

Bioinformatics, YYYY, 0–0

doi: 10.1093/bioinformatics/xxxxx

Advance Access Publication Date: DD Month YYYY

Manuscript Category

Subject Section

deGSM: memory scalable construction of large
scale de Bruijn Graph

Hongzhe Guo1,+, Yilei Fu1,+, Yan Gao1, Junyi Li1, Yadong Wang 1, * and Bo Liu1, *

1 Center for Bioinformatics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.

*To whom correspondence should be addressed.

+These authors contributed equally to this work.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract
Motivation: De Bruijn graph, a fundamental data structure to represent and organize genome se-

quence, plays important roles in various kinds of sequence analysis tasks such as de novo assembly,

high-throughput sequencing (HTS) read alignment, pan-genome analysis, metagenomics analysis,

HTS read correction, etc. With the rapid development of HTS data and ever-increasing number of as-

sembled genomes, there is a high demand to construct de Bruijn graph for sequences up to Tera-base-

pair level. It is non-trivial since the size of the graph to be constructed could be very large and each

graph consists of hundreds of billions of vertices and edges. Current existing approaches may have

unaffordable memory footprints to handle such a large de Bruijn graph. Moreover, it also requires the

construction approach to handle very large dataset efficiently, even if in a relatively small RAM space.

Results: We propose a lightweight parallel de Bruijn graph construction approach, de Bruijn Graph

Constructor in Scalable Memory (deGSM). The main idea of deGSM is to efficiently construct the Bur-

rows-Wheeler Transformation (BWT) of the unipaths of de Bruijn graph in constant RAM space and

transform the BWT into the original unitigs. It is mainly implemented by a fast parallel external sorting

of k-mers, which allows only a part of k-mers kept in RAM by a novel organization of the k-mers. The

experimental results demonstrate that, just with a commonly used machine, deGSM is able to handle

very large genome sequence(s), e.g., the contigs (305 Gbp) and scaffolds (1.1 Tbp) recorded in Gen-

Bank database and Picea abies HTS dataset (9.7 Tbp). Moreover, deGSM also has faster or compa-

rable construction speed compared with state-of-the-art approaches. With its high scalability and effi-

ciency, deGSM has enormous potentials in many large scale genomics studies.

Availability: https://github.com/hitbc/deGSM.

Contact: ydwang@hit.edu.cn (YW) and bo.liu@hit.edu.cn (BL)

Supplementary information: Supplementary data are available online.

1 Introduction

De Bruijn graph is a fundamental data structure to represent and organ-

ize genome sequences. It is widely used in many sequence analysis tasks

such as de novo genome assembly (Zerbino et al., 2008; Gnerre et al.,

2011; Luo et al. 2012), high-throughput sequencing (HTS) read alignment

(Liu et al., 2016; Siren, 2017), pan-genome analysis (Marcus et al., 2014),

metagenomics species classification (Guan et al., 2016), transcript iso-

form identification and quantification (Bray et al., 2016) and HTS read

correction (Salmela et al., 2017; Limasset, A. et al., 2018), etc..

HTS is being ubiquitously applied in the field of genomics, supporting

many large scale genome research projects on human populations and var-

ious species, and generating massive HTS datasets continuously. Cur-

rently, sequencing a large genome can produce a dataset in up to Tera base

pairs (bps), e.g., the whole genome sequencing (WGS) dataset of the 20

Gbp Picea abies genome is as large as 9.7 Tera bps. Moreover, the size of

the datasets for population sequencing can be even larger. Meanwhile, as

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

mailto:ydwang@hit.edu.cn
mailto:bo.liu@hit.edu.cn
https://drive.google.com/open?id=10395-bv8Sb4UGA95k1QSeg_pyeoIVXnQ
https://www.ncbi.nlm.nih.gov/pubmed/?term=Marcus%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25398610
https://doi.org/10.1101/388454

H. Guo et al.

the number of assembled genomes continues to rise, there have already

been more than one assembled genomes for each specific species. These

genomes are directly used for pan-genome analysis, or used as reference

sequences for various tasks like read alignment (Liu et al., 2016), variant

calling (Eggertsson et al., 2017), species classification (Guan et al., 2016),

etc. However, the total size of these sequences is enormous, e.g., the sizes

of contigs and scaffolds recorded in Genbank are over 305 Giga bps and

1.1 Tera bps, respectively.

De Bruijn graph has various applications on the analysis of these data.

However, the construction of de Bruijn graph could be a major bottleneck

due to two issues: 1) the large input sequence itself could lead to a huge

number of the vertices; 2) the potential sequencing error of HTS datasets

can make the number of vertices of the graph explosively increase. Under

such circumstance, the size of the graph to be constructed would be very

large and the graph construction approach needs to be highly scalable to

adapt to commonly used computational environments.

Many efforts have been made in the construction of de Bruijn graph.

Basically, the proposed approaches can be categorized as hash-based and

suffix-trie-based.

Hash-based approaches generally build hash tables to represent and or-

ganize the vertices of de Bruijn graph. This approach is frequently used in

de novo assembly (Zerbino et al., 2008; Gnerre et al., 2011; Luo et al.

2012). In this category, two hash-based techniques, Minimizer and Bloom

filter are widely used.

Minimizer is the representative sequence selected from a group of ad-

jacent k-mers which have identical substring (Roberts et al., 2004; Wood

and Salzberg, 2014). It is often used as seed to reduce the storage of k-

mers in hash table. Movahedi et al (Movahedi. et al., 2012) used mini-

mizer during de Bruijn graph construction to partition de Bruijn graph into

slices. This helps to reduce the memory footprint of de novo assembly.

Chikhi et al (Chikhi et al., 2014) proposed a novel algorithm, BCALM,

which is based on frequency-based minimizer instead of the commonly

used lexicographic order-based minimizer. Meanwhile, this work pro-

posed the DBGFM data structure which also takes advantage of FM-index

to represent and compact the output of BCALM. Further, Chikhi et al

(Chikhi et al., 2016) took advantage of a novel partitioning strategy of

frequency-based minimizer to achieve better parallelization. It demon-

strates that the proposed approach has the ability to construct the graph for

the HTS datasets of large genomes, e.g., >20 Gbp pine and spruce ge-

nomes.

Bloom filter is a space-efficient probabilistic data structure that is used

to check the presence of an element. This data structure can largely reduce

the size of the graph due to its bit array-based design. However, false pos-

itives also could be introduced into the data structure due to probabilistic

design. So specific methods are necessary to handle the false positives,

usually with an extra cost of RAM space. Pell (Pell et al., 2012) used

Bloom filter to store vertices and partition the whole graph into compo-

nents, which reduces the memory footprint of metagenome assembly. The

experimental results indicate that there are about 15% false positive bits

in Bloom filter-based data structure. Chikhi and Rizk (Chikhi and Rizk,

2013) proposed a novel marking scheme along with an auxiliary structure

to enumerate specific vertices, and Drezen et al(Drezen et al., 2014)

demonstrated that this method is helpful in de novo assembly. Holley

(Holley et al., 2015) proposed Bloom filter tree to index and query pan-

genome datasets. El-Metwally et al (El-Metwally et al., 2016) proposed a

light-weight genome assembler using pattern-blocked Bloom filter to

compress k-mers. TwoPaCo (Minkin et al., 2017) represents the non-

branching paths (unipaths) of the graph with single edges, and uses bloom

filter to compactly store them. It achieves a small memory footprint during

graph construction, which supports to build de Bruijn graph for large ge-

nomes on a modern server.

