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ABSTRACT

Understanding the relationship between the genome of a cell and its phenotype is a central problem in precision medicine.
Nonetheless, genotype-to-phenotype prediction comes with great challenges for machine learning algorithms that limit their
use in this setting. The high dimensionality of the data tends to hinder generalization and challenges the scalability of most
learning algorithms. Additionally, most algorithms produce models that are complex and difficult to interpret. We alleviate
these limitations by proposing strong performance guarantees, based on sample compression theory, for rule-based learning
algorithms that produce highly interpretable models. We show that these guarantees can be leveraged to accelerate learning
and improve model interpretability. Our approach is validated through an application to the genomic prediction of antimicrobial
resistance, an important public health concern. Highly accurate models were obtained for 12 species and 56 antibiotics, and
their interpretation revealed known resistance mechanisms, as well as some potentially new ones. An open-source disk-based
implementation that is both memory and computationally efficient is provided with this work. The implementation is turnkey,
requires no prior knowledge of machine learning, and is complemented by comprehensive tutorials.

Introduction
The relationship between the genome of a cell and its phenotype is central to precision medicine. Specific mutations in the
human genome are known to affect the metabolism of drugs and thus influence the response to treatments and the toxicity of
common drugs like warfarin or azathioprine1. Similarly, mutated genes in bacteria lead to increased virulence or resistance to
antimicrobial agents, which leads to an increased risk of morbidity2. Large-scale studies that aim to link genomic features to
clinical outcomes are now common in both eukaryotes and prokaryotes.

The most common type of studies are genome-wide association studies (GWAS), which aim to identify all statistically
significant genotype-to-phenotype associations3, 4. An alternative approach consists of using machine learning algorithms to
build models that correlate genomic variations with phenotypes5, 6. This approach contrasts with GWAS in that the objective
shifts from thoroughly understanding the phenotype, to accurately predicting it based on the occurrence of genomic variations.

Nevertheless, the accurate prediction of phenotypes is insufficient for many applications in biology, such as clinical
diagnostics. Models must rely on a decision process that can be validated by domain experts and thus, algorithms that produce
interpretable models are preferred6, 7. Rule-based classifiers are models that make predictions by answering a series of questions,
such as “Is there a mutation at base pair 42 in this gene?” Such models are highly interpretable and the decision logic can be
validated experimentally to confirm accuracy and potentially lead to the extraction of new biological knowledge.

In this study, two algorithms that learn rule-based models are explored: i) Classification and Regression Trees8 (CART)
and ii) Set Covering Machines9 (SCM). The former learns decision trees, which are hierarchical arrangements of rules and
the latter learns conjunctions (logical-AND) and disjunctions (logical-OR), which are simple logical combinations of rules.
Their accuracy and interpretability are demonstrated with an application to the prediction of antimicrobial resistance (AMR)
in bacteria, a global public health concern of high significance. Several thousand bacterial genomes and their susceptibility
to antimicrobial agents are publicly available10 and make for an ideal study set. The use of machine learning to predict
AMR phenotypes has previously been investigated using two approaches: 1) considering only known resistance genes and
mutations11–14, 2) considering whole genomes with no prior knowledge of resistance mechanisms15–20. The work described
hereafter relies on the latter approach.
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The contributions of this study are multidisciplinary. From the biological perspective, 107 highly accurate models of
antimicrobial resistance, covering 12 human pathogens and 56 antibiotics, are obtained using each of the previously described
algorithm. These models identify known resistance mechanisms, as well as some potentially new ones. From the machine
learning perspective, the study establishes that rule-based models are well suited for genotype-to-phenotype prediction and
demonstrates their accuracy in comparison to state-of-the-art models. A mathematical analysis based on sample compression
theory21, 22 provides strong statistical guarantees on the accuracy of the obtained models, which are essential if the models are
to be applied in diagnosis and prognosis23. These guarantees are used to prune the models, increasing their interpretability,
while dramatically accelerating computing times. Finally, an efficient, disk-based implementation of both algorithms, which
efficiently scales to increasingly large genomic datasets, is proposed and made publicly available. Importantly, the proposed
approach is not limited to AMR prediction and could be applied to a plethora of phenotypes.

Results
Overview of the data
The data used in this study were extracted from the Pathosystems Resource Integration Center (PATRIC) database, one of
the most comprehensive public databases of bacterial genomes and antimicrobial resistance metadata10, 24. The protocol used
to acquire the data is detailed in Methods and the amount of data extracted is shown, per species, in Fig. 1a. In total, 107
binary classification datasets were extracted, each consisting of discriminating isolates that are resistant or susceptible to an
antimicrobial agent, based on their genome, in a given species (e.g., kanamycin resistance in M. tuberculosis). The genomes
in each dataset were represented by the presence and absence of every k-mer (i.e., sequence of k nucleotides) of length 31
that occurred in the data17 (see Methods). As illustrated in Fig. 1b, species with high genomic plasticity, such as Klebsiella
pneumoniae, are associated with greater k-mer counts, whereas species with low diversity, such as Mycobacterium tuberculosis,
are associated with lower k-mer counts.

The resulting datasets pose significant challenges for machine learning algorithms, which are reflected in Fig. 1c. First,
the sample size (number of genomes) is extremely small compared to the size of the feature space (number of k-mers). This
setting, known as fat data25, 26, is very common in genotype-to-phenotype studies and generally leads to models that overfit the
data23, i.e., a situation in which the model fits the training data perfectly, but performs poorly on unseen data. Second, many
datasets show strong class imbalance (i.e., one class is more abundant than the other), due to the fact that more resistant or
susceptible genomes were available. This can lead to models that are accurate for the most abundant class and perform poorly
on the least abundant one. Hence, this study will show that accurate models, that are also interpretable, can be learned despite
these challenges and provide a theoretical justification of these results.

