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Abstract

Extensive transcriptional alterations are observed in cancer, many of which activate core biological
processes established in unicellular organisms or suppress differentiation pathways formed in
metazoans. Through rigorous, integrative analysis of genomics data from a range of solid tumours,
we show many transcriptional changes in tumours are tied to mutations disrupting regulatory
interactions between unicellular and multicellular genes within human gene regulatory networks
(GRNs). Recurrent point mutations were enriched in regulator genes linking unicellular and
multicellular subnetworks, while copy-number alterations affected downstream target genes in
distinctly unicellular and multicellular regions of the GRN. Our results depict drivers of
tumourigenesis as genes that created key regulatory links during the evolution of early multicellular
life, whose dysfunction creates widespread dysregulation of primitive elements of the GRN. Several
genes we identified as important in this process were associated with drug response, demonstrating
the potential clinical value of our approach.
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Introduction

The spectra of genomic and transcriptomic alterations across cancer types are highly heterogeneous.
A multitude of driver genes exist both within and across subtypes (e.g. (Armenia et al., 2018; Nik-
Zainal et al., 2016)) spanning a range of mutational types, from simple substitutions, to extensive
genome-wide aneuploidies and complex rearrangements (Ciriello et al., 2013; Hoadley et al., 2014;
Kandoth et al., 2013; M. S. Lawrence et al., 2013; Zack et al., 2013). This complex array of genetic
alterations confounds efforts to assign function to driver genes and identify key driver mutations
within patients. Despite this extensive molecular heterogeneity, tumours originating from a variety
of tissues converge to several common hallmark cellular phenotypes (Hanahan & Weinberg, 2011).
Many of these involve loss of features commonly associated with multicellularity, e.g., uninhibited
proliferation, tissue dedifferentiation, disruption of cell-cell adhesion and intercellular
communication, suggesting the alteration to genes involved in the evolution of multicellular traits is
central to tumour development (Aktipis et al., 2015; Aktipis & Nesse, 2013; Davies & Lineweaver,
2011; Vincent, 2012).

Through the addition of new genes and repurposing of existing genes, metazoan evolution has led to
progressive formation of intricate and interconnected regulatory layers (Arenas-Mena, 2017; C. Y.
Chen, Ho, Huang, Juan, & Huang, 2014; Schmitz, Zimmer, & Bornberg-Bauer, 2016), which suppress
improper activation of replicative processes originating in single-celled organisms and ensure the
complex phenotypes and cooperative growth required for multicellularity. Our investigation of gene
expression data from a collection of solid tumours revealed extensive downregulation of genes
specifying multicellular phenotypes and activation of genes conserved to unicellular organisms
(Trigos, Pearson, Papenfuss, & Goode, 2017). This was accompanied by significant loss of
coordinated expression of unicellular and multicellular processes within tumours, suggesting
selection for the disruption of key regulators mediating communication between unicellular and
multicellular genes. Evidence for such selection comes from the clustering of cancer genes at the
evolutionary boundary of unicellularity and multicellularity (Domazet-Loso & Tautz, 2010) and the
accumulation of mutations in genes required for multicellular development during tumour
progression (H. Chen, Lin, Xing, & He, 2015).

Only a limited number of driver mutations are thought to be responsible for the transition from
normal, healthy cell to a malignant state (Martincorena et al., 2017; Miller, 1980; Schinzel & Hahn,
2008; Stratton, Campbell, & Futreal, 2009), suggesting individual mutations in highly connected
genes in the regulatory network could bring about significant changes in cellular phenotypes. Under
our model, the highest impact mutations would be those affecting proteins modulating the
communication between the subnetworks that sustain multicellularity and the conserved core of
fundamental cellular processes originated in single-celled organisms (Trigos, Pearson, Papenfuss, &
Goode, 2018). This would enhance a more primitive phenotype and provide a strong selective
advantage for individual cellular lineages. Therefore, the contribution of somatic mutations to the
rewiring of transcriptional networks during tumour development can be contextualized and
estimated by their effect on gene regulatory networks pieced together during evolution, aiding the
identification of key driver mutations.

Here we elucidate how mutational heterogeneity across tumours results in common cellular
hallmarks that can be elucidated by accounting for their evolutionary ages and locations in the GRN.
We found an overrepresentation of copy-number aberrations and point mutations in genes dating
back to early metazoan ancestors. Point mutations disrupted key master regulators that evolved in
early in the metazoan lineage, suggesting a primary role in the uncoupling of the subnetworks
regulating multicellularity and the fundamental core of cellular processes dating back to single-celled
organisms. CNAs were involved in a complementary mechanism of dysregulation, generally
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disrupting the downstream targets of each of these subnetworks. These results indicate that both
point mutations and CNAs contribute to the dysregulation of multicellularity in cancer, but do so in
different ways, impacting regions of transcriptional networks with distinct roles in the regulation of
multicellularity. Finally, we show how our approach of integration of sequence conservation and
transcriptome data with annotated regulatory associations provides a framework for identifying
important driver mutations and prioritizing compounds for targeted therapy, at the level of both
patient populations and individual tumours.
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Results

1. Early metazoan genes are enriched with point mutations and copy-number aberrations acquired
during tumourigenesis

We investigated the association between the evolutionary ages of genes and the frequency of copy-
number aberrations (CNAs) and point mutations across tumour cohorts. We collected CNA and point
mutation data from 3851 and 3867 patients, respectively, from The Cancer Genome Atlas across 7
tumour types (lung adenocarcinoma - LUAD, lung squamous cell carcinoma - LUSC, breast
adenocarcinoma - BRCA, prostate adenocarcinoma - PRAD, liver hepatocellular carcinoma - LIHC,
colon adenocarcinoma - COAD and stomach adenocarcinoma - STAD). We selected a subset of genes
that were consistently amplified or deleted in at least 10% of patients of each tumour cohort, and
genes with either missense or loss-of-function (LoF) mutations in at least 3 patients and with a
higher rate of occurrence than synonymous mutations (Supplementary figure 1) (see Methods).
Human genes were classified by their evolutionary age using phylostratigraphy (Domazet-Loso &
Tautz, 2010), resulting in 16 phylogenetic groups (phylostrata) (Supplementary figure 2), ranging
from genes found in unicellular ancestors (Phylostrata 1-3) (6,719 UC genes), to genes found in early
metazoans (Phylostrata 4-9) (7,939 EM genes), and mammal-specific genes (Phylostrata 10-16)
(2,660 MM genes) (Supplementary figure 3) (Trigos et al., 2017).

