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SUMMARY 

The sarcomatoid variant of urothelial bladder cancer (SARC) displays a high propensity for 

distant metastasis and is associated with short survival. We report a comprehensive genomic 

analysis of 28 cases of SARCs and 84 cases of conventional urothelial carcinomas (UCs), with 

the TCGA cohort of 408 muscle-invasive bladder cancers serving as the reference. SARCs 

showed a distinct mutational landscape with enrichment of TP53, RB1, and PIK3CA mutations. 

They were related to the basal molecular subtype of conventional UCs and could be divided into 

epithelial/basal and more clinically aggressive mesenchymal subsets based on TP63 and its target 

genes expression levels. Other analyses revealed that SARCs are driven by downregulation of 

homotypic adherence genes and dysregulation of cell cycle and EMT networks, and nearly half 

exhibited a heavily infiltrated immune phenotype. Our observations have important implications 

for prognostication and the development of more effective therapies for this highly lethal variant 

of bladder cancer. 
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INTRODUCTION 

Bladder cancer is the ninth most common cancer worldwide, affecting 430,000 people and 

resulting in 165,000 deaths annually1. In the United States, it is the fourth most common cancer 

in men, with an estimated incidence of 81,000 new cases in 20182. More than 90% of bladder 

cancers are urothelial carcinomas (UCs), which originate from precursor lesions in the epithelial 

layer of the bladder, called the urothelium3. They progress along two distinct tracks, referred to 

as papillary and non-papillary, that represent clinically and molecularly different forms of the 

disease4. Non-invasive papillary tumors have a high tendency for recurrence, which necessitates 

lifetime surveillance that is both intrusive and costly to the patient. Non-papillary carcinomas are 

clinically aggressive, exhibiting a high propensity for invasive growth, and a large proportion of 

them are lethal owing to metastatic spread5. We showed that papillary tumors are almost 

exclusively of a luminal molecular subtype that recapitulates the expression pattern of markers 

characteristic of normal, intermediate, and terminal urothelial differentiation6. In contrast, non-

papillary UCs are of a basal molecular subtype and exhibit an expression pattern of genes 

characteristic of the normal basal urothelial layer. Molecular subtyping has shown that invasive 

UCs can be almost equally divided into luminal and basal subtypes that have distinct clinical 

behaviors and responses to frontline chemotherapy6-9. In addition to conventional UCs, many 

microscopically distinct bladder cancer variants have been described, and in general they are 

thought to develop via progression of conventional disease3,10. The most frequent of these 

variants are the sarcomatoid, small cell, and micropapillary, all of which are clinically more 

aggressive than conventional UCs and require uniquely tailored therapeutic management, which 

is often unavailable3,5,10. 
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In this report, we focus on one of these more common variants, referred to as sarcomatoid 

carcinoma (SARC)3,10. SARC represents, in various published series, 5-15% of bladder cancer 

and frequently coexists with conventional UC11,12. Clinically, it has a predilection for early 

metastatic spread to distant organs, and it is associated with shorter survival when compared to 

conventional UC10-12. Here, we report on the genome-wide characterization of bladder SARC, 

including its miRNA, gene expression, and whole-exome mutational profiles, which identified 

unique molecular features associated with its aggressive nature that may be relevant for the early 

detection and treatment of this highly lethal variant of bladder cancer. 

 

RESULTS 

Twenty-eight paraffin-embedded SARC tissue samples and 84 invasive conventional bladder UC 

samples from the MD Anderson Cancer Center cohort were analyzed retrospectively. A cohort of 

408 muscle-invasive bladder cancers in The Cancer Genome Atlas (TCGA) was used as a 

reference. The samples were characterized by clinical and pathological data as well as by several 

genomic platforms. Sufficient high-quality DNA was available for 13 SARC cases and 5 paired 

SARC/conventional UC cases for whole-exome sequencing. Gene expression profiling was 

performed on all of the cases using Illumina’s DASL platform and the data were merged with 

those obtained from a cohort of 84 conventional UCs. Panel quantitative reverse-transcription 

polymerase chain reaction was used to analyze the miRNA expression levels of all 28 SARC 

samples and 58 conventional UC samples. 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/388264doi: bioRxiv preprint 

https://doi.org/10.1101/388264


5 
 

Mutational Signature 

The mutational profile of conventional UC was characterized by significant levels of recurrent 

somatic mutations in 30 genes (Figure 1A). The 10 most frequently mutated genes in UC were 

TP53 (47%), ARID1A (25%), KDM6A (22%), PIK3CA (22%), RB1 (17%), EP300 (15%), 

FGFR3 (14%), STAG2 (14%), ELF3 (12%), and CREBBP (11%). The overall mutational 

landscapes of luminal and basal bladder UC were similar, but several mutated genes were 

distinctively enriched in specific molecular subtypes. Mutated FGFR3, ELF3, CDKN1A, and 

TSC1 genes were enriched in luminal tumors, whereas mutated TP53, RB1, and PIK3CA genes 

were enriched in basal tumors (Figure 1A). SARCs showed high overall mutational rates 

