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Abstract 
Motivation: De Bruijn graph, a fundamental data structure to represent and organize genome se-

quence, plays important roles in various kinds of sequence analysis tasks such as de novo assembly, 

high-throughput sequencing (HTS) read alignment, pan-genome analysis, metagenomics analysis, 

HTS read correction, etc. With the rapid development of HTS data and ever-increasing number of as-

sembled genomes, there is a high demand to construct de Bruijn graph for sequences up to Tera-base-

pair level. It is non-trivial since the size of the graph to be constructed could be very large and each 

graph consists of hundreds of billions of vertices and edges. Current existing approaches may have 

unaffordable memory footprints to handle such a large de Bruijn graph. Moreover, it also requires the 

construction approach to handle very large dataset efficiently, even if in a relatively small RAM space. 

Results: We propose a lightweight parallel de Bruijn graph construction approach, de Bruijn Graph 

Constructor in Scalable Memory (deGSM). The main idea of deGSM is to efficiently construct the Bur-

rows-Wheeler Transformation (BWT) of the unipaths of de Bruijn graph in constant RAM space and 

transform the BWT into the original unitigs. It is mainly implemented by a fast parallel external sorting 

of k-mers, which allows only a part of k-mers kept in RAM by a novel organization of the k-mers. The 

experimental results demonstrate that, just with a commonly used machine, deGSM is able to handle 

very large genome sequence(s), e.g., the contigs (305 Gbp) and scaffolds (1.1 Tbp) recorded in Gen-

Bank database and Picea abies HTS dataset (9.7 Tbp). Moreover, deGSM also has faster or compa-

rable construction speed compared with state-of-the-art approaches. With its high scalability and effi-

ciency, deGSM has enormous potentials in many large scale genomics studies. 

Availability: https://github.com/hitbc/deGSM. 

Contact: ydwang@hit.edu.cn (YW) and bo.liu@hit.edu.cn (BL) 

Supplementary information: Supplementary data are available online. 

 

 

1 Introduction  

De Bruijn graph is a fundamental data structure to represent and organ-

ize genome sequences. It is widely used in many sequence analysis tasks  

such as de novo genome assembly (Zerbino et al., 2008; Gnerre et al., 

2011; Luo et al. 2012), high-throughput sequencing (HTS) read alignment 

(Liu et al., 2016; Siren, 2017), pan-genome analysis (Marcus et al., 2014), 

metagenomics species classification (Guan et al., 2016), transcript iso-

form identification and quantification (Bray et al., 2016) and HTS read 

correction (Salmela et al., 2017; Limasset, A. et al., 2018), etc..  

HTS is being ubiquitously applied in the field of genomics, supporting 

many large scale genome research projects on human populations and var-

ious species, and generating massive HTS datasets continuously. Cur-

rently, sequencing a large genome can produce a dataset in up to Tera base 

pairs (bps), e.g., the whole genome sequencing (WGS) dataset of the 20 

Gbp Picea abies genome is as large as 9.7 Tera bps. Moreover, the size of 

the datasets for population sequencing can be even larger. Meanwhile, as 
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the number of assembled genomes continues to rise, there have already 

been more than one assembled genomes for each specific species. These 

genomes are directly used for pan-genome analysis, or used as reference 

sequences for various tasks like read alignment (Liu et al., 2016), variant 

calling (Eggertsson et al., 2017), species classification (Guan et al., 2016), 

etc. However, the total size of these sequences is enormous, e.g., the sizes 

of contigs and scaffolds recorded in Genbank are over 305 Giga bps and 

1.1 Tera bps, respectively. 

De Bruijn graph has various applications on the analysis of these data. 

However, the construction of de Bruijn graph could be a major bottleneck 

due to two issues: 1) the large input sequence itself could lead to a huge 

number of the vertices; 2) the potential sequencing error of HTS datasets 

can make the number of vertices of the graph explosively increase. Under 

such circumstance, the size of the graph to be constructed would be very 

large and the graph construction approach needs to be highly scalable to 

adapt to commonly used computational environments.  

Many efforts have been made in the construction of de Bruijn graph. 

Basically, the proposed approaches can be categorized as hash-based and 

suffix-trie-based.  

Hash-based approaches generally build hash tables to represent and or-

ganize the vertices of de Bruijn graph. This approach is frequently used in 

de novo assembly (Zerbino et al., 2008; Gnerre et al., 2011; Luo et al. 

2012). In this category, two hash-based techniques, Minimizer and Bloom 

filter are widely used.  

Minimizer is the representative sequence selected from a group of ad-

jacent k-mers which have identical substring (Roberts et al., 2004; Wood 

and Salzberg, 2014). It is often used as seed to reduce the storage of k-

mers in hash table. Movahedi et al (Movahedi. et al., 2012) used mini-

mizer during de Bruijn graph construction to partition de Bruijn graph into 

slices. This helps to reduce the memory footprint of de novo assembly. 

Chikhi et al (Chikhi et al., 2014) proposed a novel algorithm, BCALM, 

which is based on frequency-based minimizer instead of the commonly 

used lexicographic order-based minimizer. Meanwhile, this work pro-

posed the DBGFM data structure which also takes advantage of FM-index 

to represent and compact the output of BCALM. Further, Chikhi et al 

(Chikhi et al., 2016) took advantage of a novel partitioning strategy of 

frequency-based minimizer to achieve better parallelization. It demon-

strates that the proposed approach has the ability to construct the graph for 

the HTS datasets of large genomes, e.g., >20 Gbp pine and spruce ge-

nomes.  

