Running title: SP1 increased hatchability during silkworm domestication

1	Artificial Selection on Storage Protein 1 Contributes to Increase of Hatchability
2	during Silkworm Domestication
3	Yanan Zhu ^{1,2,#} , Lizhi Wang ^{1,#} , Cencen Li ³ , Yong Cui ¹ , Man Wang ¹ , Yongjian Lin ¹ ,
4	Ruoping Zhao ² , Wen Wang ^{2,4} , Hui Xiang ^{1,2*}
5	1. Guangzhou Key Laboratory of Insect Development Regulation and Application
6	Research, Institute of Insect Science and Technology, School of Life Sciences, South
7	China Normal University, Guangzhou, 510631, China.
8	2. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of
9	Zoology, Chinese Academy of Sciences, Kunming 650223, China.
10	3. College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
11	4. Center for Ecological and Environmental Sciences, Key Laboratory for Space
12	Bioscience & Biotechnology, Northwestern Poly-technical University, Xi'an, 710072,
13	China.
14	# These authors are equally contributed.
15	*Correspondence to: <u>xiang_shine@foxmail.com</u>

Running title: SP1 increased hatchability during silkworm domestication

17 Abstract

18	Like other domesticates, efficient utilization of nitrogen resource is also important
19	for the domestic insect, the silkworm. Deciphering how artificial selection act on
20	silkworm genome for improved utilization of nitrogen resource and further
21	human-favored domestication traits will provide unique cues from the insect scenario
22	for understanding general rules of Darwin's evolutionary theory on domestication.
23	Storage proteins (SP), which belong to a hemocyanin superfamily, basically serve as a
24	source of amino acids and nitrogen during metamorphosis and reproduction in insects.
25	Here through genomic search and further screening of artificial selection signature on
26	silkworm SPs, we discovered a candidate domestication gene, i.e. the methionine-rich
27	storage protein1 (SP1), which is uniquely diverged from the others and showed
28	increased expression in the ova of domestic silkworms. Knockout of SP1 via
29	CRISPR/Cas9 approach resulted in dramatic decrease in egg hatchability, without
30	obvious impact on egg production, which was similar to the case in the wild silkworm
31	compared with domestic one. Larval development or metamorphosis were not
32	affected by SP1 knockout. Comprehensive ova comparative transcriptomes indicated
33	a general repression of gene expression, specifically vitellogenin, chorion proteins and
34	structural component proteins in the extracellular matrix (ECM)-interaction pathway,
35	as well as enzymes in folate biosynthesis, in both the mutant and the wild silkworm
36	with the mutated allele, compared to the wild type domestic silkworm. Wild
37	silkworms with the wild allele also showed generally down-regulated expression of
38	genes enriched in structural constituent of ribosome and amide and peptide

Running title: SP1 increased hatchability during silkworm domestication

- 39 biosynthesis. This study exemplified a novel case that artificial selection could
- 40 directly act on nitrogen resource protein to affect egg nutrient and eggshell formation,
- 41 and activate ribosome for improved biosynthesis and increased hatchability during
- 42 domestication. The findings shed new light on both understanding of artificial
- 43 selection and silkworm breeding from the angle of nitrogen and amino acid resource.

Running title: SP1 increased hatchability during silkworm domestication

45 Author summary

46	Like other domesticates, nitrogen resource is also important for the domestic insect,
47	the silkworm. Deciphering how artificial selection act on silkworm genome for
48	improved utilization of nitrogen resource and further human-favored domestication
49	traits, will provide unique cues from insect scenario, for understanding general rules
50	of Darwin's evolutionary theory. However, mechanism of domestication in the
51	silkworm is largely unknown to date. Here we focused on one important nitrogen
52	resource, i.e, the storage proteins (SP). We discovered that the methionine-rich
53	storage protein1 (SP1) which is divergent from the other SPs are the only target of the
54	artificial selection. We proposed based on functional evidence together with the key
55	findings of comprehensive comparative transcriptome, that artificial selection, on one
56	hand favored higher expression of SP1 in the domestic silkworm, which would
57	subsequently up-regulate the genes or pathways vital for egg development and
58	eggshell formation. On the other hand, artificial selection consistently favored
59	activated ribosome activities and improved amide and peptide biosynthesis and in the
60	ova, as it might act in the silk gland for increased silk-cocoon yield. We here
61	exemplified a novel case that artificial selection could directly act on nitrogen
62	resource protein for human desired domestication trait.
63	

Running title: SP1 increased hatchability during silkworm domestication

64 Introduction

65	The silkworm Bombyx mori is the only fully domestic insect species, which
66	originated from its wild ancestor B. mandarina about 5000 years ago. During this
67	process, the domestic silkworm evolved rapidly under human-preferred selection.
68	Deciphering how artificial selection act on silkworm genome for human-favored
69	domestication traits, will provide unique cues from insect scenario, for understanding
70	general rules of Darwin's evolutionary theory. Recently, by population and
71	evolutionary genomic analyses on domestic and wild silkworm individuals, we
72	recently found that nitrogen and amino acid metabolism pathways and specifically
73	genes in glutamate and aspartate metabolism, were under artificial selection and could
74	affect the metamorphosis and cocoon yield [1]. These findings suggest that, like
75	domestic plants and animals, domestic silkworms also tend to have efficient
76	utilization of nitrogen resources to adapt to human-preference [1-3]. Besides the
77	glutamate and aspartate metabolism which is an ammonia re-assimilated system[4],
78	we further wonder whether other kind of nitrogen resources are also affected by
79	artificial selection. If this is the case, how they contributed to silkworm phenotypic
80	changes during domestication.
81	Insect storage proteins (SP) are another important source of amino acids and
82	nitrogen, which belong to a special conserved arthropod hemocyanin superfamily [5].
83	Most insects have at least two main kinds of storage proteins, i.e, arylphorin and
84	methionine-rich storage proteins and some species have other non-typical SPs [6]. SPs
85	have been cloned or predicted in many insect species, including Lepidoptera moths

