Hicks et al 1

1 A Pentatricopeptide Repeat Protein in the *Plasmodium* apicoplast is essential and shows

2 sequence-specific RNA binding

- 3
- 4 Joanna L. Hicks¹, Imen Lassadi, Emma Carpenter, Madeleine Eno, Alexandros Vardakis,
- 5 Ross F. Waller, Christopher J. Howe*, R. Ellen R. Nisbet
- 6 Department of Biochemistry, Hopkins Building, Downing Site, University of Cambridge
- 7 CB2 1QW Cambridge, United Kingdom
- ¹ now at Faculty of Science, Waikato University, Hamilton, New Zealand
- 9 *Corresponding author
- 10 ch26@cam.ac.uk
- 11 Keywords: RNA processing, apicoplast, plastid, apicomplexa, *Plasmodium, Toxoplasma*
- 12 Short title A single *Plasmodium* apicoplast PPR
- 13

Hicks et al 2

14 ABSTRACT

15	The malaria parasite <i>Plasmodium</i> and other apicomplexans such as <i>Toxoplasma</i> evolved from
16	photosynthetic organisms and contain an essential, remnant plastid termed the apicoplast.
17	Transcription of the apicoplast genome is polycistronic with extensive RNA processing.
18	Little is known about the mechanism of post-transcriptional processing. In plant chloroplasts,
19	post-transcriptional RNA processing is controlled by multiple pentatricopeptide repeat (PPR)
20	proteins. Here, we present the biochemical characterisation of the single apicoplast-targeted
21	PPR protein. Apicoplast PPR1 is essential, and binds specific RNA sequences corresponding
22	with previously characterized RNA processing sites. We identify the specific binding motif
23	of PPR1. In RNAse protection assays, PPR1 shields apicoplast transcripts from ribonuclease
24	degradation. Our results show that apicoplast RNA processing is under the control of a single
25	protein, thus presenting an Achilles' heel for the development of new anti-malarial drugs.

Hicks et al 3

26 **INTRODUCTION**

27	The malaria parasite Plasmodium falciparum and related apicomplexan parasites such as
28	Toxoplasma evolved from photosynthetic organisms and contain a remnant plastid known as
29	an apicoplast (Gardner, Williamson, & Wilson, 1991; Howe, 1992; McFadden, Reith,
30	Munholland, & Lang-Unnasch, 1996). The ability to photosynthesise has been lost yet the
31	apicoplast remains essential for parasite survival. The apicoplast genome encodes 30 proteins,
32	two rRNAs and 25 tRNAs (Wilson et al., 1996). Primary RNA transcripts are polycistronic
33	and there must be extensive RNA processing to produce individual tRNA, rRNA and mRNA
34	molecules. Many mRNA transcripts show discrete ends coinciding with tRNA sequences,
35	while others show heterogeneous ends within protein coding sequences (R. Ellen R. Nisbet,
36	Kurniawan, Bowers, & Howe, 2016; R. E. R. Nisbet & McKenzie, 2016). The processing of
37	polycistronic transcripts to individual RNAs requires both site recognition and RNA cleavage.
38	

39 In plants, the primary agents through which the nucleus exerts control on organelle gene 40 expression are pentatricopeptide repeat (PPR) proteins. PPR proteins are encoded in the 41 nuclear genome and are targeted to the mitochondrion or plastid (Barkan & Small, 2014). 42 Plants contain many hundreds of PPRs (Lurin et al., 2004). By contrast, genomes of algae 43 and non-photosynthetic eukaryotes encode relatively few PPR proteins (Manna, 2015; 44 Tourasse, Choquet, & Vallon, 2013). PPR proteins are involved in all aspects of organelle 45 RNA biology, including splicing, editing, transcript stability and translation. In plants, 46 chloroplast PPR mutants show defects in fertility and embryo and seed development (Bryant, 47 Lloyd, Sweeney, Myouga, & Meinke, 2011; Lurin et al., 2004; Prikryl, Rojas, Schuster, & 48 Barkan, 2011; Sosso, Canut, et al., 2012; Sosso, Mbelo, et al., 2012). Additionally, a

Hicks et al 4

49 mitochondrial mutation which causes cytoplasmic male sterility (pollen sterility) is

suppressed by a PPR protein (Brown et al., 2003).

51

52	PPR proteins are sequence-specific RNA-binding proteins. They contain 2-30 tandem repeats,
53	each repeat comprising a 35-amino acid motif (Manna, 2015; Prikryl et al., 2011). The PPR
54	protein family can be divided into two classes: (1) the P-class which contain only the 35
55	amino acid repeats which stabilize specific RNAs by binding to the 5' or 3' termini of RNA
56	transcripts and providing a barrier to exonuclease digestion (Lurin et al., 2004; Pfalz,
57	Bayraktar, Prikryl, & Barkan, 2009; Prikryl et al., 2011; Zhelyazkova et al., 2012); (2) the
58	PLS-class which contains repeats of 31-36 amino acids together with further domains at the
59	carboxyl terminus of the protein. The PLS class can be further divided into E and DYW
60	subclasses, both implicated in RNA editing, carrying out a deamination reaction converting
61	specific cytidines to uridine in plant organelles.
62	
63	Very little is known about the molecular mechanisms of post-transcriptional processing in the
64	apicoplast. A number of nucleus-encoded, apicoplast-targeted proteins have been identified
65	which may function in RNA processing. Only one RNA-binding protein (P. vivax
66	PVX_084415) has been partially characterized, although the stability of the heterologously
67	expressed protein was such that it was not possible to carry out functional assays, though it

did bind to uridine rich RNA (García-Mauriño et al., 2018).

69

Here, we report the identification of a single apicoplast PPR protein. We show that this
protein, designated PPR1, is localized within the apicoplast of both *Plasmodium falciparum*

- Hicks et al 5
- 72 and *Toxoplasma gondii*. It is essential for growth of *T. gondii*. Biochemical characterisation
- 73 of the *P. falciparum* PPR protein shows it binds to a specific RNA sequence and protects
- 74 RNA transcripts from degradation by ribonucleases. Although the presence of a PPR
- 75 proteins in the apicoplast is not unexpected, the dependence of a plastid on just a single PPR
- 76 protein is unique and identifies PPR1 as a good potential drug target.