Other Bit array-based data structures are also used in de Bruijn graph

construction. For example, Conway and Bromage (Conway and Bromage,

2011) represents and constructs de Bruijn graph by a compressed bit vec-

tor initially proposed by (Okanohara and Sadakane, 2007).

Suffix trie-based data structures, such as suffix tree, Burrows-Wheeler

Transformation (BWT), Ferragina-Manzini index (FM-index) (Ferragina

and Manzini, 2000) and suffix array (Manber and Myers, 1993), are also

used in de Bruijn graph construction. (Bowe et al., 2012) is the first effort

to take advantage of XBW-transform to represent de Bruijn graph. The

proposed data structure, succinct de Bruijn graph, has outstanding ability

to compact de Bruijn graph, due to that the strings implied by the

unipaths/unitigs can be succinctly represented. (Røland,2013) proposed a

similar approach, named as KFM-index, which represents de Bruijn graph

by the FM-index of the k-mers of the input sequence. Additionally, it is

theoretically approved that the RAM usage can be reduced by keeping

only a part of the graph in memory during construction. However, it does

not provide an implementation which can work on large datasets. Li et al

(Li et al. 2015) takes advantage of succinct de Bruijn graph to develop a

metagenome assembler named as MEGAHIT. In this approach, both

GPU-based and CPU-accelerated in-memory sorting approaches are used

to construct the succinct de Bruijn graph of metagenome HTS dataset.

This implementation has fast speed, but its memory footprint is large due

to the in-memory design. Moreover, Marcus et al (Marcus et al., 2014)

proposed a suffix tree-based approach, SplitMEM, to organize de Bruijn

graph for pan-genome analysis. In this approach, a novel data structure,

suffix skip, is introduced to facilitate the traversal of suffix links. It helps

to efficiently decompose maximal exact matches into graph vertices,

which is beneficial to pan-genome analysis. By taking advantage of the

topological relationships between suffix trees and compressed de Bruijn

graphs, SplitMEM can construct de Bruijn graph in linear time and space.

Further, Baier et al (Baier et al., 2016) improves the time and space cost

of SplitMEM with BWT and compressed suffix tree.

The construction of very large de Bruijn graph could be widely used in

many ongoing and forthcoming large scale genomic studies. However,

there is still lack of tools with good ability to construct de Bruijn graph

consisting of tens to hundreds of billions of vertices in commonly used

computational environment with fast speed. Such approach is necessary

to properly handle large datasets for both HTS data and assembled ge-

nomes. Herein, we propose de Bruijn Graph Constructor in Scalable

Memory (deGSM), a highly scalable approach suitable for constructing

very large de Bruijn graph. DeGSM is a suffix-trie-based approach, in the-

ory similar to succinct de Bruijn graph. Instead of directly constructing the

graph itself, deGSM constructs the BWT of the unitigs of the graph and

recovers the unitigs with the constructed BWT string. Specifically,

deGSM implements a fast parallel external sorting of the k-mers in the

graph to build the BWT of unitigs. The implementation of the external

sorting can fully consider the CPU and RAM configurations and improve

the speed with limited computational resources. More importantly, a novel

organization of the k-mers is used to always allow to keep only a part of

k-mers in RAM, which is critical to achieve constant RAM space cost.

DeGSM can be scalable to construct de Bruijn graph for the HTS dataset

of a large genome (e.g., the 20 Gbp Picea abies genome), or all the contigs

or scaffolds (upto 1.1 Tbp) recorded in GenBank with 16GB or less RAM.

Meanwhile, deGSM also has faster or comparable construction speed

compared with state-of-the-art approaches.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/pubmed/?term=Marcus%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25398610
https://www.ncbi.nlm.nih.gov/pubmed/?term=Baier%20U%5BAuthor%5D&cauthor=true&cauthor_uid=26504144
https://doi.org/10.1101/388454

deGSM

2 Methods

 Preliminary

Let a genome, S, be a sequence over the alphabet Σ = {𝐴, 𝐶, 𝐺, 𝑇}. The de

Bruijn graph of 𝑆, D, is a directed graph, where the vertices consist of all

the k-mers of S. For any pair of vertices of D, (𝑉𝑖 , 𝑉𝑗), there is a directed

edge 𝑉𝑖 → 𝑉𝑗, if the k-1 suffix of 𝑉𝑖 is same to the k-1 prefix of 𝑉𝑗. A set of

maximal non-branched paths (unipaths) can be derived from D. Each of

the unipaths meets the following conditions: i) for the first vertex, the in-

degree is 0 or >1, and the out-degree is 1; ii) for the last vertex, the out-

degree is 0 or >1, and the in-degree 1; iii) for all the other vertices along

the path, the in- and out-degrees are exactly 1. This definition follows pre-

vious studies (Tomescu and Medvedev, 2016), and the string implied by

compacting a certain unipath is called a “unitig” (Gnerre et al., 2011;

Zimin et al., 2013).

For a given string T defined on Σ, the BWT of T$ is defined as the per-

mutation of the characters of T that, 𝐵𝑇[𝑖] = 𝑇[𝑆𝐴[𝑖] − 1], if 𝑆𝐴[𝑖] ≠ 0,

and 𝐵𝑇[𝑖] = $, otherwise, where 𝑆𝐴[𝑖] indicates the starting position of

the i-th lexicographically smallest suffix of T, and $ is an auxiliary char-

acter lexicographically larger than any character of Σ.

Let the set of the unitigs of D be 𝑈 = {𝑈𝑖 , 𝑖 = 1, … , |𝑈|}, where |𝑈| is

the number of the unitigs, and a string C = 𝑈1#𝑈2#…#𝑈|𝑈|$ is a specific

permutation of the unitigs, where # is an auxiliary character lexicograph-

ically larger than any character of Σ, but smaller than $. D can be com-

pactly represented by the BWT of C (indicated as 𝐵𝐶). Herein, we term

this representation as “unitig-BWT”, which is to some extent similar to

the data structure used in DBGFM (Chikhi et al., 2014).

𝐵𝐶 can be used as a self-index of D, i.e., all the vertices of D can be

accessed by querying 𝐵𝐶 for the corresponding k-mers, and all the in- and

out-edges of a given vertex can be accessed by querying 𝐵𝐶 for the k-mers

corresponding to the connected vertices. It is also worthnoting that the

edge query operation is only needed for the end vertices of unipaths when

traversing D, since the traversing on the internal vertices of unipaths can

be efficiently done by the LF-mapping operation of BWT (Ferragina and

Manzini, 2000). Moreover, all the original unitigs can be directly derived

from 𝐵𝐶 in linear time with the LF-mapping.

