Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A speech envelope landmark for syllable encoding in human superior temporal gyrus

Yulia Oganian, Edward F. Chang
doi: https://doi.org/10.1101/388280
Yulia Oganian
1Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Edward F. Chang
1Department of Neurological Surgery, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Listeners use the slow amplitude modulations of speech, known as the envelope, to segment continuous speech into syllables. However, the underlying neural computations are heavily debated. We used high-density intracranial cortical recordings while participants listened to natural and synthesized control speech stimuli to determine how the envelope is represented in the human superior temporal gyrus (STG), a critical auditory brain area for speech processing. We found that the STG does not encode the instantaneous, moment-by-moment amplitude envelope of speech. Rather, a zone of the middle STG detects discrete acoustic onset edges, defined by local maxima in the rate-of-change of the envelope. Acoustic analysis demonstrated that acoustic onset edges reliably cue the information-rich transition between the consonant-onset and vowel-nucleus of syllables. Furthermore, the steepness of the acoustic edge cued whether a syllable was stressed. Synthesized amplitude-modulated tone stimuli showed that steeper edges elicited monotonically greater cortical responses, confirming the encoding of relative but not absolute amplitude. Overall, encoding of the timing and magnitude of acoustic onset edges in STG underlies our perception of the syllabic rhythm of speech.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 09, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A speech envelope landmark for syllable encoding in human superior temporal gyrus
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A speech envelope landmark for syllable encoding in human superior temporal gyrus
Yulia Oganian, Edward F. Chang
bioRxiv 388280; doi: https://doi.org/10.1101/388280
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A speech envelope landmark for syllable encoding in human superior temporal gyrus
Yulia Oganian, Edward F. Chang
bioRxiv 388280; doi: https://doi.org/10.1101/388280

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4237)
  • Biochemistry (9151)
  • Bioengineering (6789)
  • Bioinformatics (24035)
  • Biophysics (12142)
  • Cancer Biology (9550)
  • Cell Biology (13802)
  • Clinical Trials (138)
  • Developmental Biology (7644)
  • Ecology (11719)
  • Epidemiology (2066)
  • Evolutionary Biology (15521)
  • Genetics (10654)
  • Genomics (14336)
  • Immunology (9495)
  • Microbiology (22870)
  • Molecular Biology (9113)
  • Neuroscience (49070)
  • Paleontology (355)
  • Pathology (1485)
  • Pharmacology and Toxicology (2572)
  • Physiology (3851)
  • Plant Biology (8340)
  • Scientific Communication and Education (1473)
  • Synthetic Biology (2299)
  • Systems Biology (6199)
  • Zoology (1302)