Hicks et al 6

77 **RESULTS**

78 A single apicoplast PPR protein present in both Plasmodium and Toxoplasma

- 79 Searches of the *P. falciparum* genome for genes encoding PPR proteins identified only two
- 80 genes, *Pf*PPR1 (PF3D7_1406400 (PF14_0061)) and *Pf*PPR2 (PF3D7_1233300
- 81 (PFL1605W)). Both genes encode proteins with 10 PPR motifs, as predicted by TPRpred
- 82 (Karpenahalli, Lupas, & Söding, 2007). PfPPR1 belongs to the P-class of PPR proteins, as
- the repeats all comprise 35 amino acids, and the final PPR motif is situated at the C-terminus
- of the protein. *Pf*PPR2 may belong to the PLS class, as its PPR elements are not located at its
- 85 C-terminus. Orthologues of both *Pf*PPR1 and *Pf*PPR2 were found in all *Plasmodium* species
- 86 with no evidence of paralogues created by lineage-specific gene duplications.

87

88	For a protein to be targeted to the apicoplast it must contain both a signal peptide and a
89	plastid-targeting sequence. PfPPR1 and PfPPR2 were analyzed by PlasmoAP and PlasMit for
90	putative apicoplast and/or mitochondrial localization signals (Bender, van Dooren, Ralph,
91	McFadden, & Schneider, 2003; Foth et al., 2003). PfPPR1 analysis by PlasmoAP resulted in
92	3/4 positive tests for a signal peptide and 5/5 positive tests for an apicoplast targeting peptide,
93	while PlasMit gave a prediction of 99% for not being mitochondrial. This is consistent with
94	an overall strong prediction that <i>Pf</i> PPR1 traffics to the apicoplast. PlasmoAP analyses of
95	PPR1 sequences from other <i>Plasmodium</i> species similarly predicted that most have an
96	apicoplast localization (Supplementary Table S1), the exceptions being those encoded on
97	genomes with a high GC content, where PlasmoAP is less accurate (Foth et al., 2003).
98	Alignments of PPR1 show that the protein is well conserved across Plasmodium species
99	(Figure S1). <i>Pf</i> PPR2 was predicted to lack both a signal peptide and a mitochondrial targeting
100	sequence so its location is unknown, but is unlikely to be apicoplast targeted.

Hicks et al 7

101	To test for the presence of PPRs more broadly in the Apicomplexa we searched for
102	homologues in Toxoplasma and Cryptosporidium. Analysis of the Toxoplasma genome using
103	BLAST and TPRPred, identified five PPR proteins. Only one protein (TGGT1_244050,
104	T_g PPR1) contained a predicted signal peptide followed by a plastid-targeting sequence as
105	analyzed by SignalP and iPSORT (Bannai, Tamada, Maruyama, Nakai, & Miyano, 2002;
106	Nielsen, 2017). None of the other four proteins was predicted to include a signal peptide. This
107	indicates that there is only one apicoplast targeted PPR protein in Toxoplasma, as is the case
108	in Plasmodium spp. The apicomplexan Cryptosporidium, which has lost the apicoplast, did
109	not contain any genes encoding PPR proteins.
110	To test for the localization of the <i>Pf</i> PPR1 protein, we expressed recombinant <i>Pf</i> PPR1 in
111	Escherichia coli, raised poly-clonal antisera in rabbits and used immunofluorescence
112	microscopy to locate this protein. The signal from cells stained with anti-PfPPR1 co-localized
113	with apicoplast-located GFP in the P. falciparum D10-ACP _L parasite line (Waller, Reed,
114	Cowman, & McFadden, 2000) (Figure 1). This confirmed the predicted apicoplast-
115	localization of PfPPR1. A Western blot of P. falciparum lysate probed with the anti-PfPPR1
116	antibody showed no detectable band, presumably due to low expression of the endogenous
117	protein.
118	To test for the localization of the Toxoplasma TgPPR1, a 3'-PPR1-mCherry fusion construct
119	was created to tag the endogenous $TgPPR$ gene. A Western blot probed with antibodies to the
120	mCherry reporter protein showed a faint band, corresponding to low expression levels of the
121	mature fusion protein (Figure 2A, TgPPR1-mCherry), but no signal was apparent by
122	fluorescence microscopy. When the endogenous PPR promoter was replaced by the inducible
123	t7s4 promoter, in cells designated i $\triangle Tg$ PPR1-mCherry, a higher expression level of this
124	PPR-fusion was seen by Western blot. Furthermore, two bands were present, of apparent
125	sizes consistent with the mature protein and a preprocessed PPR targeting intermediate still

Hicks et al 8

bearing the predicted apicoplast targeting peptide (Figure 2A). The presence of these two
bands is characteristic for many apicoplast-targeted proteins (Waller et al., 2000). Given the
presence of only the shorter, processed band when PPR1-mCherry fusion was expressed from
the native promoter, this would indicate near-complete processing under normal expression
levels.

131 To confirm apicoplast localization, we performed an immunofluorescence assay on the

132 $i \triangle PPR1$ -mCherry cells (green) co-stained with streptavidin-594 (red) which serves as an

apicoplast marker due to endogenous biotinylated apicoplast proteins (Chen et al., 2015).

134 Using this cell line we could detect *Tg*PPR1-mCherry location and observed it co-locating

135 with the apicoplast steptavidin marker (Figure 2B). We conclude that the PPR protein is

136 localized to the apicoplast, and is normally expressed at a very low level.

137 **PPR1** is essential for normal growth

138 As PPR proteins in plants are known to be essential for chloroplast function, we tested if the 139 apicoplast PPR1 was also important for parasite growth. Knock-down of T_g PPR1 in the 140 $i \Delta T_g PPR1$ -mCherry line is induced by the addition of ATc, which represes the t7s4 141 promoter required for PPR1 expression. ATc treatment of $i \triangle T_g$ PPR1-mCherry showed rapid 142 depletion of T_g PPR1-mCherry with the preprocessed protein undetectable within 12 hours of 143 treatment, and no protein detected after 48 hours by Western blot (Figure 2C). To test for a 144 growth phenotype with PPR1 depletion we used a $i \triangle T_g$ PPR1 cell line (i.e. t7s4 promoter and 145 no mCherry fusion). Without ATc-induced depletion these cells showed normal growth by an 146 eight-day plaque assay. With ATc treatment no plaques were observed indicating a strong 147 growth inhibition phenotype in cells depleted of TgPPR1 (Figure 2D). This same growth 148 inhibition phenotype was also seen for $i \triangle T_g PPR$ -mCherry with ATc treatment (not shown).