(median mutational frequency 259 with 174 interquartile range) and their significantly mutated 

genes were similar to those observed in conventional UC (Figure 1B; Table S1). However, the 

top three genes - TP53 (72%), PIK3CA (39%), and RB1 (39%) – were mutated at significantly 

higher frequencies in SARCs than they were in conventional UCs (p<0.01). This suggests that 

SARC evolved from precursor conventional UC carrying these mutations and that mutations in 

these genes may drive the progression process. Several of the genes that are frequently mutated 

in conventional UC, including ARID1A, KDM6A, EP300, ELF3, and CREBBP, were not mutated 

in SARC, and these genes are involved in chromatin remodeling13-18. In general, as a group, 

chromatin-remodeling genes were not mutated in SARC. Instead, SARC carried frequent 

mutations of MYO1F (33%), CNGB1 (22%), FXR1 (22%), RBM5 (22%), SEMA3D (22%), 

TTBK2 (22%), and ZNF90 (22%), which are involved in cellular motility, RNA binding, 

transmembrane ion channeling, kinase activity, and signaling19-25. The functional significance of 

the mutations of these genes for sarcomatoid progression remains unclear but they are attractive 

candidates for future mechanistic studies.  Interestingly, FGFR3 mutations, which were present 
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in 14% of conventional UCs, were not present in SARC. Nearly all mutations present in the 

SARCs were also present in the paired precursor conventional UCs of the same patients, 

indicating that the SARC and the presumed precursor lesions were clonally related.  

 

Mechanisms of Mutagenesis 

To further characterize the mutational process associated with progression from conventional UC 

to SARC, we examined six single-base substitutions (C>A, C>G, C>T, T>A, T>C, and T>G) in 

all cancer samples26,27. The results revealed that SARCs were enriched with C>T mutations as 

compared with conventional UCs, and this increase was already apparent in the precursor 

conventional UCs that were associated with SARCs (Figure 1C, D). Analyses of Sanger 

mutational signatures28 revealed the presence of six dominant signatures in the conventional UCs 

in the TCGA cohort: signatures 1, 2, 3 (BRCA1/2 mutagenesis), 13 (APOBEC), 19, and 30 

(Figures 1F and 1G). Clustering separated the conventional tumors into two subsets (α and β) 

that were characterized by different levels of signature 13 (APOBEC) prevalence.  In contrast, 

SARCs and paired precursor conventional UCs were characterized by the uniform dominance of 

signature 1, which was present in all SARC and precursor conventional UC samples (Figure 

1H). In addition, clustering segregated SARCs into two subsets, and they were also characterized 

by different levels of APOBEC activity. Mutagenesis signatures 1 and 19 were significantly 

enriched in SARCs as compared with conventional UC (Figure 1I). Overall, these data reinforce 

the idea that SARCs evolve from a distinct subset of conventional UCs.  
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Gene Expression Profile 

Messenger RNA (mRNA) expression profiling revealed that more than 6,000 genes were 

differentially expressed between SARC and UC. We performed multiple unsupervised clustering 

analyses using all the differentially expressed genes in SARC and performed similar analyses 

using the top 100 and top 10 upregulated and downregulated genes. All these analyses separated 

SARC and UC into two distinct clusters (Figures S1A and S1B). One cluster contained 

conventional UC almost exclusively, whereas the other cluster contained most of the SARCs. 

Among the top upregulated genes in the SARC cluster were FAM101B (or RFLNB), UHRF1, 

and PHC2, all of which are members of the chromatin-remodeling superfamily29-31 (Figure 

S1B). The top downregulated genes included the differentiation-associated transcription factor, 

ELF3, and genes involved in terminal urothelial differentiation, such as uroplakins and cell 

adherence genes, as well as LAD1, a component of anchoring filaments in the basement 

membrane32. The median survival for the SARC patients (11 months) was significantly shorter 

than that of the patients with conventional UC (24 months; p=0.0326) (Figure S1C).  

 

Intrinsic Molecular Subtypes 

Several molecular studies, including our own, have divided bladder cancer into two molecular 

subtypes that preferentially express basal or luminal genes7-9,33. To investigate whether the 

intrinsic molecular types of conventional bladder UC applied to SARC, we analyzed the luminal 

and basal gene expression signatures in SARC. We used a previously developed classifier that 

includes markers of luminal and basal types33. The set of conventional UC was separated into 

two major groups (Figure 2A). The first group, comprising 53 of the 84 samples (63%), was 

characterized by high mRNA expression levels of luminal markers such as KRT20, GATA3, 
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uroplakins, ERBB2, ERBB3, PPARG, FOXA1, and XBP1 and was referred to as the luminal 

subtype. The remaining 31 conventional UC samples (37%) were characterized by high 

expression levels of basal markers such as CD44, CDH3, KRT5, KRT6, and KRT14 and were 

referred to as the basal subtype.  