Two additional definitions on C are given as following:

k>-prefix: for any suffix of C starting from a position ≥k characters

away from ‘#’, the corresponding k>-prefix is the length k prefix of the

suffix. It is obvious that the k>-prefixes are the vertices (k-mers) of D.

k<-prefix: for any suffix of C starting from a position < k characters

away from ‘#’, the corresponding k<-prefix is the prefix of the suffix end-

ing at the next k-mer, if the length of the suffix is longer than k+1, or suffix

itself, otherwise.

A schematic illustration of these concepts is in Fig. 1.
There are three characteristics of k>-prefix and k<-prefix as following,

which are critical to the construction of 𝐵𝐶.

1) Since all the vertices (k-mers) of D are distinct, the lexicographical

orders of any two suffixes of C can be determined by only considering the

corresponding k>-prefix or k<-prefix. Thus,𝐵𝐶 can be constructed by sort-

ing k>-prefixes and k<-prefixes.

2) C can be presented by the various permutations of the unitigs, but the

k>-prefix set is irrelevant to the permutation, since k>-prefixes are exactly

the vertices of D. Under such circumstance, the k>-prefix set can be ob-

tained by only constructing the vertex set of D.

3) Any k<-prefix can be seen as a concatenation between the end vertex

of one unipath and the starting vertex of the next unipath, and this depends

on the permutation of the unitigs. However, it is worthnoting that k<-pre-

fixes only depends on the permutation of the vertices at the two ends of

the unitigs (Fig.1), which can be straightforwardly made with only the

vertices at the two ends of the unipaths. In this situation, the k<-prefix set

can be obtained by only identifying those end vertices, regardless of con-

structing the whole unitigs.

These characteristics make it possible to construct 𝐵𝐶 by the construc-

tion and sorting of k>-prefixes and k<-prefixes. This is helpful to handle

large genome sequence since all the steps can be implemented with con-

stant space cost. Specifically, deGSM takes advantage of these character-

istics to make a lightweight and efficient de Bruijn graph construction.

 Overview of deGSM approach

DeGSM constructs the 𝐵𝐶 representation of the de Bruijn graph D for a

given genome S in five steps as following (a flowchart is in Fig.2):

1) recognizing all distinct (k+2)-mers of S;

2) sorting the (k+2)-mers in lexicographical order;

3) using the sorted (k+2)-mers to build a sorted table of the vertices of

D (i.e., the k>-prefixes), and recognize the vertices at the ends of unipaths;

4) building k<-prefix set with the vertices at the ends of unipaths, and

sorting all the k<-prefixes in lexicographical order;

5) merging the sorted tables of k>-prefixes and k<-prefixes to construct

the 𝐵𝐶 representation of D.

All the steps are designed to guarantee constant RAM space cost and

be affordable to the employed computers. Moreover, critical steps like

(k+2)-mers sorting are also designed to accelerate the overall speed. A de-

tailed illustration of transformation from (k+2)-mer set to unitigs (includ-

ing GFA output) is in Supplementary Fig. 1

Fig. 1. A schematic illustration of the deGSM method. (a) There is a large num-

ber of repetitive fragments in the reference genome sequence or sequencing data

(strips with various colors). Here the repetition represented by blue strip has two

copies et.al. (b) The copies of each repetitive sequence collapse into every uni-path

of de Bruijn graph. (c) Make a specific permutation of all unipaths to form string C

and different unipaths are separated by separator #. The k<-prefix can be generated

from a local region every other 1 bp with the maximum length of 2k. The k>-prefix

with a length of k starts at the position ≥k characters away from ‘#’. Under such

circumstance, each k<-prefix has character # while the k>-prefix does not cross any

separator. Merge k<-prefixes and k>-prefixes to generate 𝐵𝐶

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

https://doi.org/10.1101/388454

H. Guo et al.

 The enumeration of k-mers

In deGSM approach, (k+2)-mers of the input genome sequence(s) are enu-

merated at first. There have been many fast and memory-scalable k-mer

counting tools which are suitable for this task, such as Jellyfish2 (Marçais

and Kingsford, 2011), KMC3 (Kokot et al. 2017), etc. Jellyfish 2 is em-

ployed in the current version of deGSM. It is also worthnoting that Jelly-

fish 2 is asked to run with limited RAM space.

The k- and (k+1)-mers at two ends of the input sequence(s) are also

enumerated with deGSM itself. These k- and (k+1)-mers are sorted to re-

move redundant ones in later steps, and they are merged with the (k+2)-

mers for further processing.

 The sorting of k-mers

DeGSM implements an efficient parallel block sorting and multi-way

merging to sort the enumerated (k+2)-mers. The whole dataset is divided

into blocks to fit the size of the user-defined RAM space. Each block is

subsequently loaded into memory and processed. For each block, deGSM

sorts the k-mers in the three steps as following.

i) deGSM Splits the whole k-mer set into multiple subsets of the same

size and assign them to each thread. In each thread, simply taking one k-

mer’s 8-mer prefix as the hash address for rapid locating its bucket. Mean-

while, counting the numbers of k-mers in the buckets.

ii) deGSM allocates RAM space for each bucket according to its k-mer

quantity in parallel. For one bucket, deGSM collects all of its k-mers from

multiple threads to make k-mers in different buckets in lexicographic or-

der.

iii) deGSM assigns the buckets to multiple CPU threads. Each thread

performs a quick sorting on the k-mers of the corresponding bucket and

outputs sorted k-mers to a temporary file.

When all the (k+2)-mer blocks are sorted, a multiple-way merging is

implemented to make a sorted table for all the (k+2)-mers.

It is also worth noting that, for each of the (k+2)-mer, deGSM moves

its first character to its end before sorting. This is useful for the next step

to recognize the vertices at the ends of the unipaths. This can place (k+2)-

mers and the same middle k-mers together after sorting. And the in- and

out-edges of the vertices of the de Bruijn graph (i.e., k-mers) are easy to

be investigated.

The k- and (k+1)-mers at two ends of the input sequence(s) are also

sorted in a similar approach. During the sorting, each of the k- and (k+1)-

mers is seen as pseudo (k+2)-mers, i.e., (k+2)-mers with an auxiliary char-

acter flanking at the two (for k-mers) or one (for (k+2)-mers) sides of the

k- and (k+1)-mers, respectively. This indicates the corresponding vertex

connects to an auxiliary vertex of the graph.

After sorting, deGSM removes all the redundant k- and (k+1)-mers and

merges the sorted (k+2)-mers and pseudo (k+2)-mers, which are derived

by the k- and (k+1)-mers, to construct a single sorted table (termed as 𝑇𝑘+2

in the later sections).

 The recognition of the types of vertices

In 𝑇𝑘+2, each line indicates a specific combination of a vertex (k-mer) and

its in- and out- edges. All the vertices are then categorized in four types,

i.e., ‘I’, ‘Y+’, ‘Y-’, and ‘X’, indicating the single in and single out, single

in and multiple out, multiple out and single in, multiple in and multiple

out vertices, respectively.