Bloom filter is a space-efficient probabilistic data structure that is used 

to check the presence of an element. This data structure can largely reduce 

the size of the graph due to its bit array-based design. However, false pos-

itives also could be introduced into the data structure due to probabilistic 

design. So specific methods are necessary to handle the false positives, 

usually with an extra cost of RAM space. Pell (Pell et al., 2012) used 

Bloom filter to store vertices and partition the whole graph into compo-

nents, which reduces the memory footprint of metagenome assembly. The 

experimental results indicate that there are about 15% false positive bits 

in Bloom filter-based data structure. Chikhi and Rizk (Chikhi and Rizk, 

2013) proposed a novel marking scheme along with an auxiliary structure 

to enumerate specific vertices, and Drezen et al(Drezen et al., 2014) 

demonstrated that this method is helpful in de novo assembly. Holley 

(Holley et al., 2015) proposed Bloom filter tree to index and query pan-

genome datasets. El-Metwally et al (El-Metwally et al., 2016) proposed a 

light-weight genome assembler using pattern-blocked Bloom filter to 

compress k-mers. TwoPaCo (Minkin et al., 2017) represents the non-

branching paths (unipaths) of the graph with single edges, and uses bloom 

filter to compactly store them. It achieves a small memory footprint during 

graph construction, which supports to build de Bruijn graph for large ge-

nomes on a modern server.  

Other Bit array-based data structures are also used in de Bruijn graph 

construction. For example, Conway and Bromage (Conway and Bromage, 

2011) represents and constructs de Bruijn graph by a compressed bit vec-

tor initially proposed by (Okanohara and Sadakane, 2007). 

Suffix trie-based data structures, such as suffix tree, Burrows-Wheeler 

Transformation (BWT), Ferragina-Manzini index (FM-index) (Ferragina 

and Manzini, 2000) and suffix array (Manber and Myers, 1993), are also 

used in de Bruijn graph construction. (Bowe et al., 2012) is the first effort 

to take advantage of XBW-transform to represent de Bruijn graph. The 

proposed data structure, succinct de Bruijn graph, has outstanding ability 

to compact de Bruijn graph, due to that the strings implied by the 

unipaths/unitigs can be succinctly represented. (Røland,2013) proposed a 

similar approach, named as KFM-index, which represents de Bruijn graph 

by the FM-index of the k-mers of the input sequence. Additionally, it is 

theoretically approved that the RAM usage can be reduced by keeping 

only a part of the graph in memory during construction. However, it does 

not provide an implementation which can work on large datasets. Li et al 

(Li et al. 2015) takes advantage of succinct de Bruijn graph to develop a 

metagenome assembler named as MEGAHIT. In this approach, both 

GPU-based and CPU-accelerated in-memory sorting approaches are used 

to construct the succinct de Bruijn graph of metagenome HTS dataset. 

This implementation has fast speed, but its memory footprint is large due 

to the in-memory design. Moreover, Marcus et al (Marcus et al., 2014) 

proposed a suffix tree-based approach, SplitMEM, to organize de Bruijn 

graph for pan-genome analysis. In this approach, a novel data structure, 

suffix skip, is introduced to facilitate the traversal of suffix links. It helps 

to efficiently decompose maximal exact matches into graph vertices, 

which is beneficial to pan-genome analysis. By taking advantage of the 

topological relationships between suffix trees and compressed de Bruijn 

graphs, SplitMEM can construct de Bruijn graph in linear time and space. 

Further, Baier et al (Baier et al., 2016) improves the time and space cost 

of SplitMEM with BWT and compressed suffix tree. 

The construction of very large de Bruijn graph could be widely used in 

many ongoing and forthcoming large scale genomic studies. However, 

there is still lack of tools with good ability to construct de Bruijn graph 

consisting of tens to hundreds of billions of vertices in commonly used 

computational environment with fast speed. Such approach is necessary 

to properly handle large datasets for both HTS data and assembled ge-

nomes. Herein, we propose de Bruijn Graph Constructor in Scalable 

Memory (deGSM), a highly scalable approach suitable for constructing 

very large de Bruijn graph. DeGSM is a suffix-trie-based approach, in the-

ory similar to succinct de Bruijn graph. Instead of directly constructing the 

graph itself, deGSM constructs the BWT of the unitigs of the graph and 

recovers the unitigs with the constructed BWT string.  Specifically, 

deGSM implements a fast parallel external sorting of the k-mers in the 

graph to build the BWT of unitigs. The implementation of the external 

sorting can fully consider the CPU and RAM configurations and improve 

the speed with limited computational resources. More importantly, a novel 

organization of the k-mers is used to always allow to keep only a part of 

k-mers in RAM, which is critical to achieve constant RAM space cost. 

DeGSM can be scalable to construct de Bruijn graph for the HTS dataset 

of a large genome (e.g., the 20 Gbp Picea abies genome), or all the contigs 

or scaffolds (upto 1.1 Tbp) recorded in GenBank with 16GB or less RAM. 

Meanwhile, deGSM also has faster or comparable construction speed 

compared with state-of-the-art approaches.  
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2 Methods 

 Preliminary 

Let a genome, S, be a sequence over the alphabet Σ = {𝐴, 𝐶, 𝐺, 𝑇}. The de 

Bruijn graph of 𝑆, D, is a directed graph, where the vertices consist of all 

the k-mers of S. For any pair of vertices of D, (𝑉𝑖 , 𝑉𝑗), there is a directed 

edge 𝑉𝑖 → 𝑉𝑗, if the k-1 suffix of 𝑉𝑖 is same to the k-1 prefix of 𝑉𝑗. A set of 

maximal non-branched paths (unipaths) can be derived from D. Each of 

the unipaths meets the following conditions: i) for the first vertex, the in-

degree is 0 or >1, and the out-degree is 1; ii) for the last vertex, the out-

degree is 0 or >1, and the in-degree 1; iii) for all the other vertices along 

the path, the in- and out-degrees are exactly 1. This definition follows pre-

vious studies (Tomescu and Medvedev, 2016), and the string implied by 

compacting a certain unipath is called a “unitig” (Gnerre et al., 2011; 

Zimin et al., 2013).  

