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23 Abstract

24 Rift Valley fever (RVF) is a zoonotic disease which causes significant morbidity and mortality among ungulate 

25 livestock and humans in endemic regions.  In the major RVF epizootic regions of East Africa, the causative 

26 agent of the disease, Rift Valley fever virus (RVFV), is primarily transmitted by multiple mosquito species in 

27 Aedes, Culex, and Mansonia genera during both epizootic and enzootic periods in a complex transmission cycle 

28 largely driven by the environment. However, recent RVFV activity in Uganda demonstrated that RVFV could 

29 also spread into new regions through livestock movements, and underscored the need to develop effective 

30 mitigation strategies to reduce transmission and prevent spread among cattle operations. We simulated RVFV 

31 transmission among cattle in different sub counties of Kabale District in Uganda using real world livestock data 

32 in a network-based model.  This model considered livestock as spatially explicit factors in different sub-counties 

33 subjected to specific vector mosquito and environmental factors, and was configured to investigate and 

34 quantitatively evaluate the relative impacts of mosquito control, livestock movement regulations, and diversity 

35 in cattle populations on the spread of the RVF epizootic. We concluded that cattle movement should be 

36 restricted during periods of high vector mosquito abundance to control the epizootic spreading among sub-

37 counties. On the other hand we found that mosquito control would only be sufficient to control the epizootic 

38 when mosquito abundance was low. Importantly, simulation results also showed that cattle populations with a 

39 higher diversity with regard to indigenous combined with exotic breeds led to reduced numbers of infected 

40 cattle compared to more homogenous cattle populations.

41 Introduction

42 Rift Valley fever (RVF) is a zoonotic mosquito-borne disease caused by Rift Valley fever virus (RVFV; 

43 Phlebovirus: Bunyaviridae) that severely affects ungulate livestock and wildlife but can also affect humans in 

44 RVF-endemic regions of sub-Saharan Africa and parts of the Arabian Peninsula [1, 2]. The potential extreme 

45 economic, and public and veterinary health burdens of epizootics/epidemics of RVF have been described 

46 extensively [3]. Heavy rainfall and flooding are the most prominent precursors of RVF epizootics in savanna 

47 areas of Africa, due to flooded ground pools stimulating massive emergence of transovarially RVFV-infected 

48 Aedes mosquitoes and the initiation of the transmission cycle as the virus is introduced into livestock by these 
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49 mosquitoes during blood feeding [2, 4, 5]. However, areas outside the recognized RVF epizootic regions, 

50 especially in central Africa, may not experience transmissions linked to elevated rainfall [6]. In these areas, 

51 RVFV is most likely spread via movements of infected livestock from endemic areas with elevated rainfall: 

52 livestock trading across different market areas may include infectious cattle that could disperse the virus and, 

53 in the presence of suitable mosquito vectors, accelerate and expand the transmission of RVFV, especially when 

54 cattle operations are distributed across large distances but linked by trade [7]. Patterns of recent RVF activity in 

55 Uganda first described on 9 March 2016 support this hypothesis of RVFV spread linked to the cattle trade [8] 

56 and underscore the need to develop effective operational surveillance and mitigation strategies to reduce 

57 transmission and prevent spread among cattle operations.  In this study we designed a network-based epidemic 

58 transmission model to run simulations to quantitatively investigate the patterns of spread of RVFV across cattle 

59 operations in Kabale District, Uganda, providing an opportunity to thus quantitatively investigate the potential 

60 impact of various mitigation methods.

61 Scoglio et al. [9] recently published an individual-level RVF epidemic transmission model for cattle in Riley 

62 County, Kansas, USA, structured on the susceptible-exposed-infected-recovered (SEIR) framework applied to 

63 a cattle movement network. They used two separate kernel functions – exponential and power-law models – to 

64 model cattle movement between and among farms in Riley County. Simulations with these kernel functions 

65 revealed that more widespread epizootics resulted from the power law model, most likely because cattle were 

66 allowed to move to distant farms. In contrast, the exponential model greatly restricted cattle movement to more 

67 proximal farms, reducing spread of the virus. The message from the Scoglio et al. study is that restricting cattle 

68 movement substantially reduces RVFV transmission and spread across the landscape of cattle operations. 

69 Secondarily, they found that partitioning each farm into several clusters also results in less widespread RVF 

70 epizootics. 

71 In the present study, we built upon the Scoglio et al. [9] model to investigate RVFV epidemiology in Kabale 

72 District using real world livestock data. This model considered livestock as spatially explicit factors in an 

73 individual-based network representing different sub-counties subjected to specific mosquito and environmental 

74 factors. We designed the cattle movement network based on the local trading system for the Kabale District, 

75 but considered two different networks depending upon the relative susceptibility of exotic and indigenous cattle. 
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76 Mosquito vectors for RVFV were included in an aggregated way with a parameter for transmission rate from 

77 an infectious animal to a susceptible one, which included mosquito abundance, survival rate, vector 

78 competence, and feeding patterns – collectively proportional to vectorial capacity, the efficiency of vector borne 

79 disease transmission [9]. Simulations were performed for a variety of initial outbreak conditions, such as single 

80 location versus multi-location initial outbreaks, as well as outbreaks in locations with varying cattle populations, 

81 mosquito transmission rates, and different cattle movement probabilities among sub-counties. We configured 