Unlike the conventional UCs, all 28 SARCs had low mRNA expression levels of the 

luminal genes, which suggested that they developed from a basal subtype of precursor 

conventional UC (Figure 2A). In addition, nearly half of the SARCs (12; 43%) were 

characterized by the retained expression of basal keratins, CD44, and P-cadherin (CDH3), 

whereas the remaining SARCs (16; 57%) lacked expression of canonical basal and luminal 

markers, and we therefore referred to them as “double-negative”. This subset of SARCs shares 

the “mesenchymal” molecular phenotype with the claudin-low and TCGA cluster IV subtypes 

identified previously.7,8,34  Survival analysis revealed that the double-negative/mesenchymal 

SARCs were the most aggressive of the molecular subtypes (Figure 2B). Furthermore, the mean 

survival duration of patients with double-negative SARC (10 months) was shorter than that of 

patients with basal SARC (18 months); however, this difference was not significant statistically, 

probably because of the limited number of cases. We verified the expression patterns of 

signature luminal markers (GATA3) and basal markers (P63, KRT5/6, KRT14) by 

immunohistochemistry using tissue microarrays containing the same cases (Figure 2C). The 

epithelial/basal SARCs were focally positive for basal markers such as p63, KRT5/6, and 

KRT14 and were negative for the signature luminal marker GATA3. In contrast, the purely 

mesenchymal double-negative SARCs were immunohistochemically negative for all luminal and 

basal markers, consistent with the RNA expression data. 
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Canonical and Upstream Regulator Pathways 

In order to identify candidate mechanisms underlying the progression to the SARC phenotype, 

we used the Ingenuity Pathway Analysis (IPA) Upstream Pathways and Gene Set Enrichment 

Analysis (GSEA) functions to identify signaling pathways associated with the gene expression 

patterns observed. (Figure 3A-D)  SARCs were characterized by downregulation of G1/S 

checkpoint genes and upregulation of INK4 family of cyclin-dependent kinase inhibitors 

(CDKN2A-D), consistent with our observation that RB1 mutations were more common in 

SARCs.  Similarly, SARCs exhibited decreased p53 pathway activity, which was consistent with 

their high mutational rate of the p53 gene.  SARCs were also characterized by loss of epithelial 

adherens genes and downregulation of p63 pathway activity complemented with activation of 

TGFβ and RhoA, all of which are characteristics of EMT permissive state. 

Immune Infiltrate 

Immune checkpoint blockade is clinically active in about 15% of patients with advanced bladder 

cancer, where response is associated with high tumor mutational burden (TMB), the 

“genomically unstable” luminal subtypes, and infiltration with activated cytotoxic T 

lymphocytes.35-37 Given the relatively high mutational frequencies observed in SARCs, we 

characterized the patterns of immune-related gene expression in them (Figure 4). In 

conventional UCs, 11% (9/84) showed enrichment of an immune gene expression signature and 

clustered in the luminal molecular subtype. In contrast, 39% (9/28) of the SARCs demonstrated 

overexpression of immune signature genes and preferentially clustered in the mesenchymal 

double-negative subtype. The enrichment of immune gene signature in SARC as compared to 
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conventional UC was confirmed by GSEA (Figure 5A). We also evaluated the expression 

signature of immune checkpoint ligands and their receptors38, including CD70 and CD27; CD80 

and CTLA4; TNFSF9 and TNFRSF18; ADA and ADORA2A; and PDCD1G2 and CD274 

(Figure 5B). In general, the overexpression of these genes was present in the same group of 

SARCs characterized by enrichment for the overexpression of immune signature genes. Of 

potential therapeutic significance, SARC exhibited the enhanced expression of programmed cell 

death ligand PD-L1 (CD274) and mRNA overexpression of PD-L1 was observed in more than 

50% (15/28) of the SARCs (Figure 5C). This was confirmed by immunohistochemistry, which 

showed strong overexpression of the PD-L1 protein (Figure 5D), suggesting that immune 

checkpoint therapy may be an attractive therapeutic option for a subset of SARC patients.  

 

MicroRNA Expression Profile 

Similar to the gene expression profile, microRNA (miRNA) expression levels were widely 

dysregulated in SARC as compared with conventional UC. Nearly 200 individual miRNA 

species were either overexpressed or downregulated in SARC (Figure S2A). In unsupervised 

clustering, a small subset of differentially expressed miRNAs could bimodally separate SARC 

from conventional UC (Figure S2B). While the biological significance of the micro RNAs 

that were upregulated in SARCs is not clear, the entire miR-200 family was downregulated in 

the double-negative subset of SARCs (Figure S2B) and it is likely that it plays an important 

role in their progression.  Members of the miR-200 family play well-established roles in the 

maintenance of epithelial phenotype by suppressing the transcriptional regulators of EMT of 

the SNAIL, TWIST and ZEB families.39  
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Dysregulation of the EMT Network 

Microscopically, SARCs comprise mixed lineages of purely mesenchymal cells and cells with at 

least partial retention of an epithelial phenotype, reflecting various degrees of EMT40. We 

previously showed that TP63 controls the expression of high molecular weight keratins (KRT5, 