For a given string T defined on Σ, the BWT of T$ is defined as the per-

mutation of the characters of T that, 𝐵𝑇[𝑖] = 𝑇[𝑆𝐴[𝑖] − 1], if 𝑆𝐴[𝑖] ≠ 0, 

and 𝐵𝑇[𝑖] = $, otherwise, where 𝑆𝐴[𝑖] indicates the starting position of 

the i-th lexicographically smallest suffix of T, and $ is an auxiliary char-

acter lexicographically larger than any character of Σ. 

Let the set of the unitigs of D be 𝑈 = {𝑈𝑖 , 𝑖 = 1, … , |𝑈|}, where |𝑈| is 

the number of the unitigs, and a string C = 𝑈1#𝑈2#…#𝑈|𝑈|$ is a specific 

permutation of the unitigs, where # is an auxiliary character lexicograph-

ically larger than any character of Σ, but smaller than $. D can be com-

pactly represented by the BWT of C (indicated as 𝐵𝐶). Herein, we term 

this representation as “unitig-BWT”, which is to some extent similar to 

the data structure used in DBGFM (Chikhi et al., 2014).   

𝐵𝐶 can be used as a self-index of D, i.e., all the vertices of D can be 

accessed by querying 𝐵𝐶 for the corresponding k-mers, and all the in- and 

out-edges of a given vertex can be accessed by querying 𝐵𝐶 for the k-mers 

corresponding to the connected vertices. It is also worthnoting that the 

edge query operation is only needed for the end vertices of unipaths when 

traversing D, since the traversing on the internal vertices of unipaths can 

be efficiently done by the LF-mapping operation of BWT (Ferragina and 

Manzini, 2000). Moreover, all the original unitigs can be directly derived 

from 𝐵𝐶 in linear time with the LF-mapping. 

Two additional definitions on C are given as following: 

k>-prefix: for any suffix of C starting from a position ≥k characters 

away from ‘#’, the corresponding k>-prefix is the length k prefix of the 

suffix. It is obvious that the k>-prefixes are the vertices (k-mers) of D. 

k<-prefix: for any suffix of C starting from a position < k characters 

away from ‘#’, the corresponding k<-prefix is the prefix of the suffix end-

ing at the next k-mer, if the length of the suffix is longer than k+1, or suffix 

itself, otherwise. 

A schematic illustration of these concepts is in Fig. 1.  
There are three characteristics of k>-prefix and k<-prefix as following, 

which are critical to the construction of 𝐵𝐶. 

1) Since all the vertices (k-mers) of D are distinct, the lexicographical 

orders of any two suffixes of C can be determined by only considering the 

corresponding k>-prefix or k<-prefix. Thus,𝐵𝐶 can be constructed by sort-

ing k>-prefixes and k<-prefixes. 

2) C can be presented by the various permutations of the unitigs, but the 

k>-prefix set is irrelevant to the permutation, since k>-prefixes are exactly 

the vertices of D. Under such circumstance, the k>-prefix set can be ob-

tained by only constructing the vertex set of D. 

3) Any k<-prefix can be seen as a concatenation between the end vertex 

of one unipath and the starting vertex of the next unipath, and this depends 

on the permutation of the unitigs. However, it is worthnoting that k<-pre-

fixes only depends on the permutation of the vertices at the two ends of 

the unitigs (Fig.1), which can be straightforwardly made with only the 

vertices at the two ends of the unipaths. In this situation, the k<-prefix set 

can be obtained by only identifying those end vertices, regardless of con-

structing the whole unitigs. 

These characteristics make it possible to construct 𝐵𝐶 by the construc-

tion and sorting of k>-prefixes and k<-prefixes. This is helpful to handle 

large genome sequence since all the steps can be implemented with con-

stant space cost. Specifically, deGSM takes advantage of these character-

istics to make a lightweight and efficient de Bruijn graph construction. 

 Overview of deGSM approach 

DeGSM constructs the 𝐵𝐶 representation of the de Bruijn graph D for a 

given genome S in five steps as following (a flowchart is in Fig.2): 

1) recognizing all distinct (k+2)-mers of S; 

2) sorting the (k+2)-mers in lexicographical order; 

3) using the sorted (k+2)-mers to build a sorted table of the vertices of 

D (i.e., the k>-prefixes), and recognize the vertices at the ends of unipaths; 

4) building k<-prefix set with the vertices at the ends of unipaths, and 

sorting all the k<-prefixes in lexicographical order; 

5) merging the sorted tables of k>-prefixes and k<-prefixes to construct 

the 𝐵𝐶 representation of D. 

All the steps are designed to guarantee constant RAM space cost and 

be affordable to the employed computers. Moreover, critical steps like 

(k+2)-mers sorting are also designed to accelerate the overall speed. A de-

tailed illustration of transformation from (k+2)-mer set to unitigs (includ-

ing GFA output) is in Supplementary Fig. 1 

Fig. 1. A schematic illustration of the deGSM method. (a) There is a large num-

ber of repetitive fragments in the reference genome sequence or sequencing data 

(strips with various colors). Here the repetition represented by blue strip has two 

copies et.al. (b) The copies of each repetitive sequence collapse into every uni-path 

of de Bruijn graph. (c) Make a specific permutation of all unipaths to form string C 

and different unipaths are separated by separator #. The k<-prefix can be generated 

from a local region every other 1 bp with the maximum length of 2k. The k>-prefix 

with a length of k starts at the position ≥k characters away from ‘#’. Under such 

circumstance, each k<-prefix has character # while the k>-prefix does not cross any 

separator. Merge k<-prefixes and k>-prefixes to generate 𝐵𝐶 
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 The enumeration of k-mers 

In deGSM approach, (k+2)-mers of the input genome sequence(s) are enu-

merated at first. There have been many fast and memory-scalable k-mer 

counting tools which are suitable for this task, such as Jellyfish2 (Marçais 

and Kingsford, 2011), KMC3 (Kokot et al. 2017), etc. Jellyfish 2 is em-

ployed in the current version of deGSM. It is also worthnoting that Jelly-

fish 2 is asked to run with limited RAM space. 