82 the model to investigate and quantitatively evaluate the relative impacts of mosquito control, livestock 

83 movement regulations, and diversity – that is, whether cattle are indigenous or exotic breeds – in cattle 

84 populations on containing the spread of the RVF epizootic. Materials and Methods

85 Modeling Framework
86 A simplified diagram of the individual-based network modeling framework we used to model RVFV 

87 epidemiology in Kabale District, Uganda, is presented in Fig. 1. Our RVFV modeling framework consists of 

88 two parts, a node transition graph and a contact network. The node transition graph consists of four 

89 compartments— Susceptible (S), Exposed (E), Infectious (I), and Recovered (R). Once a susceptible cow gets 

90 bitten by a RVFV-infected mosquito (exposed), there is a possibility that after a certain period of viral 

91 replication, the cow itself becomes infectious. The infectious cow can in turn infect susceptible naïve 

92 mosquitoes who bite it during the period before the cow recovers or is removed, for example by death or culling. 

93 Each individual cow can be in only one of these four compartments and rates of transitions between 

94 compartments are driven by parameters β (transmission rate), δ (extrinsic incubation period of the virus), and γ 

95 (recovery rate) in Fig. 1. The contact network consists of the total population size (N) of cows in the network, 

96 each represented by a small square, or node, and a black line links two nodes when an opportunity for 

97 transmission of RVFV between two cows (via the bite of an infectious mosquito) arises. 

98 Fig. 1: Simplified diagram of an individual-based network model which consists of a node transition graph and a 

99 contact network. Circles in the node transition graph represent the four compartments Susceptible (S), Exposed (E), 

100 Infectious (I), and Recovered (R) of a node (i.e., of an individual cow), and arrows between the compartments show the 

101 direction of transition for each node (cow) with rates driven by parameters β (transmission rate), δ (extrinsic incubation 

102 period of the virus), and γ (recovery rate). Circles in the contact network in turn represent individual cows (i.e., nodes), 

103 and black lines linking circles represent opportunities for RVFV transmission.
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104 Geographic Structure and Movement in the Cattle Contact Network

105 The cattle contact network consisted of 20,806 cattle (N) unevenly distributed across 19 sub-counties in the 

106 Kabale District of Uganda (Table 1 and Fig. 2), which is approximately 1,679 km2 (648 sq mi) with a human 

107 population of nearly half a million in the western region of Uganda. We obtained these cattle abundance data, 

108 as well as the proportions of indigenous and exotic cows in each sub-district. From the Uganda Bureau of 

109 Statistics (UBOS) [10]. 

110 Table I: Cattle in different sub-counties in Kabale District. This data set was derived from UBOS Statistical Report 

111 012, Kabale District [10]

112 Fig. 2:  Location of each sub-county in Kabale District. Circles represent cattle farms in each sub-county and are 

113 color coded and scaled according to the total number of cattle in each location.

114 Some sub-counties were represented by data from a municipality (Kabale) or town council (Hamurwa, 

115 Muhanga, and Katuna) boundary (Table 1), and we extracted the longitude and latitude of the centroid of each 

116 sub-county, municipality, or town council boundary from Google maps to display in a GIS as shown in Fig. 2. 
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117 To capture the realism of the Uganda cattle movement and trading system in the model, we treated contact 

118 among cattle (not physical, rather implicit contact via mosquitoes) differently depending on geographic scale: 

119 cattle were assumed to move freely within each sub-county, while their movement was restricted between sub-

120 counties. Within a sub-county we assumed each cow had equal probability to be connected to all other 

121 individual cows in that sub-county via mosquitoes because of their close relative proximity when compared to 

122 the Kabale District as a whole. This relationship among cows within sub-counties was best represented by an 

123 Erdos-Renyi network, where each node (i.e., cow) has equal probability of connectivity to any other node [15, 

124 16]. 

125 Contact among cows from different sub-counties, on the other hand, called for a different kind of representation. 

126 Transmission of RVFV from one sub-county to another can happen via the movement of cattle for economic 

127 reasons, most commonly through cattle sales at local market places. Thus, contact among cows and thus the 

128 possibility of virus transfer from more proximal sub-counties was weighed higher than contact among cows 

129 and potential virus transfer from more distant sub-counties for this local trading system. We accomplished this 

130 weighting in the model with an exponential distance kernel, expressed as e-kd, where k is a constant which scales 

131 the probability of cows from different sub-counties to be in contact and has a unit km-1, and where d is distance 

132 between the origin and destination sub-locations. 

133 We did not include the interactions of cows from different locations at market places in the transmission part 

134 of the model. Rather, we modeled the potential transmissions of RVFV that result from cows that move from 

135 their original location to another location, where they come in contact with others in that location. Therefore, 

136 an infected cow being moved to a new location can infect other cattle via local mosquitoes at the destination 

137 location; but we assumed no virus transmissions happen at the market place.