96	and hutterfligs [7, 10]. Insect SDs are suggested to serves as a source of amine poids
86	and butterflies [7-10]. Insect SPs are suspected to serves as a source of amino acids
87	and nitrogen the for pupae and adults during metamorphosis and reproduction [11],
88	however solid functional evidence on its biological significance is rather few [9, 12].
89	In plant, storage proteins are mainly reserved in seeds, together with other nutrient
90	such as oil and starch, to supply energy for seed germination, growth [13, 14].
91	Especially in crops, seed SPs function in providing energy for humans and animals
92	and they are of great interest and target for breeding and improvement [13-15].
93	In the domestic insect, the silkworm, previous studies preliminarily characterized
94	three SPs mainly based on cues of gene or protein expression pattern [7, 16-18].
95	Especially the methionine-rich SP1 was implied to contribute to adult female
96	characters [7] and related to synthesis of vitellogenin (Vg), the precursor of yolk
97	protein [16]. SP2 coupled with SP3 form a heterohexamer and has the inhibitory
98	effects on cell apoptosis [17, 18]. Whether SPs are also important in the silkworm
99	domestication, as observed in domesticated plants, given the importance of nitrogen
100	supply in silkworm domestication, pends deep exploration of their biological and
101	evolutionary significances.
102	Development of genomics and genome-editing techniques provide tools for
103	efficiently decipher the evolutionary and functional significances of interested genes
104	[19, 20]. Here in this study, we conducted a genome-wild identification of silkworm
105	SPs and taking advantages of the genomic data resource of a batch of representative
106	domestic and wild silkworms [1], we conducted selection signature screening of these
107	silkworm SPs followed by functional verification via CRISPR/Cas9 knockout system

108	and comprehensive comparative ova transcriptomes of the wild type and mutant
109	silkworms as well as domestic and wild silkworms. The findings here suggested that
110	artificial selection on SP1 contribute to increased production during silkworm
111	domestication, possibly by upregulation of vitellogenin and egg development and
112	eggshell formation, to promote egg hatchability during domestication. These findings
113	provide a novel case with functional evidence and figure out a frame of regulation on
114	a silkworm domestication gene, which illuminated that artificial on nitrogen and
115	amino acid supply will be also required for improved silkworm reproduction.
116	
117	Results
118	SP1 is diverged from the other SPs and is the only one targeted by artificial
119	selection
119 120	<i>selection</i> Totally, we identified 7 <i>SP</i> s in the silkworm genome by blast search. SP1 showed the
120	Totally, we identified 7 SPs in the silkworm genome by blast search. SP1 showed the
120 121	Totally, we identified 7 <i>SP</i> s in the silkworm genome by blast search. SP1 showed the dramatically highest methionine content (10.98%) (Table 1). Phylogenetic analysis
120 121 122	Totally, we identified 7 <i>SP</i> s in the silkworm genome by blast search. SP1 showed the dramatically highest methionine content (10.98%) (Table 1). Phylogenetic analysis showed that <i>SP1</i> was one distinct clade whereas the others were in another one,
120 121 122 123	Totally, we identified 7 <i>SP</i> s in the silkworm genome by blast search. SP1 showed the dramatically highest methionine content (10.98%) (Table 1). Phylogenetic analysis showed that <i>SP1</i> was one distinct clade whereas the others were in another one, indicating an obvious divergence between <i>SP1</i> and the others (Fig 1A). <i>SP1</i> is located
120 121 122 123 124	Totally, we identified 7 <i>SP</i> s in the silkworm genome by blast search. SP1 showed the dramatically highest methionine content (10.98%) (Table 1). Phylogenetic analysis showed that <i>SP1</i> was one distinct clade whereas the others were in another one, indicating an obvious divergence between <i>SP1</i> and the others (Fig 1A). <i>SP1</i> is located in Chromosome 23 and the others are clustered in Chromosome 3, suggesting possible
120 121 122 123 124 125	Totally, we identified 7 <i>SP</i> s in the silkworm genome by blast search. SP1 showed the dramatically highest methionine content (10.98%) (Table 1). Phylogenetic analysis showed that <i>SP1</i> was one distinct clade whereas the others were in another one, indicating an obvious divergence between <i>SP1</i> and the others (Fig 1A). <i>SP1</i> is located in Chromosome 23 and the others are clustered in Chromosome 3, suggesting possible tandem duplication events during evolution. Interestingly, by screening of artificial
120 121 122 123 124 125 126	Totally, we identified 7 <i>SP</i> s in the silkworm genome by blast search. SP1 showed the dramatically highest methionine content (10.98%) (Table 1). Phylogenetic analysis showed that <i>SP1</i> was one distinct clade whereas the others were in another one, indicating an obvious divergence between <i>SP1</i> and the others (Fig 1A). <i>SP1</i> is located in Chromosome 23 and the others are clustered in Chromosome 3, suggesting possible tandem duplication events during evolution. Interestingly, by screening of artificial selection signatures on the genomic region bearing <i>SP1</i> and the other <i>SP</i> s

Running title: SP1 increased hatchability during silkworm domestication

130	expressed in the ova between domestic and wild silkworms, with higher expression in
131	the domestic one (Fig 1E). We also detected 11 SNPs that caused amino acid changes
132	in the coding sequence of the gene (S1 Fig), despite that the biological significance of
133	these SNPs needs further evaluation. These results suggest that artificial selection on
134	SP1 during silkworm domestication might affect the function of this gene in domestic
135	silkworms, at least in terms of gene expression.