Rule-based models based on performance guarantees
This study proposes performance guarantees for the CART and SCM algorithms under the form of sample compression
bounds (see Methods). Such bounds are of theoretical interest, as they explain how accurate models can be learned despite the
challenging setting. Nonetheless, the relevance of these bounds goes beyond simple theoretical justification, since they can
be used to improve model selection. This essential phase of the learning process consists of setting the hyperparameters of
the algorithms (e.g., the maximum depth of a decision tree) and pruning the resulting models to reduce their complexity. The
typical approach to model selection relies on cross-validation, a computationally intensive procedure that involves training the
algorithms several times on subsets of the data. In this study, the proposed sample compression bounds are used to dramatically
accelerate model selection, while allowing all the data to be used for training (see Methods). In the following experiments, the
proposed bound-based algorithms are referred to as CARTb and SCMb, whereas the typical cross-validation-based algorithms
are referred to as CARTcv and SCMcv.

Genotype-to-phenotype prediction with rule-based models
The CARTb and SCMb algorithms were trained on the aforementioned datasets to obtain rule-based predictors of antimicrobial
resistance. Each dataset was randomly partitioned into disjoint training and validation sets, using 80% and 20% of the data
respectively. The training sets were used to construct predictive models and the validation sets were used to assess their ability
to generalize to unseen genomes. This procedure was repeated ten times, using different random partitions, in order to obtain
accurate estimates of generalization performance despite the small number of examples in some datasets.

The models are highly accurate
Fig. 2 illustrates the accuracies of the models, which correspond to the proportion of correct AMR phenotype assignments in
the validation data, for CARTb and SCMb across all datasets. Both algorithms perform comparably (p = 0.603 – according
to a Wilcoxon signed-rank test), which is reflected in the highly similar distribution of model accuracies over the datasets.
Moreover, both rule-based algorithms learn highly accurate models, despite the challenging nature of the datasets. In fact,
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Figure 1. Summary of the PATRIC data. a) Number of genomes and antibiotics for which data was extracted, shown by
species. b) Number of k-mers in each dataset (dots), shown by species. Low k-mer counts reflect populations with
homogeneous genomes, whereas the converse indicates high genomic diversity. c) For each dataset (dots) the number of
examples (genomes) and features (k-mers) is shown, along with a measure of class imbalance. Clearly, some datasets contain
more examples of one of the classes (resistant or susceptible) and each dataset shows a strong discrepancy between the number
of examples and features. Together, these conditions make for challenging learning tasks.
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Figure 2. Accuracies of CARTb and SCMb on the validation data of each dataset, grouped by species. The datasets are shown
as dots and colored according to the number of genomes that they contain. The distribution of accuracies for each method is
also shown (top). All models have an accuracy greater than 70%.

95% of the models have accuracies greater than 80%, 75% greater than 90%, and 45% (almost half) greater than 95%. This
suggests that the rule-based models produced by CARTb and SCMb are well-suited for genotype-to-phenotype prediction. The
ability of CARTb and SCMb to learn accurate models in this setting is characteristic of their strong resistance to overfitting.
This counterintuitive result is further supported by Supplementary Fig. 1, which shows that the accuracy of the models does
not depend on the number of k-mers in the data and that accurate models can be learned regardless of the sample size. The
theoretical performance guarantees, presented in Methods, provide a mathematical justification of these empirical results.
Detailed results for each dataset are available in Supplementary Table 1, where several metrics are reported. A detailed
comparison of the accuracy of these algorithms is kept for the next section, where they are compared to other state-of-the-art
algorithms.

The models are highly interpretable
Fig. 3 illustrates rule-based models learned for two datasets: kanamycin resistance in M. tuberculosis and meropenem resistance
in K. pneumoniae. Three properties are illustrated for each rule in the models: 1) the locus at which the corresponding k-mer
can be found, 2) a measure of rule importance, and 3) the number of equivalent rules. The first is the region of the genome
in which the k-mer is located and was determined using the Basic Local Alignment Search Tool27 (BLAST). The second
quantifies the contribution of a rule to the model’s predictions. The greater a rule’s importance, the more examples of the
training data it serves to discriminate. The rule importances are measured according to Breiman et al. (1984)8 for CARTb and
Drouin et al. (2016)17 for SCMb, and were normalized to sum to one. The third results from k-mers that are equally predictive
of the phenotype. For instance, k-mers located on the same gene may always be present or absent simultaneously, resulting in
several rules that are equally predictive for the model. Equivalent rules were shown to be indicative of the nature of genomic
variations17. A small number of equivalent rules, with k-mers overlapping a certain position of the genome, suggests a point
mutation, whereas a large number, targeting multiple contiguous k-mers, indicates large scale genomic rearrangements, such as
gene insertions and deletions. Finally, for visualization purposes, the SCMb and CARTb models were selected so that the SCMb
model was a subset of the CARTb one. This illustrates the ability of CARTb to learn models that are slightly more complex
than those of SCMb, extending them beyond simple conjunctions and disjunctions. While the SCMb models are not always
subsets of the CARTb models, it was observed that 81% of the models have at least their most important rule in common with
their counterpart.