138 Cattle Contact Network Visualization

139 We visualized the 20,806 cattle across the 19 sub-districts using the network visualization software Gephi [11], 

140 but scaling cattle population sizes across the network by a factor of 1/20 for clarity. It is important to note that 

141 scaling was only used for visualization and not model simulations which were performed with the full value of 

142 N. In Fig. 3 the contact network visualization is shown where the name of the sub-counties are marked. The 

143 dense circular masses of varying size in Fig. 3 represent the varying abundance of cattle at each sub-county 
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144 similar to the scaled symbols shown in Fig. 2. Long black lines in Fig. 3 connect some sub-counties, 

145 representing potential connections, and thus opportunities for mosquito-mediated transmission of RVFV 

146 between cows via cattle movements. The inset in Fig. 3 expands a small portion of the contact network showing 

147 that the dense circular masses are actually made up of small black circles, each of which represents 20 cattle 

148 and correspond to the nodes shown in the representative contact network in Fig. 1. Likewise, the black lines 

149 among these nodes represent possible connections within and between sub-counties in the Fig. 3 inset. 

150 Importantly, the particular arrangement of black lines (connectivity) in this visualization only shows one set of 

151 possible connections within and between sub-counties; modeling simulations consider many arrangements.

152

153 Fig. 3: The overall structure of the network. Dense circular groupings of black dots represent different sub-

154 counties. Inset shows close-up of two such groupings and one possible arrangement of links within and between 

155 them.

156 RVFV Infection in Cows and Mosquitoes

157 We explicitly modeled the progression of RVFV infection of cattle with several key time components including: 

158 time for a newly infected individual cow to become viremic enough to infect a naïve mosquito feeding on it, 

159 time that the cow remains infectious, and time for the cow to become recovered. There is a link between two 

160 cows (i.e., a line between two nodes) if (a) virus transfer is possible between them (i.e., when one is infectious 

161 and the other susceptible), and (b) if they are in physical proximity; and virus transfer ultimately happens via 

162 infected local mosquito species competent for transmission of RVFV. Thus, links connecting nodes represent 

163 possibilities of RVFV transmission from an infected cow to a susceptible cow by a mosquito. The complexity 

164 and distance of connectivity from an infectious cow to susceptible cows across the contact network depends on 

165 human-mediated movement of cows among near or distant livestock operation locations (Fig. 3). The 

166 connectivity from this infectious cow to other susceptible cows within its original livestock operation location 

167 depends on the size of this original location.

168 Unlike the specific modeling of the progression of RVFV in the cattle, we only implicitly modeled RVFV 

169 progression in mosquitoes via a single parameter, transmission rate (). Transmission rate is proportional to 
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170 realized vectorial capacity of competent mosquito species likely to be present in the study area, and includes all 

171 key time components of RVFV infection in vector mosquitoes. Vectorial capacity is an aggregated 

172 measurement of the efficiency of vector-borne disease transmission which inherently considers climate and 

173 environmental factors: the Garett-Jones [12] equation for estimating vectorial capacity C is given as, which 

174 takes into account mosquito vector density proportional to host density (m), daily probability of host being fed 

175 upon (a), probability of daily survival of the vector (p), length of the virus extrinsic incubation period in days 

176 (n), and vector competence, or, the proportion of mosquitoes able to transmit RVFV (b) [9, 12].

177 In our model we estimated a composite index of vectorial capacity across indigenous mosquito species that 

178 takes into account survival and population density and can be estimated by real world data. If non-infected 

179 competent mosquito vectors are present and feed on newly arrived infectious cows, a fraction of these 

180 mosquitoes, proportional to vectorial capacity will become infected with RVFV, become infectious, and 

181 transmit the virus to immunologically naïve cows during subsequent blood feeding [9]. 

182 Our model does not account for heterogeneity of mosquito population distribution – for instance greater 

183 proximity of some livestock operations to immature habitat of RVFV mosquito vectors – and assumes all 

184 livestock operations are equally exposed to mosquitoes. On the other hand, the variation in mosquito 

185 transmission rates included in the model provides an aspect of heterogeneity in realized exposure to vector 

186 mosquitoes.

187 Spread of RVFV Infection

188 In the network model, the infection can spread if a susceptible node (i.e., a susceptible cow) is in physical 

189 proximity with at least one infectious node. Specifically, one infectious cow (node 1) will be able to transmit 

190 RVFV to a susceptible cow (node 2) only if there are enough RVFV competent mosquitoes to first bite the 

191 infectious cow (node 1) then, after an appropriate period of time for the virus to disperse and replicate in the 

192 mosquito, bite a susceptible cow (node 2) [9].

193 As we have said above, the links between cattle in the network represent the feasibility of virus transfer via 

194 mosquitoes once cows are in physical proximity for a sufficient period of time – balanced by whether cows are 

195 naturally near each other within a sub-county or whether they come in contact due to trade-related cattle 
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196 movement among sub-counties. 

197 The node transition graph in Fig. 1 represents the sequence of the progression of the RVFV infection in a cow 

198 (node) through four compartments, and is the core of the spread model: Once a susceptible (S) node is in 

199 physical proximity of an infectious node, virus transfer takes place with a rate β that is equal to the transmission 

200 rate, which is directly proportional to vectorial capacity, and moves the cow into the exposed (E) compartment. 

201 If a susceptible cow has Yi infectious neighbors, then the probability of the susceptible cow to receive virus 

202 transmission is βYi. Therefore, the total rate at which susceptible cows can become infected is proportional to 

203 the number of infectious cows in the neighborhood and the vectorial capacity of available mosquito vectors. 