Hicks et al 9

149	These results are consistent with $TgPPR1$ gene disruption being reported to have a negative
150	growth phenotype in a genome-wide CRISPR knockout screen (Sidik et al., 2016). Similarly,
151	in Plasmodium berghei a recent genetic screen showed that the PPR1 orthologue
152	(PBANKA 1035800) is also essential to blood-stage growth (Bushell et al., 2017). Together
153	these data suggest that the apicoplast PPR1 is broadly essential to apicomplexan parasites.
154	
155	PfPPR1 binds in vitro transcribed apicoplast transcripts
156	We then tested if <i>Pf</i> PPR1 would bind apicoplast RNA transcripts. The recombinant <i>Pf</i> PPR1
157	was assessed for folding by circular dichroism which revealed a folded, alpha helical protein
158	consistent with the alpha helical nature of PPR proteins (Supplementary Figure S2). The
159	protein eluted as a dimer from a gel filtration column (see below), and this dimerization was
160	confirmed by analytical ultracentrifugation following cleavage of the TRX-His $_6$ tag by HRV
161	3C protease (Supplementary Figures S3 and S4). The observed folding and dimerization is
162	consistent with other reported plant PPR proteins (Barkan et al., 2012; Ke et al., 2013) and
163	indicates an appropriate conformation of our purified <i>Pf</i> PPR1.
164	
165	Based on the results of Nisbet et al (R. Ellen R. Nisbet et al., 2016), we generated apicoplast
166	RNA in vitro transcripts spanning the tufA to clpC region of the apicoplast genome as this
167	shows two clearly defined processing sites (at the tRNA-Phe and tRNA-Trp genes), and a
168	second RNA transcript spanning the LSUrRNA to rpoB region that shows a processing site at
169	tRNA-Thr. To test for PfPPR1-binding we biotinylated the 3' end of each transcript and

170 performed pull-down experiments against the *Pf*PPR1 protein. *Pf*PPR1 was observed to bind

to both transcripts, Figure 3A. As a control, PPR protein was replaced by a DNA-binding

Hicks et al 10

	172	protein from Myca	bacterium smegmatis	(AmtR), which had	been expressed and isolated	ł
--	-----	-------------------	---------------------	-------------------	-----------------------------	---

using the same procedure as *Pf*PPR1 (Petridis et al.). No binding to AmtR was seen.

174

175 *PfPPR1 shows RNA Sequence-Specific Binding*

176 We next sought to determine if *Pf*PPR1 had a sequence-specific preference for RNA-binding.

177 Analysis of the *Pf*PPR1 amino acid sequence using programs designed for the prediction of

178 plant PPR RNA-binding sequences (Barkan et al., 2012; Takenaka, Zehrmann, Brennicke, &

179 Graichen, 2013) did not result in any sequence predictions, presumably due to low sequence

180 identity between plant and apicoplast PPR proteins. To determine any RNA sequence

specificity of *Pf*PPR1, we performed SELEX (Systematic Evolution of Ligands by

182 EXponential enrichment) (Manley, 2013). We constructed a SELEX library with a random 25

nucleotide sequence (N25) in the middle of a 150 nucleotide RNA sequence (Manley, 2013).

184 After four rounds of selection using recombinant His₆-TRX-*Pf*PPR1, sequences containing

the motif UUAU were identified in 20 of the 50 final round clones (Figure 3B), with little

sequence homology amongst the other 30 final round clones, suggesting a binding motif

187 preferred by *Pf*PPR1. This sequence motif identified by SELEX is very similar to the UUAU

apicoplast RNA processing site previously identified (R. Ellen R. Nisbet et al., 2016).

189

190 To confirm that *Pf*PPR1 binds the RNA molecules containing the identified sequence motif,

191 we performed PPR pull-down assays using a range of biotinylated 150 nucleotide RNA

192 molecules as 'bait' for protein binding. The RNAs were obtained from *in vitro* transcription

193 from five clones isolated in the final round of the SELEX experiment above. RNAs 1, 4 and 5

194 contained either one or two predicted PPR binding sites while RNA 2 contained a variation of

the binding site and RNA 3 lacked the binding site, as shown in Figure 3C. The biotin-

196 labelled transcripts were bound to streptavidin magnetic resin and incubated with

Hicks et al 11

197	recombinant His ₆ -TRX- <i>Pf</i> PPR1 in a 2:1 protein:RNA molar ratio (as it has been reported to
198	act as a dimer in plants). Western blots were used to detect PPR protein bound to the 'bait'
199	RNA. RNAs 4 and 5 showed strongest bound <i>Pf</i> PPR1 and each contained two of the
200	consensus binding motifs (Figure 3C). RNAs 1 and 2 that contain slight variations of the
201	consensus sites, UUAA and UUAC respectively, and showed less bound PfPPR1. RNA 3 did
202	not contain the consensus site and exhibited very weak binding to PfPPR1 (Figure 3C). Thus,
203	PfPPR1 binding correlated with presence and number of the consensus binding motif. As a
204	control, the PPR protein was replaced by the M. smegmatis DNA binding protein (AmtR
205	(Petridis et al.)) which showed no binding to the RNA transcripts (Figure 3C). We also
206	repeated the experiment with the PfPPR1 protein minus the His ₆ -TRX tag and with an MBP
207	tag instead of TRX to ensure that the tag on the PPR protein did not interfere with RNA
208	binding, and no difference in the results was seen (data not shown).
209	
210	To further test the specificity of <i>Pf</i> PPR1 for the UUAU consensus motif, and not elsewhere
211	on the RNA molecules we synthesized three 19 nucleotide RNA oligonucleotides with

212 identical flanking sequences but differing at the potential binding motif. RNA oligos 1 and 2

contained the consensus binding sequence, followed by either an AA or a AU, while oligo 3

did not contain the binding sequence (RNA oligo 1 <u>UUAUAA</u>, RNA oligo 2 <u>UUAUAU</u>, RNA

oligo 3, UGACGA). Each RNA oligonucleotide was biotinylated at the 3' end and used to

216 pull-down PfPPR1 or M. smegmatis AmtR (control), as above. Western blot analysis showed

that *Pf*PPR1 was recovered from RNA oligos 1 and 2 binding assays, but not using RNA

oligo 3. None of the RNA oligos bound to AmtR (Figure 3D). Together, these results

219 demonstrate *Pf*PPR1 shows a strong preference for binding RNA at UUAU.