The k- and (k+1)-mers at two ends of the input sequence(s) are also 

enumerated with deGSM itself. These k- and (k+1)-mers are sorted to re-

move redundant ones in later steps, and they are merged with the (k+2)-

mers for further processing. 

 The sorting of k-mers 

DeGSM implements an efficient parallel block sorting and multi-way 

merging to sort the enumerated (k+2)-mers. The whole dataset is divided 

into blocks to fit the size of the user-defined RAM space. Each block is 

subsequently loaded into memory and processed. For each block, deGSM 

sorts the k-mers in the three steps as following.  

i) deGSM Splits the whole k-mer set into multiple subsets of the same 

size and assign them to each thread. In each thread, simply taking one k-

mer’s 8-mer prefix as the hash address for rapid locating its bucket. Mean-

while, counting the numbers of k-mers in the buckets. 

ii) deGSM allocates RAM space for each bucket according to its k-mer 

quantity in parallel. For one bucket, deGSM collects all of its k-mers from 

multiple threads to make k-mers in different buckets in lexicographic or-

der. 

iii) deGSM assigns the buckets to multiple CPU threads. Each thread 

performs a quick sorting on the k-mers of the corresponding bucket and 

outputs sorted k-mers to a temporary file. 

When all the (k+2)-mer blocks are sorted, a multiple-way merging is 

implemented to make a sorted table for all the (k+2)-mers. 

It is also worth noting that, for each of the (k+2)-mer, deGSM moves 

its first character to its end before sorting. This is useful for the next step 

to recognize the vertices at the ends of the unipaths. This can place (k+2)-

mers and the same middle k-mers together after sorting. And the in- and 

out-edges of the vertices of the de Bruijn graph (i.e., k-mers) are easy to 

be investigated. 

The k- and (k+1)-mers at two ends of the input sequence(s) are also 

sorted in a similar approach. During the sorting, each of the k- and (k+1)-

mers is seen as pseudo (k+2)-mers, i.e., (k+2)-mers with an auxiliary char-

acter flanking at the two (for k-mers) or one (for (k+2)-mers) sides of the 

k- and (k+1)-mers, respectively. This indicates the corresponding vertex 

connects to an auxiliary vertex of the graph. 

After sorting, deGSM removes all the redundant k- and (k+1)-mers and 

merges the sorted (k+2)-mers and pseudo (k+2)-mers, which are derived 

by the k- and (k+1)-mers, to construct a single sorted table (termed as 𝑇𝑘+2 

in the later sections).  

 The recognition of the types of vertices 

In 𝑇𝑘+2, each line indicates a specific combination of a vertex (k-mer) and 

its in- and out- edges. All the vertices are then categorized in four types, 

i.e., ‘I’, ‘Y+’, ‘Y-’, and ‘X’, indicating the single in and single out, single 

in and multiple out, multiple out and single in, multiple in and multiple 

out vertices, respectively. 

Due to the lexicographical order of the (k+2)-mers, all combinations of 

the same vertices with various edges are placed together in 𝑇𝑘+2. So it is 

easy to recognize the types of the vertices by directly checking the com-

binations with the same first k-mers. DeGSM directly traverses 𝑇𝑘+2 to 

mark the lines of 𝑇𝑘+2 by k-mer types. 

However, there are two exceptional situations as following (also refer 

to Supplementary Fig. 2 for a schematic illustration).  

1) For the multiple successor vertices of a Y+ type vertex, each of them 

is a starting vertex of a specific unipath, although it could be single in and 

single out. In this situation, deGSM marks such successor vertices as Y- 

type, for the simplicity of later steps. Precisely, deGSM checks all the ver-

tices having the same precursor. For each line of 𝑇𝑘+2, the first character 

can also be seen as the edge linking to a precursor, and the substring from 

2nd to k+1-th characters can be seen as the vertex itself. From this point 

of view, such successor vertices are also placed as neighbors in 𝑇𝑘+2. In 

practice, deGSM divides 𝑇𝑘+2 into blocks. The lines in each block have 

the same 2nd to k-th characters, indicating multiple vertices having the 

same k-1 prefix (Supplementary Fig. 2a). If some of the vertices have the 

same precursor, these vertices are just the successors which start unipaths. 

And deGSM marks the corresponding lines as Y- type. 

2) The multiple precursor vertices of a Y- type vertex are also end ver-

tices of various unipaths, and deGSM marks such vertices as Y+ type. 

DeGSM investigates the out-edges to find out these end vertices. As the 

lines corresponding to the precursor vertices have various first characters, 

they are not placed together in 𝑇𝑘+2. However, their substrings from 2nd 

to k-th characters are same to each other and their lexicographical orders 

still remain (Supplementary Fig. 2b). Under such circumstance, deGSM 

partitions 𝑇𝑘+2 into four blocks, and each of the blocks corresponds to the 

lines starting with a specific character (A/C/G/T). A 4-way traversing is 

implemented to find out the lines with same 2 to k substrings and the cor-

responding lines are grouped together to check the successors of the ver-

tices (Supplementary Fig. 2c). If the investigated vertices have the same 

successor, they are determined as the precursors of a Y- type vertex, and 

the corresponding lines are marked as Y+ type. 

Fig. 2. Flowchart of de Bruijn graph construction. Herein, various colored strips 

indicate repetitive fragments in S. The strips of different colors denote unipaths in C. 

The sorted k-mer sets are recorded in the external storage. The files that would never 

be used are to be deleted after each step. 
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After type identification, deGSM merges the corresponding lines for 

each of the vertices to generate a sorted k-mer table. This straightforwardly 

forms the sorted table of k>-prefixes. Moreover, four sorted k-mer tables 

are virtually constructed, each corresponds to a specific k-mer type. 