We calculated the fraction of genes in each phylostratum with recurrent CNAs and point mutations,
accounting for differences in CNA and mutation rates between tumour cohorts by ranking each
phylostratum by the fraction of genes altered (Figure 1A). We found an increasing trend of
enrichment of CNAs starting from the earliest UC genes (phylostratum 1), but peaking in EM genes
(phylostrata 4-8), with EM genes being the most enriched with both amplifications and deletions
across tumours. The majority of tumour types (5/7 tumour types for amplifications and 7/7 tumour
types for deletions) had at least 3 EM phylostrata in the top 5 most recurrently altered phylostrata.
In contrast, recurrent CNAs were consistently depleted from MM genes (phylostratum 10 onwards),
indicating a lack selection for CNAs in younger genes. The decreasing enrichment trend along the
phylostrata was significant for amplifications in 5/7 tumour types, and for deletions in all tumour
types (Jonckheere-Terpstra tests Benjamini-Hochberg adjusted p < 0.05). Among the recurrently
amplified and deleted EM genes are well-known cancer genes. Examples include the EGFR oncogene,
recurrently amplified in more than 10% of patients in 5/7 of the studied tumour types and having
emerged together with bilaterians (Phylostratum 6), and the tumour suppressor TP53 which also
dates back to early metazoan ancestors (Phylostratum 5) and is found recurrently deleted in an
average of 20.60% of patients across all tumour types studied. In contrast to the patterns obtained
for genes with recurrent CNAs, genes not recurrently copy-numbered altered (frequency < 0.10
across patients) were depleted of EM genes, whereas MM genes are consistently enriched
(Supplementary figure 4). An exception is TNFRSF17 (also known as BCMA, BCM), a mammal-specific
gene amplified in >10% of BRCA and PRAD patients, involved in immune system processes, which
has classically been associated with lymphomas (Laabi et al., 1992) and with oncogenic properties
(Coquery & Erickson, 2012; Zhao et al., 2008). Overall, our results suggest that EM genes are
specifically preferentially under selection for recurrent CNAs across patients.

A similar enrichment of recurrent mutations in EM genes was identified for point mutations. We
found an increasing trend of enrichment of point mutations beginning at genes that date back to
later unicellular ancestors (phylostratum 2-3), but peaking in early metazoan genes across tumours,
with genes dating to the earliest metazoans (phylostratum 4-5) being the most enriched (Figure 1B).
At least 3 of the top 5 most recurrently affected phylostrata by missense mutations were EM in 7/7
tumour types, and by LoF mutations in 4/7 tumour types. In contrast, MM genes were consistently
depleted of recurrent point mutations. The decreasing trend of enrichment associated with gene age
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was significant for missense mutations and LoF mutations in 6/7 tumour types (Jonckheere-Terpstra
tests Benjamini-Hochberg adjusted p < 0.05). In contrast, MM genes were harboured the highest
fraction of non-recurrently point-mutated genes (Supplementary figure 4).

To determine the effect of somatic mutations on transcriptional states, we compared the expression
level of each gene in patients with point mutations and in patients where the gene was not mutated,
and calculated the ratio of the number of up and downregulated point-mutated genes of each age in
each tumour cohort (Figure 1C). EM genes with missense or LoF mutations were predominantly
downregulated, indicating the selection for point mutations in EM genes could be linked to the
abrogation of their expression. In contrast, the pattern was less consistent for UC and MM genes,
with mixed patterns of preferential up or downregulation according to the tumour and point
mutation class considered. These results suggest that the strong selection for point mutations in EM
genes across tumours could be linked to their preferential loss of expression.

We also investigated the association between gene age and signatures of selection for CNAs at the
chromosome level (Figure 1D, Supplementary figure 5). For each patient and chromosome, we
associated the evolutionary ages of the genes located in CNA chromosome regions with the fraction
of chromosome affected by CNAs, and found a significant increasing trend in all tumour types
(Benjamini-Hochberg adjusted p < 0.005 in all tumour types). UC and EM genes were preferentially
located in focally copy-numbered altered regions, suggesting stronger localized selection for the
CNA of UC and EM genes. In contrast, MM genes were located in regions of broad copy-number
changes, suggesting the CNA of MM genes are likely passenger events swept up in the large
chromosomal rearrangements that occur during cancer development.

Our results indicate a preferential recurrent alteration by both CNAs and point mutations of EM
genes across tumour types (Figure 1E), suggesting that disruption of these genes by genetic changes
likely provides an advantage in the development of multiple tumour types, whereas mutations in
genes that evolved later in metazoan evolution, namely MM genes, are unlikely to be playing a
significant role.
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Figure 1. Enrichment of CNAs and point mutations in EM genes. (A) Fraction of amplified (left) and deleted
(right) genes across phylostrata. EM genes are preferentially copy-number altered across the 7 tumour types,
whereas MM genes are depleted. (B) Fraction of genes with missense (left) and LoF (right) mutations across
phylostrata. Late UC genes and EM genes are enriched in missense and LoF mutations across tumour types,
whereas MM genes consistently have the lowest fraction of genes with point mutations. (C) Up and
downregulation of genes with point mutations. Ratios greater than 1 indicate a preference for the
upregulation of a class of mutated genes, whereas a ratio less than 1 indicates preference for their
downregulation. EM genes with missense or LoF mutations are preferentially downregulated across all tumour
types. The trend is less evident for UC and MM genes. (D) Presence of genes of each phylostratum at different
fractions of chromosome altered by amplifications. Chromosome 6 is shown as a representative example.
Older genes are preferentially located in regions with focal alterations, whereas younger, MM genes are
located in regions with broader changes, suggesting stronger selection for the CNA of UC and EM genes
(increasing trend adj. p < 0.05). (E) Summary enrichment results of recurrent point mutations and CNAs in
phylostrata across tumours. The size of the point corresponds to the level of enrichment (rank). The largest
enrichment occurs in EM genes, with some enrichment of UC genes.

2. Point mutations and CNAs acquired during tumour development differentially affect the human
regulatory network

The observed enrichment patterns across cancer types suggested alteration of EM genes provides a
selective advantage to tumours. Known cancer drivers are mostly of EM origin (Domazet-Loso &
Tautz, 2010) and are highly interconnected in human molecular networks (Cheng et al., 2014),
suggesting EM genes hold regulatory roles with important pleiotropic effects in cancer (Trigos et al.,
2018). Since important innovations required for the regulation of transcriptional networks from
unicellular ancestors evolved in early metazoan species, we investigated whether this could be
evidenced in the current structure of the human gene regulatory network (GRN). The GRN was
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obtained by subsetting the network from PathwayCommons (Cerami et al., 2011) to include only
edges annotated with control-of-expression.

Given the directed nature of the GRN, regulator genes can be distinguished from downstream target
genes (Figure 2A). As expected, many more genes act as targets (12,812) than as regulators (1,370),
indicating the presence of key regulatory hubs regulating a multitude of target genes. We found that
over half (56.42%) of regulators in the GRN were EM genes, whereas only 37.88% and 5.69% were
UC and MM genes, indicating an enrichment of EM genes as regulators (Fisher enrichment test p =
6.48x10°) (Figure 2B). Focusing on the genes with key regulatory roles, we investigated regulators
with at least 10 downstream targets (out-degree >= 10), which correspond to the upperquantile of
the distribution of out-degree across all regulators (Supplementary figure 6). We found that 65.12%
of these master regulators were EM genes, whereas only 28.49% and 6.40% were UC and MM genes,
respectively, indicating that key master regulators with the largest pleiotropic effects in the network
were mostly EM genes. This structure of the GRN substantially differed from general protein-protein
interaction (PPl) networks (e.g. (Cerami et al., 2011; Chatr-Aryamontri et al., 2017; Li et al., 2017))
where UC genes are usually the most connected (Supplementary figure 7), suggesting specific
evolutionary processes shaping the GRN resulted in key regulatory roles for EM genes.