136 Knockout of SP1 by CRISPR/Cas9

137 To explore the functional impact of *BmSp1* in silkworm domestication, we firstly

investigated the biological role of this gene in the silkworm through CRISPR/Cas9

knocking out system. For single guide RNA (sgRNA) design, we selected highly

specific targets in the first exon close to the translation starting site, namely, S1 and

141 S2 (Fig 2A). We choose another site S3 close to the end of the first exon, more than

142 60 bp downstream of S1 and S2 (Fig 2A and Table 2), to obtain a potentially large

143 fragment deletion by injecting the pool of three gRNAs. After mutation screening of

the injected eggs (G0 generation), the gRNAs targeting the above three sites

successfully guided DNA editing and generated a variety of mutation types, including

146 4–9 bp deletions or small insertions followed by a large deletion (Fig 2B).

147 By mutation screening of the exuviae of the fifth instar larva in the G0 cocoon, we

successfully identified 26 mosaic mutant G0 moths. We then generated pairwise

149 crosses of these G0 mutants with similar mutant genotypes for the G1 populations.

150 After mutation screening of the G1 eggs, we selected two populations with large

deletions for further feeding and mutation screening (see Material and methods).

152	Finally, in the G2 generation we obtained two types of homozygous mutants, i.e.,
153	MU1 and MU2 (Fig 2C). As to MU1, there was an 8 bp insertion followed by a 63 bp
154	deletion in the <i>BmSP1</i> coding sequences. As to MU2, there was a 4 bp insertion
155	followed by a 65 bp deletion. The mutations occurred at +29 bp of the first SP1 exon
156	in MU1 and MU2, respectively (Fig 2C), resulting in reading frame shift mutations
157	and severe premature termination close to the translation starting site, with stop
158	signals at +10 aa and +37 aa of the SP1 protein (Fig 2D).
159	Both SP1 mutants and the wild silkworm had decreased hatching rate and Vg
160	expression
161	We selected and maintained MU1 population for assay on phenotypes related to
162	reproduction and metamorphosis, such as number of eggs, hatching rate, pupa weight,
163	and cocoon weight. Compared with the wild-type, which showed hatching rates of
164	about 90%, the hatching rates of SP1 mutants were dramatically decreased, with a
165	mean egg hatching rate of about 40% (Fig 2E), whereas the number of eggs produced
166	was not obviously affected (Fig 2E), neither did the whole pupa weight or cocoon
167	shell weight (Fig 2E). Given that the data were obtained from large replicates (126
168	replicates for hatchability assay and 320 replicates for pupa and cocoon weight), the
169	results are convincible. Loss-of-function mutation resulted in significant decreased
170	expression of SP1 and Vg in the ova, based on the RNA-seq data (Fig 2F).
171	Given that knockout of SP1 caused reduced hatching rate (Fig 2E) and that
172	expression of SP1 in the ova of wild silkworm were significantly lower than that of
173	domestic one, we further suspected that artificial selection on SP1 might improve

174	silkworm hatching rate during domestication. Supporting this hypothesis, we found
175	that hatching rates of the wild silkworm were generally lower compared with that of
176	the domestic one and, similar to SP1 mutant, no obvious differences was detected in
177	egg production between the wild and the domestic silkworm (Fig 3A). The lower
178	hatching rate of wild silkworm was also reported in other studies [21, 22]. Meantime,
179	we also found that similar to SP1 mutants, expression of Vg in the ova of the wild
180	silkworm was drastically lower compared with domestic one (Fig 3B). These results
181	suggested that in the silkworm SPI may positively affect expression of Vg of ova and
182	contribute to silkworm egg development. Promotion of SP1 expression in the
183	domestic silkworm thus results in the correspondingly up-regulation of Vg , which
184	further contributes to increased hatchability during silkworm domestication.
185	Genes involved in egg development and eggshell formation were both repressed in
185 186	Genes involved in egg development and eggshell formation were both repressed in SP1 mutant and the wild silkworm
186	SP1 mutant and the wild silkworm
186 187	<i>SP1 mutant and the wild silkworm</i> In order to further exploring the regulation network and possible molecular
186 187 188	<i>SP1 mutant and the wild silkworm</i> In order to further exploring the regulation network and possible molecular mechanism of female specific <i>SP1</i> on egg hatchability, we generated comprehensively
186 187 188 189	SP1 mutant and the wild silkworm In order to further exploring the regulation network and possible molecular mechanism of female specific SP1 on egg hatchability, we generated comprehensively Ova comparative transcriptome analyses between the wild type and the mutant, as
186 187 188 189 190	SP1 mutant and the wild silkworm In order to further exploring the regulation network and possible molecular mechanism of female specific SP1 on egg hatchability, we generated comprehensively Ova comparative transcriptome analyses between the wild type and the mutant, as well as domestic and wild silkworm (Bombyx mandarina), with 4.87~9.15 Gb
186 187 188 189 190 191	SP1 mutant and the wild silkworm In order to further exploring the regulation network and possible molecular mechanism of female specific SP1 on egg hatchability, we generated comprehensively Ova comparative transcriptome analyses between the wild type and the mutant, as well as domestic and wild silkworm (Bombyx mandarina), with 4.87~9.15 Gb RNA-seq data for each sample (S1 Table). Totally, there were 561 genes identified as
186 187 188 189 190 191 192	SP1 mutant and the wild silkworm In order to further exploring the regulation network and possible molecular mechanism of female specific SP1 on egg hatchability, we generated comprehensively Ova comparative transcriptome analyses between the wild type and the mutant, as well as domestic and wild silkworm (Bombyx mandarina), with 4.87~9.15 Gb RNA-seq data for each sample (S1 Table). Totally, there were 561 genes identified as differential expressed genes (DEGs) in the SP1knockout mutants (MU1) compared to