 The construction of k<-prefixes 

The sorted tables of Y+, Y-, and X type k-mers are used for formulating 

k<-prefixes. Since any permutation of the vertices at the two ends of the 

unitigs can be used to formulate a valid set of k<-prefixes, deGSM con-

structs a straightforward permutation. Precisely, assuming the sorted ta-

bles of Y+, Y-, and X type k-mers are respectively, 𝑦𝑖
+, 𝑖 = 1,… , |𝑌| , 

𝑦𝑗
−, 𝑗 = 1,… , |𝑌|, and 𝑥𝑘 , 𝑘 = 1,… , |𝑋|, where 𝑦𝑖

+, 𝑦𝑗
− and 𝑥𝑘are respec-

tively the Y+, Y-, and X type k-mers, 𝑖, 𝑗 and 𝑘 respectively indicate the 

lexicographical orders of the three tables, and |𝑌| and |𝑋| are respectively 

the numbers of Y+ and Y- type k-mers, and the number of X type k-mers. 

DeGSM builds a simple permutation as following:  

𝑃𝐶 = 𝑦1
−𝑦1

+#𝑦2
−𝑦2

+#……#𝑦|𝑌|
− 𝑦|𝑌|

+ #𝑥1#𝑥2#… . . #𝑥|𝑋|. 

This can be also seen as a subsequence of C, and all the k<-prefixes con-

sists of four categories of substrings of 𝑃𝐶: 

1) 𝑦𝑖
+[𝑚, 𝑘]#𝑦𝑖+1

− ,𝑚 = 1,… , 𝑘,𝑖 = 1,… , |𝑌|-1, where 𝑦𝑖
+[𝑚, 𝑘] is the 

substring of 𝑦𝑖
+ from the m-th character to the end of the k-mer; 

2) 𝑦|𝑌|
+ [𝑚, 𝑘]#𝑥1 , 𝑚 = 1,… , 𝑘 , where 𝑦|𝑌|

+ [𝑚, 𝑘]  is the substring of 

𝑦|𝑌|
+ from the m-th character to the end of the k-mer; 

3) 𝑥𝑖[𝑚, 𝑘]#𝑥𝑖+1,𝑚 = 1,… , 𝑘, 𝑖 = 1,… , |𝑋| − 1, where 𝑥𝑖[𝑚, 𝑘]is the 

substring of 𝑥𝑖 from the m-th character to the end of the k-mer; 

4) 𝑥|𝑋|[𝑚, 𝑘], 𝑚 = 1,… , 𝑘, where 𝑥𝑖[𝑚, 𝑘] is the substring of 𝑥|𝑋| from 

the m-th character to the end of the k-mer. 

A schematic illustration of the formulation of k<-prefixes is in Fig. 3. 

All the k<-prefixes are constructed on-the-fly by simply traversing the 

whole sorted k-mer table, and they are recorded in a temporary file. After 

collection, deGSM constructs a sorted table of k<-prefixes by an approach 

similar to (k+2)-mer sorting. 

 The generation of the BWT of unitigs and the recon-

struction of unitigs 

DeGSM merges the sorted tables of k>-prefixes and k<-prefixes to deter-

mine the lexicographical order of all the suffixes of C string. As the (k+2)-

mers are used in previous steps, the characters before the lexicographical 

order-determined suffixes are kept and the permutation of these characters 

are exactly 𝐵𝐶. 

Although unitig-BWT supports the query of any vertice and edge, the 

original unitigs are preferred in some applications. With 𝐵𝐶, it is straight-

forward to reconstruct all the unitigs with the LF-mapping. Each unitig 

sequence can be derived by backtracking from the last character ‘#’ on the 

bwt index, until the next ‘#’ is met. DeGSM provides a specific command 

for the conversion from unitig-BWT to original unitigs. 

 GFA format output 

DeGSM provides the function to output in GFA (Graphical Fragment As-

sembly) format, to fulfil the requirements of the emerging graph-based 

sequence analysis tools, such as vg (Garrison et al., 2017). Therefore, each 

unitig is considered as a segment (S) in GFA. And the link (L) is repre-

sented by edge (overlapping k-1-mer) between two unitigs, which are 

stored during bwt backtracking. DeGSM retrieves unitgs to identify these 

connections by constructing outgoing k-mers of each unitig in bwt index 

(Supplementary Fig. 1). 

 K-mers filtering with specific abundance cutoff 

K-mer filtration according to specific abundance cutoff is frequently used 

in sequence analysis tasks, such as genome assembly. For the filtered-out 

vertex, the out-edges of its prefix vertex or in-edges of its suffix vertex 

need to be modified, e.g., an end vertex can be changed to the internal 

vertex after its suffix vertex filtration out (Supplementary Fig.3a). 

During vertex type recognition, the adjacent vertices in graph are often 

distributed into different data blocks, each of which cannot be loaded into 

memory simultaneously. DeGSM generates a novel k-mer set (called 

‘pseudo k-mer’) as a signal to locate the prefix vertices or suffix vertices 

of the filter-out vertex (Supplementary Fig.3b). Meanwhile, deGSM sorts 

all pseudo k-mers and merge them with the reserved sorted k-mer set. Af-

ter that, deGSM modifies vertex’s type identification from the gathered 

identical k-mers (Supplementary Fig.3c). 

3 Results 

DeGSM was implemented on a series of assembled genome sequence da-

tasets and HTS datasets to assess its ability. Several state-of-the-art de 

Bruijn graph construction methods were also employed for comparison. 