Additionally, EM genes were the most highly regulated downstream genes in the GRN, measured by
the number of incoming edges (in-degree), with EM genes having an average of 8.76 incoming edges,
compared to only 6.59 and 4.54 in UC and MM downstream target genes (Wilcoxon test p < 2.2x10°
'%in both cases) (Figure 2C, Supplementary figure 8). The enrichment of EM genes as both regulators
and highly regulated downstream targets in the GRN indicates that gene regulation in humans is
predominantly under control of EM genes (Figure 2D). Therefore, we hypothesized that the
preference of somatic mutations in EM genes might stem from their key regulatory roles in the
human GRN.

To test this, we assessed whether selection for somatic mutations in EM genes was linked to their
central regulatory roles (Figure 2A). Given that broad CNAs involving large chromosome sections
include a high number of genes with poor resolution of the genes under selection, we focused on
recurrent CNAs that included less than 25% of the genes of a chromosome in at least 10% of patients
of each tumour cohort. We found that point mutations affected a higher fraction of regulators
(mean fraction altered = 0.19) than CNAs (0.12) across tumour types (Wilcoxon test p = 0.0078)
(Figure 2E), with LoF mutations driving most of the signal (Supplementary figure 9). In contrast, CNAs
were more likely to affect downstream target genes without a regulatory role than regulators
(Wilcoxon test p = 0.0078) (mean fraction altered = 0.88 for CNAs, 0.81 for point mutations) (Figure
2E). This dichotomy was even more pronounced in somatic mutations that were recurrent in at least
3 of the 7 tumour types. Whereas only 13.89% of genes with recurrent CNAs were regulators, this
number was twice as large (26.09%) for genes with point mutations. In contrast, 86.11% of CNAs
affected downstream target genes, but only 73.91% of point mutations affected targets. Therefore,
recurrent point mutations are more likely to affect master regulators in the GRN, whereas recurrent
CNAs preferentially affect genes that predominantly act as targets.

The complex regulatory interactions in the GRN result in many genes having a dual role, acting as
both regulators and targets, with EM genes being both master regulators and under high degree of
regulation (Figure 2B-D). To account for this dual role, we calculated the ratio of the number of
outgoing edges (out-degree) to the number of incoming edges (in-degree), with greater ratios
indicating a predominantly regulatory role (Figure 2F, Supplementary table 1), and calculated the
median value across all genes with a dual role for each tumour type. We found that for point
mutations, EM genes held a predominantly regulatory role across tumours (median ratio = 1.50),
whereas UC genes with point mutations did not show this strong bias (median ratio = 1) and MM
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genes were preferentially downstream genes (median ratio = 0.58). In contrast, EM genes with CNAs
were strongly skewed towards being highly regulated downstream targets (median ratio = 0.67)
whereas this bias was less marked for UC and MM genes (median ratio UC=0.90 and MM=0.78).
Therefore, the observation of selection for point mutations in EM regulators and CNAs in EM target
genes also holds for genes with dual regulatory and target roles in the GRN.

Although there is a recurrent selection across tumour cohorts for the somatic mutation of EM genes,
our results reveal that selection for point mutations and CNAs differentially disrupt the GRN. EM hub
genes with key regulatory roles were preferentially disrupted by point mutations, indicating that few
point mutations in key regulators are more likely to create large disruptions across the GRN. In
contrast, downstream target genes were preferentially affected by recurrent CNAs, and are
therefore more likely to have a localized effect.
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Figure 2. Point mutations in EM genes affect mostly regulators, whereas CNAs in EM genes affect
downstream targets. (A) Diagram of a GRN distinguishing regulator and target genes. The number of outgoing
edges from a regulator corresponds to its out-degree, whereas the number of incoming edges to a target gene
is denoted by its in-degree. (B) Percentage of regulators of each age. Regulators are enriched in early
metazoan genes (Fisher enrichment test p = 6.48x10'6), with over half being EM (56.42%). (C) Average number
of incoming edges for targets of each age. EM genes are also among the mostly highly regulated genes, with an
average of 8.76 regulators controlling their activity, compared to 6.59 and 4.54 regulating UC and MM
downstream target genes. (D) GRN diagram. EM genes (green) are highly interconnected, acting as master
regulators and highly regulated targets. (E) Fraction of mutated regulator and target genes by each mutation
type. A greater proportion of regulators are affected by recurrent point mutations than CNAs (0.19 vs 0.12;
left) whereas the opposite trend is observed for targets (Wilcoxon test p= 0.0078). (F) Ratio of out-degree/in-
degree of genes with mutations. EM genes are strongly biased towards a preferential regulatory role when
point mutated, whereas the CNAs of EM genes preferentially occurs in those with a strong downstream target
role. Points represent the median values across tumours and bars represent the upper and lower quantiles.
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3. Point mutations disrupt the regulation between UC and EM genes

A main characteristic of cancer development is the loss of coordination in expression between UC
and MC genes together with overexpression of UC genes and downregulation of MC genes (Trigos et
al.,, 2017), suggesting a compartmentalization of the GRN into UC and MC gene network regions
interconnected by key regulatory links that get disrupted by mutations during cancer development
(Trigos et al., 2018) (Figure 3A).

To distinguish these UC and EM network regions, we calculated the percentage of downstream UC
and EM target genes for each regulator, and classified individual regulators as preferentially
regulating UC targets (>2/3 UC genes) (UC-t regulators), EM targets (>2/3 EM genes) (EM-t
regulators), MM targets (>2/3 MM genes) or being at the interface of UC and EM targets by
regulating a mix of UC and EM downstream targets (>1/10 UC and EM genes) (UC/EM-i regulators)
(Figure 3B, main panel, Supplementary table 2). We excluded regulators that primarily controlled
mammalian genes from further analysis, as they only accounted for 2.04% of all regulators.
Regulators not meeting any of the above criteria (10.36%) were also excluded. UC-t regulators
mostly dated back to UC ancestors (50.81%, Fisher test p =0.021) while both EM-t regulators
(56.68%, Fisher test p=0.0011) and UC/EM-i regulators (61.73%, Fisher test p=0.00022) were mostly
comprised of EM genes. Given dysregulation of UC and MC gene expression and co-regulation has
been found to be consistent across multiple tumours types (Trigos et al., 2017) and therefore likely
to share similar drivers, we only considered genes recurrently enriched in point mutations or CNAs in
at least 3 of the 7 tumour types studied.

The major constituent of regulators with point mutations were UC/EM-i regulators (83.33%), but
these constituted less than half of those altered by CNAs (34.69%) and those not recurrently
mutated across tumour cohorts (32.05%) (Figure 3B density plot, 3C main panel). In contrast, only a
small subset of point-mutated regulators consisted of EM-t regulators (16.67%) and no recurrently
point-mutated gene affected UC-t regulators (Figure 3C). Consistent with a preference for the
alteration of regulation between UC and EM genes by point mutations, regulators with recurrent
point mutations controlled a similar proportion of UC and EM downstream targets (median target
composition of regulators with point mutations = 41.25% UC genes, 53.15% EM genes) (Figure 3C,
upper panel). In the case of regulators affected by CNAs, the proportion of UC-t, UC/EM-i and EM-i
regulators and the proportions of UC and EM downstream targets was similar to that of non-
recurrently mutated regulators (Figure 3C), indicating a lack of selection for CNAs of regulators of a
particular age. These results indicate strong overrepresentation of point mutations in regulators at
the UC/EM interface, whereas no such trend was observed for CNA regulators or non-recurrently
mutated regulators (Supplementary figure 10).