Running title: SP1 increased hatchability during silkworm domestication

196	expressed genes (2882) between the wild and domestic silkworm, since wild
197	silkworm are much more genetically and phenotypically different from the domestic
198	one, compared with the silkworm mutant. It is interesting that, down-regulated genes
199	(1761) were also significantly more than up-regulated (1121) ones (p=2.2e-16,
200	Chi-squared test with Yates' continuity correction) (Fig 3A and S3 Table). The results
201	suggested that transcriptome repression in ova might be an output of SP1 depletion, in
202	both the SP1-KO mutant (Fig 2F and Fig 4A) and in the wild silkworm (Fig 1E and

204 We identified 302 common genes shared in the two sets of DEGs. KEGG enrichment analysis indicated that these common differential expressed genes were 205 significantly enriched in pathways related to cell proliferation, such as ECM-receptor 206 207 interaction and folate biosynthesis. GO enrichment analysis indicated that they were enriched in reproduction related biological processes such as ovarian follicle cell 208 development, chorion-containing eggshell formation (Fig 4B) and these genes was 209 also enriched in the molecular function of structural constituent of chorion (Fig 4B). 210 Factually they are all annotated as chorion proteins, including 4 chorion class CB 211 protein M5H4-like genes (BGIBMGA003248, BGIBMGA009720, BGIBMGA009719, 212 BGIBMGA009715), a chorion class B protein PC10 (BGIBMGA009721) and a 213 Chorion 1 domain containing gene (BGIBMGA005877). All these chorion like genes 214 are down regulated except BGIBMGA009720 (Fig 4B, Table S2, S3). Genes in 215 ECM-receptor interaction pathway includes collagens and integrins (S2 Fig) and those 216 folate biosynthesis folylpolyglutamate 217 in includes synthase, involved in

203

Fig 4A).

Running title: SP1 increased hatchability during silkworm domestication

218	7,8-Dihydrofolate (DHF) and 5,6,7,8-Tetrahydrofolate (THF) which are substrates for
219	subsequent one carbon pool mediated by folate (S3 Fig). Extend to all the enriched
220	genes, it is notable that they were mostly down-regulated, in both the SP1 mutant and
221	the wild silkworm (Fig 4B). This results suggested that the common influence of
222	repression of SP1 in both the SP1 mutant and the wild silkworm at transcriptome level
223	is on genes or pathways involved in reproduction, such as ovarian follicle cell
224	development or proliferation, and eggshell formation.
225	We further generated enrichment analyses on DEGs in the two sets of comparison
226	independently and observed consistent pattern (Table 3 and 4). Functional enrichment
227	analysis of DGEs between wild-type silkworm and SP1 mutant silkworm reveals
228	significantly enriched the KEGG pathway "ECM-receptor interaction" and the GO
229	terms, including ovarian follicle cell development and eggshell formation process,
230	functioning as structural constituent of chorion (Table 3) and the related genes are
231	mostly down-regulated. Consistently, These GO items were also in the top rank with
232	the lowest p value when analyzing the DEGs between wild and domestic silkworm
233	(Table 4). The involved genes in these KEGG or GO terms were nearly all
234	down-regulated in the wild silkworm (Table 4). These results further supported that in
235	the wild silkworm, repression of SP1 may result in suppressed expression of ovarian
236	follicle cell development and eggshell formation process.
237	Ribosome proteins and genes in amide and peptide biosynthetic processes were also
228	renressed in the wild silkworm

238 repressed in the wild silkworm.

239 DEGs between wild and domestic silkworms were significantly in enriched in

12 / 34

Running title: SP1 increased hatchability during silkworm domestication

240	function of structural constituent of ribosome. The related genes are mostly ribosome
241	proteins (S4 Fig). We also noted that the related biological progresses, such as amide
242	and peptide biosynthetic processes was also in the top rank with the lowest p value
243	(Table 4). The related genes were also mostly down-regulated in the wild silkworm.
244	However, during domestication, there might be other factors that contributes to
245	improved hatchability, that is, improved amide and peptide biosynthesis and activated
246	ribosome activities in the ovarian.
247	Discussion
248	Nitrogen resource is very important for silkworm domestication. The domestic

silkworm tend to have efficient utilization of nitrogen resources for yielding protein

outputs to adapt to human-preference. Here in this study, we discovered that artificial

selection could directly act on nitrogen resource gene, i.e, storage protein1 (SP1), for

improved silkworm hatchability. SPs are also of target loci of breeding in crops [23].

However, in the crops, human could directly benefit from the nutrient of these

improved SPs [15] whereas in the silkworm, the benefits of SPs are increased

silkworm reproductive capacity.

Among all the SPs identified, SP1 is quite diverged and somewhat unique from

the others, in terms of both genomic location and phylogenetic position. Similar

258 pattern was also observed in other Lepidoptera species, such as tobacco hornworm,

259 Manduca sexta [24], suggesting that SP1 might evolve dependently while the other

type of *SPs* might have experienced duplication during Lepidoptera evolution.