220

Hicks et al 12

221 PfPPR1 binds RNA as a dimer

222	PPR proteins THA8 from Brachypodium distachyon (Ke et al., 2013), Arabidopsis thaliana
223	HCF152 and Zea mays PPR10 bind RNA as a dimer (Li et al., 2014; Meierhoff, Felder,
224	Nakamura, Bechtold, & Schuster, 2003; Yin et al., 2013), whereas Z. mays PPR4 and
225	PPR5 exist as monomers. We therefore sought to determine if PPR1 bound RNA as a
226	monomer or as a dimer. Analysis by gel filtration chromatography showed the PfPPR1
227	protein eluted from an analytical gel filtration column at 12.73 ml with a predicted molecular
228	weight of 144 kDa corresponding to a PPR dimer in the absence of any RNA (Figure 4A) and
229	consistent with AUC analysis (Supp Figure 4). To test if this dimer conformation is
230	maintained upon binding to RNA, PfPPR1 was incubated with each of three 150 nt baits used
231	above: RNA 4 and RNA 5 both containing two binding motifs; and RNA 3 that lacks the
232	motif. Incubations were performed in a 1:1 molar ratio at room temperature for 15 minutes.
233	Compared to the no RNA control, RNA 4- and RNA 5-incubated PfPPR1 eluted earlier from
234	the column at 10.97 ml consistent with RNA bound to the PfPPR1 dimer (Figure 4A) (If
235	<i>Pf</i> PPR1 bound RNA as a monomer we would expect the elution volume to be greater than
236	12.73 ml). The presence of the PfPPR1 protein in the elution fraction was confirmed by SDS-
237	PAGE (Figure 4B). The protein fraction was also treated with Proteinase K and RNA
238	extracted by phenol/chloroform treatment. When analyzed via agarose gel electrophoresis,
239	RNA was visible (Figure 4C). These data confirm binding of <i>Pf</i> PPR1 to the consensus RNA
240	motif, and that this binding occurs as a PPR dimer.

241

242 PfPPR1 protects transcripts from ribonuclease activity

243 As the RNA consensus motif is also associated with known transcript cleavage sites, the

binding of *Pf*PPR1 was predicted to be able to protect RNA from degradation by

Hicks et al 13

245	ribonucleases. To test for PfPPR1 protected footprints, we performed RNase protection
246	assays. Three 150 nt RNA molecules with either one or two consensus binding sites (RNAs 1,
247	4 and 5, as before) were pre-incubated with <i>Pf</i> PPR1 protein and then incubated with the RNA
248	endonuclease RNase A. In the absence of <i>Pf</i> PPR1 the transcripts were completely degraded
249	by RNase A. However, with pre-incubation with PfPPR1, a small RNA fragment (less than
250	50 nucleotides) remained after RNase A treatment in each (Figure 5A). We similarly tested
251	for protection of three 19 nucleotide RNA oligonucleotides (RNA oligos 1, 2, and 3, as
252	before). No degradation was evident when the RNA oligonucleotides 1 and 2 were incubated
253	with PfPPR (Figure 5B). In contrast, RNA oligonucleotide 3, which does not contain the
254	binding sequence, was completely degraded by RNase A in the presence of PfPPR1 (Figure
255	5B). These data show that <i>Pf</i> PPR1 protects an RNA region in a consensus binding motif-

256 specific manner.

Hicks et al 14

DISCUSSION 258

259	The discovery of a genome of plastid origin in the malaria parasite <i>Plasmodium</i> twenty-five
260	years ago was a great surprise. Further investigation revealed the presence of small, but
261	essential organelle subsequently called the apicoplast. We now know a considerable amount
262	about the biochemistry and evolutionary history of this organelle. However, very little is
263	known about how the apicoplast genome itself is transcribed, or how post-transcriptional
264	processing is regulated. Here, we present the characterization of the single apicoplast
265	pentatricopeptide repeat (PPR1) protein and show that it is key to the regulation of post-
266	transcriptional RNA processing.
267	
268	PPR1 is a nucleus-encoded RNA-binding protein. We confirm that it is targeted to the
269	apicoplast in both Plasmodium and Toxoplasma. It is essential for normal growth in
270	Toxoplasma, and is highly likely also to be essential in Plasmodium (Bushell et al., 2017).
271	PPR1 is a P-class PPR protein as it has no additional C-terminal domains and thus no
272	catalytic function. It is predominantly alpha helical in structure, contains 10 PPR motifs, and
273	forms a dimer.
274	
275	We show that the <i>Plasmodium</i> apicoplast PPR1 binds RNA at a UUAU-type motif. This
276	motif is found at known cleavage sites for <i>Plasmodium</i> apicoplast transcripts (R. Ellen R.

277 Nisbet et al., 2016). We show that the protein binds in vitro to apicoplast RNA transcripts

278 containing known cleavage sites, and can protect RNA from degradation by RNase A. We

279 have previously shown that long, polycistronic RNA molecules are the primary form of

- 280 transcription in the *Plasmodium* apicoplast (R. Ellen R. Nisbet et al., 2016). These transcripts
- 281 are processed into individual mRNA, tRNA and rRNA molecules often involving cleavage at

Hicks et al 15

282	the same UUAU motif (R. Ellen R. Nisbet et al., 2016; R. E. R. Nisbet & McKenzie, 2016).
283	Together, these results suggest that the PPR1 protein is involved in the selection of RNA
284	transcript cleavage sites in the apicoplast.

285

286	The abundance of apicoplast transcripts over the <i>Plasmodium</i> erythrocytic life cycle is
287	coordinated with the abundance of <i>Pf</i> PPR1 transcripts, with levels of <i>Pf</i> PPR1 transcript
288	peaking at the trophozoite stage that immediately precedes the apicoplast transcripts peak at
289	the schizont stage (Bozdech et al., 2003; Le Roch et al., 2003; Llinás, Bozdech, Wong, Adai,
290	& DeRisi, 2006). This indicates that presence of PPR1 is required at the point of increase in
291	apicoplast transcription, and consistent with a role in transcript maturation. Given that
292	PfPPR1 lacks any catalytic domain, and thus is similar to other P-class PPRs, apicoplast
293	PPR1 binding might protect and define mature transcript ends from RNA exonucleases,
294	facilitating their maturation. Alternatively, it could be that <i>Pf</i> PPR1 is involved in recruiting
295	the endonuclease activity required to cleave RNA at the specific sites relevant to functional
296	transcript production. In either case, the coordination of PPR1 expression and apicoplast
297	transcription is likely necessary for the spike in apicoplast biosynthetic activity ahead of
298	organelle segregation into schizonts to form the next generation of infective merozoites.
299	

