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Abstract

Diving behaviour of narwhals is still largely unknown. We build three-state Hidden
Markov models (HMM) to describe the diving behaviour of a narwhal and fit the
models to a three-dimensional response vector of maximum dive depth, duration of
dives and post-dive surface time of 8,609 dives measured in East Greenland over 83
days, an extraordinarily long and rich data set. In particular, diurnal patterns in diving
behaviour for a marine mammal is being inferred, by using periodic B-splines with
boundary knots in 0 and 24 hours. Several HMMs with covariates are used to
characterize dive patterns. Narwhal diving patterns have not been analysed like this
before, but in studies of other whale species, response variables have been assumed
independent. We extend the existing models to allow for dependence between state
distributions, and show that the dependence has an impact on the conclusions drawn
about the diving behaviour. It is thus paramount to relax this strong and biologically
unrealistic assumption to obtain trustworthy inferences.

Author summary

Narwhals live in pristine environments. However, the increase in average temperatures
in the Arctic and the concomitant loss of summer sea ice, as well as increased human
activities, such as ship traffic and mineral exploration leading to increased noise
pollution, are changing the environment, and therefore probably also the behavior and
well-being of the narwhal. Here, we use probabilistic models to unravel the diving and
feeding behavior of a male narwhal, tagged in East Greenland in 2013, and followed for
nearly two months. The goal is to gain knowledge of the whales’ normal behavior, to be
able to later detect possible changes in behavior due to climatic changes and human
influences. We find that the narwhal uses around two thirds of its time searching for
food, it typically feeds during deep dives (more than 350m), and it can have extended
periods, up to 3 days, without feeding activity.

1 Introduction 1

The narwhal (Monodon monoceros) is a long-lived toothed whale that primarily inhabit 2

cold waters of the Atlantic sector of the Arctic. The largest abundances are found in 3
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East and West Greenland and in the Canadian High Arctic. Physical maturity is 4

reached at an age of ∼ 30 years and at a body length and mass of 4− 5m and 5

1,500-1,800 kg [8]. The narwhal belong to the group of the deepest diving cetaceans with 6

the maximum exceeding 1, 800m [10]. Their diet consists of few prey species including 7

Greenland halibut (Reinhardtius hippoglossoides), polar cod (Boreogadus saida), capelin 8

(Ammodytes villosus) and squids (Gonatus sp.) [9, 13]. Predation on Greenland halibut 9

constitutes a potential competition with fisheries, especially in winter, at the same time 10

as narwhal skin and meat as well as their valuable tusks for centuries have been 11

important hunting products for Inuit cultures in Greenland and northern Canada. 12

Anthropogenic factors like underwater noise are also a concern for a species that, with 13

decreasing sea ice coverage, is increasingly exposed to underwater noise from shipping 14

and seismic exploration [21]. It is therefore important to understand and quantitatively 15

describe the diving activities of narwhals, by robust statistical methods, and assess how 16

these are changed due to potential conflicts with anthropogenic activities, and to ensure 17

the long-term conservation of one of the most specialized species in the North Atlantic. 18

The first step is to understand the diving patterns of narwhals under natural 19

conditions, which we address in this study. Diving behaviour is however cryptic since it 20

includes both physiological constraints, energetic demands and habitat and 21

environmental regimes. Modelling of the observed diving behaviour is one way of gaining 22

insight to the overall diving patterns, and changes in model parameters is a way to 23

compare and estimate quantitatively impacts from anthropogenic activities (see [4, 5]). 24

In this study we apply multivariate Hidden Markov Models (HMMs) with 25

covariates [22], to describe the diving dynamics in the vertical dimension of an 26

individual narwhal. These types of models for similar diving data of Blainville’s beaked 27

whales (Mesoplodon densirostris) were first introduced in [15]. A HMM assumes an 28

underlying unobserved process, which governs the dynamics of the observed variables. 29

The assumption is that the observed behaviour in a dive will depend on the present 30

state, and introduces autocorrelation in the model [22], in agreement with the observed 31

data, where the narwhal tends to repeat the same type of dives in a series before 32

switching to another type of dives. Similar to the blue whales (Balaenoptera musculus) 33

data analysed in [5] and the short-finned pilot whales (Globicephala macrorynchus) data 34

analysed in [19], our narwhal data suggest three distinct states: state 1 covers the 35

shortest and shallowest dives which we interpret as near-surface travelling, state 2 covers 36

the longer and deeper dives which we interpret as feeding states, and state 3 covers the 37

deepest and longest dives which we interpret as intense deep feeding behaviours. Pohle 38

et al [18] recommended against using more than four states in biological modelling like 39

this, in order to avoid the complexity of the correspondence between states of the model 40

and the biological phenomenon. DeRuiter et al [5] suggested three states for their data, 41

even if a formal model selection procedure would point to a more complex model, 42

because models with more underlying states might obscure patterns in the data and 43

provide less insight in the underlying biological process, even if they might perform 44

better in terms of forecasting. Biological knowledge should guide the choice of number 45

of states. They also argue that model misspecifications, such as too inflexible state 46

dependent distributions, variations over time, missing covariate information or outliers 47

might cause model selection criteria to favour models with more complex structures 48

than warranted. Therefore, we choose the three-states HMM model. 49

These HMMs have shown powerful for modelling animal movement by taking into 50

account the correlation over time between different movement patterns, with an 51

extensive research in two horizontal dimensions (see, e.g., [14, 16,17]), and recently, in 52

one vertical dimension [5, 15], possibly including further information on vertical 53

movements. In this study, we use vertical depth data, and the three response variables 54

are the maximum depth reached in a dive, the duration of a dive, and the post-dive 55
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surface time before initiating a new dive. 56