The first set of models, shown in Fig. 3a, are tasked with predicting kanamycin resistance in Mycobacterium tuberculosis.
Kanamycin is an aminoglycoside antibiotic and a key second-line drug in the fight against multi-drug resistant infections28.
This drug acts by binding to the 16S rRNA (rrs gene) in the 30S ribosomal subunit to inhibit protein synthesis29. Mutations in
rrs are known to confer kanamycin resistance29, 30. Consistently, both models predict resistance in the presence of the A1401G
mutation in rrs, a known resistance determinant29, 31, 32. The nature of this mutation was determined by observing that the 31
equivalent rules target k-mers that overlap at a single base-pair location on rrs (i.e., 1401) and detect the presence of a guanine at
this locus. The second most important rule in both models, and its equivalent rules, target k-mers in the promoter region of the
eis gene, which harbors several resistance-conferring mutations33. This rule predicts the susceptible phenotype in the presence
of the wild-type sequence. In its absence, the SCMb model predicts resistance, which efficiently captures the occurrence of

4/16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/388348doi: bioRxiv preprint 

https://doi.org/10.1101/388348
http://creativecommons.org/licenses/by-nd/4.0/


Table 1. Overview of the benchmark datasets.

Species Antibiotic Examples Resistant Susceptible k-mers

A. baumannii Imipenem 499 325 174 42 406 238
E. faecium Vancomycin 134 51 83 10 341 091
E. coli Amoxicillin/Clavulanic acid 1 524 464 1 060 48 456 086
K. pneumoniae Gentamicin 2 107 906 1 201 70 347 931
M. tuberculosis Isoniazid 5 022 1 719 3 303 11 688 883
N. gonorrhoeae Azithromycin 392 214 178 4 766 702
P. difficile Moxifloxacin 462 188 274 19 753 432
P. aeruginosa Levofloxacin 491 201 290 42 961 897
S. enterica Chloramphenicol 347 251 96 6 864 155
S. aureus Methicillin 1 593 707 886 13 289 281
S. haemolyticus Ciprofloxacin 120 74 46 5 341 646
S. pneumoniae Chloramphenicol 409 149 260 6 380 123

several known resistance-conferring mutations using a single rule. The CARTb model also uses this rule, but adds an additional
requirement for resistance: the presence of a k-mer in the pncA gene, which is associated with resistance to pyrazinamide, a
first-line anti-tuberculosis drug28. This is consistent with the fact that kanamycin is a second-line drug, used in the presence of
resistance to first-line treatments. Based on the leaves of the models, it can be observed that this additional requirement allows
a better separation of resistant and susceptible isolates, resulting in a more accurate model. Of note, SCMb could not have
added such a rule to its model, since the resulting model is more complex than a single conjunction or disjunction.

The second set of models, shown in Fig. 3b, are tasked with predicting resistance to meropenem, a broad spectrum
carbapenem antibiotic, in Klebsiella pneumoniae. The first rule in both models targets the blaKPC-2 gene, a carbapenem
hydrolyzing beta-lactamase that is known to confer resistance to carbapenem antibiotics34. The small number of equivalent
rules likely results from the models targeting specificities of blaKPC-2 to discriminate it from its variants, such as blaKPC-1,
blaKPC-3. The SCMb model predicts resistance in the presence of a k-mer in this gene. However, the CARTb model adds
another requirement: the presence of a k-mer in the fepB gene, which encodes a periplasmic protein that is essential for
virulence35. Based on the leaves of the models, it can be observed that this additional requirement allows to correctly classify
nine susceptible isolates that were misclassified by SCMb. Furthermore, both models capture another resistance mechanism,
represented by 1497 equivalent rules. Interestingly, the k-mers targeted by these rules completely cover the bleMBL and
blaNDM-1 genes, which are generally present simultaneously and part of the same operon36, 37. bleMBL encodes a protein
responsible for resistance to bleomycin, an anti-cancer drug, and is not causal of meropenem resistance36, 37. blaNDM-1
encodes a carbapenemase and is a known resistance determinant for meropenem38. Nevertheless, since both genes generally
occur simultaneously, they were found to be equally good predictors of meropenem resistance. Finally, notice that, once again,
the CARTb model is slightly more accurate than that of SCMb and that its structure goes beyond a simple conjunction or
disjunction.

In summary, the CARTb and SCMb can learn highly accurate genotype-to-phenotype models from which relevant biological
knowledge can be extracted. Several confirmed antibiotic resistance mechanisms were identified using only genome sequences
categorized according to their phenotypes. This demonstrates the great potential of rule-based classifiers in predicting and
understanding the genomic foundations of phenotypes that are currently misunderstood.

Comparison to state-of-the-art classifiers
The CARTb and SCMb algorithms were compared to state-of-the-art classifiers on a benchmark of several datasets, described in
Table 1. The benchmark includes one dataset per species selected in order to have the largest possible sample size with minimal
class imbalance (see Methods). While we only report results for the benchmark datasets, results for the remaining datasets
are available in Supplementary Table 1. For each dataset, the protocol described in the previous section (ten repetitions) was
used. The CARTb and SCMb algorithms were compared to five other learning algorithms, including L1-regularized logistic
regression39 (L1-Logistic), L2-regularized logistic regression40 (L2-Logistic), Polynomial Kernel Support Vector Machines41

(Poly-SVM), and two baseline methods: Naive Bayes42, and the simple predictor that returns the most abundant class in the
training data (Majority). These choices are motivated in Methods.