261 Methionine-rich SP1 seems to be of special interest, since methionine is reported to be

13 / 34

262	an important amino acid for the tradeoff between growth and reproduction [25]. In
263	Drosophila, dietary methionine restriction extends lifespan [25], while in
264	grasshoppers, a reduced reproduction-induced increase in expression methionine-rich
265	protein occurred during life extension [26]. Similarly, in the beet armyworm,
266	silencing of Sp1 by RNA interference (RNAi) decreases larval survival, which
267	indicate the role of the methionine-rich SP in growth and metamorphosis[12]. We
268	therefore added an new evidence that different to grasshopper [26] and the beet
269	armyworm[12], but similar to Drosophila[25], silkworm methionine-rich SP1
270	functions in reproduction process but not obviously affect growth.
271	Given that in those cocoon-producing silk moths, another nitrogen utilization
272	system such as gluminate/glutamine cycle system were reported to be vital in
273	metamorphosis silk-cocoon production [1, 4, 27], we suspect that strategy of nitrogen
274	resource allocation via storage proteins may be diverged or modified during
275	Lepidoptera insect evolution. Here in the silkworm, function of SP1 limited to
276	influencing egg hatching rate. Artificial selection acted only on SP1, again suggesting
277	functional importance of SP1 rather than the other SPs, for human-preferred
278	domestication traits, i.e, increased hatchability.
279	Ova comparative transcrtiome analyses further illustrated a frame of regulation
280	network of SP1 on hatchability. Vitellogenin(Vg), chorion proteins, structural
281	component proteins in the extracellular matrix (ECM)-interaction pathway such as
282	collagen and integrins, and synthetase in folate biosynthesis are all generally
283	repressed in both the SP1 mutant and the wild silkworm. Thus, artificial selection

Running title: SP1 increased hatchability during silkworm domestication

284	acting on SP1 for increased hatchability, possibly thorough direct or indirect influence
285	on those genes, pathway or biological processes. Vg is the main nutrition for
286	silkworm egg formation and embryonic development. It appears and accumulates at
287	the stage when SP1 rapidly declined and disappeared in the fat body shortly before
288	adult emergence [16, 28]. SP1 may supplies amino acids for synthesis of Vg, as
289	previously reported in Plutella xylostella (Yaginuma & Ushizima, 1991). Chorion
290	proteins are the major component of the silkworm eggshell that have the essential
291	function of protecting the embryo from external agents during development while
292	allowing gas exchange for respiration. Eggshell (chorion) is constructed by the
293	ovarian follicle cells. The follicle cell epithelium surrounds the developing oocyte and
294	in the absence of cell division synthesizes a multilayer ECM [29]. Eggshell ECM
295	were usually linked by integrins, a family of transmembrane receptor proteins to the
296	cytoskeleton of oocyte. Via a series of signal transduction, ECM-integrins functions in
297	oocyte movement, differentiation, and proliferation [29]. Integrins was reported to
298	function in formation of actin arrays in the egg cortex [30] and it is also involved in
299	tracheole morphogenesis which is for respiration [31]. Folate is one of B-vitamin
300	cofactors with and functions in transferring various single-carbon units. The key
301	folylpolyglutamate synthase is involved in production of 7,8-Dihydrofolate (DHF)
302	and 5,6,7,8-Tetrahydrofolate (THF) which are substrates for subsequent one carbon
303	pool mediated by folate. In human, folate is used as a supplement by women
304	during pregnancy to prevent neural tube defects (NTD) in the baby, and low levels in
305	early pregnancy are believed to be the cause of more than half of babies born

15/34

306	with neural tube defects, indicating its important role for fetal development [32]. In
307	insects, folate also plays important roles in egg development. It could promote
308	biosynthesis of nucleic acids in the ovaries, and evoke mitoses in cells of the
309	collicular epithelium [33-35].
310	Notably, increased hatchability during domestication may not be solely attributed
311	to increased expression of SP1 and the associated downstream genes, given that
312	artificial selection acts on hundreds of gene loci in silkworm genome [1, 36] and that
313	ova comparative transcriptome between wild and domestic silkworm identified much
314	more genes than that between SP1 mutant and wild type silkworm. We factually
315	observed significantly enriched pathway and structural constituent of ribosome, the
316	protein translation machinery and involved biological processes in amide and peptide
317	biosynthesis, are generally lower expressed in the wild silkworm compared with
318	domestic silkworm (Table 4). These results again supported the importance of
319	nitrogen and amino acid in silkworm domestication, not only for silkworm protein
320	output [1], but also for productivity.
321	Similar to other domesticates, hatchability of silkworm eggs directly determine
322	quantity of offspring, and thus it is an important productivity trait human favorably
323	selected during domestication. Based on the results and the discussion above, we
324	proposed that artificial selection, on one hand favored higher expression of SP1 in the
325	domestic silkworm, which would subsequently up-regulate the genes or pathways
326	vital for egg development and eggshell formation. On the other hand, artificial
327	selection consistently favored activated ribosome activities and improved amide and

Running title: SP1 increased hatchability during silkworm domestication

- 328 peptide biosynthesis and in the ova, as it might act in the silk gland for increased
- 329 silk-cocoon yield [1]. As an output, domestic silkworm demonstrates improved
- increase egg hatchability compared with it wild ancestor.
- 331 Materials and Methods

332 Silkworm strains

- A multivoltine silkworm strain, Nistari, was used in all experiments. Larvae were
- reared on fresh mulberry leaves under standard conditions at 25°C. The wild
- silkworms were collected in Zhejiang province, China and maintained as laboratory
- 336 population in our lab.

337 Silkworm genomic data resource

- 338 The silkworm *Bombyx mori* reference genome and related data used for searching and
- 339 screening of artificial selection signature on silkworm SPs is our updated version
- 340 (https://doi.org/10.5061/dryad.fn82qp6); those for RNA-seq data analyses were
- 341 obtained from Ensemble database
- 342 (http://metazoa.ensembl.org/Bombyx mori/Info/Index).