The data set covers 1,995 hours (∼ 83 days) and is extraordinarily long, and thus 57

provides a unique opportunity to obtain detailed information on diving behaviour. An 58

example of the data is shown in Fig 1. Such data are usually only on the order of a 59

couple of days or less, for example, the time series of short-finned pilot whales analysed 60

in [19] cover up to 18 hours and 64 dives, whereas the time series of blue whales 61

analysed in [5] cover up to 6 hours and 67 dives, and [14] analyses 79 hours of a single 62

Blainville’s beaked whale. However, here we only have data from a single narwhal 63

limiting the generalizability of the analysis. 64
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Fig 1. Diving data. Representative part of the narwhal diving data, covering 24
hours of dives on August 15th 2013. The red parts are where a lower temperature in the
stomach has been registered, indicating that the narwhal has swallowed a prey. The
blue line indicates a depth of 350m, the threshold for a deep dive used in the definition
of the covariates.

In all previous studies, contemporaneous conditional independence was assumed, 65

meaning that the state dependent processes are independent given the underlying state. 66

This is a strong and biologically unrealistic assumption, since deeper dives will typically 67

take longer, also when conditioning the dive to be either shallow, medium or deep. A 68

positive correlation is still expected, beyond the correlation implied by the hidden states. 69

DeRuiter et al [5] argued for the assumption of conditional independence because unless 70

a multivariate normal distribution can be assumed, there is usually no simple candidate 71

multivariate distribution to specify the correlation structure. This is partly due to some 72

of their response variables being discrete. In this study, we will relax the assumption of 73

conditional independence, taking advantage of the continuity of the response variables. 74

They are all restricted to be positive and with right skewed distributions. Previous 75

studies have therefore used conditionally independent gamma distributions for these 76

variables. Here, we will assume dependent log-normal distributions, such that their 77

log-transforms follow a multivariate normal distribution. We only assume dependence 78

between maximum depth and dive duration, which has a high correlation in the full 79

data set (0.864), as well as high correlations within the three estimated states for the 80

chosen model (0.538, 0.777 and 0.458, respectively), whereas we assume both of these 81

variables independent of post-dive surface time, since the correlations in the full data set 82

were low (0.046 and 0.042, respectively). We also do the analysis with the standard 83

choice of the gamma distributions, and compare the results. 84

Covariates were included in [5, 15,16], appearing in the transition probabilities 85

between hidden states, whereas no covariates were included in [19]. Here we include 86

covariates in all elements of the transition matrix, trying out different covariate process 87

models and select the optimal model by the Akaike Information Criterion (AIC). We 88

consider two covariates related to the recent deep dives performed by the narwhal. 89
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Dives can reach > 1, 800m, and deeper dives are usually related to intense feeding [10]. 90

We define a deep dive as a dive to a depth of at least 350m. Note that this definition is 91

only used to define the covariates, and is not related to the decoding of states. One 92

covariate is the time passed since the last deep dive, which was also used in [15]. The 93

hypothesis is that the longer the time passed since last deep dive, the higher the 94

narwhal’s propensity for initiating a deep dive will be. Another covariate counts the 95

number of consecutive deep dives that the narwhal has performed. The hypothesis is 96

that the more dives in a row and more time spent at great depths, the higher the 97

narwhal’s propensity for changing diving pattern to shallower depth or near-surface 98

travelling. By introducing such history dependent covariates, the model allows a longer 99

dependence structure than the one implied by the Markov property. These models with 100

dependencies between observables caused by the underlying state, as well as including 101

feedback from the observed process, were introduced in [15] to model Blainville’s beaked 102

whale. The last covariate is time of day at initiation of the dive, modelled by a periodic 103

B-spline with boundary knots in 0 and 24 hours. Diurnal effects on marine mammal 104

diving patterns are difficult to estimate in this type of models because the time series 105

are typically too short, but this data set is extraordinarily long, making this inference 106

possible. However, here we only analyse a single whale, and results might not generalize. 107

2 Materials & Methods 108

We analyse the time series of depth measurements of a mature male narwhal (420 cm, 109

estimated mass 950 kg) tagged in East Greenland from August 13th until November 6th 110

2013. Permission for capturing, handling, and tagging of narwhals was provided by the 111

Government of Greenland (Case ID 2010–035453, document number 429 926). The tag 112

(Mk10 time-depth recorder from Wildlife Computers, Redmond, WA, USA) was 113

attached to the whale and retrieved one year later with 1994.83 hours of dive data 114

(approximately 83 days and 2 hours), see [12]. In this time interval the narwhal 115

performed 8,609 dives to depths of at least 20m. Depth was measured every second at a 116

resolution of 0.5m, and summarized in three variables within each dive to describe the 117

behaviour: dive duration, maximum depth and post-dive surface time, as also used 118

in [5,19]. Here we define a dive as one in which the whale reach a depth of at least 20m, 119

otherwise it is considered time spent at the surface. This threshold was chosen in order 120

to avoid creating too many shallow dives near the surface, see [1]. The surface and dive 121

durations also enter in the model as part of the covariate counting the time since last 122

deep dive. The total time the whale spent at the surface was 37 days and 5.6 hours, i.e., 123

the narwhal spent 44.8% of its time at the surface. 124

The first week of tagging, the narwhal also had the temperature of the stomach 125

measured, see [11]. A temperature drop indicates that a prey has entered the stomach. 126