Due to the lexicographical order of the (k+2)-mers, all combinations of

the same vertices with various edges are placed together in 𝑇𝑘+2. So it is

easy to recognize the types of the vertices by directly checking the com-

binations with the same first k-mers. DeGSM directly traverses 𝑇𝑘+2 to

mark the lines of 𝑇𝑘+2 by k-mer types.

However, there are two exceptional situations as following (also refer

to Supplementary Fig. 2 for a schematic illustration).

1) For the multiple successor vertices of a Y+ type vertex, each of them

is a starting vertex of a specific unipath, although it could be single in and

single out. In this situation, deGSM marks such successor vertices as Y-

type, for the simplicity of later steps. Precisely, deGSM checks all the ver-

tices having the same precursor. For each line of 𝑇𝑘+2, the first character

can also be seen as the edge linking to a precursor, and the substring from

2nd to k+1-th characters can be seen as the vertex itself. From this point

of view, such successor vertices are also placed as neighbors in 𝑇𝑘+2. In

practice, deGSM divides 𝑇𝑘+2 into blocks. The lines in each block have

the same 2nd to k-th characters, indicating multiple vertices having the

same k-1 prefix (Supplementary Fig. 2a). If some of the vertices have the

same precursor, these vertices are just the successors which start unipaths.

And deGSM marks the corresponding lines as Y- type.

2) The multiple precursor vertices of a Y- type vertex are also end ver-

tices of various unipaths, and deGSM marks such vertices as Y+ type.

DeGSM investigates the out-edges to find out these end vertices. As the

lines corresponding to the precursor vertices have various first characters,

they are not placed together in 𝑇𝑘+2. However, their substrings from 2nd

to k-th characters are same to each other and their lexicographical orders

still remain (Supplementary Fig. 2b). Under such circumstance, deGSM

partitions 𝑇𝑘+2 into four blocks, and each of the blocks corresponds to the

lines starting with a specific character (A/C/G/T). A 4-way traversing is

implemented to find out the lines with same 2 to k substrings and the cor-

responding lines are grouped together to check the successors of the ver-

tices (Supplementary Fig. 2c). If the investigated vertices have the same

successor, they are determined as the precursors of a Y- type vertex, and

the corresponding lines are marked as Y+ type.

Fig. 2. Flowchart of de Bruijn graph construction. Herein, various colored strips

indicate repetitive fragments in S. The strips of different colors denote unipaths in C.

The sorted k-mer sets are recorded in the external storage. The files that would never

be used are to be deleted after each step.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

https://doi.org/10.1101/388454

deGSM

After type identification, deGSM merges the corresponding lines for

each of the vertices to generate a sorted k-mer table. This straightforwardly

forms the sorted table of k>-prefixes. Moreover, four sorted k-mer tables

are virtually constructed, each corresponds to a specific k-mer type.

 The construction of k<-prefixes

The sorted tables of Y+, Y-, and X type k-mers are used for formulating

k<-prefixes. Since any permutation of the vertices at the two ends of the

unitigs can be used to formulate a valid set of k<-prefixes, deGSM con-

structs a straightforward permutation. Precisely, assuming the sorted ta-

bles of Y+, Y-, and X type k-mers are respectively, 𝑦𝑖
+, 𝑖 = 1,… , |𝑌| ,

𝑦𝑗
−, 𝑗 = 1,… , |𝑌|, and 𝑥𝑘 , 𝑘 = 1,… , |𝑋|, where 𝑦𝑖

+, 𝑦𝑗
− and 𝑥𝑘are respec-

tively the Y+, Y-, and X type k-mers, 𝑖, 𝑗 and 𝑘 respectively indicate the

lexicographical orders of the three tables, and |𝑌| and |𝑋| are respectively

the numbers of Y+ and Y- type k-mers, and the number of X type k-mers.

DeGSM builds a simple permutation as following:

𝑃𝐶 = 𝑦1
−𝑦1

+#𝑦2
−𝑦2

+#……#𝑦|𝑌|
− 𝑦|𝑌|

+ #𝑥1#𝑥2#… . . #𝑥|𝑋|.

This can be also seen as a subsequence of C, and all the k<-prefixes con-

sists of four categories of substrings of 𝑃𝐶:

1) 𝑦𝑖
+[𝑚, 𝑘]#𝑦𝑖+1

− ,𝑚 = 1,… , 𝑘,𝑖 = 1,… , |𝑌|-1, where 𝑦𝑖
+[𝑚, 𝑘] is the

substring of 𝑦𝑖
+ from the m-th character to the end of the k-mer;

2) 𝑦|𝑌|
+ [𝑚, 𝑘]#𝑥1 , 𝑚 = 1,… , 𝑘 , where 𝑦|𝑌|

+ [𝑚, 𝑘] is the substring of

𝑦|𝑌|
+ from the m-th character to the end of the k-mer;

3) 𝑥𝑖[𝑚, 𝑘]#𝑥𝑖+1,𝑚 = 1,… , 𝑘, 𝑖 = 1,… , |𝑋| − 1, where 𝑥𝑖[𝑚, 𝑘]is the

substring of 𝑥𝑖 from the m-th character to the end of the k-mer;

4) 𝑥|𝑋|[𝑚, 𝑘], 𝑚 = 1,… , 𝑘, where 𝑥𝑖[𝑚, 𝑘] is the substring of 𝑥|𝑋| from

the m-th character to the end of the k-mer.

A schematic illustration of the formulation of k<-prefixes is in Fig. 3.

All the k<-prefixes are constructed on-the-fly by simply traversing the

whole sorted k-mer table, and they are recorded in a temporary file. After

collection, deGSM constructs a sorted table of k<-prefixes by an approach

similar to (k+2)-mer sorting.

 The generation of the BWT of unitigs and the recon-

struction of unitigs

DeGSM merges the sorted tables of k>-prefixes and k<-prefixes to deter-

mine the lexicographical order of all the suffixes of C string. As the (k+2)-

mers are used in previous steps, the characters before the lexicographical

order-determined suffixes are kept and the permutation of these characters

are exactly 𝐵𝐶.

Although unitig-BWT supports the query of any vertice and edge, the

original unitigs are preferred in some applications. With 𝐵𝐶, it is straight-

forward to reconstruct all the unitigs with the LF-mapping. Each unitig

sequence can be derived by backtracking from the last character ‘#’ on the

bwt index, until the next ‘#’ is met. DeGSM provides a specific command

for the conversion from unitig-BWT to original unitigs.

 GFA format output

DeGSM provides the function to output in GFA (Graphical Fragment As-

sembly) format, to fulfil the requirements of the emerging graph-based

sequence analysis tools, such as vg (Garrison et al., 2017). Therefore, each

unitig is considered as a segment (S) in GFA. And the link (L) is repre-

sented by edge (overlapping k-1-mer) between two unitigs, which are

stored during bwt backtracking. DeGSM retrieves unitgs to identify these

connections by constructing outgoing k-mers of each unitig in bwt index

(Supplementary Fig. 1).