KRT6, KRT14) and suppresses EMT.6,41 The central role of p63 in the maintenance of epithelial 

phenotype and EMT was confirmed in several variants of solid tumors.42-44 We therefore 

performed additional analyses to further characterize the role of EMT in SARC.  Among the 

EMT transcriptional regulators of the SNAIL, TWIST, and ZEB families, SNAIL2 was 

significantly overexpressed in SARC as compared to conventional UC. Correspondingly, E-

cadherin (CDH1) and other epithelial markers including claudin-1 (CLDN1), and tight junction 

protein 1 (TJP1) were downregulated in SARC (Figure 6A, Figure S3 and S4A). In solid 

tumors, the EMT permissive state may be controlled by p53 and RB145, consistent with the 

mutational and gene expression characteristics of SARCs.  Dysregulation of several additional 

pathways may have a synergistic effect on the EMT permissive state including the up-regulation 

of TGFB1 and RhoA, which were among the top up-regulated pathways in SARC by IPA and 

GSEA.  In addition, p63 and its downstream target genes, were downregulated in SARC 

(Figures 3A, 3B, and 6A). Importantly, SARC had widespread downregulation of miRNAs 

involved in EMT, including miR-100, the p63 targets miR-203 and miR-205, and all members of 

the miR-200 family46 (Figure 6A and Figure S4B). Because SARCs can be divided into two 

subgroups i.e., SARCs that retain epithelial marker expression, reflecting partial EMT, and 

SARCs that are purely mesenchymal, reflecting complete EMT, we quantified the EMT levels 

across multiple tumor samples by calculating EMT scores based on a 76-gene signature 

identified by LA Byers et al. 47 (Figure 6B). This provided a quantitative assessment of the 
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epithelial versus mesenchymal phenotype; positive EMT scores corresponded to the epithelial 

phenotype, whereas negative EMT scores reflected the mesenchymal phenotype. In general, the 

conventional UCs were characterized by positive EMT scores corresponding to their epithelial 

phenotype, whereas the basal and double-negative mesenchymal SARCs had intermediate and 

low EMT scores, reflecting their partial and complete EMT states. (Figure 6C).  Essentially 

identical results were obtained by GSEA using the 175 EMT gene signature developed by M. Yu 

et al.48 The enrichments of SARCs when compared to conventional UCs, as well as SARCs of 

the basal (partial EMT) subtypes compared to double-negative (complete EMT) were 

significantly different (Figures S4C, D). Immunohistochemistry revealed that tumors within the 

epithelial SARC subset showed focal retention of p63 and E-cadherin, both of which are 

involved in the maintenance of epithelial differentiation, whereas double-negative, purely 

mesenchymal SARCs were negative for the epithelial markers, confirming these subtypes’ 

partial and complete EMT states, respectively (Figure 6D). Finally, the loss of E-cadherin 

expression was confirmed in selected SARC samples by Western blotting (Figure 6E).  

 

DISCUSSION 

Bladder cancer is a major source of morbidity and mortality worldwide and in the United States. 

In the United States, there were approximately 17,000 deaths related to bladder cancer in 20182. 

Progression to SARC is associated with a high propensity for early metastasis and dismal 5-year 

survival rates10-12. In the following, we highlight essential findings concerning molecular 

characterizations of SARC and suggest how these findings may contribute to our understanding 

of its aggressive behavior as well as how they open new therapeutic possibilities. 
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SARCs have a high overall mutation rate similar to those of conventional UC, melanoma, 

and non-small cell lung cancers.49 Our findings show that in SARC these high mutation rates are 

associated with mutation signature 1 and that SARCs can be separated into two subgroups, i.e., 

one with and one without mutation signatures of an endogenous mutagenic enzyme, APOBEC 

cytidine deaminase. In addition, SARCs are enriched for TP53, RB1, and PIK3CA mutations as 

compared to conventional UCs and exhibit gene expression profiles that are consistent with 

combined loss of TP53 and RB1 pathway activities. In contrast to conventional UCs, and 

consistent with their basal origins, none of the SARCs profiled here contained activating FGFR3 

mutations, which are enriched in luminal UCs. The absence of mutations in chromatin-

remodeling genes is surprising, as SARCs in other organs have been reported to have frequent 

mutations of these genes, including ARID1A, the frequently mutated chromatin-modifying gene 

in conventional UC50,51. On the other hand, the expression analyses have shown that SARCs 

exhibit upregulation of several chromatin-remodeling genes, including RFLNB, UHRF1, and 

PHC2, suggesting that chromatin remodeling gene activity might function to promote EMT, 

possibly as a cytoprotective mechanism that compensates for their high mutational load29-31. 