204 The transition of the cow from the exposed compartment (E) to the infectious (I) compartment takes place at a 

205 rate , and represents the time the pathogen will take once it enters into the host body to replicate enough for 

206 the cow to become infectious – i.e., capable of infecting a naïve mosquito which may then infect a susceptible 

207 cow. Infectious cows are finally transferred to the recovered/removed compartment (R) with a rate . We did 

208 not distinguish whether RVFV-infected cows died or were recovered in this model; the endpoint in the 

209 simulation for an individual cow (node) was reached when it entered the R compartment.

210 Among these three transitions, the virus transfer from susceptible to exposed is called an edge-based transition 

211 because of the dependency on competent mosquito species, infectious cattle, and susceptible cattle. A 

212 transmission is possible only when there is a link between infectious and susceptible cattle. This link does not 

213 represent a physical contact between cattle, but rather the possibility of RVFV transfer via mosquito from 

214 infectious cattle to a susceptible one. The other two transitions, exposed to infectious and infectious to 

215 recovered, are called node-based transitions as they are dependent only on the host node.

216 After developing the individual-based SEIR network model for Kabale District, we carried out extensive 

217 simulations using Generalized Epidemic Modeling Framework (GEMF) that was developed by the Network 

218 Science and Engineering (NetSE) group at Kansas State University [4, 13]. In the SEIR model based on GEMF, 

219 infection processes were Poisson processes independent of each other. The node-level Markov process for node 

220 i, i= 1, 2,...N, is expressed as:

221 Pr[xi (t  t)  1| xi (t)  0, X (t)]  Yi t  o(t),
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222 Pr[xi (t  t)  2 | xi (t)  1, X (t)]  t  o(t),

223 Pr[xi (t  t)  3 | xi (t)  2, X (t)]  t  o(t),

224 where xi = 0, 1, 2, or 3, which correspond to node i being in the susceptible, exposed, infectious, or 

225 recovered/removed state, respectively [9]. The value X (t) is the joint state of all nodes – the network state – at 

226 time t. In our model we used GEMF because it is individual-based which provides more accurate predictions 

227 than meta-population models [9] when we have real world data available. This individual-based GEMF model 

228 has also the ability to incorporate more complex network topologies when individual animal contact data are 

229 available.

230 Cattle Network Scenarios

231 In the data set shown in Table 1 two different kinds of cattle—indigenous and exotic— are accounted for in 

232 Kabale District, totaling 20,806 cows. There are cases in the literature indicating exotic cattle showed more 

233 susceptibility to RVF than indigenous cattle [14]. In Kenya, indigenous cattle exhibit fewer symptoms from 

234 RVFV infection and these cattle might also develop lower viremia which could significantly impact transfer of 

235 virus to mosquito vectors. However, we do not have specific information on relative susceptibility of indigenous 

236 compared to exotic cattle for the Kabale District in Uganda. This relative susceptibility could vary with breed 

237 as well as origin. Therefore, we assumed two different network scenarios to capture the relative susceptibility 

238 of exotic versus indigenous cattle breeds while performing simulations with GEMF: a homogenous network 

239 and a heterogenous network. 

240 In the homogenous cattle contact network we considered that all cattle, indigenous or exotic, have the same 

241 susceptibility for RVFV. Therefore, we used the total number of cattle in each sub-county rather than 

242 differentiating them in two different categories. 

243 In the heterogeneous cattle contact network we considered that exotic cattle are more susceptible to RVFV than 

244 indigenous cattle. Lacking the proper knowledge about the relative susceptibility, we assumed that if exotic 

245 cattle have a susceptibility ζ, then indigenous cattle have a susceptibility of µζ, where µ has a value between 

246 zero and one. For simulation purposes, we assumed µ=0.7. We can adjust the value of µ once real world data 
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247 on relative susceptibility are available.

248

249 Simulation Results and Discussion

250 We carried out extensive simulations under different conditions of cattle movement among sub-counties as well 

251 as different starting conditions to test the effectiveness of mosquito control and movement regulations, as well 

252 as the effects of cattle population diversity. We used the GEMF tool to run simulations with the networks 

253 described in Materials and Methods. For exponential connections between sub-counties, we used an 

254 exponential distance kernel e-kd, where k is the exponential constant and d is the distance between sub-

255 counties. We assumed three different values of k, 0.001, 0.01, and 0.1, to reflect low, medium, and high 

256 movement probability, respectively. However, the network was valid for any value of k. We choose these values 

257 to explore the spectrum of varying movement probabilities in the network, and presented our simulations in 

258 three different sets, as follows. 

259 For the first set, we presented simulation results for the three values of k as well as two ranges of the transmission 

260 rate β. Transmission rates incorporate mosquito abundance and weather factors such as humidity, temperature, 

261 and rainfall. Lacking sufficient data about cattle movement structure and mosquito vectorial capacity in Kabale 

262 District, we assumed these values according to Scoglio et al. [9] and Riad et al. [15] to explore a spectrum of 

263 cattle movement probability and mosquito abundance.  Also lacking specific information about the value of β, 

264 we performed simulations for two different sets of β and two different network structures (homogenous and 

265 heterogenous) for each set of β and observed the variability in the fraction of infected cattle at the end of a 

266 period of 100 days, keeping weather factors constant and starting each simulation with only one infected cattle 

267 in the Kabale Municipality (Fig. 2). 