Fig 1 shows an example part of the data, and the red parts indicate temperature drops. 127

These typically happen during deep dives, and support the assumption that deep dives 128

are related to foraging. 129

In this study, the observed response variable, denoted by Xt, is three-dimensional, 130

describing the diving behaviour related to each dive, where t indicates the dive number, 131

t = 1, 2, . . . , T , with T = 8, 609 dives. The first response variable, X1,t, is the maximum 132

depth reached in dive number t, and takes real positive values between 20 and 910.5m. 133

The second response variable, X2,t, is the duration of dive number t, and takes real 134

positive values between 33 seconds and 28 minutes. The third response variable, X3,t, is 135

the time spent at the surface after the dive before initiating a new dive, and takes real 136

positive values between 1 second and 209.7 minutes. We assume that the diving 137

behaviour depends on an underlying unobserved process, which we denote by 138

Ct, t = 1, 2, . . ., with a number m of unobserved behavioural states, Ct ∈ {1, . . . ,m}, 139
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which govern the dynamics of the observed variables. The assumption is that the 140

distributions of the observed maximum depth, duration of dive, and post-dive duration 141

of dive number t depend on the state. We choose the three-states HMM model, m = 3, 142

and identify the three states with three different diving patterns in the water column; 143

near-surface travelling, medium depth dives, and deep dives probably related to feeding. 144

2.1 Hidden Markov Model 145

An m-dimensional hidden Markov model assumes that the distribution of the 146

p-dimensional response vector Xt depends on a hidden state Ct, where 147

{Ct : t = 1, 2, . . . } is an unobserved underlying process satisfying the Markov property: 148

P (Ct = j | Ct−1 = i, . . . , C1 = l) = P (Ct = j | Ct−1 = i),

where Ct ∈ {1, . . . ,m} for t = 2, 3, . . . . Denote the state transition probabilities for 149

m = 3 at time t by ωij(t), i, j = 1, 2, 3, where ωij(t) = P (Ct+1 = j | Ct = i). The 150

transition probability matrix Ω(t) is then 151

Ω(t) =

ω11(t) ω12(t) ω13(t)
ω21(t) ω22(t) ω23(t)
ω31(t) ω32(t) ω33(t)

 (1)

where ωij(t) ≥ 0 and
∑3
j=1 ωij(t) = 1. Here, we let ωij(t) depend on t to allow time 152

varying covariates to affect the transition probabilities, see Section 2.3. The distribution 153

of Xt is conditionally independent of everything else given Ct: 154

f(Xt|Xt−1, . . . ,X1, Ct, Ct−1, . . . , C1) = f(Xt|Ct), t = 1, 2, . . . (2)

where f denotes a probability density function, i.e., the distribution of Xt depends only 155

on the current state Ct and not on previous states or observations. The model is 156

illustrated in Fig 2. 157

Fig 2. Hidden Markov Model. The hidden states Ct represent behavioural states
that influence the distribution of the observed variables Xt.

2.2 State dependent distributions 158

The state-dependent distributions are the probability density functions of Xt associated 159

with state i. Under the contemporaneous conditional independence assumption, the p 160

different components of the response vector Xt are assumed independent given the 161

hidden state, and the probability density can be decomposed as 162

f (Xt | Ct = i) = fi (Xt) =

p∏
k=1

fi,k (Xk,t) , (3)
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where Xk,t is the kth observed component of Xt. Here we have p = 3, the components 163

being maximum depth (MD), duration of dives (DT ), and post-dive duration (PD). 164

Thus, Xt = (XMD,t, XDT,t, XPD,t)
T , where T denotes transposition. Contemporaneous 165

conditional independence implies that the state dependent processes XMD,t, XDT,t and 166

XPD,t are independent given the underlying state Ct. This assumption has been used 167

in [5] and [19] because in general, there is no simple way to address the correlation 168

between variables within states, and the dependence induced by the Markov chain is 169

often sufficient to fit the data. However, in this paper, we will relax this assumption, 170

and let fi be a joint distribution function, allowing for dependent coordinates, which for 171

our data turn out to improve the fit considerably. 172

All three response variables are positive right-skewed variables, so natural candidates
for fi,k are gamma distributions, as used in [5] and [19], or log-normal distributions, i.e.,
the logarithm of the response variables follow a 3-dimensional normal distribution. Here,
we will try three different distributions. The first candidate is independent gamma
distributions, to compare with the usual approach. The gamma distribution is
parametrized by shape parameter µ and scale parameter σ, with mean µσ and variance
µσ2, and the state dependent probability density functions are given by

fi(Xt) =
∏

k∈{MD,DT,PT}

fi,k (Xk,t) =
∏

k∈{MD,DT,PT}

Γ(µki )−1(σki )−µ
k
iX

µki−1
k,t e

−
Xk,t

σk
i , (4)

for i = 1, 2, 3. 173

We will also assume both independent and correlated log-normal distributions, such 174

that logXt is multivariate normal, where logXt = (logXMD,t, logXDT,t, logXPT,t)
T , 175

taking advantage of the computational convenience of the normal distribution. The 176

log-normal distribution is parametrized by log-mean µ and log-variance σ2. Thus, given 177

Ct = i and k, the mean and variance of logXk,t is µki and (σki )2, and the mean and 178

variance of Xk,t is exp(µki + (σki )2/2) and (exp((σki )2)− 1) exp(2µki + (σki )2). The 179

log-correlation is denoted by ρi. The correlation between the first two components is 180