SARCs exhibit a widespread change of their expression profile affecting approximately 

30% of the protein-coding genome. However, much of this activity converged on pathways that 

control EMT, a process in which epithelial cells lose their adhesive features and develop 

migratory infiltrative properties of the mesenchymal cells52-54. The main features of EMT include 

suppression of E-cadherin and other homotypic adherence and cell polarity genes that is 

mediated by a group of transcriptional repressors (the SNAIL, TWIST, and ZEB families) 

complemented by a complex multi-layered regulatory network.54 In physiology, EMT is 

responsible for multi-organ development during the embryogenesis and maintenance or 
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regeneration of these organs in adulthood.53 In cancer, including those originating in the bladder, 

EMT may be a major contributor to the aggressive behavior responsible for invasive growth and 

metastasis55. Our quantitative assessment of EMT showed that basal and double-negative SARCs 

had intermediate and low EMT scores, respectively, which reflected their partial and complete 

EMT states, and the purely mesenchymal SARCs were the most aggressive variant of the 

disease.  At the core of this circuitry are p53 and RB, which negatively regulate EMT in solid 

tumors and appear to be coordinately downregulated in a large percentage of SARCs.  Activation 

of TGFB1 and RhoA can be viewed as a synergistic mechanism complementing the loss of p53 

and RB. Another central mechanism that appears to be associated with the double negative 

SARCs involves downregulation of p63, which positively regulates basal biomarkers (i.e. CDH3, 

CD44, KRT5, KRT6, and KRT14) expression and negatively regulates EMT via miR-205.6,41 In 

fact, p63 and its target genes expression levels many of which represent basal biomarkers 

segregate SARCs into epithelial/basal and double-negative purely mesenchymal subtypes. 

Downregulation of the miR-200 family and other EMT regulatory miRNA species probably 

reinforces the mesenchymal phenotype of these tumors.  Importantly, combined TP53 and RB1 

pathways inactivation and up-regulation of EMT appear to be characteristics of the clinically 

aggressive bladder cancer subset with neuroendocrine phenotype recently identified in the 

TCGA cohort.9  Precisely how these EMT processes are initiated and what are the molecular 

mechanisms that distinguish sarcomatoid from neuroendocrine progression requires further 

investigation. 

 

We also found that nearly half of SARCs exhibit an expression signature associated with 

immune cell infiltration and overexpression of immune checkpoint receptors and their ligands, 
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including PD-L1. This finding suggests new opportunities for immune checkpoint therapy in 

patients with immune-infiltrated SARCs, which are typically resistant to conventional cisplatin-

based chemotherapies5,11,12.   

 

On the basis of our findings, we conclude that SARCs are driven by profound dysregulation of 

the EMT network and that a large proportion of SARCs have an immune infiltration phenotype 

with upregulation of PD-L1. These features present new avenues of therapeutic potential in 

patients with this highly lethal variant of bladder cancer.  
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FIGURE LEGENDS 

Figure 1. Mutational Landscape of SARC. (A) Mutational landscape among the molecular 

subtypes of 408 muscle-invasive bladder cancers from the TCGA cohort showing the frequency 

of mutations in individual tumors and somatic mutations for significantly mutated genes. The 

frequencies of mutations of individual genes in the luminal and basal subtypes are shown on the 

left. Asterisks denote the genes with statistically significant mutation frequencies in the luminal 

and basal subtypes. Bars on the right show the numbers of specific substitutions for individual 

genes. (B) Mutational landscape of 13 cases of SARC and 5 paired samples of precursor 

conventional UC showing the frequency of mutations in individual genes and somatic mutations 

for significantly mutated genes. The frequencies of mutations of individual genes are shown on 

the left. Bars on the right show the numbers of specific substitutions for individual genes. (C) 

Composite bar graphs showing the distribution of all nucleotide substitutions in three sets of 

samples corresponding to the TCGA cohort, paired precursor conventional UC, and SARC. (D) 

Proportion of single-nucleotide variants (SNVs) in specific nucleotide motifs for each category 

of substitution in three sets of samples as shown in C. (E) False discovery rate (FDR) for specific 

nucleotide motifs in three sets of samples as shown in C. (F) Average weight scores of 

mutagenesis patterns in three sets of samples as shown in C. (G) Weight scores of mutagenesis 

patterns in individual tumor samples of the TCGA cohort. (H) Weight scores of mutagenesis 

patterns in SARCs and paired precursor conventional UCs. (I) Statistical significance of 

mutagenesis patterns in SARC compared with conventional UC.  

 

Figure 2. Luminal and Basal Molecular Subtypes in Conventional UC and SARC. (A) The 

expression of luminal and basal markers in molecular subtypes of conventional UC (n=84) and 
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SARC (n=28). (B) Kaplan-Meier plots of molecular subtypes of conventional UC and SARC. 

(C) The immunohistochemical expression of signature luminal and basal markers in 

representative luminal and basal cases of conventional UC and in representative basal and 

double-negative SARC.  

 

Figure 3. Enrichment Canonical Pathways and Transcriptional Regulators in SARC as 

Compared with Conventional UC. (A) The top 10 canonical pathways dysregulated in SARC, 

as revealed by IPA and GSEA. (B) The top 10 upstream regulators altered in SARC, as revealed 

by IPA and GSEA. (C) Expression patterns of G1/S checkpoint pathway genes in molecular 

subtypes of conventional UC and SARC. (D) Expression pattern of epithelial adherens genes in 

molecular subtypes of conventional UC and SARC. The dotted lines indicate the significance 

level. 