To examine the functional downstream effects of point mutations in regulators, we calculated the
percentage of downstream targets that were differentially expressed after point mutations in their
regulator genes, and classified the magnitude of the downstream effect as being of low, moderate
and high impact according to the percentage of downstream genes affected (<5%, 5-20% and >20%,
respectively). The majority of high and moderate impact mutations occurred in UC/EM-i regulators
(4/6 and 5/6 regulators) (Figure 2D). Although most low impact mutations also occurred in UC/EM-i
regulators (10/17 regulators), these regulators were of UC origin (7/10 of low impact mutations in
UC/EM-i regulators), whereas those with high and moderate impact were mostly of EM origin (3/4
and 3/5, respectively). Point-mutated regulators of an early metazoan origin were 2 to 5-times more
likely than point-mutated UC regulators to have a moderate or high impact, with 83.33% and 66.67%
of regulators with a high and moderate effect being EM genes (Supplementary figure 11). In contrast,
point mutations in regulators that resulted in small downstream effects were depleted of EM genes
(only 31.82% of genes were EM), indicating that point mutations in regulators that emerged in early
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metazoan ancestors led to the highest functional impact on downstream targets. Thus, point
mutations creating the most substantial alterations to gene expression tend to be in genes of early
metazoan origin at the interface of UC and EM genes.

Overall our results suggest that the selection across tumour cohorts of point mutations in EM
regulators is mostly tied with transcriptional disturbances of the regulation between UC and EM
genes in the GRN, making them potential gene drivers. Multiple known cancer genes were found
among UC/EM-i regulators, including PTEN, PIK3CA, MAPK1, MTOR, MYC, NF1, SMAD4, RB1 and
TP53BP2. Intriguingly, our analysis pointed to four other EM UC/EM-i regulator genes with
mutational frequencies and percentage of differentially expressed downstream targets similar to
known cancer genes. Many of these genes, including KEAP1, HNF1A, NFE2L2 and LRRK2, have
implied roles in cancer but no strong mechanistic links to date (Figure 5; Discussion).
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Figure 3. Point mutations in regulators affect UC-EM gene regulation. (A) Classification of regulators by the
age of their downstream targets. UC-t regulators mostly regulate UC genes, EM-t regulators EM genes, and
UC/EM-i regulators are at the interface of UC and EM genes. (B) (Lower panel) Percentage of UC, EM and MM
target genes in regulators. (Upper panel) Distribution of recurrent point mutations (dark grey) and CNAs (light
grey) across regulators. UC/EM-i regulators are enriched in point mutations. (C) Fraction of regulators with
point mutations, CNAs and those non-recurrently altered. More than 75% of regulators affected by point
mutations are UC/EM-i regulators. The fraction of regulators of each class affected by CNAs is similar to those
not affected by recurrent mutations, indicating a lack of preferential alteration of a particular regulator class
by CNAs. (D) Effect of point mutations in regulators on the expression of downstream targets. Point mutations
with a high downstream effect (>20% differentially expressed targets) and a moderate effect (5-20%
differentially expressed targets) are more likely to be UC/EM-i regulators of EM origin. Low impact mutations
(<5% differentially expressed targets) affect a higher proportion of regulators of a UC origin.

4. CNAs directly regulate the expression of UC and EM downstream targets in the GRN
While somatic mutation of regulators could provide a major selective advantage via simultaneous

dysregulation of a multitude of downstream target genes, where and when such mutations occur is
largely based on stochastic events during tumour development. An alternate and complementary
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mechanism for disrupting conserved regions of the GRN without mutation of master regulators
would be direct mutation of downstream target genes, as suggested by our finding that CNAs
predominantly affected target genes of the GRN (Figure 2E-F).

To investigate the contribution of CNAs to the disruption of the regulatory links between UC and EM
genes, we calculated the fraction of downstream targets with CNAs for each regulator in each
individual patient. To exclude possible redundant mechanisms resulting from CNAs in both
regulators and targets, we only included in the analysis samples where the regulator was copy-
number normal (CNN). We found only a small fraction of downstream target genes of UC/EM-i
regulators were CNA (median=0.11), whereas a significantly larger fraction of downstream target
genes of UC-t and EM-t regulators were affected (median = 0.25 in both cases) (p = 6.14x10® and p =
4.41x10° comparing the fraction of CNA targets of UC/EM-i with that of UC-t and EM-t regulators,
respectively) (Figure 4A). This indicates that CNAs preferentially affect target genes of UC-t and EM-t
regulators, rather than directly disrupting the regulatory links at the interface of UC and EM regions
of the GRN.

We hypothesized the preferential of CNAs in targets genes of UC-t and EM-t regulators would be
associated with the direct transcriptional modulation of genes by CNAs. To test this, we calculated
the expression fold-change in tumour samples with respect to their paired normal samples, and used
Wilcoxon tests to compare fold-change values in samples where the gene was CNA and those where
the gene was CNN. We found a higher percentage of target genes than regulators were differentially
expressed after amplifications across all tumour types, and for deletions in 6/7 tumours types,
indicating that CNAs more strongly influence the expression of target genes than regulator genes
(Supplementary figure 12). Specifically, UC target genes showed the largest changes in expression
after CNAs (median values across tumour types: 7.80% upregulated after amplifications, 8.78%
downregulated after deletions), followed by EM genes (4.79% and 5.80%, respectively), and lastly
MM genes (2.49% and 3.74%) (Figure 4B, Supplementary figure 13) (Jonckheere-Terpstra decreasing
trend test: amplifications p-value: 0.027, deletions p-value: 0.016), indicating that UC and EM targets
are more susceptible to changes in expression after CNA.

However, the effect of amplifications and deletions on targets was dependent on regulator class,
with a higher percentage of targets of UC-t regulators being differentially expressed after
amplifications than deletions increases in expression after amplifications rather than deletions (one-
sided Wilcoxon test p=8.29x10"%). On the other hand, target genes of EM-t regulators mostly
modulated their expression in response to deletions as opposed to amplifications (one-sided
Wilcoxon test p=6.09x10®). This trend was also observed when comparing the median percentage of
differentially expressed CNA genes per regulator class across tumours (Figure 4C). This suggests
selection of CNAs in targets of UC-t and EM-t regulators could be a mechanism for the direct up and
down regulation of UC and EM network regions, respectively. In contrast, CNAs of the target genes
of UC/EM-i regulators changed their expression much less often, no matter whether it was amplified
or deleted (two-sided Wilcoxon test p=0.64), suggesting CNAs are playing a less prominent role in
the dysregulation of UC and EM interface regions, where somatic point mutations have a greater
impact, but rather directly regulate the expression of UC and EM target genes.