The results of the benchmark are shown in Table 2, where the accuracy and complexity of the models learned by each
algorithm are compared. Once again, the results indicate that the CARTb and SCMb algorithms perform comparably in terms
of accuracy (p = 0.600). However, CARTb learns models that rely on slightly more k-mers than those of SCMb for 5 out of 12
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Figure 3. Rule-based genotype-to-phenotype classifiers. Each classifier is shown as a hierarchical arrangement of rules
(boxes) and leaves (rings). Predictions are made by placing a genome at the root and branching left or right based on the
outcome of the rules until a leaf is reached. A leaf predicts the most abundant class among the training examples that were
guided into it. The number of such examples is shown in its center and the ring is colored according to the distribution of their
phenotypes (classes). Each rule detects the presence/absence of a k-mer and was colored according to the genomic locus at
which it was found. Additionally, each box contains a measure of rule importance and the number of rules that were found to
be equivalent during training. Finally, the logical expression leading to the prediction of the resistant phenotype is shown,
under each model, to contrast the structure of models learned by each algorithm. In these expressions, the rules are shown as
squares with colors that match those of the models and the negation of a rule is used to indicate the “absence” of the k-mer. In
both cases, the CART models are disjunctions of conjunctions (ORs of ANDs) and the SCM models are disjunctions (ORs).
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Table 2. Comparison to state-of-the-art classifiers in terms of accuracy and model complexity. For each dataset the accuracy is
shown, along with the number of k-mers used by the model (in parentheses). Results are shown for Set Covering Machines
(SCM), Classification trees (CART), Logistic regression with L1 and L2 regularization and χ2 feature selection (L1-logistic,
L2-logistic), Polynomial kernel Support Vector Machines (Poly-SVM), Naive Bayes, and a baseline predictor that predicts the
most abundant class in the data (Majority). Accuracies within 1% of the maximum value are shown in bold. Results are
averaged over ten repetitions of the experiment.

Dataset SCMb CARTb L1-logistic* L2-logistic* Poly-SVM Naive Bayes Majority

A. baumannii 0.849 (2.7) 0.864 (3.4) 0.880 (3980.5) 0.885 (all) 0.886 (all) 0.822 (all) 0.644
E. coli 0.818 (4.6) 0.808 (7.0) 0.792 (3727.2) 0.789 (all) 0.779 (all) 0.634 (all) 0.697
E. faecium 1.000 (1.0) 1.000 (1.0) 1.000 (142.0) 1.000 (all) 0.996 (all) 0.808 (all) 0.588
K. pneumoniae 0.950 (3.9) 0.949 (4.3) 0.952 (7607.4) 0.948 (all) 0.943 (all) 0.760 (all) 0.571
M. tuberculosis 0.963 (4.5) 0.962 (4.7) 0.962 (2242.2) 0.941 (all) 0.934 (all) 0.789 (all) 0.658
N. gonorrhoeae 0.935 (3.0) 0.936 (3.3) 0.942 (6095.6) 0.915 (all) 0.906 (all) 0.736 (all) 0.529
P. aeruginosa 0.939 (1.2) 0.942 (1.1) 0.937 (87.8) 0.828 (all) 0.773 (all) 0.768 (all) 0.588
P. difficile 0.982 (1.0) 0.982 (1.0) 0.957 (121.8) 0.936 (all) 0.949 (all) 0.887 (all) 0.599
S. aureus 0.987 (1.0) 0.987 (1.0) 0.988 (230.6) 0.987 (all) 0.987 (all) 0.868 (all) 0.544
S. enterica 0.913 (1.0) 0.913 (1.0) 0.925 (991.2) 0.929 (all) 0.920 (all) 0.759 (all) 0.709
S. haemolyticus 0.925 (1.0) 0.925 (1.0) 0.925 (279.1) 0.838 (all) 0.829 (all) 0.758 (all) 0.629
S. pneumoniae 0.960 (1.0) 0.960 (1.0) 0.948 (1391.5) 0.949 (all) 0.946 (all) 0.910 (all) 0.654
* For scalability reasons, these algorithms were trained using feature selection to select the one million k-mers that were

most associated with the phenotypes; all other k-mers were discarded (see Methods).

(5/12) datasets (p = 0.046). In addition, it can be observed that both algorithms compare favorably to the other algorithms in
the benchmark in terms of accuracy and model complexity. The accuracy of CARTb is better or equal to that of L1-logistic
on 6/12 datasets (p = 0.879), L2-logistic on 10/12 datasets (p = 0.075), Poly-SVM on 9/12 datasets (p = 0.028), and Naive
Bayes on all datasets (p = 0.002). Similarly, the accuracy of SCMb is better or equal to that of L1-logistic on 7/12 datasets
(p = 0.879), L2-logistic on 10/12 datasets (p = 0.075), Poly-SVM on 9/12 datasets (p = 0.050), and Naive Bayes on all
datasets (p = 0.002). Regarding model complexity, both rule-based algorithms learn models that rely on strictly less k-mers
than the other algorithms for all datasets, including L1-logistic, which is well-known to yield sparse models39. Hence, the
rule-based models show state-of-the-art accuracy, while relying on significantly less genomic variants, making them easier to
interpret, validate, and translate to clinical settings.