268 For the second set of simulations, we showed the evolution of cattle in different compartments in the SEIR 

269 model by choosing a set of values of β (0.001, 0.005, 0.01, and 0.03) and starting with only one infected cattle 

270 in the Kabale Municipality (Fig. 2) for each simulation. The fraction of cattle in each compartment was plotted 

271 against time for these values of β.  To reduce the number of simulations we choose medium cattle movement 
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272 probability constant where k=0.01.

273 The third set of simulations consisted of investigating the effects of different starting conditions. We conducted 

274 simulations with different locations for the initial infected cattle, as well as single location and simultaneous 

275 multiple location epizootic outbreaks. We configured the network with values of k=0.01 and performed 

276 simulations for β=0.001, 0.005, 0.01, and 0.03 to reduce the number of simulation scenarios. 

277 Therefore, we explored three different simulation sets, each consisting of a number of simulation scenarios, 

278 described as follows. 

279

280 Simulation Set I 

281 In this set, simulations were initiated with a single infected cattle in the Kabale Municipality and conducted 

282 with three values of k (0.001, 0.01, and 0.1), two ranges of β (0001-0.005 or 0.001-0.048), and two network 

283 topologies (homogeneous and heterogeneous), producing four scenarios:

284 Scenario 1: Homogenous network and β range 0.0001-0.005

285 Scenario 2: Homogenous network and β range 0.001-0.048

286 Scenario 3: Heterogeneous network and β range 0.0001-0.005

287 Scenario 4: Heterogeneous network and β range 0.001-0.048

288 Scenario 1

289 The simulation for β ranging between 0.0001-0.005 (the lower range) is presented Figs 4 for three different 

290 values of the exponential constant k and a homogenous network. We ran the simulation for 100 days and 

291 recorded the fraction of infected cattle for each value of β.  

292 Fig. 4: Comparisons among fractions of infected cattle for homogeneous network for three different values of k and 

293 lower range of β. Blue dots shows fraction of infected k=0.1, while red rectangles and green triangles showed fraction 
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294 of infected for k=0.01 and 0.001 respectively. For the same value of transmission rate, we have always more infected 

295 cattle for greater value of k (0.1) than the smaller ones (0.01 and 0.001). Therefore, therefore increasing movement 

296 probability means more widespread epizootic, in particular for higher values of β such that the fraction of infected 

297 cattle at β=0,005 is ~0.399, ~0.537, and ~1 for k=0.001, 0.01, and 0.1, respectively.

298 From Fig. 4, for k=0.01 and 0.001 we can see that after hundred days and for β=0.005 the infection reaches 

299 half the population. However, for k=0.1, after 100 days almost all of the cattle were infected. This is because 

300 the network was densely connected and it was easier for RVFV to be transmitted between individual animals 

301 than between sub-counties. This demonstrates that network structure plays a prominent role in RVFV spreading 

302 when the value of β is small. A value of k=0.1 means that extensive cattle movement between sub-counties will 

303 lead to infections in all cattle.

304 Scenario 2

305 In the second set of simulations we used a β ranging from 0.001 to 0.048 (the upper range) for the homogenous 

306 network. Simulations results using these values are presented in Fig. 5 for all three values of the parameter k.  

307 Fig. 5: Comparisons among fractions of infected cattle for homogeneous network for three different values of k and 

308 upper range of β. Fractions of infected for all three values of k are almost overlapping, therefore, are not sensitive 

309 to the movement probability. They reach a value very close to 1, i.e., all 20,806 cattle became infected when 

310 transmission rate β reached 0.01 for the three networks. Therefore, fractions of infected cattle are also independent 

311 of the transmission rate β upper range.  

312 From Fig. 5 we can see that fraction of infected cattle reached 1 very quickly for this particular range of β for 

313 all three values of k. This is because we already have connections between sub-counties for all three networks. 

314 The whole cattle network becomes infected irrespective of the transmission rate (β) or cattle movement 

315 probability (k) the Therefore, we can say that for upper values of β, i.e., for higher abundance of mosquitoes 

316 and favorable weather conditions, the infection spread does not depend on the network structure and spreads 

317 throughout the whole network very quickly.

318 Scenario 3
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319 In this scenario, we repeat the simulations for the lower range of β but for the heterogeneous network, and 

320 simulation results for three different values of k are presented in Fig. 6. There are increasing trends with the 

321 increase of β as well as k in the fractions infected cattle. For k 0.001 and 0.01, there is little difference; however, 

322 for k=0.1 the increase of the infected fraction is faster with increasing β. Therefore, if we want to reduce or 

323 check the spreading of RVFV, we need to reduce cattle movement. When we reduce cattle movement, only half 

324 the population becomes infected for the highest value of the transmission rate in the lower range. Therefore, 

325 reducing the cattle movement can reduce the number of infected cattle when there is a lower mosquito 

326 abundance and thus lower transmission rate.

327 Fig. 6: Comparisons among fractions of infected cattle for heterogeneous network for three different values of k 

328 and lower range of β. For k=0.001 and 0.01, maximum fraction of infected cattle is less than 0.5 for the highest value 

329 of transmission rate in the lower range, that means after the simulation period half of the cattle become infected. 