Hicks et al 16

306 Materials and Methods

307 PPR alignment

- 308 PPR sequences from *Plasmodium* species were obtained by pBLAST analysis. The
- 309 PF14_0061 protein alignment was generated in Geneious using a ClustalW algorithm with a
- BLOSUM cost matrix, a gap open cost of 10 and a gap extend cost of 0.1.
- 311 *P. falciparum culture*
- 312 Blood stage P. falciparum D10 ACP-GFP (MRA-568) was cultured according to (Tarr,
- 313 Nisbet, & Howe, 2011). All work was carried out in accordance with the UK Human Tissue
- 314 Act 2004.
- 315 Expression of recombinant PfPPR1
- 316 PF14_0061 (*Pf*PPR1) was codon optimized for *E. coli* and synthesized by GeneArt and
- 317 cloned into the pOPIN vector system using InFusion (Takara Biotech) (Berrow et al., 2007).
- 318 Expression was carried out in BL21(DE3)pLysS in ZY-5052 auto-induction medium (100
- $\mu g/ml$ ampicillin and $34 \mu g/ml$ chloramphenicol. PPR1 was putified via HisTrap column on
- an AKTA FPLC (GE Healthcare). The protein was eluted from the column using an
- 321 imidazole gradient. Fractions containing His₆-TRX-PfPPR1 were pooled and concentrated
- 322 using a Vivaspin concentrator (10 000 MWCO) before gel filtration chromatography using a
- 323 S200 10/300 analytical size exclusion column. Fractions containing protein were analyzed by
- 324 SDS-PAGE, and confirmed by MALDI-TOF MS analysis. The His₆-TRX tag was cleaved
- from *Pf*PPR1 by incubation of the His₆-TRX-PfPPR1 fusion protein with 1% (v/v)
- 326 recombinant HRV 3C protease followed by by gel filtration chromatography. Full details are
- 327 given in Supplementary methods.
- 328

Hicks et al 17

329 PfPPR1 antibody production and purification

330	Recombinant PfPPR1 minus the His ₆ -TRX tag was used to generate PfPPR1 antibodies in
331	two rabbits by Pacific Immunology. Pre-immune serum was taken followed by injection of
332	recombinant PfPPR1 plus adjuvant. Four production bleeds were taken at 2 week intervals
333	followed by a final bleed after 3 months.
334	To purify the anti- <i>Pf</i> PPR1 antibody, 150 μ l His affinity resin was washed with 1 ml water
335	and three times with 1 x TBS pH 7.6. 250 µl of His ₆ -TRX-PfPPR1 (1.7 mg/ml) was added
336	and incubated at room temperature for 15 minutes with agitation. The supernatant was
337	removed and the resin washed three times in 1 x TBS. 1 ml of antibody serum was added and
338	incubated for one hour at room temperature with gentle mixing. The supernatant was
339	removed and the resin washed four times in 1 x TBS. The bound anti-PfPPR1 antibody was
340	eluted by addition of 200 μ l 0.1 M glycine pH 2.5. The supernatant was neutralized by the
341	addition of 20 µl 1 M Tris.HCl pH 8.5 to produce purified antibody.
342	Immunofluorescence Microscopy for Localization of PfPPR1
343	Asynchronous P. falciparum D10 ACP _L -GFP cultures were used for immunofluorescence
344	microscopy experiments, essentially following (Tonkin et al., 2004). Purified anti-PfPPR1
345	antibody was diluted 1:1000 with blocking solution and AlexaFluor-568 Donkey anti-rabbit
346	IgG was diluted 1:2000 with blocking solution. Slides were visualized using an Olympus
347	IX81 confocal microscope at 60 x magnification. Two channels, one to detect GFP
348	fluorescence (eGFP) and the other to detect AlexaFluor-568 fluorescence (Cy3) plus bright
349	field were used to image slides. Images were overlaid using Fluoview version 5.0 microscopy

- 350 software.
- 351 *T. gondii cell culture and generation of cell lines*
- 352 *T. gondii* RH Δku80/TATi tachyzoites were grown by inoculation in confluent human foreskin

Hicks et al 18

353	fibroblast (HFF) cells as previously described (Striepen, 2007). Endogenous promoter
354	replacement with the t7s4 promoter was induced by Cas9-mediated cleavage at the 5' end of the
355	ppr locus. Plasmid pCRISPR/Cas9-GFP_PPR-sgRNA (see supplemental data) was assembled
356	using the Golden Gate assembly method (Engler et al., 2014). A linear donor molecule including
357	the t7s4 promoter and DHFR resistance gene was amplified from plasmid pPR2-HA3 (Katris et
358	al., 2014) with primers KDPPR-Fwd and KDPPR-Rev that included flanking sequences directed
359	to the 5' end of the ppr locus on either side of the Cas9 cleavage site. pCRISPR/Cas9-GFP_PPR-
360	sgRNA and this linear donor were co-transfected into T. gondii TATiDku80 parasites (a kind gift
361	from Lilach Sheiner and Boris Striepen, U. Georgia; (Sheiner et al., 2011)) and transformants
362	selected on pyrimethamine and cloned by limiting dilution(Katris et al., 2014; Striepen, 2007).
363	Successful promoter replacement was verified by PCR from genomic DNA. Endogenous in-frame
364	5' tagging of the ppr locus with reporter protein gene mCherry was achieved using plasmid pPPR-
365	mCherry_CAT (see supplemental data) assembled using the Golden Gate method. Prior to
366	transfection of parasites this plasmid was linearized with BamHI, and transformants were selected
367	with chloramphenicol and cloned by limiting dilutions (Striepen, 2007).
368	Toxoplasma PPR assays
369	Western blot detection of SDS-PAGE resolved whole cell lysates was performed using a rabbit
370	anti-mCherry (1/1000 dilution) (Abcam) and anti-TOM40 as a control (Katris et al., 2014).
371	Immunofluorescence microscopy was performed on intracellular tachyzoites using anti-mCherry
272	(1/1000) with accordance antibody. Alexa Elver 499 Cost anti-rabbit IcC (Life technology)

- 372 (1/1000) with secondary antibody AlexaFluor-488 Goat anti-rabbit IgG (Life technology).
- 373 Apicoplasts were co-stained with AlexaFluor-594 anti-Steptavidine (Life technology)(Chen et al.,
- 2015). Samples were mounted with ProLong Diamond antifade mountant with DAPI (Invitrogen)

and sealed with nail polish. Cells were imaged using an Inverted Nikon Eclipse Ti microscope, a

- Nikon objective lens (Plan APO, 100x/1.45 oil), and a Hamamatsu C11440, ORCA Flash 4.0
- 377 camera.