Sample compression bounds for model selection
In the previous experiments, model selection was performed using the proposed sample compression bounds in lieu of cross-
validation (see Methods). As illustrated in Fig. 4, this approach, referred to as bound selection, is much faster than ten-fold
cross-validation. In fact, for every set of parameter values, ten-fold cross-validation requires ten trainings of the learning
algorithm, while bound selection only requires one. However, the success of bound selection is highly dependent on the
quality (tightness) of the generalization bounds used. A bound that is insufficiently tight results in inaccurate estimates of the
generalization performance of models and, consequently, inaccurate model selection. To assess the accuracy of the proposed
bounds in the context of model selection, models trained using cross-validation (CARTcv, SCMcv) and bound selection (CARTb,
SCMb) were compared in terms of accuracy and model complexity. The same protocol as in the previous sections was used.
The results, shown in Table 3, indicate that bound selection leads to models that are comparably accurate, but considerably
more concise. This reflects a fundamental principle that is embedded in the mathematical expression of the bounds: models
that are both simple and accurate are less subject to overfitting than their more complex counterparts (see Methods). In
summary, these results indicate that the proposed sample compression bounds are sufficiently tight to be used in model selection
and can be used to drastically reduce the training time of the CART and SCM algorithms, facilitating their scaling to large
genotype-to-phenotype problems.

Multi-class classification with decision trees
This work has been thus far concerned with the prediction of binary phenotypes (e.g., case vs. control, resistant vs. susceptible).
Yet, many phenotypes of practical importance are composed of more than two states. While Set Covering Machines do not
directly support more than two classes, CART can work with an arbitrary number of classes. To demonstrate this property of
CART, two multi-class antibiotic resistance prediction tasks were created. Specifically, the genomes of Klebsiella pneumoniae
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Figure 4. Running time (in seconds) of each algorithm and each model selection strategy on the benchmark datasets. For
most datasets, using the sample compression bounds as a model selection strategy considerably reduces the running time
compared to ten-fold cross-validation. SCM tends to run faster than CART, which was expected given that for models of equal
depth, CART must evaluate many more rules than SCM. Of note, the time is shown on a logarithmic scale and thus, a
difference in one unit corresponds to a running time that is ten times smaller.

Table 3. Comparison of models learned using bound selection (CARTb, SCMb) and cross-validation (CARTcv, SCMcv) as
model selection strategies. For each dataset the accuracy is shown, along with the number of k-mers used by the model (in
parentheses). Accuracies within 1% of the maximum value are shown in bold.

Dataset SCMb SCMcv CARTb CARTcv
A. baumannii 0.849 (2.7) 0.857 (10.6) 0.864 (3.4) 0.863 (9.6)
E. coli 0.818 (4.6) 0.830 (6.2) 0.808 (7.0) 0.812 (13.3)
E. faecium 1.000 (1.0) 1.000 (1.0) 1.000 (1.0) 1.000 (1.0)
K. pneumoniae 0.950 (3.9) 0.953 (7.9) 0.949 (4.3) 0.948 (8.8)
M. tuberculosis 0.963 (4.5) 0.963 (5.0) 0.962 (4.7) 0.963 (5.9)
N. gonorrhoeae 0.935 (3.0) 0.935 (3.5) 0.936 (3.3) 0.929 (6.1)
P. aeruginosa 0.939 (1.2) 0.939 (1.4) 0.942 (1.1) 0.941 (2.5)
P. difficile 0.982 (1.0) 0.982 (1.0) 0.982 (1.0) 0.982 (1.1)
S. aureus 0.987 (1.0) 0.987 (1.9) 0.987 (1.0) 0.987 (1.6)
S. enterica 0.913 (1.0) 0.907 (1.6) 0.913 (1.0) 0.900 (3.6)
S. haemolyticus 0.925 (1.0) 0.933 (1.0) 0.925 (1.0) 0.933 (1.0)
S. pneumoniae 0.960 (1.0) 0.959 (1.0) 0.960 (1.0) 0.959 (1.0)
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Figure 5. Confusion matrices for the multi-class classification tasks. a-b) Prediction of susceptible (S), intermediate (I), and
resistant (R) AMR phenotypes for gentamicin and tobramycin (K. pneumoniae), respectively. c) Multi-species classification of
the twelve species present in our dataset. Results are averaged over ten repetitions of the experiments.

isolates with susceptible (S), intermediate (I), or resistant (R) phenotypes were collected to create three-class classification
datasets, where the task consisted of discriminating between each level of resistance. This resulted in two datasets: gentamycin
(2222 genomes, 74 million k-mers) and tobramycin (2068 genomes, 71 million k-mers). The accuracy of the resulting models
is shown in Fig. 5a-b. Highly accurate predictions were obtained for the resistant and susceptible phenotypes, but not for the
intermediate one. Interestingly, many intermediate isolates were predicted as resistant or susceptible, but the converse rarely
occurred. We hypothesize that this is due to the presence of mislabeled resistant and susceptible isolates hidden within the
intermediate class, which could happen if minimum inhibitory concentration measurements were near clinical breakpoints.
Therefore, to strengthen our claim that CARTb can learn accurate multi-class models, 100 genomes of each species were used to
create a dataset where the task was to classify a genome into the correct species. This resulted in a dataset with 1200 genomes,
136 million k-mers, and 12 classes. The results, shown in Fig. 5c, indicate that a near perfect model was learned. Although
solving this task based on the presence/absence of k-mers is not particularly challenging, the results clearly demonstrate that
CARTb can learn highly accurate multi-class models.

Discussion
Accurately predicting phenotypes from genotypes is a problem of high significance for biology that comes with great challenges
for learning algorithms. Difficulties arise when learning from high dimensional genomic data with sample sizes that are minute
in comparison23. Furthermore, the ability of experts to understand the resulting models is paramount and is not possible with
most state-of-the-art algorithms. This study has shown the CART and SCM rule-based learning algorithms can meet these
challenges and successfully learn highly accurate and interpretable genotype-to-phenotype models.