 

Figure 4. Expression Pattern of Immune Cell Infiltrate in Molecular Subtypes of 

Conventional UC and SARC. Top to bottom: B-cell, T-cell, CD8, MacTH1, and dendritic cell 

expression clusters. Boxed areas identify samples with enrichment of immune cell infiltrate.  

 

Figure 5. Expression Patterns of Immune Checkpoint Genes in Conventional UC and 

SARC. (A) GSEA of immune cell infiltrate of SARC compared to conventional UC. (B) 

Expression of immune checkpoint genes in conventional UC and SARC in relation to their 

molecular subtypes. The black boxes indicate the cases with enrichment for immune profile 

shown in Figure 4.  (C) Box plot of mRNA PD-L1 expression levels in conventional UC and 
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SARC. (D) Examples of immunohistochemical expression of PD-L1 in conventional UC and 

SARC.  

 

Figure 6. Dysregulation of the EMT Regulatory Network in Molecular Subtypes of 

Conventional UC and SARC. (A) Expression patterns of representative genes in the EMT 

regulatory network. (B) EMT scores in molecular subtypes of conventional UC and SARC. (C) 

Box plot of EMT scores in molecular subtypes of conventional UC and SARC. (D) Examples of 

immunohistochemical expression of p63 and E-cadherin in conventional UC and SARC. (E) 

Western blot documenting loss of E-cadherin expression in SARC. 
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METHODS 

 

Clinical information and tissue samples  

All studies and sample collections were performed under Institutional Review Board–approved 

protocols at MD Anderson Cancer Center. We identified 5,639 cases of bladder cancer, 147 of 

which were SARC, in a 5-year window from 2008-2013. Most of the SARC cases were outside 

consultations for which paraffin blocks of tumor tissue were not available. For 28 SARC cases, 

formalin-fixed, paraffin-embedded (FFPE) tissue was available and sufficient for additional 

studies. Paraffin blocks from 84 stage- and grade-matched cases of conventional UC were 

assembled for comparison and clinical data, including patient demographic characteristics, 

treatments, and outcomes, were retrieved from the patients’ medical records. UCs were classified 

according to the histologic tumor grading system of the World Health Organization3. 

Microscopically SARCs represented high-grade spindle cell sarcoma in 16 cases and 

undifferentiated pleomorphic sarcoma in 12 cases. Levels of invasion were defined according to 

the TNM staging system56. All conventional UCs and SARCs were invasive T2 and above high-

grade tumors. The SARC and UC cohorts had similar age and gender distributions and a male 

predominance. The mean age of the SARC cohort (22 men and 6 women) was 71 years (range, 

41-86 years). The mean age of the conventional UC cohort (65 men and 19 women) was 69 years 

(range, 33-91 years). The median follow-up times for the SARC and UC cohorts were 9.5 and 23 

months, respectively. Together, the two cohorts had at least 90 patients whose deaths were 

cancer-related. For DNA/RNA extraction and tissue microarray construction histologic slides 

were reviewed to identify well-preserved tumor-rich areas with minimal amounts of stroma, 

which were marked on the corresponding paraffin blocks. Four parallel tissue samples were 
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taken from these areas using a 1.0-mm biopsy punch (Miltex, York, PA). In those tumors which 

contained conventional UC precursor lesions and SARC areas, the two components were 

sampled separately. Two of the tissue cylinders were used for DNA and RNA extractions for 

genomic profiling. The other two cylinders were used for the construction of a tissue microarray 

and for immunohistochemical validation analyses of selected proteins.  

 

DNA and RNA extraction  

Genomic DNA and total RNA were extracted from FFPE tissue samples for DNA sequencing 

and microarray experiments using the MasterPure Complete DNA and RNA Purification Kit 

(Epicenter Biotechnologies, Madison, WI) according to the manufacturer's instructions as 

previously described57. In brief, FFPE tissue cylinders were minced, deparaffinized, and digested 

with 300�μl Proteinase K digestion buffer with 10�μl Proteinase K (50 μg/μl; Roche 

Diagnostics, Mannheim, Germany) at 55°C overnight. DNA and RNA concentrations and 

quality were determined by an ND-1000 spectrophotometer (NanoDrop Technologies Inc., 

Wilmington, DE) and Quant-iT PicoGreen Kit (Life Technologies, Carlsbad, CA). Sufficient 

amounts of total RNA for gene expression analysis were extracted from all 28 SARC and 84 

conventional UC samples. In addition, sufficient amounts of genomic DNA were extracted from 

13 SARC samples, including 5 samples that also contained coexistent precursor conventional 

UC. DNA extracted from the peripheral blood lymphocytes or normal tissue of the resection 

specimen from the same patient was used as a control. 
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Whole-exome sequencing and processing pipeline  

Genomic DNA from 13 cases of SARC and five cases of paired conventional UC were used for 

whole-exome sequencing, which was performed on the HiSeq 2000 platform (Illumina, San 

Diego, CA) at MD Anderson Cancer Center’s Genomics Core. The TCGA data on 408 muscle-

invasive conventional UCs of the bladder were used as a reference set for mutational analyses. 