All the benchmarks were conducted on a server with 2 Intel E5-2630v3 

CPUs at 2.4 GHz (12 cores in total), 128 GB RAM and 48TB hard disk 

space (7200rpm RAID SAS hard disk drive with XFS File System, no 

SSD is used). In the benchmarking, 8 CPU threads were used as default, 

and deGSM was asked to run with upto 32GB RAM (most of the datasets 

are much larger than that) to assess its scalability (no such limit for other 

Fig. 3. A schematic illustration of the formulation of k<-prefixes. The strips in 

various colors denote different k-mers. One line in  𝑇𝑘+2 represents a certain k-mer 

and one of the combination of its in- and out- edges. Sorted k>-prefixes can be derived 

by traversing 𝑇𝑘+2. The k>-prefixes are categorized into four types (‘I’, ‘Y+’, ‘Y-’, and 

‘X’), and k<-prefixes can be generated from the sets of ‘Y+’, ‘Y-’, and ‘X’ type k-mers.  
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methods). For all benchmarked methods, the runtime of k-mer enumera-

tion is excluded. All the command lines are available in Supplementary 

Notes. 

3.1 Benchmarking on genome sequence datasets 

DeGSM was assessed by two datasets from GenBank at first. Precisely, 

we downloaded the assembled contigs and scaffolds recorded in GenBank 

database (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank). All the domains 

(bacteria, viral, archaea, fungi, protozoa, invertebrate, plant, verte-

brate_mammalian and vertebrate_other) are included, and the sizes of the 

two datasets are 305 Gbp (contigs) and 1.1 Tbp (scaffolds), respectively. 

The lengths of these two sets of sequences are orders larger than that of a 

single genome have been assembled, and the construction of de Bruijn 

graph on such large scale datasets is beneficial to large population genome 

or pan-genome analysis, as well as the assembly of very large genomes or 

metagenomes.  

The results on the two GenBank datasets are shown in Table 1. DeGSM 

was asked to construct de Bruijn graph in various k-mer settings (k = 22, 

30, 62 and 126, respectively), which are related to the requirements of 

various kinds of sequence analysis tasks. The total time costs, the time 

costs of various steps, the numbers of the vertices and the unitigs of the 

constructed graph, and the sizes of the temporary files are assessed. The 

results indicate that each of the constructed graphs consists of hundreds of 

billions of vertices, which are consistent with the lengths of the corre-

sponding original sequences. The sizes of these graphs are one or two or-

ders larger than the ones reported in previous studies (Birol et al., 2013; 

Chikhi et al., 2016). However, the tasks can be done with moderate 

memory footprint. Moreover, the time cost of the graph construction is 

also affordable, i.e., the graph construction for GenBank contigs can be 

done in about one day, and several days for GenBank scaffolds. Consid-

ering the graph size, memory footprint and time cost, deGSM is scalable 

and cost-effective. 

Table 1. Statistics on GenBank Contig and GenBank Scaffold with vari-

ous k-mer settings 

Dataset Statistics k=22 k=30 k=62 k=126 

GenBank 

Contig 

 

k+2-mer set sorting time 319m 570m 905m 1381m 

k-mer type recognition time 66m 69m 93m 145m 

k<-prefixes construction time 298m 174m 204m 370m 

BWT generating time 361m 197m 359m 677m 

Total time 1044m 1010m 1561m 2573m 

#end vertices (× 109) 13.0 4.3 1.6 0.8 

#internal vertices (× 109) 92.8 114.3 132.0 141.6 

#unipaths(× 109) 7.9 2.4 0.9 0.4 

Disk space 1.7TB 3TB 5.4TB 9.8TB 

GenBank 

Scaffold 

k+2-mer set sorting time 2123m 4270m 7421m  

k-mer type recognition 365m 443m 532m  

k<-prefixes generating time 2970m 1328m 1465m  

BWT generating time 3601m 911m 1394m  

Total time 9059m 6952m 10812m  

#end vertices (× 109) 138.4 33.5 10.1  

#internal vertices (× 109) 366.4 606.2 747.2  

#unipaths(× 109) 90.7 18.9 5.4  

Disk space 34TB 16TB 31TB  

The runtimes of the steps of deGSM are in minutes (m) and the disk space of tempo-

rary files are in terabytes (TB). 

DeGSM usually requires large hard disk space, as it produces several 

large temporary files to store the intermediate results of k-mer sorting and 

type recognition. For the two GenBank datasets, the temporary files occu-

pied many terabytes hard disk space, moreover, the result on the GenBank 

scaffold dataset with k=126 is not shown due to that the temporary file 

size exceeds the hard disk space of the machine (48 TB). This could be a 

drawback of this approach, although a computer with large hard disk space 

is not hard to be available. Moreover, these files can raise intensive I/O 

operations, which affects the construction speed. It is observed that 

deGSM is faster with larger memory footprint, since more data can be 

loaded at once and I/O operations are reduced. 

DeGSM was also implemented on the GenBank contig dataset with var-

ious multiple thread configurations (2, 4, 8, 12 and 16 threads). The time 

costs are in Table 2. The result indicates that time cost can be nearly 50% 

reduced with more threads. However, speedup attenuated due to that a few 

steps of deGSM are still hard to be operated in parallel way, such as the 

construction of k<-prefix and BWT generation. These steps have intensive 

multiple-way merging and I/O operations and are still non-trivial to make 

good parallel implementations.  

Table 2. Runtimes with various numbers of threads for the dataset of 

GenBank Contigs (k=55) 

Dataset 2 threads 4 threads 8 threads 12 threads 16 threads 

GenBank contig 2012m 1678m 1508m 1338m 1234m 

The runtimes in minutes (m) and the memory footprint is limited to 32GB. 

We tried to implement three other state-of-the-art de Bruijn graph con-

struction approaches, TwoPaCo, MEGAHIT and a BWT-based method 

(Baier et al, 2016), on the two GenBank datasets for comparison. However, 

all the three methods collapsed, mainly due to the fact that the RAM usage 

exceeds the 128 GB RAM space of the machine. To make a fair compari-

son, we benchmarked the methods on a smaller dataset (termed as Gen-

Bank-small) that all the methods can be successfully run. This dataset built 

by randomly selecting 61 files of the GenBank contigs, and its size is 3.1 

Gbp similar to a human genome.  