(exp(ρiσ
MD
i σDTi )− 1)/

√
(exp((σMD

i )2)− 1)(exp((σDTi )2)− 1), where (σMD
i )2 and 181

(σDTi )2 are the log-variances of maximum depth and dive duration, respectively. The 182

correlation is approximately equal to the log-correlation ρi when (σMD
i )2 and (σDTi )2

183

are small. We assume post-dive duration independent of the other two response 184

variables, based on the low marginal correlation in the data. Thus, the state dependent 185

probability density functions are given by 186

fi(Xt) =
1

(2π)3/2
√
|Σi|

e−
1
2 (log Xt−µi)TΣ−1

i (log Xt−µi), (5)

where | · | denotes the determinant of a matrix, µi = (µMD
i , µDTi , µPDi )T , 187

Σi =

 (σMD
i )2 ρσMD

i σDTi 0
ρσMD

i σDTi (σDTi )2 0
0 0 (σPDi )2


and ρ = 0 in the independent case. 188

2.3 Covariates 189

To allow for a longer memory in the model beyond the autocorrelation induced by the 190

hidden process, we incorporate feedback mechanisms by letting the state transition 191

probabilities depend on the history. We consider two covariates related to the recent 192

deep dives performed by the narwhal. One covariate is the continuous variable τt, 193

defined as time passed since the last deep dive before dive number t, where a deep dive 194
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is defined as a dive to a depth of at least 350m. Note that this definition is only used to 195

define the covariates, and is not related to the decoding of states. Thus, the algorithm 196

might decode dives of lesser depth to state 3, and deeper dives not to be in state 3. The 197

value chosen is somewhat arbitrary, and we tried different values between 250 and 198

450m, without much effect on the results. The other covariate is the discrete variable dt 199

taking non-negative integer values, counting the number of consecutive deep dives that 200

the narwhal has performed before dive number t. Finally, we consider the covariate of 201

the hour at which the dive is initiated. More specifically, we define the covariate 202

processes Tt, the time since the last deep dive, Dt, the number of consecutive deep dives 203

up to dive number t, and Ht, the hour of initiation of dive t, and denote the measured 204

covariates by τt, dt and ht. Thus, the short term memory is modelled by the hidden 205

states, and the long term memory is modelled by modulation of the transition 206

probabilities as a function of past dynamics. The model is illustrated in Fig 3, and Fig 4 207

illustrates the response variables and the three covariates for 60 consecutive dives. 208

Fig 3. Hidden Markov Model with feedback processes. The distribution of
the transitions between hidden states Ct depends on the observed covariate processes Tt,
Dt and Ht.

The covariates enter the transition probabilities ωij(t) = ωij(ηij(t)) in Eq. (1) 209

through a predictor, ηij(t), see Eq. (7) below. We consider several models. If there are 210

no covariates for a given predictor, then ηij(t) = ηij does not depend on t. Table 1 lists 211

the different models, where αij , βij , γij , δij , θij and ζij are real parameters. We tried 212

more models, but only include these for illustration. Covariates dt and τt were 213

incorporated as natural cubic splines with three degrees of freedom. The covariate dt 214

counts number of deep dives in a row, and is therefore around 0 when not in state 3. 215

This covariate therefore carries no information unless in state 3, and only enters in η31 216

and η32. Likewise, τt is expected to be around 0 when in state 3, and therefore only 217

enters ηij for i = 1 or 2. The effect of time of day is modelled by a periodic B-spline 218

with three degrees of freedom, with boundary knots in 0 and 24 hours. 219
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Fig 4. Response variables and covariate processes. Time series plot of
maximum depth, duration of dive, and post-dive duration from dive number 3890 to
3950 and the covariate processes counting the time since last deep dive, number of deep
dives in a row, and the hour at initiation of dive. The symbols indicate the decoded
hidden states from a model fitted to a dependent log-normal distribution (Model 1).
State 1 (circles) represents near-surface travelling, State 2 (squares) represents a feeding
state of medium long and deep dives, and State 3 (triangles) represents an intense deep
feeding state of the deepest and longest dives.

2.4 The likelihood function and optimization 220

The likelihood LT of x1, x2, . . . , xT , where xt is the observation of Xt, assumed to be 221

generated by an m-state HMM, can in general be computed recursively in only O(Tm2) 222

operations by the forward algorithm [22]. The likelihood is expressed as 223

LT = δP(x1)Ω(τ1, d1, h1)P(x2) · · ·Ω(τT−1, dT−1, hT−1)P(xT )1, (6)

where P(xt) = diag(f1(xt), f2(xt), f3(xt)) is a diagonal matrix with diagonal elements 224

fi(xt) given in Eq. (4) when the gamma distribution is used, or Eq. (5) when the 225

log-normal distribution is used, Ω is given by Eq. (1) and 1 ∈ Rm is a column vector of 226
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Table 1. Different models for covariate effects on the transition probabilities between behavioural states.