Notably, accurate genotype-to-phenotype models were obtained for 107 antimicrobial resistance phenotypes, spanning
12 eukaryotic species and 56 antimicrobial agents, which is an unprecedented scale for a machine learning analysis of this
problem19. The obtained models were shown to be highly interpretable and to rely on confirmed drug resistance mechanisms,
which were recovered by the algorithms without any prior knowledge of the genome. In addition, the models highlight
previously unreported mechanisms, which remain to be investigated. Hence, the learned models are provided as Additional
data with the hope that they will seed new research in understanding and diagnosing AMR phenotypes. A tutorial explaining
how to visualize and annotate the models is also included.
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Furthermore, a theoretical analysis of the CART and SCM algorithms, based on sample compression theory, revealed strong
guarantees on the accuracy of the obtained models. Such guarantees are essential if models are to be applied in diagnosis or
prognosis23. To date, these algorithms are among those that perform the highest degree of sample compression and thus, they
currently provide the strongest guarantees (in terms of a sample compression risk bounds) for applications to high dimensional
genomic data. Moreover, it was shown that these guarantees can be used for model selection, leading to significantly reduced
learning times and models with increased interpretability. This serves as a good example of how theoretical machine learning
research can be transferred to practical applications of high significance.

Finally, it is important to mention the generality of the proposed method, which makes no assumption on the species
and phenotypes under study, except that the phenotypes must be categorical. The same algorithms could be used to predict
phenotypes of tumor cells based on their genotype (e.g., malignant vs. benign, drug resistance), or to make predictions based
on metagenomic data. To facilitate further biological applications of this work, an open-source implementation of the method,
that does not require prior knowledge of machine learning, is provided with this work, along with comprehensive tutorials (see
Additional data). The implementation is highly optimized and the algorithms are trained without loading all the genomic data
into the computer’s memory.

Several extensions to this work are envisaged. The algorithms and their performance guarantees could be adapted to other
types of representations for genomic variants, such as single nucleotide polymorphisms (SNP) and unitigs43. The techniques
proposed by Hardt et al. (2016)44 could be used to ensure that the models are not biased towards undesirable covariates, such as
population structure45. This could potentially increase the interpretability of models, by avoiding the inclusion of rules that are
associated with biases in the data. In addition, it would be interesting to generalize this work to continuous phenotypes, such as
the prediction of minimum inhibitory concentrations in AMR20. Furthermore, another extension would be the integration of
multiple omic data types to model phenotypes that result from variations at multiple molecular levels46. Additionally, this work
could serve as a basis for efficient ensemble methods for genotype-to-phenotype prediction, such as random forest classifiers47,
which could improve the accuracy of the resulting models, but would complexify the interpretation. Last but not least, the
rule-based methods presented here assure good generalization if sparse sample-compressed classifiers with small empirical
errors can be found. Nevertheless, it is known that good generalization can also be achieved in very high dimensional spaces
with other learning strategies, such as achieving a large separating margin48, 49 on a large subset of examples or by using
learning algorithms that are algorithmically stable50. Although it remains a challenge to obtain interpretable models with
these learning approaches, they could eventually be useful to measure the extent to which the rule-based methods are losing
predictive power at the expense of interpretability.

Methods

Data acquisition
The data were extracted from the Pathosystems Resource Integration Center (PATRIC) database10, 24 FTP backend using the
PATRIC tools Python package51 (February 4, 2018). First, AMR phenotypes taking the form of SIR (susceptible, intermediate,
resistant) labels were extracted for several bacterial isolates and antibiotics. Isolates associated with the intermediate phenotype
were not considered, except in the multi-class experiments, to form two groups of phenotypically distinct isolates. Second, the
metadata were segmented by species and antibiotic to form datasets, each corresponding to a single antibiotic/species pair.
Datasets containing at least 25 isolates of each phenotype (107 in total) were retained and the rest were discarded. Third, the
genomes in each dataset were downloaded, using the preassembled versions provided by PATRIC.

A contextual introduction to supervised machine learning
Machine learning is a subfield of computer science that aims to create algorithms that learn from experience. Such algorithms
learn how to perform tasks by analyzing a set of examples. In supervised learning, each example consists of an input and
an expected outcome. The goal of the algorithm is to learn a model that accurately maps any input to the correct outcome.
In the present study, it is assumed that the inputs are genomes and the expected outcomes are discrete phenotypes (e.g.,
resistance vs. susceptibility to an antimicrobial agent). Formally, let x ∈ {A,C,G,T}∗ be a genome, represented by any
string of DNA nucleotides, and y ∈ {p1, ..., pc} be its corresponding phenotype, where {p1, ..., pc} is any set of c arbitrary
phenotypes. The learning algorithm is given a set of examples S def

= {(x1,y1), ...,(xm,ym)} ∼ Dm, where each example (xi,yi) is
generated independently according to the same distribution D. This distribution is unobserved and represents the unknown
factors that generate the data (e.g., the biological mechanisms that underlie a phenotype). Learning algorithms often work
with a vector representation of data (our case) and thus, it is necessary to transform the genome sequences into vectors. Let
φφφ : {A,C,G,T}∗→ Rd be an arbitrary function that maps a genome to a vector of d dimensions. In this study, φφφ(x) is a k-mer
profile (described below) that characterizes the presence and absence of every k-mer in the genome. The objective of the
algorithm is to learn a model h : Rd →{p1, ..., pc} that accurately maps the representation of a genome to its phenotype, i.e.,
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h(φ(x)) ≈ y. This corresponds to minimizing the expected error for any example drawn according to the data-generating
distribution, defined as:

R(h) def
= Pr

(x,y)∼D
[h(φ(x)) 6= y] . (1)

The k-mer profile
A k-mer profile is a vector of binary values that characterizes the presence or absence of every possible sequence of k DNA
nucleotides in a genome. This representation allows the comparison of genomes without the need to align them to a reference,
which can be challenging in the presence of large genomic rearrangements52, 53. In theory, the dimension of such vectors
is 4k, which is approximately 4.6× 1018 for k = 31. However, in practice, k-mers that do not occur in the set of genomes
to be compared can be omitted since they cannot be used in the model17. This dramatically reduces the number of possible
k-mers and thus, the size of the representation. Formally, let K be the set of all (possibly overlapping) k-mers that occur more
than once in the genomes of a dataset S. For a genome x ∈ {A,C,G,T}∗, the corresponding k-mer profile is given by the
|K|-dimensional boolean vector φφφ(x) ∈ {0,1}|K|, such that φ(x)i = 1 if k-mer ki ∈ K appears in x and φ(x)i = 0 otherwise. In
this work, the k-mers in each genome were determined using the DSK k-mer counter54 and the length k was set to 31, since
extensive experiments showed that this length was appropriate for bacterial genome comparison17, 53. The reader is referred to
Drouin et al. (2016)17 for an illustration of the k-mer profile and a discussion on choosing an appropriate k-mer length. While
the practical size of k-mer profiles is much smaller than their theoretical limit, they remain extremely high dimensional data
representations that push the limits of current learning algorithms in terms of scalability and generalization.

Boolean-valued rules based on k-mers
The rule-based algorithms used in this work learn models that are arrangements of boolean-valued rules. Such rules take a
k-mer profile as input and output true or false. We consider one presence rule and one absence rule for each k-mer ki ∈ K,
which are defined as pki(φφφ(x)) = [φ(x)i = 1] and aki(φφφ(x)) = [φ(x)i = 0], respectively. The goal of the learning algorithms
is to find the arrangement of such rules that gives the most accurate predictions of the phenotype. The resulting models are
interpretable and directly highlight the importance of using a small set of k-mers.

Performance guarantees based on sample compression theory
A generalization bound (or risk bound) is a function ε(h,S,δ ) that depends on what the model h achieves on the training set S.
Such a function upper bounds, with probability at least 1−δ (over the random draws of S according to Dm), the generalization
error of h as defined by Equation (1). Among other things, ε(h,S,δ ) depends on the training error of h on S and on its
complexity (as measured here by the number of rules used by h and its sample-compression size55). Furthermore, ε(h,S,δ ) is
valid simultaneously for all possible predictors h that can be constructed by the learning algorithm, but ε(h,S,δ ) increases
with the complexity of h and its training error. The guarantee on the generalization error of h thus deteriorates as the model h
becomes complex and/or inaccurate on the training data. Consequently, such a bound ε(h,S,δ ) can be analyzed to understand
what should be optimized in order to learn models that achieve good generalization.

Drouin et al. (2016) proposed a generalization bound for the SCM algorithm, which shed light on this algorithm’s strong
resistance to overfitting in the challenging genotype-to-phenotype setting17. Based on their work, we propose a new bound
for the CART algorithm and demonstrate that its models can also achieve good generalization in this setting. Together, these
theoretical results support the empirical results reported in this study and strengthen our claim that rule-based classifiers are
well-suited for genotype-to-phenotype studies.

The generalization bound εSCM(h,S,δ ) proposed by Drouin et al. (2016)17 for the SCM is given by

εSCM(h,S,δ ) = 1− exp
( −1

m−|Z|− r

[
ln
(

m
|Z|

)
+ ln

(
m−|Z|

r

)
+ |h| · ln(2 ·N(Z))+Ω(h,S,δ )

])
, (2)

where m is the number of training examples in S, and |h| is the number of rules in the conjunction/disjunction model.
Furthermore, Z, called the compression set21, 22, 55, is a small subset of S in which all k-mers used by the model occur. We denote
by |Z|, the number of genomes in Z, and by N(Z) the total number of nucleotides in Z. Moreover, r is the number of prediction

errors made by h on S\Z, i.e., the examples of the training set that are not in Z. Finally, Ω(h,S,δ ) def
= ln

(
π6(|h|+1)2(r+1)2(|Z|+1)2

216 ·δ

)
.

Using the same definitions and notation, the generalization bound εCART (h,S,δ ) that we propose for CART is given by

εCART (h,S,δ ) = 1− exp
( −1

m−|Z|− r

[
ln
(

m
|Z|

)
+ ln

(
m−|Z|

r

)
+ ln

(
2 · |h|+1
|h|

)
+ |h| · lnN(Z)+(|h|+1) · lnc+Ω(h,S,δ )

])
, (3)
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where c is the number of classes in the data. Of note, this bound shares many terms in common with the bound for the SCM,
but also supports the multi-class setting. A detailed derivation of this bound is given in the Supplementary Methods.

These bounds indicate that any model that makes few errors on the training data, while using a small number of rules
should achieve good generalization. This is precisely the type of models that were obtained in the experiments of this work.
Surprisingly, the length k of the k-mers, which increases the size of the feature space exponentially, does not appear in these
equations. This indicates that SCM and CART can achieve good generalization despite the immense dimensionality (4k) of the
feature space that results from using large values of k. This property makes them ideal for genotype-to-phenotype prediction.