Hicks et al 19

378	PPR knockdown was induced by addition of anhydrotetracycline (ATc) (0.5 μ g/ml) to the growth
379	medium upon parasite inoculation of HFF cells. For growth assays extracellular parasites were
380	filtered, counted by haemocytometer, and 500 parasites added to 25 cm ² tissue culture flasks
381	containing a confluent monolayer of HFF cells. To visualize plaque sizes in the presence or
382	absence of ATc, flasks were aspirated, fixed with 5 ml 100% ethanol (5 minutes), stained with 5
383	ml crystal violet solution (15 minutes) then washed once with phosphate-buffered saline (PBS)
384	and dried before imaging.
385	SELEX for determination of PfPPR1 RNA sequence specificity
386	A SELEX library was constructed as in (Manley, 2013). SELEX using recombinant His ₆ -
387	TRX-PfPPR1 was carried out as per the protocol in (Manley, 2013). Four rounds of selection
388	were performed, following which PCR products were cloned into pGEM-T easy (Promega)
389	and transformed into chemically competent E. coli DH5a and plated onto LB agar (100
390	μ g/ml ampicillin, 0.1 mM IPTG and 40 μ g/ml X-gal). Plasmids were extracted from 50
391	clones and sequenced. In addition, 10 input clones were sequenced from each round to
392	determine enrichment.
393	In vitro RNA Transcription and 3' End Biotinylation
394	Apicoplast P. falciparum apicoplast PCR products were obtained using the following primers:
395	LSUrRNA Fwd/rpoB Rev and tufA Fwd. clpC Rev. T7 promoter sequences
396	(TAATACGACTCACTATAG) were added in a further round of PCR with the T7 promoter
397	sequence appended to the 5' end of the forward primer. Additionally, PCR products were
398	obtained from SELEX clones (above) The Ambion T7 MEGAScript Kit was used for in vitro
399	transcription. For 3' end biotinylation 50 pmol RNA transcript was heated at 85 $^{\circ}$ C for 3-5
400	minutes. Once on ice, 3 µl 10 x T4 RNA ligase buffer (NEB), 1 µl rRNasin (Promega), 50

401 pmol RNA, 1 µl pCp Biotin, 2 µl T4 RNA Ligase (NEB), water to 15 µl and 15 µl 30% PEG

Hicks et al 20

402	was added. Ligation reactions were incubated overnight at 16 °C. 70 μ l water was added
403	followed by 100 μ l chloroform:isoamyl alcohol (49:1). Reactions were centrifuged at 13 000
404	x g for three minutes and the upper phase (aqueous layer) removed and transferred to a new
405	tube. 10 μl 3 M sodium acetate pH 5.2 and 250 μl 100% ethanol were added to precipitate
406	RNA and stored at -20°C. The RNA was pelleted by centrifugation at 13 000 x g, 4 °C for 20
407	minutes, washed with 70% ethanol and centrifuged again. The pellet was resuspended in 20
408	µl water and RNA was quantified with a Nanodrop-1000.
409	Biotinylated RNA-PfPPR1 Pull-downs
410	$25 \mu l$ of resuspended streptavidin magnetic beads (Thermo Scientific) were washed in 1 ml
411	water and then three times in binding buffer (10 mM HEPES pH 7.5, 20 mM KCl, 1 mM
412	MgCl ₂ , 1 mM DTT) and resuspended in 20 μ l binding buffer. 400 nM biotinylated RNA
413	transcript was added and incubated at 4 °C for 15 minutes. The beads were washed three
414	times in 1 ml binding buffer and resuspended in 20 μ l binding buffer. 800 nM His ₆ -TRX-
415	PfPPR1 was added followed by incubation at room temperature for 15 minutes with gentle
416	agitation. The beads were washed three times with 1 ml binding buffer and resuspended in 25
417	$\mu l~4~x$ SDS loading dye, heated to 100 °C for 5 minutes and loaded onto a 4-15% SDS-PAGE
418	gel (BioRad). Following PAGE, the samples were transferred via wetblot to PVDF
419	membrane for western blot analysis with a mouse-anti His antibody and a secondary goat
420	anti-mouse antibody conjugated with HRP. Western blots were visualized using Western
421	Bright Quantum (Advasnsta) chemiluminiscent substrate and exposed using a CCD camera
422	(Genebox).
423	Gel Filtration Chromatography

424 His₆-TRX-*Pf*PPR1 was incubated with RNA transcripts in a 1:1 molar ratio in 1 x binding
425 buffer (10 mM HEPES pH 7.5, 20 mM KCl, 1 mM MgCl₂ and 1 mM DTT) for 15 minutes at

Hicks et al 21

426	room temperature. A control without RNA was included in these reactions. Samples were
427	analyzed using a S200 10/300 analytical gel filtration column pre-equilibrated in 50 mM Tris
428	pH 8.0, 200 mM NaCl, 5 mM DTT.
429	RNase A protection assays
430	10 μ M RNA, 1 x binding buffer buffer (10 mM HEPES pH 7.5, 20 mM KCl, 1 mM MgCl ₂
431	and 1 mM DTT) and 10 μ M PfPPR1 in a volume of 20 μ l were incubated for 15 minutes at
432	room temperature, followed by addition of 0.01% (v/v) 20 mg/ml RNase A and incubated at
433	37 °C with shaking for 30 minutes. Reactions were stopped by the addition of 10 μl 2 x
434	formamide loading dye (95% formamide, 0.025% w/v bromophenol blue, 0.025% xylene
435	cyanol FF, 5 mM EDTA) and heating to 70 °C for 5 minutes. Assay reactions were analyzed
436	by 12% urea-denaturing PAGE gel, and visualized with SYBR Safe nucleic acid stain. Three
437	controls (no PfPPR1, no RNA, no RNase) were carried out, where the reagent was replaced

438 by water.

439

Hicks et al 22

441 ADDITIONAL INFORMATION

- 442 We thank the numerous anonymous blood donors. The research project was approved by the
- 443 Human Biology Research Ethics Committee, School of Biological Sciences, University of
- 444 Cambridge, project 2007.04. All data are included in this article and its supplementary
- information files. We have no competing interests. This work was funded by a Wellcome
- 446 Trust project grant (094249) to CJH and RERN, a MRC grant (MR/M011690/1) to RFW, an
- 447 MRC Confidence in Concept grant to RERN and CJH and a University of Cambridge
- 448 Returning Carers Award to RERN. All authors gave final approval for publication.
- 449 Author contributions: JLH, IL, EC, ME, AV and RERN performed the experiments. RFW
- 450 provided expertise in *Toxoplasma*. JLH, RFW, CJH and RERN drafted the manuscript. All
- 451 authors read and approved the final manuscript.