Predictors in the transition probabilities

Model η12(t) η13(t) η21(t) η23(t) η31(t) η32(t)

1 α00 + T t12 +Ht
12 α01 + T t13 +Ht

13 β00 + T t21 +Ht
21 β01 + T t23 +Ht

23 γ00 +Dt
31 +Ht

31 γ01 +Dt
32 +Ht

32

2 α00 +Ht
12 α01 +Ht

13 β00 +Ht
21 β01 +Ht

23 γ00 +Ht
31 γ01 +Ht

32

3 α00 + T t12 α01 + T t13 β00 + T t21 β01 + T t23 γ00 +Dt
31 +Ht

31 γ01 +Dt
32 +Ht

32

4 α00 + T t12 α01 + T t13 β00 + T t21 β01 + T t23 γ00 +Dt
31 γ01 +Dt

32

The predictors ηij relate to the transition probabilities as given in equation (7). Denote the spline effects of hour by

Ht
ij =

∑
k δ

(k)
ij h

t
k, of τt by T tij =

∑
k θ

(k)
ij s

t
k, and of dt by Dt

ij =
∑
k ζ

(k)
ij d

t
k for k = 1, 2, 3 and i, j = 1, 2, 3; i 6= j.

ones. The initial state distribution is denoted by δ, which is an m-dimensional row 227

vector; δi = P (C1 = i). For δ, we choose the uniform distribution, δi = 1/m. 228

Alternatively, it can be estimated, but there is no need for this extra computational 229

effort, since our dataset is large and the influence of δ will be negligible. Furthermore, δ 230

has no particular biological relevance. 231

The transition parameters in Eq. (1) are constrained to be between 0 and 1 with row 232

sums equal to 1, and thus, even if there are 32 = 9 entries, there are only 3 · 2 = 6 free 233

parameters. To obtain an unconstrained optimization problem, we reparametrise to 234

working parameters, as also done in [5, 16,19], see also [22], by defining 235

ωij(t) =
exp(ηij(t))∑m
j=1 exp(ηij(t))

(7)

where ηij(t) is the predictor for dive t for 1 ≤ i, j ≤ 3, i 6= j, and ηii = 0 for i = 1, 2, 3. 236

This assures positive entries and that rows sum to 1. 237

We used the direct numerical Newton-Raphson algorithm nlm (optim in case nlm 238

failed) in R [20] to estimate the parameters of the model by maximizing the 239

log-likelihood, LT := logLT , where LT is given in Eq. (6). The procedure ns from the 240

package splines (version 3.5.0) was used to calculate the periodic splines. The 241

procedure pbs from the package pbs (version 1.1) was used to calculate the periodic 242

splines. 243

Using a combination of R and Rcpp [6] for calculating the log-likelihood function LT 244

improved the runtime considerably. To mitigate the problem of local maxima, we ran 245

the optimization algorithm thousands times with different starting values for the 246

parameters of the state-dependent distributions, as well as for the parameters of the 247

transition matrix. The final result was chosen as the one giving the maximum 248

log-likelihood. For the best fits, we employed the jittering procedure used in [5], but it 249

did not improve the log-likelihood value. 250

Once the optimal model was selected and parameters of the model were estimated, it 251

was of interest to decode the most likely state sequence c∗1, . . . , c
∗
T . The Viterbi 252

algorithm [7, 22] is suitable to estimate the hidden states given the observed depths and 253

durations: 254

(c∗1, . . . , c
∗
T ) = argmax

(c1,...,cT )∈{1,2,3}
Pr (C1 = c1, . . . , CT = cT | x0, . . . , xT ) .

We evaluate by AIC which model provides the best fit, and study if final conclusions 255

on diving behaviour differ if dependence is assumed. 256
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3 Results 257

The estimation algorithm classifies each dive to one of the three hidden states. The 258

classification depends on the model, but all models roughly group dives according to 259

maximum depth. The algorithm allocates labels arbitrarily, so to compare across 260

models we relabeled the states, such that State 1 represents the shortest and shallowest 261

dives, which we define as near-surface travelling, State 2 represents medium long and 262

deep dives, which we define as a feeding state, and State 3 represents the deepest and 263

longest dives, which we define as an intense deep feeding state. Thus, one goal of 264

comparing models is to access if conclusions on diving behaviour expressed through the 265

decoded classes of the dives differ between models. If they all classify the same, it does 266

not matter which model we use, maybe except for the estimation of covariate effects. If 267

the classification differ from model to model, it is important to choose the statistically 268

best model. 269

Table 2 lists the model selection results from the optimization. We use AIC to select 270

the best model, which is highlighted in bold. The correlated log-normal model is clearly 271

preferred above the independent models, with huge AIC differences, and the log-normal 272

distribution is clearly preferred above the gamma distribution. Models with ∆AIC 273

larger than 10 have essentially no support in the data compared to the best model [2]. 274

Model 1 is the best among the tested models for all state distribution models, which 275

balance accuracy and complexity of the model. It has diurnal effects on all transition 276

probabilities, and nonlinear effects of τt and dt on some of the transition probabilities. 277

The marginal fit is illustrated in Fig 5 for correlated log-normal state distributions. The 278

fits look convincing. 279

Table 2. Model selection results.

Independent Independent Correlated
Gamma Log-normal Log-normal
distribution distribution distribution

Model np ∆AIC np ∆AIC np ∆AIC

1 60 5050.51 60 2309.12 63 0
2 42 5386.94 42 2652.4 45 255.97
3 48 5096.47 48 2353.17 51 34.34
4 42 5194.44 42 2451.91 45 166.88

Differences in AIC values, ∆AIC, between the different models, where all AIC values
were subtracted the AIC value of the model with the lowest AIC. For all the tested state
distributions, covariate model 1 was preferred. The best fit is given by the minimum
AIC, which occurs for the dependent log-normal state distribution, highlighted in bold.
np: number of parameters.