A model of transcriptional changes in UC-t and EM-t targets driven by CNAs as an alternative to
direct mutation of the regulators themselves would predict the mutual exclusivity of concurrent
CNAs of a regulator and its targets in the same tumour, as the co-occurrence of such mutations
would be largely redundant. To test this hypothesis, we calculated the median fraction of targets
with CNAs for each regulator across all patients in the 7 tumour cohorts, and found that the fraction
of targets with CNAs was significantly higher in patients where the regulator was CNN than when the
regulator was CNA (Wilcoxon test p-value = 3.34x10%°, Supplementary figure 14). However, this
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trend was only observed for targets of UC-t and EM-t regulators (one-sided Wilcoxon test p=6.24x10"
8 and p=1.76x10", respectively), but not for targets UC/EM-i regulators (p=0.77), where there trend
seemed to be the opposite (Figure 4D), indicating that preferential alteration of target genes by
CNAs, as opposed to regulators, is a mechanism employed for the independent modulation of UC
and EM network regions.

We next investigated the fraction of regulators whose targets were preferentially modulated by
CNAs. For this, we calculated the difference in the fraction of downstream target genes when
regulators were CNN and CNA (Figure 4E). We found that over two thirds of UC-t and EM-t
regulators (74.00% and 68.40%, respectively) had a higher fraction of copy-aberrant downstream
genes when they were CNN than when they were CNA. These results were independent of the
evolutionary ages of the regulators, since the percentages were similar for both UC and EM
regulators (Supplementary figure 15). A potential explanation for this pattern is illustrated by MDM2,
where 33.33% of its downstream targets were CNA when MDM2 was CNN, but no target was CNA
when MDM2 had changed in copy-number. Since MDM2 is an inhibitor of p53, either amplification
of MDM2 or deletion of p53 would have a similar effect, and therefore there is no selection for the
simultaneous co-occurrence of both alterations in the same patient. In contrast to the strong trends
observed for UC-t and EM-t regulators, this trend was only observed in 28.18% of UC/EM-i
regulators.

Here we found that CNAs are a widespread mechanism of dysregulation of UC and EM target genes,
directly modulating the expression of targets of UC-t and EM-t regulators. The effect of CNAs on the
GRN is therefore distinct to the disruption by point mutations of the regulatory links between UC
and EM genes, but are also important drivers of large transcriptional disturbances in tumours.
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Figure 4. CNAs directly regulate the expression of UC and EM target genes. (A) Fraction of downstream
targets with CNAs in regulators. Targets of UC-t and EM-t regulators are more likely to be affected by CNAs
than targets of UC/EM-i regulators. (B) Percentage of differentially expressed target genes with amplifications.
UC and EM target genes are more likely to be upregulated after amplifications compared to younger, mammal-
specific genes (Jonckheere-Terpstra decreasing trend test p-value: 0.027). A similar trend is found for the
downregulation of deleted genes (Supplementary figure 13). (C) Median percentage of differentially expressed
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CNA genes per regulator class across tumours. Amplified target genes of UC-t regulators are more likely to be
upregulated (median 95.83%), than deleted genes are downregualted (50.00%). In contrast, deleted targets of
EM-t regulators are more likely to be downregulated (50.00%) than amplifications are upregulated (33.33%).
No evident preference is obtained for targets of UC/EM-i regulators (25.00% and 24.29% for amplifications and
deletions, respectively). (D) Fraction of target genes with CNAs when their regulators are CNA or CNN. A higher
fraction of target genes are CNA when UC-t and EM-t regulators are CNN than when they are CNA (Wilcoxon
test p = p=6.25x10'8 and p=1.76x10_27, respectively), indicating a preference for the alteration of targets of
these regulators. However, UC/EM-i regulators display the opposite trend, although not significant. (E)
Difference in the fraction of downstream targets altered by CNAs when their regulators are CNN or CNA.
Values less than 0 indicate a higher fraction of CNA targets when the regulator is CNN. This trend is evident
across UC-t regulators (74.00%) and EM-t regulators (68.40%), but not for UC/EM-i regulators (28.18%).

5. UC/EM-i regulators are important drivers of tumourigenesis and influence drug sensitivity

UC/EM-i were found to be preferentially targeted by point mutations, and are likely to be key points
of vulnerability to cancer development given their regulatory role modulating UC and EM genes
(Trigos et al.,, 2018). Therefore, we investigated these regulators as potential drivers of
tumourigenesis and their role in determining drug response.

We compiled a set of known cancer drivers from the Cancer Census COSMIC database (Forbes et al.,
2017). These genes were enriched in EM genes (Fisher test p = 0.0015, 57.36% EM genes, 39.58% UC
genes and 3.06% MM genes). 36.71% of the known cancer genes were regulators, and were
enriched in UC/EM-i regulators (46.88%, Fisher test p= 0.0043), but depleted in UC-t (p=0.83) and
EM-t regulators (p=0.95) (Figure 5A), supporting modulation of regulation between UC and EM
genes is a common effect of cancer drivers.

To determine the importance of these regulators to cancer development, we used the dependency
scores from CRISPR-Cas9 essentiality screens of 364 solid-tumour tissue cell lines from the Avana
CRISPR-Cas9 genome-scale knockout dataset made available by Project Achilles and the Cancer
Dependency Map project (Meyers et al., 2017). A high probability of dependency indicates a gene is
essential for proliferation of a given cell line (Supplementary figure 16) (for further details, see
(Meyers et al., 2017)). We calculated the odds ratio (OR) of each regulator type having a large effect
on cell line proliferation (probability of dependency >= 0.95), with OR greater than 1 indicating
increased likelihood of a high dependency (Figure 5B, Supplementary figure 17). As expected, we
found most cell lines were highly dependent on UC-t regulators (OR > 1 in 96.98% of cell lines), likely
due to their role in regulating fundamental functions required for cell survival. However, we also
found that 92.86% cancer cell lines were highly dependent on UC/EM-i regulators (OR consistently
greater than 1), indicating these regulators are fundamental for cancer cell survival. In contrast,
cancer cell lines were not nearly as dependent on EM-t regulators for their proliferation (OR > 1 in
only 0.55% of cell lines), indicating dysregulation of EM processes might contribute to
tumourigenesis, but not be sufficient by themselves. These results suggest that UC/EM-i regulators
are indispensible for cancer cell line proliferation.

We hypothesized the degree of dependency on UC/EM-i regulators would be tied to their
mutational and copy-number status. For each regulator, we classified cell lines into those with or
without a point mutation or amplification in the regulator based on data from the Cancer Cell Line
Encyclopaedia (CCLE) (https://portals.broadinstitute.org/ccle), and calculated the median
dependency scores for mutated and non-mutated cell lines (Supplementary table 3). We only
considered regulators whose difference in median dependency between mutated and non-mutated
cell lines was at least 0.20, and were significant by Wilcoxon tests (p < 0.05). This revealed 40
regulators whose mutation was associated with cell-line dependency (Figure 5C). Multiple well-
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known cancer genes were among these top hits. Amplification of the oncogenes ERBB2, CDK®,
MDM?2 affected dependency, as did point mutations in PIK3CA, KRAS, NRAS, VHL and BRAF,
validating our approach to highlight genes with significance in cancer. Over half of these top hits
correspond to UC/EM-i regulators (55.00%), indicating that mutations in UC/EM-i regulators are
more likely to affect the dependency of a cancer cell line to a regulator. We found that in most cases
cell lines were more dependent on a regulator when it was point mutated (80.00%) or amplified
(66.67%) than when it was non-mutated, suggesting that mutation of these regulators are key to
cancer cell line proliferation (Figure 5C).