330 However for k=0.1, the infected cattle reaches up to 0.8. Therefore, we need to reduce the value of k i.e., cattle 

331 movement to reduce the fraction infected cattle

332 Scenario 4

333 Simulation results for the heterogeneous network and for the upper range of β are shown in Fig. 7. For all three 

334 values of k, the fraction of infected cattle reached 1 very quickly, near a β value of 0.02. After that, all 20,806 cattle become 

335 infected regardless of the values of β and k. 

336 Fig. 7: Comparisons among fractions of infected cattle for heterogeneous network for three different values of k 

337 and for upper range of β. The fractions of infected reaches towards one rapidly and when the value of transmission 

338 rate is 0.03, fraction of infected become one for three networks

339 The trend of the fraction of infected cattle for both homogenous and heterogeneous networks are similar in both 

340 lower and upper ranges of β. However, there are differences between fractions of infected cattle from 

341 homogenous compared to heterogeneous networks for same value of k and same range of transmission rate 

342 values. Comparisons between fractions of infected cattle for homogenous and heterogeneous networks are 

343 shown in Figs 8 and 9.
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344 Fig. 8 shows comparisons between fractions of infected for homogeneous and heterogeneous network for lower 

345 range of β values, and shows that the homogenous network has more infected cattle for the same values of β 

346 compared to the heterogeneous network.

347 Fig. 8: Comparisons among fractions of infected cattle for heterogeneous and homogenous networks for lower 

348 range of β and a) k=0.01 and b) k=0.1

349 In Fig. 9 we can see similar outcomes, where more infected cattle result from the homogenous network. This 

350 can be attributed to the fact that, in the heterogeneous network, the indigenous cattle shows less susceptibility 

351 than the exotic cattle. Indigenous cattle species for being in that region for a very time, have developed certain 

352 immunity against RVF or other common diseases and they are more immune to RVFV than exotic cattle. 

353 Therefore, indigenous cattle are more likely not to get infected which results in a fewer number of infected 

354 cows than homogenous network where all animals are equally susceptible. 

355 Fig. 9: Comparisons among fractions of infected cattle for heterogeneous and homogenous networks for the upper 

356 range of β and a) k=0.01 and b) k=0.1

357 The comparisons between homogenous and heterogeneous networks show that reduced susceptibility of 

358 indigenous cattle to RVFV means a lower number of infected cattle during an RVFV epizootic. Therefore, 

359 greater proportions of indigenous cattle across sub-counties will reduce the numbers of infected cattle and thus 

360 a more contained epizootic.

361 In summary, simulations with lower transmission rates result in increasing fractions of infected cattle with 

362 increasing movement probability. However, for high transmission rates, the fraction reaches 1 quickly for 

363 β=0.01 and for heterogeneous network β=0.03 and there is little difference for increasing movement 

364 probabilities. From these observations we conclude that for low transmission rates (low mosquito abundance), 

365 restricted cattle movement will reduce the number of infected cattle. Higher transmission rates result in all cattle 

366 in the network becoming infected, regardless of cattle movement probability or mosquito abundance 

367 /transmission rate. These observations provide clear mitigation strategies to reduce the spread of RVFV. For a 

368 period of low mosquito abundance, cattle movement should be restricted to contain the epizootic to a minimum 

369 level; whereas, periods of high mosquito abundance (high transmission rates) require both mosquito control 
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370 and cattle movement restriction. Comparisons between fractions of infected for homogenous versus 

371 heterogeneous networks suggest that diversity in the network results in fewer infected cattle for similar values 

372 of transmission rates and cattle movements. 

373 Simulation Set II

374 Simulations were conducted starting with a single infected cow in Kabale Municipality and simulations were 

375 conducted for a period of 100 d using both homogeneous and heterogeneous networks with k=0.01 and for β= 

376 0.001, 0.005, 0.01, and 0.03 for each network, producing two scenarios:

377 Scenario 1: Homogenous network 

378 Scenario 2: Heterogeneous network 

379 We plotted the fraction of cattle in each compartment against time in Simulation Set II. For each scenario in 

380 this set, we assumed four different β to represent the entire range of transmission rates used for Simulation Set 

381 I. Instead of using different movement probability constants (k=0.001, 0.01, and 0.1) we choose k=0.01 for both 

382 homogeneous and heterogeneous networks.

383 Scenario 1

384 Simulation results for homogenous network and single infected cattle in Kabale Municipality for selected values 

385 of β are presented in Fig. 10. As we increase the value of β from 0.001 to 0.03, the fractions of recovered reach 

386 1 very quickly. A very important point to be noted here is that fractions of recovered means these were the cattle 

387 who were infected in the first place. As we have not considered any disease induced mortality in the model, all 

388 infected cattle move to the recovered compartment. Therefore, the fraction of recovered cattle can be considered 

389 the cumulative fraction of infected for our specific model. 

390 Fig. 10: Fraction of cattle in each compartment with 95% confidence interval for β=0.001 (top left), 0.005 (top right), 

391 0.01 (bottom left), and 0.03 (bottom right) and for homogeneous network. Increasing β shows an increasing trend 

392 in the overall fractions of recovered (cumulative fractions of infected) 

393 Table II: Table showing maximum infected fractions of cattle, peak infection time, and rate at which that maximum 
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394 is attained for homogeneous network.  