Table 3. Runtimes of the small GenBank contig dataset (k=31) 

Dataset Statistics deGSM TwoPaCo MEGAHIT Bwt-based method 

GenBank-

small 

Memory 16GB 74GB 79GB 8G 

Time 18m + 3m 120m 34m 104m 

The runtimes are in minutes (m) and memory footprints are in giga bytes (GB). It is 

worthnoting that the runtime of deGSM consists of two parts, which denotes the con-

struction of the BWT of the unitigs and the transformation from BWT to the original 

unitigs. 

The result of GenBank-small dataset is shown in Table 3. Only the re-

sult of k=31 is shown, as TwoPaCo collapsed with larger k parameter set-

ting again, due to its large memory footprint. It is observed that deGSM 

has outstanding speed, that is several times faster than TwoPaCo and the 

BWT-based method and outperforms MEGAHIT.  

 Considering the ability to construct very large graphs, small memory 

footprints and relatively fast speed, deGSM is scalable and useful to han-

dle very large genome sequence datasets.  

3.2 Benchmarking on HTS datasets 
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To assess the ability of deGSM to construct de Bruijn graph for HTS 

data, we implemented deGSM on a high coverage HTS dataset of the 20 

Gbp Picea abies genome. The dataset (SRA accession: ERP007725) con-

sists of 94.9× 109reads in 52-202 bps produced by Illumina platforms. 

Two k-mer settings were used (k = 29 and 53) in the assessment to mimic 

commonly used configurations in de novo assembly.  

K-mers are often filtered in genome assembly, since k-mers having low 

quality bases or low abundance are usually false positive ones produced 

by sequencing errors. The rules of the filtration are of the tradeoffs be-

tween sensitivity and specificity. And various rules have been used in pro-

posed de novo assembly approaches. In this assessment, two rules were 

respectively used for the two k-mer settings, i.e., i) for k=29, a k-mer is 

filtered out if it occurs less than 3 times; and ii) for k=53, a k-mer is filtered 

out only if there is at least one base having very low Phred Quality Score 

(Q<3), which indicates a failure in sequencing. These two rules are quite 

conservative, i.e., they focus on keeping more true positive k-mers, but 

prevent an explosive number of k-mers which may make the temporary 

files be out of hard disk space. The rules are similar to that of some exist-

ing de novo assembly approaches, which are designed to achieve high sen-

sitivity in initial steps.  

Table 4. Statistics on Picea abies with respect to different memory foot-

prints 

Memory Statistics k=29 l=3 k=53 q=’$’ 

M=16GB k+2-mer set sorting time 7266m 3826m 

k-mer type recognition 42m 297m 

k<-prefixes construction time 879m 6752m 

BWT generating time 1347m 11006m 

Total time 9534m 21881m 

#end vertices (× 109) 17.9 43.7 

#internal vertices (× 109) 52.0 359.1 

#uni-paths (× 109) 11.6 24.9 

Disk space(T)  14TB 42TB 

M=32GB k+2-mer set sorting time 5369m 2946m 

k-mer type recognition 40m 254m 

k<-prefixes construction time 754m 5821m 

BWT generating time 774m 6461m 

Total time 6937m 15482m 

The runtimes of the steps of deGSM are in minutes (m) and the disk space of tempo-

rary files are in terabytes (TB). 

The results on the Picea abies dataset are shown in Table 4. The sizes 

of the constructed graphs with k=29 and 53 are on the same order of the 

GenBank contig and scaffold datasets. It is also worth noting that, the 

number of the vertices of the two graphs (69.9 ×109 and 402.8 ×109, re-

spectively) are much higher than the length of Picea abies genome (about 

20 Gbp). Moreover, the number of 53-mers is about 6 times larger than 

that of 29-mers. This indicates that there exist serious sequencing errors 

and many false positive k-mers still remain after the filtration, which 

makes explosive growth on graph size. This could be difficult for many 

current de novo assembly approaches as the memory footprint may dras-

tically increase. Meanwhile, such case can be handled by deGSM well.  

The time costs of HTS datasets are higher than those of GenBank da-

tasets. This is mainly caused by the large amount of false positive k-mers. 

Most of the false positive k-mers can produce extra branches, which can 

make numerous end vertices and very short unitigs. These end vertices 

greatly increase the time costs of some steps of deGSM, since the merging 

of the k-mers raises intensive I/O operations. However, this performance 

degradation can be mitigated with less false positive k-mers, since there 

would be less extraordinary short unipaths and end vertices  and the time 

cost to handle these vertices can be greatly reduced. This is partially sug-

gested by another benchmarking on a simulated Picea abies HTS dataset 

with lower sequencing error (shown below), that the time cost largely de-

creases with less false positive k-mers.  

In practice, the number of false positive k-mers strongly depends on the 

quality of HTS data and the adopted filtration rule, i.e., better sequencing 

quality can greatly reduce false positive k-mers, meanwhile, many ad-

vanced filtration methods have been proposed, which can also effectively 

filter such k-mers out. With less false positives, deGSM can still effi-

ciently construct de Bruijn graph, even if the number of true positive k-

mers is huge (considering that of the two GenBank datasets). Under such 

circumstance, deGSM can be also beneficial to HTS data analysis tasks 

such as de novo assembly, especially with effective k-mer filtration ap-

proaches. 

DeGSM is compared with two state-of-the-art de Bruijn graph con-

struction methods for HTS datasets, BCALM2 and MEGAHIT, on two 

simulated HTS datasets. These two methods are out of RAM space for the 

real Picea abies HTS dataset. In precise, we used ART (Huang et al., 2012) 

to simulate two HTS datasets. One (termed as PA-sim) is a 70X Picea 

abies HTS dataset with moderate sequencing error rate. And the other one 

(termed as GenBank-sim) is a 6X simulated HTS dataset from a part of 

GenBank contigs (10.8GB in total) with low sequencing error. The results 

on these two datasets are listed in Table 5. 