We also investigated the implications of dependency to UC/EM-i regulators on drug sensitivity.
Based on the half maximal inhibitory concentration values (IC50) from drug sensitivity screens
covering 250 drugs from the Genomics of Drug Sensitivity in Cancer database (Yang et al., 2013), we
calculated the Spearman correlation between dependency scores and the IC50 values
(Supplementary figure 18), and identified 11 significant associations with UC/EM-i regulators, 38
with UC-t regulators and 23 with EM-t regulators (correlation < -0.25 & adj. p < 0.05). These
identified regulators were among the most highly correlated with the IC50 of the particular drug
(Supplementary figure 19). As expected, we found strong correlation between dependency scores
for UC/EM-i regulators and the IC50 of drugs targeting the regulator (e.g. IGF1R and Linsitinib, BMS-
536924 and BMS-754807), as well as between MAPK1 and an inhibitor of related genes in the
MAPK/ERK pathway ((5Z)-7-Oxozeaenol), validating our approach (Figure 5D, Supplementary figure
20).

However, we also found unexpected strong correlations between the IC50 of particular drugs and
the dependency scores of UC/EM-i regulators (Figure 5D, Supplementary figure 20). For example,
the IC50 of XAV939, an inhibitor of Wnt/B-catenin, was also strongly correlated with the dependency
to ILK (-0.30), a regulator of integrin-mediated signal transduction involved in tumour growth and
metastasis, supporting the use of Wnt/B-catenin inhibitors for cancers dependent on ILK, including
colon, gastric and ovarian and breast cancers (Hannigan, Troussard, & Dedhar, 2005). We also found
strong correlation across cell lines between the dependency to PPRC1 and mTOR-inhibitors
(temsirolimus, used in the treatment of renal cancer), dual PI3K/mTOR-inhibitors (dactolisib, in
clinical trial for advanced solid tumours (Wise-Draper et al., 2017)), YK-4-279 (showing pre-clinical
efficacy for Ewing sarcoma (Lamhamedi-Cherradi et al., 2015)) and the chemotherapy agent
docetaxel, currently used in the treatment of breast, lung cancer, stomach cancer, head and neck
and prostate cancer. Of the tumour types included in our study, the correlation with PPRC1
dependency was particularly strong (< -0.25) in liver, lung and stomach cell lines for temsirolimus
sensitivity, lung and stomach cell lines for docetaxel and dactolisib sensitivity and breast cell lines for
YK-4-279 sensitivity, but were also held for a number of other solid tumour types (Supplementary
figure 21), suggesting their use across multiple cancer types. With this, our novel approach has
identified novel potential vulnerabilities for cancer development and proposes drugs repositioning.
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Figure 5. UC/EM-i regulators are fundamental to tumour development and drug response. (A) Fraction of
known cancer drivers of each regulator class. While only 33% of regulators are UC/EM-i, 47% of cancer drivers
are UC/EM-i regulators, indicating an enrichment of this regulator class in genes involved in cancer
development. (B) Enrichment of regulators to which cancer cell lines are dependent, as demonstrated by gene
knockout. Dependency of cancer cell lines to regulators is associated with regulator class, with an enrichment
of UC-t and UC/EM-i regulators and a depletion of EM-t regulators. (C) Difference in cell line regulator
dependency associated with mutational status. Most cells increase their dependency to specific regulators
with point mutations or amplifications, indicating that the mutation of these genes are important for cancer
cell survival. This is especially true for UC/EM-i regulators (55%, pie chart). Only regulators with a difference in
the median dependency of at least 0.2 are shown. Asterisks denote regulators with significantly different
dependency scores between cell lines where the gene was point mutated and non-point-mutated, and the rest
those that were significantly different between cell lines where the gene was amplified and non-amplified. (D)
Correlation between the probability of cell line dependency to UC/EM-i regulators and the IC50 of drugs. (Top
left) Expected association between the dependency to the IGF1R regulator and the sensitivity to the IGF1R-
inhibitor, BMS-536924. (Top right) Cell lines dependent to ILK show a greater sensitivity to the B-catenin
pathway inhibitor (XAV939). (Bottom row) Cell lines dependent on PPRC1 showed increased sensitivity to
mMTOR inhibitors (temsirolimus) and RNA helicase A inhibitors (YK-4-279).
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Discussion

Detailed analyses of recurrent somatic mutations across tumour types revealed the prevalence of
mutations related to both gene age and its position within the regulatory network. We provide
evidence that point mutations and CNAs play complementary roles in the transcriptional
dysregulation in cancer by affecting distinct regions of the underlying gene regulatory network,
supporting the loss of communication between the core biological processes originating in ancient
single-celled life and the regulatory controls acquired during metazoan evolution to control these
processes. This would result in tumour convergence to similar transcriptional states of consistent
activation of genes from unicellular ancestors and loss of cellular functions characteristic of
multicellular organisms. Our results attribute key roles to genes at the interface of unicellular and
multicellular regulation in tumourigenesis, with implications for conventional and experimental
therapies.

Common hallmarks shared by tumours of diverse genetic backgrounds suggest the consequences of
mutations acquired during tumour development follow common principles, promoting the
downregulation of genes and pathways associated with multicellularity and the activation of
fundamental cellular processes evolved in early unicellular organisms (Trigos et al., 2017). Here we
found genes central to the human gene regulatory network that arose in early metazoans were the
most often recurrently affected by point mutations and CNAs across tumour types. Other studies
have found that gatekeeper cancer drivers (those that regulate cell cooperation and tissue integrity)
emerged at a similar evolutionary time, whereas caretaker genes (those ensuring genome stability)
emerged at the onset of unicellular life (Domazet-Loso & Tautz, 2010). Our results suggest recurrent
mutations mostly affect gatekeeper genes regulating fundamental aspects of multicellularity,
whereas the disruption of caretaker activities by recurrent somatic mutations and CNAs is more
limited.

We found the impact of point mutations and copy-number aberrations was concentrated on specific
regions of the gene regulatory network. Point mutations preferentially affected gene regulators at
the interface of unicellular and early metazoan subnetworks, resulting in a loss of regulation of
multicellular components over fundamental cellular processes. On the other hand, CNAs
preferentially affected their downstream target genes, directly promoting the independent
activation and inactivation of regions predominantly composed of unicellular and multicellular genes,
as opposed to mixed regions, further supporting a loss of multicellularity and the tight association
between gene expression level and gene age (Trigos et al., 2017).

Samples where UC/EM-i regulators were mutated tended not to have CNAs in the corresponding
target genes and vice versa; in samples carrying CNAs for multiple target genes, unicellular and
multicellular, the cognate UC/EM-i regulator were mostly unaltered. These complementary but
distinct mechanisms of alteration to the same regulatory subnetworks by different classes of
somatic mutations in different tumours provide mutually exclusive but highly convergent paths
towards common hallmarks associated with the loss of multicellularity features in cancer.