Transmission rate β Maximum infected fraction Peak infection time Rate
0.001 0.0095 45 2.1268e-04
0.005 0.065 87 6.919e-04
0.01 0.0806 64 0.0013
0.03 0.1345 31 0.0043

395 f

396 Scenario 2

397  Simulation results for heterogeneous network with the initial condition of a single infected cattle in Kabale 

398 Municipality is presented in Fig. 11.

399 Fig. 11: Fraction of cattle in each compartment with 95% confidence interval for β=0.001 (top left), 0.005 (top right), 

400 0.01 (bottom left), and 0.03 (bottom right) and for heterogeneous network. Increasing β shows an increasing trend 

401 in the overall fractions of recovered (cumulative fractions of infected) which reaches to almost 1 for β=0.03. 

402 Table III: Table showing maximum infected fractions of cattle, peak infection time, and rate at which that 

403 maximum is attained for heterogeneous network and a single infected cattle at Kabale municipality.  

Transmission rate β Maximum infected fraction Peak infection time Rate
0.001 0.0056 60 9.333e-05
0.005 0.0365 100 3.6479e-04
0.01 0.0739 76 9.7690e-04
0.03 0.1181 43 0.0027

404

405 From Table II and III, it is evident that with the increase of β, the rate at which the fraction of infected reaches 

406 the maximum increases. However, there is an interesting trend that when the value of β is very small, i.e., 

407 β=0.001, the fraction of infected reaches the maximum faster for both homogeneous and heterogeneous 

408 networks than for a value of β=0.005. This can be attributed to the fact that, when the value of β is very small, 

409 the infection takes a long time to reach distant locations. Therefore, only cattle in the Kabale Municipality 

410 become infected within our simulation period of 100 d. When we increase β, infection reaches distant locations 

411 yet slower than the rate of infecting animals only in the initial location. However, when infection reaches distant 

412 locations, there are greater numbers of infected cattle in the network as a whole. This is evident from the 

413 maximum fraction of cattle, which is greater than the maximum fraction of infected cattle for β=0.001. Although 

414 the length of time taken for infections to reach maximum is greater for β=0.005 and 0.01, the rate always shows 
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415 an increasing trend. Therefore, the increase in the transmission rate increases the severity of the epizootic.  

416 However, when β is sufficiently large (0.03), the time to reach maximum is less than time taken for β=0.001. 

417 Simulation results indicate that increase in the transmission rate expedites the spread of the epizootic in distant 

418 locations as well as the quantity of infected cattle. Therefore, mosquito control is crucial to contain the epizootic 

419 in the initial outbreak location while taking proper measures to care for infected cattle.  

420 Simulation Set III

421 These simulations were conducted with initial conditions other than starting simulation with a single infected 

422 cow in Kabale Municipality for both homogeneous and heterogeneous networks, as follows:

423 Scenario 1: Infection starts at 1 location (Bubale sub-county) with a maximum number of cattle

424 Scenario 2: Infection starts simultaneously at 3 locations (Bauble, Rubaya, and Hamurwa sub-counties) 

425 with a maximum number of cattle 

426 Scenario 3: Infection starts at 1 location (Muhanga T/C) with a minimum number of cattle

427 Scenario 4: Infection starts simultaneously at 3 3 locations (Bukinda, Muhanga, and Ruhija sub-

428 counties) with a minimum number of cattle 

429 For detailed descriptions of simulation results from Simulation Set III, refer to the Supporting Material. We 

430 plotted the time to reach the maximum infection for each scenario with the transmission rate β in Fig. 12, which 

431 shows a brief summary of Scenario 1 and 2 simulations when the  initial RVF outbreak occurs in a single 

432 location (Bubale) or simultaneously at multiple locations (Bauble, Rubaya, and Hamurwa sub-counties), 

433 respectively.  

434 Time taken to reach the maximum infection is smaller for simultaneous outbreaks regardless of the network 

435 structure than single-location outbreaks for similar values of the transmission rate β (Fig. 12). The spreading of 

436 infection through the network is always slower in the heterogeneous network for both single and simultaneous 

437 outbreaks. Infections spread slowly for the single-location outbreak in the network compare to the rate of spread 

438 in simultaneous outbreaks, which is reflected by the higher peak incidence time. For β=0.001, the peak infection 
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439 time is close to 100 d for all simulations except simultaneous outbreaks in homogeneous networks (Fig. 12). 

440 This means that the peak has not been reached yet, and the number of infected cattle is still increasing. When 

441 we increase β to 0.01 (high mosquito abundance), the time to reach the peak reduces drastically for all of them. 

442 Fig. 12: Peak infection time with transmission rate and for outbreaks starting in location/locations with (a) greater 

443 number of cattle and (b) fewer number of cattle. 

444 An interesting trend emerges from Fig. 12a: when the value of transmission rate increases to 0.03, there is an 

445 increase in the time to reach maximum. This can be attributed to the fact that, when β=0.03, after our 100 d 

446 simulation period, all cattle were infected. Therefore, there are several time points when we have a peak in the 

447 fractions of infected animals at the same time (cattle recovered once they are infected, they stay in the infected 

448 compartment for a short period of time). The first peak infection can occur when infection spreads only in the 

449 initial location where the outbreak occurs, and the second peak can occur when infection spreads only to 

450 densely connected locations. Greater number of cattle location is densely connected with other location cattle 

451 in the network. Therefore, given enough mosquito abundance, the infections keep spreading to distant locations 

452 which result in an all-inclusive but a comparatively slower time to reach the peak for β=0.03. Here, a very 

453 important point to be noted that if we allow the simulation to run for a longer period of time, then we may 

454 observe a similar pattern of the peak infection time for all values of β. However, we limit our scope to 100 d 

455 simulation period in these simulations.