452

453 ACKNOWLEDGEMENTS

454 We thank Dr Katherine Stott at the Biophysics facility in the Department of Biochemistry at

455 the University of Cambridge for assistance with CD and AUC experiments, and Dr. Joanna-

456 Marie Howes for assistance with confocal microscopy. We thank Prof Mark Carrington, Dr

457 Erin Butterfield and Dr Richard Dorrell for helpful discussion.

Hicks et al 23

458 **References**

- 459 Bannai, H., Tamada, Y., Maruyama, O., Nakai, K., & Miyano, S. (2002). Extensive feature detection 460 of N-terminal protein sorting signals. *Bioinformatics*, **18(2)**, 298-305. 461 Barkan, A., Rojas, M., Fujii, S., Yap, A., Chong, Y. S., Bond, C. S., & Small, I. (2012). A Combinatorial 462 Amino Acid Code for RNA Recognition by Pentatricopeptide Repeat Proteins. PLoS Genet, 463 8(8), e1002910. 464 Barkan, A., & Small, I. (2014). Pentatricopeptide Repeat Proteins in Plants. Ann Rev Plant Biol, 465 **65(1)**, 415-442 466 Bender, A., van Dooren, G. G., Ralph, S. A., McFadden, G. I., & Schneider, G. (2003). Properties and 467 prediction of mitochondrial transit peptides from Plasmodium falciparum. Mol Biochem 468 Parasitol, 132(2), 59-66. 469 Berrow, N. S., Alderton, D., Sainsbury, S., Nettleship, J., Assenberg, R., Rahman, N., . . . Owens, R. J. 470 (2007). A versatile ligation-independent cloning method suitable for high-throughput 471 expression screening applications. Nucleic Acids Res, 35(6), e45-e45. 472 Bozdech, Z., Llinás, M., Pulliam, B. L., Wong, E. D., Zhu, J., & DeRisi, J. L. (2003). The 473 Transcriptome of the Intraerythrocytic Developmental Cycle of *Plasmodium falciparum*. 474 *PLoS Biol*, **1(1)**, e5. 475 Brown, G. G., Formanová, N., Jin, H., Wargachuk, R., Dendy, C., Patil, P., et al. (2003). The radish 476 Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple 477 pentatricopeptide repeats. *The Plant Journal*, **35(2)**, 262-272. 478 Bryant, N., Lloyd, J., Sweeney, C., Myouga, F., & Meinke, D. (2011). Identification of Nuclear Genes 479 Encoding Chloroplast-Localized Proteins Required for Embryo Development in 480 Arabidopsis. Plant Physiol, 155(4), 1678-1689. 481 Bushell, E., Gomes, A. R., Sanderson, T., Anar, B., Girling, G., Herd, C., et al. (2017). Functional 482 Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes. Cell, 483 170(2), 260-272.e268. 484 Chen, A. L., Kim, E. W., Toh, J. Y., Vashisht, A. A., Rashoff, A. Q., Van, C., et al (2015). Novel 485 Components of the Toxoplasma Inner Membrane Complex Revealed by BioID. mBio, 486 6(1). 487 Engler, C., Youles, M., Gruetzner, R., Ehnert, T.-M., Werner, S., Jones, J. D. G. et al (2014). A Golden 488 Gate Modular Cloning Toolbox for Plants. ACS Synthetic Biology, **3(11)**, 839-843. 489 Foth, B. J., Ralph, S. A., Tonkin, C. J., Struck, N. S., Fraunholz, M., Roos, D. S. et al. (2003). 490 Dissecting Apicoplast Targeting in the Malaria Parasite Plasmodium falciparum. Science, 491 299(5607), 705-708. 492 García-Mauriño, S. M., Díaz-Quintana, A., Rivero-Rodríguez, F., Cruz-Gallardo, I., Grüttner, C., 493 Hernández-Vellisca, M., & Díaz-Moreno, I. (2018). A putative RNA binding protein from 494 Plasmodium vivax apicoplast. FEBS Open Bio, 8(2), 177-188. 495 Gardner, M. J., Williamson, D. H., & Wilson, R. J. M. (1991). A circular DNA in malaria parasites 496 encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol Biochem 497 Parasitol, 44(1), 115-123. 498 Howe, C. J. (1992). Plastid origin of an extrachromosomal DNA molecule from Plasmodium, the 499 causative agent of malaria. J. Theor Biol, 158, 199-205. 500 Karpenahalli, M. R., Lupas, A. N., & Söding, J. (2007). TPRpred: a tool for prediction of TPR-, PPR-501 and SEL1-like repeats from protein sequences. *BMC Bioinformatics*, **8**, 2-2. 502
- Katris, N. J., van Dooren, G. G., McMillan, P. J., Hanssen, E., Tilley, L., & Waller, R. F. (2014). The
 Apical Complex Provides a Regulated Gateway for Secretion of Invasion Factors in
 Toxoplasma. *PLOS Pathogens*, **10(4**), e1004074.
- Ke, J., Chen, R.-Z., Ban, T., Zhou, X. E., Gu, X., Tan, M. H. E. et al. (2013). Structural basis for RNA
 recognition by a dimeric PPR-protein complex. *Nat Struct Mol Biol*, **20**, 1377-1382.
- Laue, T. M., Shah, B. D., Ridgeway, T. M., & Peletier, S. L. (1992). Analytical ultracentrifugation in
 biochemistry and polymer science. Cambridge, UK: The Royal Society of Chemistry.