343 Genomic search of B.mori SPs and Phylogenetic analysis of SPs

- 344 The reference sequences of *B. mori* storage proteins (SP1, SP2, SSP2 and SP3) were
- retrieved from the NCBI GenBank. These sequences were used as quires searching for
- homologs in the *B. mori* genome by tblastn with e-value $<10^{-7}$. Other insect homologs
- of the silkworm SPs were searched in GenBank (<u>https://blast.ncbi.nlm.nih.gov/</u>) by
- BLASTP with an e-value $<10^{-7}$. We selected sequences from several representative
- 349 Lepidoptera species and *Drosophila melanogaster* as candidate proteins for further

350	analyses. The sequences of the SP1 homologs were aligned using MEGA 6.0 software
351	[37]. A gene tree was constructed using The Bayes tree was constructed by
352	MrBayes-3.1.2 with GTR + gamma substitution model. The gene-ration number was
353	set as 1000000 and the first 25% was set as burn-in. Other parameters were set as
354	default.
355	Molecular selection of Sp1 in domesticated and wild silkworm populations
356	Based on the available whole genomic Single nuclear polymorphic data (SNP) of
357	domesticated and wild silkworm populations [1],
358	(https://doi.org/10.5061/dryad.fn82qp6), we screened the selection signatures of the
359	silkworm SPs, according to Xiang et al's pipeline [1]. Allelic frequency and SNP
360	annotation was calculated by in-house Perl scripts.
361	Design of sgRNA target and in vitro synthesis of sgRNA and Cas9 mRNA
361 362	Design of sgRNA target and in vitro synthesis of sgRNA and Cas9 mRNA The 20 bp sgRNA targets immediately upstream of PAM were designed by the online
362	The 20 bp sgRNA targets immediately upstream of PAM were designed by the online
362 363	The 20 bp sgRNA targets immediately upstream of PAM were designed by the online platform CRISPRdirect (http://criSpr.dbcls.jp/)[38]. The sgRNA DNA template was
362 363 364	The 20 bp sgRNA targets immediately upstream of PAM were designed by the online platform CRISPRdirect (http://criSpr.dbcls.jp/)[38]. The sgRNA DNA template was synthesized by PCR, with Q5® High-Fidelity DNA Polymerase (NEB, USA). The
362 363 364 365	The 20 bp sgRNA targets immediately upstream of PAM were designed by the online platform CRISPRdirect (http://criSpr.dbcls.jp/)[38]. The sgRNA DNA template was synthesized by PCR, with Q5® High-Fidelity DNA Polymerase (NEB, USA). The PCR conditions were 98°C for 2 min, 35 cycles of 94°C for 10 s, 60°C for 30 s, and
362 363 364 365 366	The 20 bp sgRNA targets immediately upstream of PAM were designed by the online platform CRISPRdirect (http://criSpr.dbcls.jp/)[38]. The sgRNA DNA template was synthesized by PCR, with Q5® High-Fidelity DNA Polymerase (NEB, USA). The PCR conditions were 98°C for 2 min, 35 cycles of 94°C for 10 s, 60°C for 30 s, and 72°C for 30 min, followed by a final extension period of 72°C for 7 min. The sgRNA
362 363 364 365 366 367	The 20 bp sgRNA targets immediately upstream of PAM were designed by the online platform CRISPRdirect (http://criSpr.dbcls.jp/)[38]. The sgRNA DNA template was synthesized by PCR, with Q5® High-Fidelity DNA Polymerase (NEB, USA). The PCR conditions were 98°C for 2 min, 35 cycles of 94°C for 10 s, 60°C for 30 s, and 72°C for 30 min, followed by a final extension period of 72°C for 7 min. The sgRNA were synthesized based on the DNA template <i>in vitro</i> using a MAXIscript® T7 kit
362 363 364 365 366 367 368	The 20 bp sgRNA targets immediately upstream of PAM were designed by the online platform CRISPRdirect (http://criSpr.dbcls.jp/)[38]. The sgRNA DNA template was synthesized by PCR, with Q5® High-Fidelity DNA Polymerase (NEB, USA). The PCR conditions were 98°C for 2 min, 35 cycles of 94°C for 10 s, 60°C for 30 s, and 72°C for 30 min, followed by a final extension period of 72°C for 7 min. The sgRNA were synthesized based on the DNA template <i>in vitro</i> using a MAXIscript® T7 kit (Ambion, Austin, TX, USA) according to the manufacturer's instructions. The Cas9

Running title: SP1 increased hatchability during silkworm domestication

372 mMESSAGE mMACHINE® T7 kit (Ambion, Austin, TX, USA) according	to the
---	--------

373 manufacturer's instructions. All related primers are shown in Table 2.

374	Microin	ection of	Cas9/gRNAs

- Fertilized eggs were collected within 1 h after oviposition and microinjection was
- within 4 h. The Cas9-coding mRNA (500 ng/ μ L) and total gRNAs (500 ng/ μ L) were
- 377 mixed and injected into the preblastoderm Nistari embryos (about 8 nl/egg) using a

378 micro-injector (FemtoJet®, Germany), according to standard protocols (Tamura,

2007). The injected eggs were then incubated at 25° C for 9–10 d until hatching.

380 Cas9/gRNAs-mediated mutation screening and analyses of germline mutation

- 381 frequency
- 382 To calculate the efficiency of Cas9/gRNAs-mediated gene mutation in the injected

generation (G0), we collected $\sim 10\%$ of the eggs (64 out of 600) 5 d after injection to

extract genomic DNA for PCR, with primers Sp1-F and Sp1-R (Table 2). The

amplified fragments were cloned into a pMDTM19-T simple vector (Takara, Japan)

and sequenced to determine mutation type and mutagenic efficiency.

