters:	-mnTCov 0.01	Minimum taxon coverage. The minimum SNP call rate for a taxon to be included in the output
		-mnSCov 0.2	Minimum site coverage. The minimum taxon call rate for a SNP to be included in the output
		-mnMAF 0.01	Minimum minor allele frequency
		-hLD True	filtered for those in statistically significant LD with at least one neighboring SNP

Supplementary Table S4. R codes used for candidate locus/QTL analyses

```
library(qtl)
all <- read.cross("csv", file="SNP.csv", genotypes = c("AA","AB", "BB"),
na.strings = "NA", alleles = c("A", "B"))
all <- calc.genoprob(all, step=1.0, off.end = 0.0, error.prob = 1.0e-
4,map.function = "haldane",stepwidth = "fixed")
all <- sim.geno(all, n.draws=32, step =1.0, off.end = 0.0, error.prob = 1.0e-
4,map.function = "haldane",stepwidth = "fixed")
all.scan1 <- scanone(all, pheno.col=2, model="binary", method = "em")
all.scan1.perm <- scanone(all, pheno.col = 2, model = "binary", method="em",
n.perm = 1000)
plot(all.scan1,main="LOD plot of regrowth",ylim = c(0,6))
threshold <- summary(all.scan1.perm, alpha=c(0.1, 0.05, 0.01))
abline(h=threshold[1], lty="dashed", lwd=1, col="blue")
abline(h=threshold[2], lty="dashed", lwd=1, col="yellow")
abline(h=threshold[3], lty="dashed", lwd=1, col="red")
summary(all.scan1, perm=all.scan1.perm, lodcolumn=1, alpha=0.1)
mknamel <- find.marker(all, chr=2, pos=24.244290)
mkname2 <- find.marker(all, chr=7, pos=5.060739)
effectplot(all,pheno.col=2,mnamel= mkname1), ylim=c(0,1))
effectplot(all,pheno.col=2,mnamel= mkname2), ylim=c(0,1))
write.csv(all.scan1, "all.scan1.csv",row.names = TRUE)
```

Figures

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:
Chromosome 1 Chromosome 2 Chromosome $4 \quad$ Chromosome $6 \quad$ Chromosome $7 \quad$ Chromosome 10

Figure S1:

Figure S2:

Figure S3:

[^0]: *: the best fit models are in bold.

[^1]: 1: regrowth; 2: non-regrowth