A deep dive is defined to be a dive of at least 350m, and therefore dt will typically 280

be 0 once the narwhal is in state 1 or 2, and thus, we only expect dt to influence η3j . 281

This is exactly what we see; models with no dependence of dt in transitions from states 282

1 and 2 are preferred over the other models (results not shown). Furthermore, we would 283

expect that low or moderate values of dt would make the propensity to stay in state 3 284

large, and thus, decrease the probabilities for transiting to other states, whereas large 285

values of dt are expected to increase the probabilities of changing, because the narwhal 286

might need to rest. Thus, a non-linear relation might be adequate. This is explored in 287

Models 1, 3 and 4, and effectively, the optimal model 1 does include a non-linear 288

relationship of dt. Fig 6 illustrates the estimated covariate effects, and parameter 289
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Fig 5. Model fit. Histograms of response variables Maximum Depth, Duration of
Dives and Post-dive Duration. The fit of Model 1 with correlated log-normal
distributions is indicated with a magenta curve, and the distribution of the fitted states
are indicated with colours as given in the legend. State 1 corresponds to near-surface
travelling, state 2 is feeding at medium depths, and state 3 is intense feeding at large
depths.

estimates and confidence intervals can be found in Tables 4 and 5 in the Supplementary 290

Material. 291

Fig 6. Covariate effects. A: Transition probabilities between behavioural states
depending on covariates of correlated log-normal model 1, at approximately 12 pm. B:
Transition probabilities depending on diurnal effects in model 1 with correlated
log-normal state distributions, calculated for τt = 0.58 and dt = 0 (the medians).

The covariate τt indicates the time passed since last deep dive. We expect that τt 292

has impacts on states 1 and 2, but not on state 3 (which is the case for the selected 293

model). In the left panel of Fig 6A the effect of τt is illustrated. The transition 294

probabilities do not seem to depend much on τt, except for the probability of changing 295
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from surface travelling to deep dives. The probability is much higher for very small 296

values of τt, and decreasing fast towards 0 for larger values. This is not what was 297

expected, but might reflect the following. When short time has passed since last deep 298

dive, it is probably also short time since the whale was in state 3 of intense feeding. 299

Thus, it reflects that the whale is still in an overall behavioral state of intense feeding, 300

but just had a short break with surface travelling. This phenomenon can be seen in Fig 301

7 where the state decoding is shown for 12 representative hours. It is seen that after (at 302

least) six dives in state 3, the whale changes to a few shallow dives for a short time, and 303

then continues with another three dives in state 3. When a little longer time passes, the 304

whale has effectively stopped its intense foraging, and the probability of a change to 305

state 3 becomes smaller. Then, when long time has passed, we expect the transition 306

probability to increase, which is not what is estimated. However, there are very few 307

large observations of τt: 75% of the values are belov 2.8 hours, and 90% are below 7.8 308

hours. Therefore effect estimates for large values are unreliable. The same is true for 309

covariate dt: more than half are 0, 75% are 2 or smaller, and 90% are 8 or lower. 310

0 3 6 9 12
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200

400

600

Time (hours)

D
e
p
th

 (
m

)

1 2 3

Fig 7. State decoding close-up. The estimated hidden state per dive for 12 hours
of the data.

The effect of dt is illustrated in the right panel of Fig 6A. As expected, for values 311

above 20 dives in a row, the probabilities to exit state 3 increase with increasing dt. The 312

probability of changing to shallow waters (state 1) is much higher than the probability 313

of changing to medium deep dives (state 2) after a period of intense feeding (state 3). 314

Fig 6B shows the diurnal effects on the transition probabilities. Changing from state 315

3 to 2 has highest probability around midnight, whereas changing from state 2 to 3 has 316

highest probability around 6 pm. Changing to state 1 has highest probability around 317

noon. The transition probabilities from state 1 do not depend much on diurnal effects. 318

Table 3 lists the estimated means and standard deviations of the state distributions 319

for correlated log-normal and independent gamma distributions, respectively. Means 320

and standard deviations of maximum depth and diving time are estimated larger for 321

both shallow dives (state 1) and medium dives (state 2) with the correlated model 322

compared to the independent model, whereas the two models estimate mean and 323

variances approximately the same for deep dives (state 3). Thus, taking into account 324

the dependence between the two state variables reveals more variable diving patterns 325

(i.e., larger variance within states), unless the narwhal is doing intense feeding at deep 326

dives, where the need for regular breathing do not allow the whale to digress. 327

Fig 8 shows the decoded hidden states for Model 1 with dependent log-normal state 328

distribution. The correlated model estimates that the narwhal spends around 33.5% of 329

its dives, corresponding to 34.4% of the time, in State 1 of near-surface travelling, which 330

encompasses dives down to 793m of durations up to 28 minutes. This is a large value 331

for the surface state, but it is only the extreme tail of the distribution, and is 332
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Table 3. Summary measures of Model 1.

State 1 State 2 State 3
Correlated Log-normal distribution

EMD 34.40 160.44 459.41
SDMD 79.66 143.22 83.14
EDT 5.08 6.63 11.78
SDDT 2.71 3.02 1.65
EPD 6.65 2.58 6.49
SDPD 10.61 1.16 3.73
Corr 0.56 0.81 0.46
Independent Log-normal distribution

EMD 25.95 135.55 458 .00
SDMD 52.94 123.59 85.86
EDT 4.39 7.01 11.81
SDDT 2.16 2.20 1.67
EPD 6.85 2.65 6.64
SDPD 11.59 1.13 4.18

Independent Gamma distribution
EMD 20.46 113.71 455.46
SDMD 22.09 95.05 87.47
EDT 4.10 6.84 11.78
SDDT 1.75 2.21 1.70
EPD 8.24 2.56 7.32
SDPD 9.5 1.03 5.09