Our evolutionary network analysis approach also highlights potential early driver genes by
elucidating the evolutionary regulatory context in which genes operate. Only a handful of driver
mutations are thought to be responsible for the transition from a normal, healthy cell to a malignant
state (Martincorena et al., 2017; Miller, 1980; Schinzel & Hahn, 2008; Stratton et al., 2009), but their
identification amid large and diverse genetic alterations is challenging. Our results suggest the key
positioning of early metazoan regulator genes at the interface of network regions from unicellular
and multicellular ancestors makes cells susceptible to widespread dysregulation of transcriptional
networks upon their disruption, as their alteration would uncouple the regulatory controls required
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for multicellularity (Greaves, 2015). This implicates these genes in key roles in the onset and
progression of cancer and highlights them as potential gene drivers and drug targets. Our analysis of
the effect on cell line dependency after knockout of these regulators revealed that their alteration is
capable of modulating cell proliferation across 364 cell lines.

Many of these interface regulators have not been significantly studied in the context of cancer, but
drugs targeting these genes are currently in clinical trial for other diseases, opening the possibility
for drug repurposing. LRRK2 encodes the dardarin protein, considered to be central to the aetiology
of Parkinson disease (Zimprich et al., 2004). Two inhibitors of dardarin, DNL201 and DNL151, are
currently undergoing testing in clinical trials as a means to slow down or regress neurodegenerative
diseases (Atashrazm & Dzamko, 2016). We also identified that cell lines dependent on the UC/EM-i
regulator PPRC1, peroxisome proliferator-activated receptor gamma, co-activator-related 1, were
particularly susceptible to mTOR inhibitors, YK-4-279 and docetaxel. PPRC1 is an activator of
mitochondrial biogenesis, a process regulated by mTOR (Morita et al., 2013; Ramanathan &
Schreiber, 2009; Schieke et al., 2006), highlighting the use of mTOR inhibitors in cancers with
aberrant mitochondrial activity. Furthermore it suggests that YK-4-279, a binding inhibitor of
oncogenic fusion proteins in Ewing’s sarcoma and with encouraging pre-clinical efficiency in this
cancer (Lamhamedi-Cherradi et al., 2015), could also be broadly effective in general for tumours
with aberrant mitochondrial activity.

This study provides comprehensive evidence that both the frequency and types of mutations in
genes in cancer are strongly influenced by a given gene’s evolutionary age and its regulatory
functions. This furthers our understanding of how a limited number of genetic alterations could
promote rapid tumour development through loss of multicellular features and provides an
explanation as to how the widespread convergence to common hallmark phenotypes in solid cancer
may occur. As we show, this approach can be used to prioritize genes as drivers and identify possible
targeted therapies, creating a novel analytical framework that will become increasingly informative
as the volume and resolution of cancer genomics data continue to increase.

Acknowledgements

This work was supported by a Melbourne International Engagement Award (MIEA) and a Melbourne
International Fee Remission Scholarship (MIFRS) from the University of Melbourne to A.S.T and
funding from the National Health & Medical Research Council of Australia (NHMRC) (APP1052904)
and the Peter MacCallum Cancer Foundation to D.L.G., NHMRC Senior Research Fellowships to A.T.P,
and a National Health and Medical Research Council (NHMRC) of Australia Program Grant
(#1053792) and Fellowship to R.B.P.

The authors declare no competing interests.

18


https://doi.org/10.1101/388363
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/388363; this version posted August 9, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Methods

Gene ages

The evolutionary ages of genes were obtained from previously published work (Trigos et al., 2017).
Phylostratigraphy (Domazet-Loso, Brajkovic, & Tautz, 2007) was used to map human genes onto a
phylogenetic tree of 16 phylostrata, spanning genes found across all organisms (Phylostratum 1) to
those specific to humans (Phylostratum 16). Human genes with orthologs in primitive unicellular
species were assigned to older phylostrata (phylostrata 1-3) and referred to as unicellular (UC) genes,
those with orthologs in early metazoan species (phylostrata 4-9) are referred to as early metazoan
(EM) genes, and those assigned to phylostrata 10-16 are considered to be mammal-specific (MM)
genes.

Point mutation data

We obtained somatic point mutation data from the Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov/) for 7 tumour types: lung adenocarcinoma (LUAD), lung squamous-
cell carcinoma (LUSC), breast adenocarcinoma (BRCA), prostate adenocarcinoma (PRAD), liver
hepatocellular carcinoma (LIHC), colon adenocarcinoma (COAD) and stomach adenocarcinoma
(STAD). We selected the intersect of variants called by MuSE (Fan et al., 2016), MuTect2 (Cibulskis et
al.,, 2013), VarScan2 (Koboldt et al., 2012) and SomaticSniper (Larson et al., 2012) by The Cancer
Genome Atlas. We excluded variants found in ExAC, 1000 genomes, and only included variants from
canonical transcripts not found in the last exon. We also excluded genes with large number of
known false positives based on previous studies (M. S. Lawrence et al., 2013), namely titin, mucins,
ryanodine receptors, dyneins, PCLO, cub- and sushi-domain proteins, neurexins, contactins, PARK2
and olfactory receptors.

Point mutations were classified as a synonymous mutation, missense mutation (missense variant,
inframe deletion or inframe insertion), or loss-of-function (LoF) mutation (frameshift, stop-gain,
splice acceptor variant and splice donor variant).

Copy-number aberration data

We obtained copy-number aberration (CNA) data from the Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov/) obtained with SNP arrays for 7 tumour types: LUAD, LUSC, BRCA,
PRAD, LIHC, COAD and STAD. Only chromosome regions with at least 10 probes were considered.
GenomicRanges (M. Lawrence et al., 2013) was used to assign chromosome regions to genes. Those
with positive segment means were considered to be amplifications, and the rest deletions. A gene
was considered amplified or deleted only in cases where genes were covered entirely by a region
with a CNA. Amplifications were assigned the maximum segment mean and deletions the minimum.

Enrichment of recurrent point mutations and CNAs in phylostrata

We defined a gene as having recurrent point mutations if there were at least 3 patients across the
cohort with missense or LoF mutations in this gene. To account for the background mutation rate of
the gene, only genes with a larger number of patients with missense or LoF mutations than with
synonymous mutations were considered. We selected recurrent CNAs as those that were amplified
or deleted genes in at least 10% of the patients. Note that these procedures were followed for each
tumour type independently.

We calculated the fraction of CNA or point mutated genes in each phylostratum for each tumour
type as follows:

N Recurrent;

Fraction of genes altered ppy, = N
i
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Where Ngecurrent; cOrresponds to the number of genes with a recurrent genetic alteration in
phylostratum i, and N; the total number of genes in phylostratum i.

To account for differences in ranges between tumour types, we ranked the phylostrata by the
fraction of genes altered, ranging from 1 (most altered) to 16 (least altered).

To compare the trends of recurrent with non-recurrent alterations, we calculated the fraction of
altered genes in each phylostratum that were non-recurrent.

NNon—recurrenti

Fraction Of non — recurrent genes altered Phy; = N TN
Non—recurrent; Recurrent;

Where Nyon—recurrent; cOrresponds to the number of genes with a non-recurrent genetic alteration
in phylostratum i, and Ngecyrrent; the number of genes with recurrent alterations in phylostratum i.

Gene expression analysis of mutated genes
RNAseq gene expression data from the 7 tumour types and the corresponding normal samples were
obtained from The Cancer Genome Atlas.