Table 5. Runtimes of the simulated datasets from Picea abies genome 

and GenBank contigs (k=51) 

Dataset Statistics deGSM BCALM2 MEGAHIT 

PA-sim Memory 32GB 79GB  

Time 3660m + 67m 1158m  

GenBank-

sim 

Memory 16GB 41GB 95GB 

Time 450m + 15m 270m 294m 

The runtimes are in minutes (m) and memory footprints are in terabytes (TB). It is 

worthnoting that the runtime of deGSM consists of two parts, which denotes the con-

struction of the BWT of the unitigs and the transformation from BWT to the original 

unitigs. The abundance cutoffs are set to 3 for PA-sim and 2 for GenBank-sim. 

On PA-sim, k is set to 51 as this k-mer size is similar to those commonly 

used settings in de novo assembly. Meanwhile, only the k-mers occurred 

less than 3 times were filtered out. DeGSM is slower but still affordable 

and comparable to that of BCALM2. False positive k-mers are still the 

main issue causes the slowdown of deGSM, i.e., many false positive k-

mers still remain after filtration, although the sequencing error is in mod-

erate level. However, this is not as serious as that of the real Picea abies 

HTS dataset, i.e., the proportion of false positives is lower, and the graph 

can be constructed with obviously faster speed. MEGAHIT collapsed on 

PA-sim due to out of memory space.  

To further investigate the impact of false positives on the graph con-

struction, deGSM is implemented on GenBank-sim, which has a low se-

quencing error. Both of BCALM2 and MEGAHIT can construct the graph 

with the 128 GB RAM space. The time cost of deGSM is much closer to 

that of BCALM2 and MEGAHIT. This indicates that the speed of deGSM 

can be substantially improved with lower sequencing error, due to less 

false positives.  

The results of BCALM2 and MEGAHIT indicate the advantage of in-

memory approaches. The I/O operations can be greatly reduced.  It is also 
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easier to implement parallel operations, such as the thread-safe queues and 

Minimal Perfect Hash Function (MPHF) (Cormen, 2009) of BCALM2, 

and the in-memory parallel sorting (CX1 algorithm) (Liu et al., 2014) of 

MEGAHIT, to accelerate the speed. However, the data structures used by 

in-memory approaches may require a prohibitively large RAM space, 

which is a bottleneck to handle large datasets.  

4 Discussion 

Large scale sequence analysis is promising in many cutting edge genomic 

studies nowadays. With the explosive growth of HTS data and assembled 

genomes, there is a high demand to analyze sequences in Tera bp scale. 

As a fundamental data structure, de Bruijn graph may play an important 

role. However, it is still lack of highly scalable de Bruijn graph construc-

tion approaches which can well handle such large sequences, especially, 

the RAM space of computer is usually being limited in practice. As it is 

hard to unlimitedly increase RAM space, the lack of effective de Bruijn 

graph construction approaches could make it a bottleneck to many forth-

coming sequence analysis tasks, especially the size of the sequence to be 

handled is ever-increasing.  

Herein, we propose a highly scalable de Bruijn graph construction ap-

proach, deGSM, which can well handle very large sequences. Like other 

suffix-trie-based de Bruijn graph construction approach, deGSM takes ad-

vantage of the relationship between suffix trie and de Bruijn graph. Taking 

advantage of the novel organization and efficient external sorting of k-

mers, deGSM can effectively build the BWT of the unitigs, i.e., the unitig-

BWT representation of de Bruijn graph. In theory, deGSM is capable of 

constructing any size de Bruijn graph with any given RAM space. In prac-

tice, the implementation of deGSM fully considers the configurations of 

commonly used computers, to achieve a balance between speed and RAM 

usage. The benchmarking results on a series of very large genome se-

quences and HTS datasets demonstrate that deGSM can construct very 

large de Bruijn graph (one or more orders larger than that of previous stud-

ies) in affordable time, with only a moderate hardware configuration. This 

could be very beneficial to break through the bottleneck of large de Bruijn 

graph construction. 

A drawback of deGSM is that the time costs of the multiple way merg-

ing-related steps are quite large, especially when there are a large propor-

tion of false positive k-mers caused by serious sequencing errors in HTS 

data. Due to the serial processing and intensive I/O operations, it is non-

trivial to reduce the time greatly. However, this can be mitigated with less 

false positive k-mers. In this situation, an advanced k-mer filtration 

method could be very helpful, since it can reduce false positive k-mers 

while keeping true positive ones. Meanwhile, ubiquitously used SSD 

could be also helpful as it can greatly improve the speed of I/O operations 

on external storage.  

It is also worth noting that, a machine with large RAM could be still 

required to transform the BWT string into untigs, as the entire BWT string 

need to be loaded into RAM. However, this requirement is not hard to 

fulfill, since the BWT string is a very compact de Bruijn graph represen-

tation and its size is not very huge, e.g., 87 Gigabytes for the GenBank 

contig dataset. This can be handled by a machine with large RAM space, 

while time cost of the transformation is linear to the length of the BWT 

string which is not large. Moreover, it only needs to execute once to obtain 

all the original unitigs. And the unitigs could be further re-used in various 

ways with less RAM space. For example, the unitigs could be compressed 

with advanced compression approaches to make a more compact repre-

sentation of the de Bruijn graph. And for some tasks, like scaffolding, pan-

genome analysis, metagenomics HTS read classification, etc., it is also 

possible to load only a portion of unitigs instead of the entire graph into 

memory.  

Overall, with its scalability, deGSM is a promising tool for the de Bruijn 

graph construction of large sequences. It may have enormous potentials in 

large scale genomic studies.  
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