Means and standard deviations of Model 1 based on correlated Log-normal, independent
Log-normal and independent Gamma distribution. MD: Maximum Depth; DT: Diving
Time; PD: Post-Dive duration. E: mean; SD: standard deviation; Corr: Correlation.

represented by a single dive. It reflects that the log-normal distribution has heavier tails 333

than the gamma distribution. Of the time spent in state 1, only 36.4% of the time is 334

spent diving, the rest of the time the whale is in the surface. The narwhal spends 335

around 32.5% of its dives, corresponding to 19.9% of the time, in medium depths of 336

between 20m and 836m and durations between 0.7 and 22 minutes. Also here, a few 337

deep dives are decoded as medium dives. Of the time spent in state 2, 69.9% of the time 338

is spent diving, the rest of the time the whale is in the surface. Finally, 34.0% of dives, 339

corresponding to 45.9% of the time, are spent during intense feeding at depths between 340

231.5m and 910.5m and durations between 7.2 and 19.5 minutes. Of the time spent in 341

state 3, 62.8% of the time is spent diving, the rest of the time the whale is in the 342

surface. Fig 7 illustrates a close-up of the decoding of dives for an example period of 12 343

hours. The correlated model thus decodes a few of the deep dives as pertaining to states 344

1 and 2, probably because of these dives taking longer time than the deep dives decoded 345

as state 3. 346

Model 1 with an independent gamma state distribution estimates that the narwhal 347

spends around 28.9% of its dives in State 1 of near-surface travelling, which 348

encompasses dives up to 258m of durations up to 14.8 minutes. It spends around 34.8% 349

of its dives in medium depths of between 20m and 584m and durations between 1.5 350

and 28 minutes. Finally, 36.3% of dives are spent during intense feeding at depths 351

between 172.5m and 910.5m and durations between 6.5 and 22 minutes. The 352

independent model seems to be mostly guided by the maximum depth. 353

The decoding of behavioural states is thus different depending on whether 354
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Fig 8. State decoding. The estimated hidden state per dive for each of the three
observed variables under covariate model 1 and state distribution the correlated
log-normal. The longest pause of no deep dives starts from the 1345th dive until the
1894th dive, and it lasts approximately 2 days and 17.5 hours.

correlation between observed variables are accounted for or not. The independent 355

gamma model estimated that the narwhal spent 71.1% of its dives for feeding, whereas 356

when correlation is taken into account, this estimate drops to 66.5%. These numbers are 357

not too different, but to explore the differences further, we plot the distributions of the 358

state variables and the covariates as a function of the decoding for the independent 359

gamma and the correlated log-normal models in Fig 9. The orange density plots show 360

the dives that are decoded the same in the two models, whereas the blue density plots 361

show the dives that are differently decoded in the two models. In the correlated model, 362

the distributions of dive characteristics in State 1 and 2 are broader, whereas they are 363

more peaked in state 3, compared to the independent model. 364

To check the fit of the model more than what is given in Fig 5, we calculated the 365

pseudo-residuals [22], qq-plots can be found in Fig 10. The fit is acceptable, maybe 366

except for a too small lower tail for the Maximum Depth variable. This is probably due 367

to the threshold of a depth of 20m in the definition of a dive. 368

4 Discussion 369

In this study, we investigate different multivariate HMMs with covariate effects for 370

modelling the diving activity of a narwhal in the vertical dimension in the water column. 371

The data set is extraordinarily long, which has made it possible to describe diurnal 372

patterns in diving behaviour. 373

We extend the usual HMM models for diving behaviour of marine mammals to allow 374
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Fig 9. Distribution of hidden states. The empirical distributions of the response
variables and the covariates stratified by decoded state in the correlated log-normal
model 1. Within each panel, the orange density plots depict the distribution where the
independent gamma and the correlated log-normal distributions agree on the decoded
states, the blue density plots are those where the two distributions disagree.
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from covariate model 1 with correlated log-normal state distribution.

for dependence between state distributions, and show that the dependence has some 375

impact on the conclusions drawn about the diving behaviour. We find that statistically 376

the correlated model clearly outperforms the independent model, and more importantly, 377

conclusions on the diving behaviour differ between the two models. The main 378

differences are that the correlated model estimates more variable state distributions of 379

maximum depth and dive duration, and that 66.5% of the dives are for feeding, 380

compared to 71.1% in the independent model, under the assumption that states 2 and 3 381

in fact are representing feeding states in both models. Furthermore, the estimated 382

means and variances of depth and duration of shallow and medium dives are estimated 383

larger in the correlated model. Finally, ignoring the dependence between response 384

variables usually leads to too narrow confidence intervals on parameter estimates. 385
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Direct observations of feeding events were limited to the first week of the diving data 386

but the depths where feeding events were detected served as a valid proxy for the depth 387

threshold between behavioural state 2 and state 3. The observation that feeding events 388

involve deep dives (≥ 350m) is also supported by studies of the buzzing activity during 389

dives to different depths for narwhals travelling in the same area and time of the year as 390

the whale included in this study [3]. 391

Apparently the whale could stay in state 1 and 2 for long periods (> 24 hours) 392

without transiting to state 3, and it even showed a pause of almost 3 days without deep 393

dives. This indicates that feeding occur infrequently and that narwhals at least during 394

summer and fall may have extended periods without feeding activity (see also [13]). 395