456

457 Fig. 12b represents peak incidence time when the RVF outbreak occurs in location/locations with fewer cattle 

458 than other locations. For lower mosquito abundance (β=0.001), infection does not reach distant locations, rather 

459 it is quickly confined to the initial location/locations, as is evident from smaller values of the peak infection 

460 time. However, with increase of β, the peak time returns to its regular pattern shown in Fig. 12a. We also don’t 

461 see any aberrant behavior for any selected scenario as seen in Fig. 15(a), outbreaks being started in locations 

462 with sparse connections to other locations. 

463
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464 Conclusions

465 Simulation results across multiple scenarios within these three simulation sets provide us important mitigation 

466 and intervention strategies. When a RVF outbreak occurs in a location with greater number of cattle, the 

467 infection spreads faster while infecting greater numbers of cattle than when an outbreak occurs in a location 

468 with fewer cattle. Therefore, the more the cattle in the initial outbreak location, the faster the spread and the 

469 more severe the epizootic. Simultaneous outbreaks in multiple locations will result in more severe and faster 

470 spreading of the epizootic than outbreak in a single location. That is evident from the values of the time to reach 

471 the maximum infection (Fig. 12) and rate at which the maximum infection is reached (refer to Tables in 

472 Supplementary Material). Simulation results for different initial conditions and from both homogeneous and 

473 heterogeneous networks reveal similar patterns. Given the same initial conditions, the heterogeneous network 

474 is less susceptible to infection than the homogeneous network. This is evident from the rate at which infection 

475 reaches maximum fraction of infected, the value of the maximum infected fractions, and total cumulative 

476 fraction of infected. 

477 We have used the cattle data for Kabale District and created a cattle movement network following an Erdos-

478 Renyi topology inside each sub-county and exponential topology for inter sub-county movement. We have 

479 created two different networks— homogenous and heterogeneous – depending on the relative susceptibility of 

480 indigenous and exotic cattle. We used three different exponential parameters for each of the two networks to 

481 explore different spectra in inter sub-county movement probability. These networks were then used to run 

482 individual-based simulation using the GEMF tool developed in K-State NetSE group. From the simulation 

483 results, we saw that when the transmission rate is low, then the spread of RVFV throughout the network is 

484 dependent on inter sub-county movement probability. The more the probability, the more the fraction of 

485 infected cattle after the 100 d simulation period. This means that during periods of low mosquito vectorial 

486 capacity there must be more movement of cattle for a widespread epizootic. Therefore, during periods with 

487 reduced vectorial capacity, prohibition of inter sub-county cattle movement will eventually contain the epizootic 

488 in the initial location of the virus introduction. However, for upper values of transmission rate, i.e., upper 

489 mosquito vectorial competence, there is an increased likelihood of more extensive RVFV transmission that is 
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490 less dependent the network structure (i.e., movement probability). Although, the risk of a widespread RVF 

491 epizootic is low in Uganda as demonstrated historically, when mosquito vectorial capacity is elevated it 

492 becomes critical to control/reduce mosquitoes to prevent widespread RVFV transmission. From the comparison 

493 of simulation results from homogenous and heterogeneous networks, we saw that for the same level of vectorial 

494 capacity and inter-subcounty movement probability, heterogeneous networks result in less infected cattle than 

495 homogenous ones because of the assumed reduced susceptibility of the indigenous cattle than exotic species. 

496 Therefore, the more indigenous cattle we have, the less will be the number of infected animals in the case of an 

497 RVF outbreak. 

498 When infection starts in a location with more infected cattle then other locations, the epizootic spreads much 

499 faster than when infection starts in a location with fewer cattle. Simultaneous outbreaks in multiple locations 

500 cause significant increase in the rate to reach in the maximum infection spread. The rate increases with the 

501 increase of the transmission rate as well as the value of cattle movement probability. The location of the 

502 outbreak also plays a major role in the severity of an RVF epizootic. The simulation results from different initial 

503 starting locations showed that simultaneous outbreaks in different locations result in more cumulative infected 

504 cattle as well as faster rate of spreading compared to a single location initial outbreak. Population size in the 

505 initial location is also a crucial factor. The greater the population in the initial location, the faster the spread as 

506 well as the more the cumulative fraction of infected. Our simulation results quantitatively show how long the 

507 infection would take to reach maximum for different network structures as well as different starting conditions. 

508 Mitigation intervention can be devised from these simulation results as they provide us with the quantitative 

509 disease dynamics for epizootic spread. The longer the time to reach the maximum infection, the more time 

510 public and veterinary health personnel have to apply mitigation strategy before the infection becomes 

511 widespread. According to simulation results, applying insecticides to reduce mosquitoes will increase the 

512 spreading time of the infection and a greater opportunity to contain the epizootic by implementing mitigation 

513 strategies such as culling/removing infected cattle from contact with healthy animals via competent mosquito 

514 populations.    
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