 K-mers filtering with specific abundance cutoff

K-mer filtration according to specific abundance cutoff is frequently used

in sequence analysis tasks, such as genome assembly. For the filtered-out

vertex, the out-edges of its prefix vertex or in-edges of its suffix vertex

need to be modified, e.g., an end vertex can be changed to the internal

vertex after its suffix vertex filtration out (Supplementary Fig.3a).

During vertex type recognition, the adjacent vertices in graph are often

distributed into different data blocks, each of which cannot be loaded into

memory simultaneously. DeGSM generates a novel k-mer set (called

‘pseudo k-mer’) as a signal to locate the prefix vertices or suffix vertices

of the filter-out vertex (Supplementary Fig.3b). Meanwhile, deGSM sorts

all pseudo k-mers and merge them with the reserved sorted k-mer set. Af-

ter that, deGSM modifies vertex’s type identification from the gathered

identical k-mers (Supplementary Fig.3c).

3 Results

DeGSM was implemented on a series of assembled genome sequence da-

tasets and HTS datasets to assess its ability. Several state-of-the-art de

Bruijn graph construction methods were also employed for comparison.

All the benchmarks were conducted on a server with 2 Intel E5-2630v3

CPUs at 2.4 GHz (12 cores in total), 128 GB RAM and 48TB hard disk

space (7200rpm RAID SAS hard disk drive with XFS File System, no

SSD is used). In the benchmarking, 8 CPU threads were used as default,

and deGSM was asked to run with upto 32GB RAM (most of the datasets

are much larger than that) to assess its scalability (no such limit for other

Fig. 3. A schematic illustration of the formulation of k<-prefixes. The strips in

various colors denote different k-mers. One line in 𝑇𝑘+2 represents a certain k-mer

and one of the combination of its in- and out- edges. Sorted k>-prefixes can be derived

by traversing 𝑇𝑘+2. The k>-prefixes are categorized into four types (‘I’, ‘Y+’, ‘Y-’, and

‘X’), and k<-prefixes can be generated from the sets of ‘Y+’, ‘Y-’, and ‘X’ type k-mers.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

https://doi.org/10.1101/388454

H. Guo et al.

methods). For all benchmarked methods, the runtime of k-mer enumera-

tion is excluded. All the command lines are available in Supplementary

Notes.

3.1 Benchmarking on genome sequence datasets

DeGSM was assessed by two datasets from GenBank at first. Precisely,

we downloaded the assembled contigs and scaffolds recorded in GenBank

database (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank). All the domains

(bacteria, viral, archaea, fungi, protozoa, invertebrate, plant, verte-

brate_mammalian and vertebrate_other) are included, and the sizes of the

two datasets are 305 Gbp (contigs) and 1.1 Tbp (scaffolds), respectively.

The lengths of these two sets of sequences are orders larger than that of a

single genome have been assembled, and the construction of de Bruijn

graph on such large scale datasets is beneficial to large population genome

or pan-genome analysis, as well as the assembly of very large genomes or

metagenomes.

The results on the two GenBank datasets are shown in Table 1. DeGSM

was asked to construct de Bruijn graph in various k-mer settings (k = 22,

30, 62 and 126, respectively), which are related to the requirements of

various kinds of sequence analysis tasks. The total time costs, the time

costs of various steps, the numbers of the vertices and the unitigs of the

constructed graph, and the sizes of the temporary files are assessed. The

results indicate that each of the constructed graphs consists of hundreds of

billions of vertices, which are consistent with the lengths of the corre-

sponding original sequences. The sizes of these graphs are one or two or-

ders larger than the ones reported in previous studies (Birol et al., 2013;

Chikhi et al., 2016). However, the tasks can be done with moderate

memory footprint. Moreover, the time cost of the graph construction is

also affordable, i.e., the graph construction for GenBank contigs can be

done in about one day, and several days for GenBank scaffolds. Consid-

ering the graph size, memory footprint and time cost, deGSM is scalable

and cost-effective.

Table 1. Statistics on GenBank Contig and GenBank Scaffold with vari-

ous k-mer settings

Dataset Statistics k=22 k=30 k=62 k=126

GenBank

Contig

k+2-mer set sorting time 319m 570m 905m 1381m

k-mer type recognition time 66m 69m 93m 145m

k<-prefixes construction time 298m 174m 204m 370m

BWT generating time 361m 197m 359m 677m

Total time 1044m 1010m 1561m 2573m

#end vertices (× 109) 13.0 4.3 1.6 0.8

#internal vertices (× 109) 92.8 114.3 132.0 141.6

#unipaths(× 109) 7.9 2.4 0.9 0.4

Disk space 1.7TB 3TB 5.4TB 9.8TB

GenBank

Scaffold

k+2-mer set sorting time 2123m 4270m 7421m

k-mer type recognition 365m 443m 532m

k<-prefixes generating time 2970m 1328m 1465m

BWT generating time 3601m 911m 1394m

Total time 9059m 6952m 10812m

#end vertices (× 109) 138.4 33.5 10.1

#internal vertices (× 109) 366.4 606.2 747.2

#unipaths(× 109) 90.7 18.9 5.4

Disk space 34TB 16TB 31TB

The runtimes of the steps of deGSM are in minutes (m) and the disk space of tempo-

rary files are in terabytes (TB).

DeGSM usually requires large hard disk space, as it produces several

large temporary files to store the intermediate results of k-mer sorting and

type recognition. For the two GenBank datasets, the temporary files occu-

pied many terabytes hard disk space, moreover, the result on the GenBank

scaffold dataset with k=126 is not shown due to that the temporary file

size exceeds the hard disk space of the machine (48 TB). This could be a

drawback of this approach, although a computer with large hard disk space

is not hard to be available. Moreover, these files can raise intensive I/O

operations, which affects the construction speed. It is observed that

deGSM is faster with larger memory footprint, since more data can be

loaded at once and I/O operations are reduced.

DeGSM was also implemented on the GenBank contig dataset with var-

ious multiple thread configurations (2, 4, 8, 12 and 16 threads). The time

costs are in Table 2. The result indicates that time cost can be nearly 50%

reduced with more threads. However, speedup attenuated due to that a few

steps of deGSM are still hard to be operated in parallel way, such as the

construction of k<-prefix and BWT generation. These steps have intensive

multiple-way merging and I/O operations and are still non-trivial to make

good parallel implementations.

Table 2. Runtimes with various numbers of threads for the dataset of

GenBank Contigs (k=55)

Dataset 2 threads 4 threads 8 threads 12 threads 16 threads

GenBank contig 2012m 1678m 1508m 1338m 1234m

The runtimes in minutes (m) and the memory footprint is limited to 32GB.

We tried to implement three other state-of-the-art de Bruijn graph con-

struction approaches, TwoPaCo, MEGAHIT and a BWT-based method

(Baier et al, 2016), on the two GenBank datasets for comparison. However,

all the three methods collapsed, mainly due to the fact that the RAM usage

exceeds the 128 GB RAM space of the machine. To make a fair compari-

son, we benchmarked the methods on a smaller dataset (termed as Gen-

Bank-small) that all the methods can be successfully run. This dataset built

by randomly selecting 61 files of the GenBank contigs, and its size is 3.1

Gbp similar to a human genome.