However, the median of these pauses without state 3 dives was 44 minutes and the 396

mean was 2 hours. 397

Transition from state 1 to presumed feeding activity is more likely to be to state 3 398

with deep dives, and rarely goes to state 2 from state 1. Diving activity in state 3 399

usually last for a series of dives (5-10) perhaps indicating that specific layers of prey is 400

being detected and explored for a series of dives before the whale needs to spend an 401

extended period at the surface. The post dive time is typically around 6.5 minutes after 402

a state 3 dive, whereas it is typically only 2.6 minutes after a state 2 dive. The whale 403

probably needs to spend more time at the surface to recover from nitrogen tissue 404

tension following a longer breath-hold diving activity. 405

Even though detailed dive information supplemented by data on feeding events have 406

been available for this analysis it may still not be adequate for describing the important 407

drivers of diving behaviour. Both physiological constrains and reproductive state as well 408

as environmental conditions may influence the diving activity to an extent that cannot 409

be fully discerned in HMM analysis of dive series. For logistical reasons it is very 410

difficult if not impossible to obtain information on all factors that affect the diving 411

behaviour. However, the analysis of dive series provides a minimal insight into the 412

integrated effect of the various factors driving the diving behaviour and the major 413

advantage of the HMM analysis probably relies in the objective inter- and intra-specific 414

comparison of diving activity. 415
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Table 4. Estimates of the model parameters (1st part) in model 1 and their
95% confidence intervals for correlated Log-normal distribution.

Correlated log-normal distribution

Estimate 95% CI

µMD
1 2.61 [2.56, 2.66]

µMD
2 4.78 [4.73, 4.84]

µMD
3 6.11 [6.11, 6.12]

σMD
1 1.36 [1.33, 1.39]

σMD
2 0.77 [0.72, 0.81]

σMD
3 0.18 [0.17, 0.19]

µDT
1 1.50 [1.48, 1.52]

µDT
2 1.80 [1.77, 1.82]

µDT
3 2.46 [2.45, 2.46]

σDT
1 0.50 [0.49, 0.51]

σDT
2 0.43 [0.41, 0.46]

σDT
3 0.14 [0.14, 0.14]

µPD
1 1.26 [1.22, 1.3]

µPD
2 0.86 [0.83, 0.88]

µPD
3 1.73 [1.71, 1.75]

σPD
1 1.13 [1.10, 1.15]

σPD
2 0.43 [0.41, 0.45]

σPD
3 0.53 [0.52, 0.55]

ρ1 0.56 [0.53, 0.58]

ρ2 0.81 [0.78, 0.83]

ρ3 0.46 [0.43, 0.50]

In state i, µi and σi are the log-mean and log-standard deviation of the correlated log-normal
distribution. Index MD stands for Maximum Depth, DT stands for Dive Duration and PD
stands for Post-Dive time. The depth is measured in meters, and time in seconds. The
confidence intervals were computed from the Hessian of the negative log-likelihood function,
i.e., based on the inverse of the observed Fisher information (to be continued on next page).
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Table 5. Estimates of the model parameters (2nd part).

Correlated log-normal distribution

Estimate 95% CI

α00 −3.82 [−5.30,−2.34]

α01 −0.97 [−1.57,−0.37]

β00 0.08 [−1.18, 1.33]

β01 −1.74 [−3.22,−0.263]

γ00 1.88 [1.10, 2.66]

γ01 −3.08 [−5.15,−1.02]

θ
(1)
12 1.95 [0.11, 3.80]

θ
(2)
12 −1.71 [−3.77, 0.36]

θ
(3)
12 −2.48 [−5.48, 0.52]

θ
(1)
13 −3.11 [−4.39,−1.82]

θ
(2)
13 −6.60 [−8.28,−4.92]

θ
(3)
13 −7.08 [−10.5,−3.61]

θ
(1)
21 0.19 [−1.58, 1.97]

θ
(2)
21 −0.57 [−2.39, 1.25]

θ
(3)
21 −0.51 [−4.10, 3.08]

θ
(1)
23 −5.04 [−8.82,−1.26]

θ
(2)
23 −5.39 [−7.13,−3.66]

θ
(3)
23 −0.48 [−1.93, 0.98]

ζ
(1)
31 −2.83 [−3.75,−1.92]

ζ
(2)
31 −5.35 [−6.61,−4.1]

ζ
(3)
31 −0.84 [−2.51, 0.83]

ζ
(1)
32 −4.83 [−6.38,−3.28]

ζ
(2)
32 −8.80 [−10.30,−7.28]

ζ
(3)
32 −0.38 [−2.76, 2.00]

δ
(1)
12 0.41 [−1.78, 2.60]

δ
(2)
12 2.53 [1.33, 3.73]

δ
(3)
12 −0.06 [−2.34, 2.22]

δ
(1)
13 0.21 [−0.82, 1.23]

δ
(2)
13 0.08 [−0.42, 0.58]

δ
(3)
13 0.02 [−1.06, 1.10]

δ
(1)
21 −2.77 [−4.88,−0.66]

δ
(2)
21 −2.29 [−3.34,−1.25]

δ
(3)
21 −3.46 [−5.37,−1.55]

δ
(1)
23 −1.24 [−3.48, 1.01]

δ
(2)
23 0.63 [−0.93, 2.19]

δ
(3)
23 1.54 [−0.37, 3.45]

δ
(1)
31 −2.32 [−3.41,−1.23]

δ
(2)
31 −0.60 [−1.14,−0.06]

δ
(3)
31 −2.49 [−3.59,−1.39]

δ
(1)
32 4.45 [0.99, 7.90]

δ
(2)
32 6.28 [4.05, 8.51]

δ
(3)
32 4.94 [1.47, 8.41]
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