BWA-MEM (version 0.7.12) was used to align reads to the hg19 reference genome. Samtools 

(version 1.4) and Picard (version 2.5.0) were used to sort and convert between formats and 

remove duplicate reads58,59. The Genome Analysis Toolkit (version 3.4-46) was used to generate 

realigned and recalibrated BAM files60,61. Somatic variants relative to the normal reference 

sample were detected by MuTect262,63. Oncotator (version 1.8.0.0) was used to produce gene-

based and function-based annotations of the single nucleotide variants (SNVs) and 

insertions/deletions64. Similar analyses were performed for the genome-wide expression data 

from the TCGA cohort (n=408), and tumors were assigned to specific molecular subtypes by 

applying the sets of luminal, basal, and p53 markers as described previously33. Mutational data 

were downloaded from the TCGA portal (https://tcga-data.nci.nih.gov/tcga/). MutSigCV 

(version 1.4; https://www.broadinstitute.org/cancer/cga/mutsig) was used to identify genes that 

were mutated more often than expected by chance given the background mutation processes65. 

The significant gene list was obtained using a false discovery rate (FDR) cutoff of 0.05. The 

statistical significance of associations between the mutations and the molecular subtypes was 

assessed by the Fisher exact test. 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/388264doi: bioRxiv preprint 

https://doi.org/10.1101/388264


22 
 

Mutagenesis signatures  

We used 432 SNVs identified in at least one sample and segregated them into six types of 

mutations corresponding to the following base pair substitutions: C>A, C>G, C>T, T>A, T>C, 

and T>G. The Fisher exact test was used to determine the distribution of these mutations in the 

three groups of samples corresponding to conventional UC in the TCGA cohort and paired UCs 

and SARCs in the sarcomatoid cohort. The genomic context of SNVs, referred to as fingerprints 

and which included the two flanking bases on the 5’ and 3’ sides to each position for a total of 96 

possible mutational fingerprints, was assembled. Wilcoxon rank sum tests were used to test 

against the hypothesis of no difference in the frequency of any fingerprint between any two 

groups of mucosal samples. The Benjamini and Hochberg method was applied to control the 

FDR. For each sample, we used its mutational fingerprints (V) and the quadratic programming 

method to compute a weight score (H) for each of 30 canonical mutational signatures (W) 

available from the Sanger Institute (http://cancer.sanger.ac.uk/cosmic/signatures). We applied the 

96-by-30 matrix of canonical signatures (W) and, given the 96-by-1 mutational profile of a 

sample (V), we computed the 30 -y-1 vector (H) for each of the canonical signatures’ relative 

contributions to the sample profile by solving the following optimization formula: 

minH (WH – V)T(WH – V) such that hi ≥ 0 and Σi hi = 1 

The optimization problems were solved using “quadprog” (version 1.5-5). The Kruskal-Wallis 

test was used to test against the null hypothesis of no difference in weight scores among 

conventional UC and paired UC and SARC.  
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mRNA expression and data processing  

RNAs (0.25–1.0 μg) from SARCs (n=28) and conventional UCs (n=84) were assessed using 

Illumina HumanHT-12 DASL Expression BeadChips as per the manufacturer’s instructions, and 

the Illumina BeadStudio v3.1.3 (Gene Expression Module V3.3.8) was used for transformation 

and normalization of the data. Comparisons were carried out using Welch’s t-tests and 

Benjamini-Hochberg–controlled FDR–adjusted p-values (<0.05) and fold changes. Unsupervised 

hierarchical clustering of log ratios was performed with Cluster 3.0, and the results were 

visualized with Treeview software (Stanford University, Palo Alto, CA). Pearson correlation, 

mean centering, and average linkage were applied in all clustering applications. Genes within 0.5 

standard deviations of the log-transformed ratios were discarded. To select specific and robust 

gene sets associated with SARC, we used the combination analysis with the Welch t-test and 

fold-change; genes having p-values <0.05 and showing fold-change >2.0 were selected. IPA 

software (Ingenuity Systems, Redwood City, CA) was used to determine dysregulated canonical 

pathways and predicted upstream regulators by calculating z-scores and –log10 p-values66,67. 

GSEA was used to evaluate the enrichment probability of the top canonical pathways and 

upstream regulators identified by IPA68. Both SARC and UC samples were classified into 

luminal, basal, and p53-like intrinsic molecular subtypes using an algorithm described 

previously6.  

Immune gene expression signatures for SARC and conventional UC were established 

using unsupervised hierarchical clustering. Gene dendrogram nodes corresponding to genes 

characteristically expressed in specific immune cell types were identified and validated through 

DAVID functional annotation clustering and Ingenuity Systems Analysis (www.ingenuity.com). 