Table 3. Runtimes of the small GenBank contig dataset (k=31)

Dataset Statistics deGSM TwoPaCo MEGAHIT Bwt-based method

GenBank-

small

Memory 16GB 74GB 79GB 8G

Time 18m + 3m 120m 34m 104m

The runtimes are in minutes (m) and memory footprints are in giga bytes (GB). It is

worthnoting that the runtime of deGSM consists of two parts, which denotes the con-

struction of the BWT of the unitigs and the transformation from BWT to the original

unitigs.

The result of GenBank-small dataset is shown in Table 3. Only the re-

sult of k=31 is shown, as TwoPaCo collapsed with larger k parameter set-

ting again, due to its large memory footprint. It is observed that deGSM

has outstanding speed, that is several times faster than TwoPaCo and the

BWT-based method and outperforms MEGAHIT.

 Considering the ability to construct very large graphs, small memory

footprints and relatively fast speed, deGSM is scalable and useful to han-

dle very large genome sequence datasets.

3.2 Benchmarking on HTS datasets

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

https://doi.org/10.1101/388454

deGSM

To assess the ability of deGSM to construct de Bruijn graph for HTS

data, we implemented deGSM on a high coverage HTS dataset of the 20

Gbp Picea abies genome. The dataset (SRA accession: ERP007725) con-

sists of 94.9× 109reads in 52-202 bps produced by Illumina platforms.

Two k-mer settings were used (k = 29 and 53) in the assessment to mimic

commonly used configurations in de novo assembly.

K-mers are often filtered in genome assembly, since k-mers having low

quality bases or low abundance are usually false positive ones produced

by sequencing errors. The rules of the filtration are of the tradeoffs be-

tween sensitivity and specificity. And various rules have been used in pro-

posed de novo assembly approaches. In this assessment, two rules were

respectively used for the two k-mer settings, i.e., i) for k=29, a k-mer is

filtered out if it occurs less than 3 times; and ii) for k=53, a k-mer is filtered

out only if there is at least one base having very low Phred Quality Score

(Q<3), which indicates a failure in sequencing. These two rules are quite

conservative, i.e., they focus on keeping more true positive k-mers, but

prevent an explosive number of k-mers which may make the temporary

files be out of hard disk space. The rules are similar to that of some exist-

ing de novo assembly approaches, which are designed to achieve high sen-

sitivity in initial steps.

Table 4. Statistics on Picea abies with respect to different memory foot-

prints

Memory Statistics k=29 l=3 k=53 q=’$’

M=16GB k+2-mer set sorting time 7266m 3826m

k-mer type recognition 42m 297m

k<-prefixes construction time 879m 6752m

BWT generating time 1347m 11006m

Total time 9534m 21881m

#end vertices (× 109) 17.9 43.7

#internal vertices (× 109) 52.0 359.1

#uni-paths (× 109) 11.6 24.9

Disk space(T) 14TB 42TB

M=32GB k+2-mer set sorting time 5369m 2946m

k-mer type recognition 40m 254m

k<-prefixes construction time 754m 5821m

BWT generating time 774m 6461m

Total time 6937m 15482m

The runtimes of the steps of deGSM are in minutes (m) and the disk space of tempo-

rary files are in terabytes (TB).

The results on the Picea abies dataset are shown in Table 4. The sizes

of the constructed graphs with k=29 and 53 are on the same order of the

GenBank contig and scaffold datasets. It is also worth noting that, the

number of the vertices of the two graphs (69.9 ×109 and 402.8 ×109, re-

spectively) are much higher than the length of Picea abies genome (about

20 Gbp). Moreover, the number of 53-mers is about 6 times larger than

that of 29-mers. This indicates that there exist serious sequencing errors

and many false positive k-mers still remain after the filtration, which

makes explosive growth on graph size. This could be difficult for many

current de novo assembly approaches as the memory footprint may dras-

tically increase. Meanwhile, such case can be handled by deGSM well.

The time costs of HTS datasets are higher than those of GenBank da-

tasets. This is mainly caused by the large amount of false positive k-mers.

Most of the false positive k-mers can produce extra branches, which can

make numerous end vertices and very short unitigs. These end vertices

greatly increase the time costs of some steps of deGSM, since the merging

of the k-mers raises intensive I/O operations. However, this performance

degradation can be mitigated with less false positive k-mers, since there

would be less extraordinary short unipaths and end vertices and the time

cost to handle these vertices can be greatly reduced. This is partially sug-

gested by another benchmarking on a simulated Picea abies HTS dataset

with lower sequencing error (shown below), that the time cost largely de-

creases with less false positive k-mers.

In practice, the number of false positive k-mers strongly depends on the

quality of HTS data and the adopted filtration rule, i.e., better sequencing

quality can greatly reduce false positive k-mers, meanwhile, many ad-

vanced filtration methods have been proposed, which can also effectively

filter such k-mers out. With less false positives, deGSM can still effi-

ciently construct de Bruijn graph, even if the number of true positive k-

mers is huge (considering that of the two GenBank datasets). Under such

circumstance, deGSM can be also beneficial to HTS data analysis tasks

such as de novo assembly, especially with effective k-mer filtration ap-

proaches.

DeGSM is compared with two state-of-the-art de Bruijn graph con-

struction methods for HTS datasets, BCALM2 and MEGAHIT, on two

simulated HTS datasets. These two methods are out of RAM space for the

real Picea abies HTS dataset. In precise, we used ART (Huang et al., 2012)

to simulate two HTS datasets. One (termed as PA-sim) is a 70X Picea

abies HTS dataset with moderate sequencing error rate. And the other one

(termed as GenBank-sim) is a 6X simulated HTS dataset from a part of

GenBank contigs (10.8GB in total) with low sequencing error. The results

on these two datasets are listed in Table 5.

Table 5. Runtimes of the simulated datasets from Picea abies genome

and GenBank contigs (k=51)

Dataset Statistics deGSM BCALM2 MEGAHIT

PA-sim Memory 32GB 79GB

Time 3660m + 67m 1158m

GenBank-

sim

Memory 16GB 41GB 95GB

Time 450m + 15m 270m 294m

The runtimes are in minutes (m) and memory footprints are in terabytes (TB). It is

worthnoting that the runtime of deGSM consists of two parts, which denotes the con-

struction of the BWT of the unitigs and the transformation from BWT to the original

unitigs. The abundance cutoffs are set to 3 for PA-sim and 2 for GenBank-sim.

On PA-sim, k is set to 51 as this k-mer size is similar to those commonly

used settings in de novo assembly. Meanwhile, only the k-mers occurred

less than 3 times were filtered out. DeGSM is slower but still affordable

and comparable to that of BCALM2. False positive k-mers are still the

main issue causes the slowdown of deGSM, i.e., many false positive k-

mers still remain after filtration, although the sequencing error is in mod-

erate level. However, this is not as serious as that of the real Picea abies

HTS dataset, i.e., the proportion of false positives is lower, and the graph

can be constructed with obviously faster speed. MEGAHIT collapsed on

PA-sim due to out of memory space.