387 When the injected G0 silkworms pupated, we collected silkworm exuviae from

388 fifth instar larvae in each cocoon. Individual DNA was then extracted Genomic DNA

389 was extracted using a TIANamp Blood DNA Kit (Tian gen Biotech, Beijing)

- 390 according to the manufacturer's instructions. Individual mutation screening was
- 391 generated with PCR with 94°C for 2 min, 35 cycles of 94°C for 30 s, 57°C for 30 s,
- and 72°C for 45 s, followed by a final extension period of 72°C for 5 min. PCR
- products were cloned to pMDTM19-T simple vector (Takara, Japan) and sequenced.

Running title: SP1 increased hatchability during silkworm domestication

394 Homozygous mutant screening and mutation effect on inferred protein

395	Mosaic mutant moths were obtained from the above mutation screening of exuviae
396	DNA from fifth instar larvae. Moths with the same mutation site were pairwise
397	crossed with each other to acquire G1 offspring. About 7 d after the G1 eggs were
398	laid, we collected ~30 eggs of each offspring population from one parental pair and
399	pooled them to extract genomic DNA for mutation screening by PCR. The amplified
400	fragments were cloned into a pMD TM 19-T simple vector (Takara, Japan) and
401	sequenced to determine the exact mutation type. Two G1 offspring populations with
402	large deletions in <i>BmSp1</i> were selected for further breeding. At the pupa stage, 20
403	randomly selected individuals within each population were subjected to mutation
404	screening of exuviae DNA. Homozygous mutant moths with the same identified
405	mutant genotype were crossed for G2 offspring. Mutation effects on proteins were
406	evaluated using MEGA 6/0 software[37] by codon alignment of the wild type and the
407	mutant.

408 **Phenotypic assay**

On the fourth day of pupation (P4), the silkworms had successfully pupated. We weighed every 10 individuals as a group, recorded the whole cocoon weight, pupa weight, and cocoon shell weight, respectively, and calculated the ratio of pupa weight to whole cocoon weight. In total, 32 replicates for the mutants and 11 replicates for the wild-type silkworms were set, respectively. Offspring of the homozygous mutants and wild-type silkworms were incubated at 25°C for 9–10 d until hatching. Number of Egg produced and egg hatching rate were determined. Eighty-three, forty-three, and

Running title: SP1 increased hatchability during silkworm domestication

- fourteen replicates were set for the two mutant (SP1-MU1, SP1-MU2) and wild-type
- 417 populations.
- 418 Number of eggs produced and the hatching rate of the wild silkworm were also
- 419 recorded. Ten replicated was set repeated two times.
- 420 Ova dissection, total RNA isolation and RNA-seq
- 421 Ova from virgin moth of the domestic wild type silkworm, SP1 mutant and the wild
- 422 type were dissected and used to extract total RNA with three replicates. Total RNA
- 423 were isolated using TRIzol (Invitrogen). For each sample, RNA were sent to
- 424 Novogene Bioinformatics Institute (Beijing, China) for cDNA library construction
- and RNA-seq. Six cDNA libraries were sequenced by Illumina Hiseq 2500 (Illumina,
- 426 San Diego, CA, USA) with 125 bp paired-end reads according to the manufacturer's
- 427 instructions.

428 Analyses on RNA-seq data

429	Raw data were	filtered with the	following crit	teria: (1)) reads with \geq	10% unidentified
-----	---------------	-------------------	----------------	------------	---------------------	------------------

430 nucleotides (N); (2) reads with > 10 nt aligned to the adapter, allowing $\leq 10\%$

431 mismatches; and (3) reads with > 50% bases having phred quality < 5. The clean data

- 432 were mapped to the *Bombyx mori* reference genome using Tophat with 2 nt fault
- tolerance and analyzed using Cufflinks [39]. The expression value of each gene was
- 434 calculated and normalized using fragments per kilobase of exon per million reads
- 435 mapped (FPKM) [39]. In order to identify differentially expressed genes, Cuffdiff was
- used to perform pairwise comparisons between wild-typed and SP1 mutant samples,
- 437 as well as the wild and domestic silkworm, respectively, with corrected *P*-value of

Running title: SP1 increased hatchability during silkworm domestication

- 438 0.05 < 5 and Log2-fold change>1.
- 439 KEGG and GO enrichment analyses of differentially expressed genes were
- 440 performed with an online platform (http://www.omicshare.com/tools/), using all the
- 441 annotated genes in *Bombyx mori* as background.
- 442
- 443 **Data availability.** RNA-seq data were deposited in the NCBI Short Read Archive
- database under the accession SAMN09700389-SAMN09700397.
- 445

446 Acknowledgements

- 447 We thank Anli Chen, Muwang Li and Lang You for their kind helps in silkworm
- 448 maintaining, and Anjiang Tan for his kindly providing the Cas9 vector. We thank
- 449 Shuai Zhan for his help in genomic data analyses and mining. This work was
- 450 supported by a National Basic Research Program of China (No. 2013CB835204) and
- 451 a grant of National Natural Science Foundation of China (No. 31371286).

452 **References**

453

Xiang H, Liu X, Li M, Zhu Y, Wang L, Cui Y, et al. The evolutionary road from wild moth to
domestic silkworm. Nat Ecol Evol. 2018. doi: 10.1038/s41559-018-0593-4. PubMed PMID: 29967484.

Hufford MB, Xu X, van Heerwaarden J, Pyhajarvi T, Chia JM, Cartwright RA, et al. Comparative
 population genomics of maize domestication and improvement. Nat Genet. 2012;44(7):808-11. doi:
 10.1038/ng.2309. PubMed PMID: 22660546; PubMed Central PMCID: PMCPMC5531767.

Wiener P, Wilkinson S. Deciphering the genetic basis of animal domestication. Proc Biol Sci.
2011;278(1722):3161-70. doi: 10.1098/rspb.2011.1376. PubMed PMID: 21885467; PubMed Central
PMCID: PMCPMC3169034.