Fast model selection with bounds
Model selection consists of choosing the configuration of the learning algorithm that yields the model with the smallest
generalization error, as defined by Equation (1). Such a configuration is an arrangement of user-defined parameters that
control the behavior of the algorithm, which are referred to as hyperparameters (HPs). For instance, in the SCM algorithm,
the maximum number of rules in a conjunction/disjunction model is a HP9. Similarly, in the CART algorithm, the minimum
cost-complexity pruning algorithm is used to reduce the complexity of the resulting models and the level of pruning is controlled
by a HP8.

For settings where the data is scarce, such as genotype-to-phenotype studies, model selection is typically performed using
k-fold cross-validation (see Hastie et al. (2015) for an introduction56). This method consists of partitioning the training data
into k (typically 5 or 10) disjoint subsets of equal size (referred to as folds) and training the algorithm k times, each time using
k−1 folds for training and the remaining one for validation. The score attributed to each configuration of the algorithm is the
proportion of prediction errors in validation over all folds, which is an empirical estimation of the generalization error given by
Equation (1), and the one with the smallest score is selected. This procedure has two limitations: it is computationally intensive,
since the algorithm is trained k times for each configuration, and it requires that some data be left out for validation.

An alternative method, referred to as bound selection, consists of using a generalization bound, such as those described at
Equations (2) and (3), in replacement for cross-validation9, 17. The idea is to train the algorithm with several configurations and
score them using the bound value of the resulting model. The configuration that leads to the smallest bound value is retained.
This approach is computationally and data efficient, since it requires a single training of the algorithm for each configuration
and does not require that data be left out for validation.

In this work, both model selection approaches were used to train the CART and SCM algorithm, resulting in the CARTb
and SCMb algorithms (bound selection) and the CARTcv and SCMcv algorithms (ten-fold cross-validation). It was observed
that models obtained using bound selection were just as accurate as those obtained using cross-validation, but that they were
significantly less complex and thus, more interpretable (see Results). The configurations selected for each dataset are provided
as Additional data.

Kover: a scalable disk-based implementation
The rule-based algorithms used in this work are implemented in Kover (https://github.com/aldro61/kover/).
Kover is an open-source bioinformatics software that allows practitioners, with no prior knowledge of machine learning, to
learn rule-based models of phenotypes from their data. It accepts genomes in the form of sequences (reads or contigs) or
precomputed k-mer profiles. In the former case, the genomes are converted to k-mer profiles using the DSK k-mer counter.
Kover automates the machine learning analysis (e.g., model selection, model evaluation), which ensures that proper protocols
are followed. It produces detailed reports, which contain the learned models, along with several metrics assessing their accuracy.
A detailed tutorial is provided as Additional information.

From a computational perspective, the particularity of Kover is that the learning algorithms are trained out-of-core, which
means that the dataset is never entirely loaded into the computer’s memory. This is achieved through the careful use of HDF5
and data chunking patterns17, 57. In addition, Kover relies on the popcount atomic CPU instruction to train the algorithms directly
from a compressed representation of the k-mer profiles, resulting in lesser memory requirements and faster computations17.
These properties allow Kover to scale to datasets with sizes well beyond those encountered in this study and make it a tool of
choice for large-scale genotype-to-phenotype studies based on machine learning.

Comparison to state-of-the-art classifiers
Benchmark datasets
One dataset per species was included in the benchmark and the datasets were selected to have the largest possible sample size
with low class imbalance. For each species, all datasets with less than 20% class imbalance, defined as:∣∣∣∣0.5− Nres(S)

Nres(S)+Nsus(S)

∣∣∣∣ , (4)
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where Nres(S) and Nsus(S) are respectively the number of examples with the resistant and susceptible phenotype in S, were
considered and the one with the most examples was selected. The only exception is Salmonella enterica, where the most
balanced dataset had 22% class imbalance.

Selected algorithms
The benchmark includes a comparison to five learning algorithms and their choice is motivated hereafter.

Logistic regression This algorithm produces linear classifiers that estimate the probability that an example belongs to each
class. It can be used with an L1-norm regularizer to obtain sparse models that rely on a subset of k-mers (L1-logistic). It is
interesting to compare the sparsity of these models to those of CART and SCM. Additionally, this algorithm can be used with
an L2-norm regularizer to obtain dense models (L2-logistic) which serve to illustrate that sparsity does not have a detrimental
effect on accuracy. The implementation in Scikit-Learn58 was used. In sharp contrast with Kover, it requires that the entire
datasets be stored in the computer’s memory, which is intractable for the datasets used in this study. Hence, the one million
features that were most associated with the phenotype were selected using a univariate feature selection with a χ2 test59, 60 and
the others were discarded.

Polynomial Kernel Support Vector Machine This kernel-based learning algorithms yields non-linear classifiers that, when
trained with binary k-mer profiles, correspond to a majority vote of all possible conjunctions of d k-mer presence rules, where d
is the degree of the polynomial. It is thus particularly relevant to compare this algorithm to SCMb, which seeks the single,
most accurate, conjunction. The implementation in Scikit-Learn58 was used and the kernel was computed using powers of
the pairwise similarity (dot product of k-mer profiles) matrix of genomes. No feature selection was used, since the memory
requirements of this algorithm are small (m×m for m learning examples).

Naive Bayes This baseline algorithm assumes that each input feature is statistically independent given the class (which is
generally false). This approach is computationally efficient in high dimensions, since it assumes that class densities are simply
given by the product of marginal densities; justifying its use in our context. A custom implementation was used and the code is
available as Additional information.

Majority This baseline algorithm is used to ensure that the algorithms successfully identify predictive patterns in the data. An
algorithm that underperforms this baseline could have achieved better results without attempting to learn anything.
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