Immune gene signatures were used as reported previously69-71.  
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To quantitatively assess the level of EMT, we calculated the EMT score based on a 76-

gene expression signature reported by Byers et al47. For each tumor sample, the score was 

calculated as a weighted sum of 76 gene expression levels: ∑ ��
��
��� ��� , where �� is the 

correlation coefficient between the ith gene expression in the signature and that of E-cadherin, 

and ���  is the ith gene’s normalized expression in the jth tumor sample. We centered the scores 

by subtracting the mean across all tumor samples so that the grand mean of the score was zero.  

 

MiRNA analysis  

MiRNA analysis was performed on 28 SARC samples and 58 conventional UC samples. For 

miRNA cDNA synthesis, 400 ng of total RNA was reverse-transcribed using a miRNA reverse 

transcription kit (Applied Biosystems; catalogue no. 4366596) in combination with the stem-loop 

Megaplex primer pool (Applied Biosystems). For each cDNA sample, 381 small RNAs were 

profiled using TaqMan Human MicroRNA A Cards (Applied Biosystems; catalogue no. 

4398965). Fold-change for each microRNA was determined using the ΔCt method and examined 

using Welch’s t-test. An adjusted p-value with FDR < 0.05 was considered significant. 

 

Validation studies  

The expression levels of selected genes were validated on parallel tissue microarrays comprising 

FFPE samples of 84 UCs and 28 SARCs. The microarrays were designed and prepared as 

described previously and profiled by genomic platforms51. In brief, the tissue microarrays (two 

1-mm cores per case) were constructed with a manual tissue arrayer (Beecher Instruments, Silver 

Spring, MD). Tissue sections from the tissue microarrays were stained with hematoxylin and 

eosin to confirm the presence of tumor tissue. Immunohistochemical staining was performed 
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with mouse monoclonal antibodies against human GATA3 (HG3-31 clone, 1:100 dilution; Santa 

Cruz Biotechnology Inc., Santa Cruz, CA), cytokeratin 5/6 (clone D5/16B4, 1:50 dilution; Dako, 

Carpinteria, CA), cytokeratin 14 (LL002 clone, 1:50 dilution; BioGenex, Fremont, CA), PD-L1 

(clone 22C3 pharmDx without dilution; Dako), E-cadherin (4A4 clone, 1:1000 dilution; BioCare 

Medical, Concord, CA), and P63 (4A4 clone, 1:200 dilution; BioCare Medical, Pacheco, CA). 

Immunostaining was performed using the Bond-Max Autostainer (Leica Biosystems, Buffalo 

Grove, IL). The staining intensity was scored by two pathologists (CCG and BAC) as negative 

and mildly, moderately, or strongly positive. In addition, the loss of expression of E-cadherin in 

SARC was confirmed on selected frozen tumor samples by Western blotting. In brief, whole cell 

extracts of tumor tissue were analyzed by immunoblotting using an anti-CDH1 antibody (4A, 

1:1000 dilution; Cell Signaling Technology, Danvers, MA).  

 

General statistical analyses 

Survival analyses were performed by Kaplan–Meier analysis and log-rank testing. Welch’s t-test 

was used for two-sample comparison, whereas the Kruskal-Wallis test was used for multiple 

group comparison. For genome-wide mRNA and miRNA differential expression analysis, the 

Benjamini and Hochberg (BH) method was applied to control the false discovery rate (FDR). An 

adjusted p-value with FDR < 0.05 was considered statistically significant. 
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Supplementary Figure Legends 

Figure S1. Whole-genome mRNA expression profiling of SARC and conventional UC. (A) 

The top 50 upregulated and the top 50 downregulated genes in 28 cases of SARC compared with 

84 cases of conventional UC. (B) Hierarchical cluster analysis of the cohort shown in (A) using 

the top 10 upregulated and top 10 downregulated genes identified in SARC. (C) Kaplan-Meier 

analysis of survival in SARC and conventional UC.  

 

Figure S2. miRNA expression profile in SARC and conventional UC. (A) The top 50 

upregulated and downregulated miRNAs in SARC compared with conventional UC. (B) 

Hierarchical cluster analysis of the cohort shown in (A) using the top 10 upregulated and 

downregulated miRNA.  

 

Figure S3. Dysregulation of the EMT regulatory network in SARC as compared with 

conventional UC. Top to bottom, expression patterns of TGFB1, RhoA, p53, and p63 target 

genes as well as selected miRNA and EMT genes.  

Figure S4. Box plots analysis of genes and miRNAs involved in EMT. (A) Expression level 

of genes involved in EMT in TCGA cohort and SARC classified according to the molecular 

subtypes. (B)  Expression level of miRNAs involved in EMT in TCGA cohort and SARC 

classified according to the molecular subtypes. The statistical significance was tested by 

Kruskal-Wallis rank sum test and is indicated above the individual box plots. All miRNAs tested 

showed statistically significant difference among the subtypes. (C)  GSEA for 175 EMT 

signature genes identified the enrichment for SARC compared to conventional UC in TCGA 
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cohort. (D) GSEA for the same group of genes as shown in C displaying the enrichment between 

basal and double negative/mesenchymal SARC subtypes. 
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