To further investigate the impact of false positives on the graph con-

struction, deGSM is implemented on GenBank-sim, which has a low se-

quencing error. Both of BCALM2 and MEGAHIT can construct the graph

with the 128 GB RAM space. The time cost of deGSM is much closer to

that of BCALM2 and MEGAHIT. This indicates that the speed of deGSM

can be substantially improved with lower sequencing error, due to less

false positives.

The results of BCALM2 and MEGAHIT indicate the advantage of in-

memory approaches. The I/O operations can be greatly reduced. It is also

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

https://doi.org/10.1101/388454

H. Guo et al.

easier to implement parallel operations, such as the thread-safe queues and

Minimal Perfect Hash Function (MPHF) (Cormen, 2009) of BCALM2,

and the in-memory parallel sorting (CX1 algorithm) (Liu et al., 2014) of

MEGAHIT, to accelerate the speed. However, the data structures used by

in-memory approaches may require a prohibitively large RAM space,

which is a bottleneck to handle large datasets.

4 Discussion

Large scale sequence analysis is promising in many cutting edge genomic

studies nowadays. With the explosive growth of HTS data and assembled

genomes, there is a high demand to analyze sequences in Tera bp scale.

As a fundamental data structure, de Bruijn graph may play an important

role. However, it is still lack of highly scalable de Bruijn graph construc-

tion approaches which can well handle such large sequences, especially,

the RAM space of computer is usually being limited in practice. As it is

hard to unlimitedly increase RAM space, the lack of effective de Bruijn

graph construction approaches could make it a bottleneck to many forth-

coming sequence analysis tasks, especially the size of the sequence to be

handled is ever-increasing.

Herein, we propose a highly scalable de Bruijn graph construction ap-

proach, deGSM, which can well handle very large sequences. Like other

suffix-trie-based de Bruijn graph construction approach, deGSM takes ad-

vantage of the relationship between suffix trie and de Bruijn graph. Taking

advantage of the novel organization and efficient external sorting of k-

mers, deGSM can effectively build the BWT of the unitigs, i.e., the unitig-

BWT representation of de Bruijn graph. In theory, deGSM is capable of

constructing any size de Bruijn graph with any given RAM space. In prac-

tice, the implementation of deGSM fully considers the configurations of

commonly used computers, to achieve a balance between speed and RAM

usage. The benchmarking results on a series of very large genome se-

quences and HTS datasets demonstrate that deGSM can construct very

large de Bruijn graph (one or more orders larger than that of previous stud-

ies) in affordable time, with only a moderate hardware configuration. This

could be very beneficial to break through the bottleneck of large de Bruijn

graph construction.

A drawback of deGSM is that the time costs of the multiple way merg-

ing-related steps are quite large, especially when there are a large propor-

tion of false positive k-mers caused by serious sequencing errors in HTS

data. Due to the serial processing and intensive I/O operations, it is non-

trivial to reduce the time greatly. However, this can be mitigated with less

false positive k-mers. In this situation, an advanced k-mer filtration

method could be very helpful, since it can reduce false positive k-mers

while keeping true positive ones. Meanwhile, ubiquitously used SSD

could be also helpful as it can greatly improve the speed of I/O operations

on external storage.

It is also worth noting that, a machine with large RAM could be still

required to transform the BWT string into untigs, as the entire BWT string

need to be loaded into RAM. However, this requirement is not hard to

fulfill, since the BWT string is a very compact de Bruijn graph represen-

tation and its size is not very huge, e.g., 87 Gigabytes for the GenBank

contig dataset. This can be handled by a machine with large RAM space,

while time cost of the transformation is linear to the length of the BWT

string which is not large. Moreover, it only needs to execute once to obtain

all the original unitigs. And the unitigs could be further re-used in various

ways with less RAM space. For example, the unitigs could be compressed

with advanced compression approaches to make a more compact repre-

sentation of the de Bruijn graph. And for some tasks, like scaffolding, pan-

genome analysis, metagenomics HTS read classification, etc., it is also

possible to load only a portion of unitigs instead of the entire graph into

memory.

Overall, with its scalability, deGSM is a promising tool for the de Bruijn

graph construction of large sequences. It may have enormous potentials in

large scale genomic studies.

Funding

This work has been supported by the National Key Research and Development Pro-

gram of China (Nos. 2017YFC0907500, 2017YFC1201201).

Conflict of Interest: none declared.

References

Baier, U. et al. (2016) Graphical pan-genome analysis with compressed suffix trees

and the Burrows–Wheeler transform. Bioinformatics.32, 497-504.

Birol, I. et al. (2013) Assembling the 20 gb white spruce (Picea glauca) genome from

whole-genome shotgun sequencing data. Bioinformatics. 29,1492–1497.

Bowe, A. et al. (2012) Succinct de Bruijn Graphs. Algorithms in Bioinformatics.

WABI 2012. Lecture Notes in Computer Science, 7534: 225-235.

Bray, N.L. et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nat Bi-

otechnol. 34(5):525–527.

Chikhi, R. et al. (2014) On the representation of de Bruijn graphs. arXiv:1401.5383.

Chikhi, R. et al. (2016) Compacting de Bruijn graphs from sequencing gdata quickly

and in low memory. Bioinformatics. 32, i201-i208.

Chikhi, R. & Rizk, G. (2013). Space-efficient and exact de Bruijn graph representa-

tion based on a Bloom filter. Algorithms for Molecular Biology, 8(22), 1.

Conway, T.C. & Bromage, A.J. (2011) Succinct data structures for assembling large

genomes. Bioinformatics 27(4), 479.

Cormen, T.H. (2009) Introduction to Algorithms. MIT Press, Cambridge.

Drezen, E. et al. (2014) GATB: Genome Assembly & Analysis Tool Box. Bioinfor-

matics. 30(20):2959-2961.

Eggertsson, H.P. et al. (2017) Graph typer enables population-scale genotyping us-

ing pangenome graphs. Nature Genetics. 49:1654–1660.

El-Metwally, S. et al. (2016) LightAssembler: fast and memory-efficient assembly

algorithm for high-throughput sequencing reads. Bioinformatics. 32, 3215-

3223.

Ferragina, P. & Manzini, G. (2000) Opportunistic data structures with applications,

Proceedings of the 41st Annual Symposium on Foundations of Computer Sci-

ence, p.390, November 12-14.

Garrison, E. et al. (2017) Sequence variation aware genome references and read map-

ping with the variation graph toolkit. BioRxiv. DOI: 10.1101/234856.

Gnerre, S. et al. (2011) High-Quality Draft Assemblies of Mammalian Genomes

from Massively Parallel Sequence Data. Proceedings of the National Academy

of Sciences 108, no. 4, 1513-1518.

Guan, D. et al. (2016) deSPI: efficient classification of metagenomic reads with

lightweight de Bruijn graph-based reference indexing. BioRxiv. DOI:

10.1101/080200

Holley, G. et al. (2015) Bloom filter trie-a data structure for pan-genome storage.

WABI. DOI: 10.1007/978-3-662-48221-6_16.