Hicks et al 24

509 510	Le Roch, K. G., Zhou, Y., Blair, P. L., Grainger, M., Moch, J. K., Haynes, J. D. et al (2003). Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle. <i>Science</i> , 201(5620), 1503-1500.
511	301(5639) , 1503-1508.
512 513	Li, Q., Yan, C., Xu, H., Wang, Z., Long, J., Li, W., Yan, N. (2014). Examination of the dimerization states of the single-stranded RNA recognition protein pentatricopeptide repeat 10
514	(PPR10). J Biol Chem, 289(45) , 31503-31512.
515	Llinás, M., Bozdech, Z., Wong, E. D., Adai, A. T., & DeRisi, J. L. (2006). Comparative whole genome
516 517	transcriptome analysis of three <i>Plasmodium falciparum</i> strains. <i>Nucleic Acids Res,</i> 34(4), 1166-1173.
518	Lurin, C., Andrés, C., Aubourg, S., Bellaoui, M., Bitton, F., Bruyère, C., et al (2004). Genome-Wide
519 520	Analysis of Arabidopsis Pentatricopeptide Repeat Proteins Reveals Their Essential Role in Organelle Biogenesis. <i>The Plant Cell</i> , 16(8) , 2089-2103.
521 522	Manley, J. L. (2013). SELEX to Identify Protein-Binding Sites on RNA. <i>Cold Spring Harbor</i> protocols, 2013(2) , 156-163.
523	Manna, S. (2015). An overview of pentatricopeptide repeat proteins and their applications.
524	Biochimie, 113 , 93-99.
525	McFadden, G. I., Reith, M. E., Munholland, J., & Lang-Unnasch, N. (1996). Plastid in human
526	parasites. <i>Nature,</i> 381 , 482.
527	Meierhoff, K., Felder, S., Nakamura, T., Bechtold, N., & Schuster, G. (2003). HCF152, an
528	Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of
529	chloroplast psbB-psbT-psbH-petB-petD RNAs. <i>Plant Cell</i> , 15(6) , 1480-1495.
530	Nielsen, H. (2017). Predicting Secretory Proteins with Signal P. In D. Kihara (Ed.), <i>Protein</i>
531	<i>Function Prediction: Methods and Protocols</i> (pp. 59-73). New York, NY: Springer New
532	York.
533	Nisbet, R. E. R., Kurniawan, D. P., Bowers, H. D., & Howe, C. J. (2016). Transcripts in the
534	Plasmodium Apicoplast Undergo Cleavage at tRNAs and Editing, and Include Antisense
535 536	Sequences. Protist, 167 , 377-388.
530 537	Nisbet, R. E. R., & McKenzie, J. L. (2016). Transcription of the apicoplast genome. <i>Mol Biochem</i> <i>Parasitol</i> , 210(1) , 5-9. d
538	Petridis, M., Vickers, C., Robson, J., McKenzie, J. L., Bereza, M., Sharrock, A., Cook, G. M. (2016).
539	Structure and function of AmtR in <i>Mycobacterium smegmatis</i> : Implications for post-
540	transcriptional regulation of urea metabolism through a small antisense RNA. J. Mol Biol,
541	428(21) , 4315-4329.
542	Pfalz, J., Bayraktar, O. A., Prikryl, J., & Barkan, A. (2009). Site-specific binding of a PPR protein
543	defines and stabilizes 5' and 3' mRNA termini in chloroplasts. <i>EMBO</i> , 28(14) , 2042-2052.
544	Prikryl, J., Rojas, M., Schuster, G., & Barkan, A. (2011). Mechanism of RNA stabilization and
545	translational activation by a pentatricopeptide repeat protein. <i>Proc Natl Acad Sci,</i>
546	108(1) , 415-420.
547	Schuck, P. (2000). Size-distribution analysis of macromolecules by sedimentation velocity
548	ultracentrifugation and lamm equation modeling. <i>Biophys J</i> , 78(3) , 1606-1619.
549	Sheiner, L., Demerly, J. L., Poulsen, N., Beatty, W. L., Lucas, O., Behnke, M. S. et al (2011). A
550	Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved
551	and Essential Protein Import Factor. PLOS Pathogens, 7(12), e1002392.
552	Sidik, S. M., Huet, D., Ganesan, S. M., Huynh, MH., Wang, T., Nasamu, A. S., et al (2016). A
553	Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes.
554	Cell, 166(6) , 1423-1435.
555	Sosso, D., Canut, M., Gendrot, G., Dedieu, A., Chambrier, P., Barkan, A. et al (2012). PPR8522
556	encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize
557	embryogenesis and vegetative development. J. Exp Bot, 63(16), 5843-5857.
558	Sosso, D., Mbelo, S., Vernoud, V., Gendrot, G., Dedieu, A., Chambrier, P., et al (2012). PPR2263, a
559	DYW-Subgroup Pentatricopeptide Repeat Protein, Is Required for Mitochondrial
560	Transcript Editing, Mitochondrion Biogenesis, and Maize Growth. The Plant Cell, 24(2),
561	676-691

Hicks et al 25

562	Striepen, B., Soldati, D. (2007). Genetic manipulation of <i>Toxoplasma gondi</i> i. In L. M. Weiss, Kim, K.
563	(Ed.), Toxoplasma gondii. The Model Apicomplexan-Perspectives and Methods (pp. 391-
564	415). London: Elsevier.
565	Takenaka, M., Zehrmann, A., Brennicke, A., & Graichen, K. (2013). Improved Computational
566	Target Site Prediction for Pentatricopeptide Repeat RNA Editing Factors. PLoS ONE, 8(6),
567	e65343.
568	Tarr, S. J., Nisbet, R. E. R., & Howe, C. J. (2011). Transcript-level responses of <i>Plasmodium</i>
569	falciparum to thiostrepton. Mol Biochem Parasitol, 179(1) , 37-41.
570	Tonkin, C. J., van Dooren, G. G., Spurck, T. P., Struck, N. S., Good, R. T., Handman, E., McFadden,
571	G. I. (2004). Localization of organellar proteins in <i>Plasmodium falciparum</i> using a novel
572	set of transfection vectors and a new immunofluorescence fixation method. Molecular
573	and Biochemical Parasitology, 137(1) , 13-21.
574	Tourasse, N. J., Choquet, Y., & Vallon, O. (2013). PPR proteins of green algae. RNA Biology, 10(9) ,
575	1526-1542.
576	Waller, R. F., Reed, M. B., Cowman, A. F., & McFadden, G. I. (2000). Protein trafficking to the
577	plastid of <i>Plasmodium falciparum</i> is via the secretory pathway. <i>EMBO J, 19</i> (8), 1794-
578	1802.
579	Wilson, R. J. M., Denny, P. W., Preiser, P. R., Rangachari, K., Roberts, K., Roy, A., et al (1996).
580	Complete Gene Map of the Plastid-like DNA of the Malaria Parasite <i>Plasmodium</i>
581	falciparum. J. Mol Biol, 261(2) , 155-172.
582	Yin, P., Li, Q., Yan, C., Liu, Y., Liu, J., Yu, F., Yan, N. (2013). Structural basis for the modular
583	recognition of single-stranded RNA by PPR proteins. <i>Nature</i> , 504(7478) , 168-171.

- The strained KNA by PPR proteins. *Nature*, **504** (7478), 168-171.
 Zhelyazkova, P., Hammani, K., Rojas, M., Voelker, R., Vargas-Suárez, M., Börner, T., & Barkan, A.
 (2012). Protein-mediated protection as the predominant mechanism for defining
- 586 processed mRNA termini in land plant chloroplasts. *Nucleic Acids Res*, **40(7)**, 3092-3105.

Hicks et al 26

Hicks et al 27

Figure 1

Figure 2

Figure 5