To determine how the mutational status of a gene affected its expression, we compared the
expression of each gene with missense mutations in at least 3 patients or LoF mutations in at least 2
patients in the tumour type cohort against their levels in patients where the gene was unmodified.
One-sided Wilcoxon tests were used to determine whether a gene was significantly over or
underexpressed in patients where the gene was mutated, using a p-value cut-off of 0.05. We
subsequently calculated the ratio of the number of up- and downregulated genes in each
phylostratum.

We performed a similar procedure to calculate the effect of point mutations in regulators over the
expression of their downstream targets, comparing the level of expression of each downstream
target in tumour samples with and without the regulator being mutated using two-sided Wilcoxon
tests (p < 0.05). In this case, however, we pooled samples across tumour types to increase power
due to the small number of point mutations that occur in regulators. Specifically, we only considered
regulators that were point mutated in at least 3 samples across tumour types, and compared the
expression of their downstream targets against those of samples of the tumour types where the
regulator was not mutated.

The magnitude of the downstream effect of mutating regulators was classified as low (<5% down
downstream targets affected), moderate (5-20%) or high (>20%) impact. We defined the prevalence
of EM genes as regulators as the ratio of the number of EM regulators over the number of UC
regulators. The log10 values were calculated to normalize to zero.

Signatures of selection in chromosomes

We defined the fraction of copy-number aberrant chromosome for each patient and chromosome as
the ratio of the number of genes affected by amplifications or deletions and the total number of
genes in the chromosome. To associate this chromosomal context with evolutionary ages of genes,
we determined the presence or absence of genes of a specific phylostratum in the copy-number
aberrant chromosome regions of each patient. The information was aggregated across patients by
averaging the fraction of chromosome altered for each chromosome and phylostratum. Genes in
shorter CNA regions (smaller fraction) were considered to be under stronger, focal selection,

20


https://doi.org/10.1101/388363
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/388363; this version posted August 9, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

whereas CNAs in genes found in longer CNA regions (larger fraction) were considered to result from
broad amplifications or deletions.

We defined focally amplified or deleted genes as those in which their chromosomal context was in
the upper quantile (0.25) of the distribution of the mean fraction of copy-number aberrant
chromosome across patients for each chromosome.

Gene regulatory network analyses

We obtained a human gene regulatory network (GRN) from PathwayCommons (version 9) by
selecting pairs of genes connected by an edge of the type “control-expression-of”, resulting in a
directed network with 95,651 edges. We defined regulator genes as those with at least one
downstream target.

We defined ‘out-degree’ as the number of outgoing edges of a regulator, representing the extent of
its downstream regulatory network. In contrast, the ‘in-degree’ of a gene was defined as the number
of incoming edges and it is proportional to how highly regulated the gene is. Greater out-degree/in-
degree ratios indicate bias towards a higher number of outgoing edges (i.e. regulatory role), whereas
smaller ratios indicate bias towards a higher number of incoming edges (i.e. target role).

We also obtained protein-protein (PPI) networks of humans from PathwayCommons (Cerami et al.,
2011) version 9, BioGRID (Chatr-Aryamontri et al., 2017) version 3.4.152 and the InWeb_IM network
(Li et al., 2017). Only nodes and edges corresponding to genes and links between two genes were
considered. Since these networks are undirected, we only calculated the degree of a gene as the
total number of edges associated with the gene.

Classification of regulators by the evolutionary ages of their downstream targets

Regulators were classified as UC-t, EM-t, MM-t or UC/EM-i regulators based on the ages of their
target genes, independently of the evolutionary age of the regulator. First, we calculated the
percentage of downstream UC, EM and MM target genes for each regulator. A regulator was
classified as UC-t if more than 2/3 of its targets were UC genes, as EM-t if more than 2/3 of its
targets were EM genes, or MM-t if more than 2/3 if its targets were MM. Regulators that did not
meet the above criteria, but at least 1/10 of their target genes were UC genes or EM genes, and less
than 1/10 were MM genes, were classified as UC/EM-i regulators.

CNA in regulators and targets

To determine whether the copy-number status of a regulator was associated with the fraction of
downstream CNA targets, we calculated the fraction of downstream CNA targets for each regulator
in each patient. We compared the fraction of CNA downstream target genes when regulators were
CNA and CNN for each patient, and used Wilcoxon tests to determine if there were significant
differences in these fractions between patients where the regulator was CNA or CNN. We only
considered regulators that were CNA and CNN in at least 3 patients across all tumour cohorts, and
had at least 2 targets. P-values were corrected for multiple testing using Benjamini-Hochberg
correction.

A summary fraction of CNA targets was obtained for each regulator by calculating the median across
patients, and we calculated the difference in percentage of targets with CNAs by subtracting the
fraction of targets when the regulator was CNA minus the fraction when the regulator was CNN.

Gene expression analyses of CNA targets and regulators

RNAseq gene expression data from the 7 tumour types and the corresponding normal samples were
obtained from The Cancer Genome Atlas. We evaluated the effect of CNAs on gene expression by
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calculating the expression fold-change between matched tumour and normal samples for each gene,
and comparing the fold-changes of samples where the gene was CNA and where it was CNN using
one-sided Wilcoxon tests. Only genes that were amplified or deleted in at least 3 samples were
considered. Benjamini-Hochberg correction was used for correction for multiple testing. We next
calculated the percentage of significantly over or underexpressed amplified or deleted UC, EM and
MM target genes, respectively. We calculated the percentage of differentially expressed CNA targets
as the ratio between the number of differentially expressed CNA targets of each regulator and the
total number of CNA target genes. We subsequently calculated the median percentage of
differentially expressed CNA targets for each regulator class in each tumour type. Wilcoxon tests
were calculated on the median values per regulator across tumours to determine significant
differences.

Cancer cell line gene knockout, mutation and IC50 values

Scores of the probability of dependency to genes across 364 solid-tumour tissue cell lines were
obtained from the Avana CRISPR-Cas9 genome-scale knockout dataset generated by Project Achilles
and the Cancer Dependency Map project (18Q1 version)
(https://portals.broadinstitute.org/achilles). We excluded all cell lines from haematopoietic and
lymphoid tissues. A cell line was considered to be dependent on a regulator if its probability of
dependency was greater than 0.95. The enrichment of a regulator class among the regulators to
which cancer cell lines were dependent was determined using the odds ratio.

Mutation and CNA information of cell lines was obtained from the Cancer Cell Line Encyclopaedia
(CCLE) (https://portals.broadinstitute.org/ccle). Significant differences in the dependency scores of
cell lines with mutated and non-mutated regulators, or amplified or copy-number normal regulators
were obtained using Wilcoxon tests (p < 0.05). We only considered regulators that are either
amplified or point mutated in at least 3 cell lines.

IC50 values of cancer cell lines after treatment with 250 cancer drugs were obtained from the
Genomics of Drug Sensitivity in Cancer database (version 17) (Yang et al., 2013). We calculated the
Spearman correlation of IC50 values with dependency scores from the Avana CRISPR-Cas9
databases. We only considered negative correlations < -0.25 and with a adjusted p-values after
Benjamini and Hochberg correction < 0.05, since we were interested in cell lines with high
dependency to a regulator and that showed greater drug sensitivity at lower concentrations.
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