Huang, W. et al. ART: a next-generation sequencing read simulator, Bioinformatics

(2012) 28 (4): 593-594.

Kokot, M. et al. (2017) KMC 3: Counting and Manipulating K-Mer Statistics. Bio-

informatics, 33, no. 17: 2759-2761.

Limasset, A. et al. (2018) Toward perfect reads: self-correction of short reads via

mapping on de Bruijn graphs. arXiv: 1711.03336.

Liu, B. et al. (2016) deBGA: read alignment with de Bruijn graph-based seed and

extension. Bioinformatics.32, 3224-3232.

Liu,C.-M. et al. (2014) GPU-accelerated BWT construction for large collection of

short reads. arXiv:1401.7457.

Li, D. et al. (2015) MEGAHIT: an ultra-fast single-vertex solution for large and

complex metagenomics assembly via succinct de Bruijn graph. Bioinformat-

ics.31, 1674-1676.

Luo, R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. Gigascience.1, 18.

Manber, U. & Myers, G. (1993) Suffix arrays: a new method for on-line string

searches. Siam J Comput. 22(5):935–48. doi:10.1137/0222058.

Marçais, G. & Kingsford, C. (2011) A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics. 27(6): 764-770.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/pubmed/?term=Baier%20U%5BAuthor%5D&cauthor=true&cauthor_uid=26504144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Graphical+pan-genome+analysis+with+compressed+suffix+trees+and+the+Burrows%E2%80%93Wheeler+transform
https://arxiv.org/find/q-bio/1/au:+Chikhi_R/0/1/0/all/0/1
https://arxiv.org/abs/1401.5383
https://www.ncbi.nlm.nih.gov/pubmed/?term=Drezen%20E%5BAuthor%5D&cauthor=true&cauthor_uid=24990603
https://www.ncbi.nlm.nih.gov/pubmed/?term=GATB%3A+Genome+Assembly+%26+Analysis+Tool+Box
https://www.ncbi.nlm.nih.gov/pubmed/?term=GATB%3A+Genome+Assembly+%26+Analysis+Tool+Box
https://www.ncbi.nlm.nih.gov/pubmed/?term=El-Metwally%20S%5BAuthor%5D&cauthor=true&cauthor_uid=27412092
https://www.ncbi.nlm.nih.gov/pubmed/?term=LightAssembler%3A+fast+and+memory-efficient+assembly+algorithm+for+high-throughput+sequencing+reads
http://bioinformatics.oxfordjournals.org/content/28/4/593.abstract
http://bioinformatics.oxfordjournals.org/content/28/4/593.abstract
https://arxiv.org/abs/1711.03336
https://www.ncbi.nlm.nih.gov/pubmed/?term=Li%20D%5BAuthor%5D&cauthor=true&cauthor_uid=25609793
https://www.ncbi.nlm.nih.gov/pubmed/?term=MEGAHIT%3A+an+ultra-fast+single-node+solution+for+large+and+complex+metagenomics+assembly+via+succinct+de+Bruijn+graph
https://www.ncbi.nlm.nih.gov/pubmed/?term=MEGAHIT%3A+an+ultra-fast+single-node+solution+for+large+and+complex+metagenomics+assembly+via+succinct+de+Bruijn+graph
http://dx.doi.org/10.1137/0222058
https://academic.oup.com/bioinformatics/search-results?f_Authors=Guillaume+Mar%c3%a7ais
http://bioinformatics.oxfordjournals.org/content/27/6/764
http://bioinformatics.oxfordjournals.org/content/27/6/764
http://bioinformatics.oxfordjournals.org/content/27/6/764
https://doi.org/10.1101/388454

deGSM

Marcus, S. et al. (2014) SplitMEM: a graphical algorithm for pan-genome analysis

with suffix skips. Bioinformatics. 30, 3476-3483.

Minkin, I. et al. (2016) TwoPaCo: An efficient algorithm to build the compacted de

Bruijn graph from many complete genomes. Bioinformatics. 33(24), 4024–4032.

Movahedi, N.S. et al. (2012) De novo co-assembly of bacterial genomes from mul-

tiple single cells. IEEE Bioinformatics and Biomedicine. DOI:

10.1109/BIBM.2012.6392618.

Okanohara, D & Sadakane, K. (2007) Practical entropy-compressed rank/select dic-

tionary. Proceedings of the Meeting on Algorithm Engineering & Expermiments,

60-70.

Pell, J et al. (2012) Scaling metagenome sequence assembly with probabilistic de

Bruijn graphs. Proceedings of the National Academy of Sciences.109,13272–

13277.

Røland, E.A. (2013) Compact representation of k-mer de Bruijn graphs for genome

read assembly. BMC Bioinformatics 14(1),313.

Roberts, M. et al. (2004) Reducing storage requirements for biological sequence

comparison. Bioinformatics.20, 3363-3369.

Siren, J. (2017) Indexing Variation Graphs. Proc. ALENEX, SIAM, pp. 13-27, Bar-

celona, Spain, January 17-18, 2017. DOI: 10.1137/1.9781611974768.2

Salmela, L. et al. (2017) Accurate self correction of errors in long reads us-

ing de Bruijn graphs. Bioinformatics. 33, 799-806.

Tomescu, A.I. & Medvedev, P. (2016) Safe and complete contig assembly via om-

nitigs. RECOMB 2016, LNBI, 9649: 152–163.

Wood, D. & Salzberg, S. (2014) Kraken: ultrafast metagenomic sequence classifica-

tion using exact alignments. Genome Biol. 15, R46

Zerbino, D.R. et al. (2008) Velvet: algorithms for de novo short read assembly using

de Bruijn graphs. Genome Res. 18, 821-829.

Zimin, A.V. et al. (2013) The MaSuRCA genome assembler. Bioinformatics 29:

2669–2677.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/388454doi: bioRxiv preprint

https://www.ncbi.nlm.nih.gov/pubmed/?term=Marcus%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25398610
https://www.ncbi.nlm.nih.gov/pubmed/?term=SplitMEM%3A+a+graphical+algorithm+for+pan-genome+analysis+with+suffix+skips
https://www.ncbi.nlm.nih.gov/pubmed/?term=Minkin%20I%5BAuthor%5D&cauthor=true&cauthor_uid=27659452
https://www.ncbi.nlm.nih.gov/pubmed/?term=Compacting+de+Bruijn+graphs+from+sequencing+data+quickly+and+in+low+memory
javascript:;
https://www.ncbi.nlm.nih.gov/pubmed/?term=Salmela%20L%5BAuthor%5D&cauthor=true&cauthor_uid=27273673
https://academic.oup.com/bioinformatics/article/2525585/Accurate-selfcorrection-of-errors-in-long-reads?searchresult=1
https://academic.oup.com/bioinformatics/article/2525585/Accurate-selfcorrection-of-errors-in-long-reads?searchresult=1
https://www.ncbi.nlm.nih.gov/pubmed/?term=Accurate+self+correction+of+errors+in+long+reads+using+de+Bruijngraphs
https://doi.org/10.1101/388454