462 4. Hirayama C, Nakamura M. Regulation of glutamine metabolism during the development of
463 Bombyx mori larvae. Biochim Biophys Acta. 2002;1571(2):131-7. PubMed PMID: 12049793.

- Xie W, Luan YX. Evolutionary implications of dipluran hexamerins. Insect biochemistry and
 molecular biology. 2014;46:17-24. doi: 10.1016/j.ibmb.2014.01.003. PubMed PMID: 24462816.
- 466 6. Haunerland NH. Insect storage proteins: gene families and receptors. Insect biochemistry and

Running title: SP1 increased hatchability during silkworm domestication

467 molecular biology. 1996;26:11.

468 7. Sakurai H, Fujii T, Izumi S, Tomino S. Structure and expression of gene coding for sex-specific
469 storage protein of Bombyx mori. The Journal of biological chemistry. 1988;263(16):7876-80. PubMed
470 PMID: 2836399.

471 Gkouvitsas T, Kourti A. Juvenile hormone induces the expression of the SnoSP2 gene encoding a 8. 472 methionine-rich hexamerin in Sesamia nonagrioides (Lepidoptera). Comparative biochemistry and 473 Β. & physiology Part Biochemistry molecular biology. 2009;153(2):206-15. doi: 474 10.1016/j.cbpb.2009.02.017. PubMed PMID: 19275945.

9. Sonoda S, Fukumoto K, Izumi Y, Ashfaq M, Yoshida H, Tsumuki H. Methionine-rich storage
protein gene in the rice stem borer, Chilo suppressalis, is expressed during diapause in response to
cold acclimation. Insect molecular biology. 2006;15(6):853-9. doi: 10.1111/j.1365-2583.2006.00670.x.
PubMed PMID: 17201777.

479 10. Zhu YC, Muthukrishnan S, Kramer KJ. cDNA sequences and mRNA levels of two hexamerin
480 storage proteins PinSP1 and PinSP2 from the Indianmeal moth, Plodia interpunctella. Insect
481 biochemistry and molecular biology. 2002;32(5):525-36. PubMed PMID: 11891129.

Telang A, Buck NA, Wheeler DE. Response of storage protein levels to variation in dietary protein
levels. Journal of insect physiology. 2002;48(11):1021-9. PubMed PMID: 12770025.

- Tang B, Wang S, Zhang F. Two storage hexamerins from the beet armyworm Spodoptera exigua:
 cloning, characterization and the effect of gene silencing on survival. BMC Mol Biol. 2010;11:65. doi:
 10.1186/1471-2199-11-65. PubMed PMID: 20807423; PubMed Central PMCID: PMCPMC2939506.
- 487 13. Gacek K, Bartkowiak-Broda I, Batley J. Genetic and Molecular Regulation of Seed Storage
 488 Proteins (SSPs) to Improve Protein Nutritional Value of Oilseed Rape (Brassica napus L.) Seeds.
 489 Frontiers in plant science. 2018;9:890. doi: 10.3389/fpls.2018.00890. PubMed PMID: 30013586;
 490 PubMed Central PMCID: PMCPMC6036235.
- 491 14. Chen P, Shen Z, Ming L, Li Y, Dan W, Lou G, et al. Genetic Basis of Variation in Rice Seed Storage
 492 Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association
 493 Analysis. Frontiers in plant science. 2018;9:612. doi: 10.3389/fpls.2018.00612. PubMed PMID:
 494 29868069; PubMed Central PMCID: PMC5954490.
- 495 15. Wu Y, Yuan L, Guo X, Holding DR, Messing J. Mutation in the seed storage protein kafirin creates
 496 a high-value food trait in sorghum. Nature communications. 2013;4:2217. doi: 10.1038/ncomms3217.
 497 PubMed PMID: 23948869.
- 498 16. Ogawa K, Tojo S. Quantitative Changes of Storage Proteins and Vitellogenin during the
 499 Pupal-Adult Development in the Silkworm, Bombyx Mori (Lepidoptera, Bombycidae). Applied
 500 Entomology and Zoolology. 1981;16:9.

Yu W, Wang M, Zhang H, Quan Y, Zhang Y. Expression and Functional Analysis of Storage Protein
in the Silkworm, Bombyx mori. International journal of genomics. 2013;2013:145450. doi:
10.1155/2013/145450. PubMed PMID: 23671839; PubMed Central PMCID: PMC3647547.

Storage Protein 2 in Bombyx mori. The protein journal. 2015;34(4):256-66. doi:
10.1007/s10930-015-9619-9. PubMed PMID: 26231571.

507 19. Xia Q, Li S, Feng Q. Advances in silkworm studies accelerated by the genome sequencing of
508 Bombyx mori. Annu Rev Entomol. 2014;59:513-36. doi: 10.1146/annurev-ento-011613-161940.
509 PubMed PMID: 24160415.

510 20. Daimon T, Kiuchi T, Takasu Y. Recent progress in genome engineering techniques in the

- silkworm, Bombyx mori. Dev Growth Differ. 2014;56(1):14-25. doi: 10.1111/dgd.12096. PubMed
 PMID: 24175911.
- 513 21. Chu JM, Yang R, Xia D, Gu W. The influence of light hours for copulation and oviposition of wild
 514 silkworms. Sci Sericulture. 1990;04:2.
- 515 22. Zhao QL, Li L, Wei ZJ, Zhang ZF. The selections affect analysis of silkworm in laying eggs. Bullet
 516 Sericulture 2001;3:3.
- 517 23. Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, et al. Genetic dissection of seed oil and protein
- content and identification of networks associated with oil content in Brassica napus. Scientific reports.
 2017;7:46295. doi: 10.1038/srep46295. PubMed PMID: 28393910; PubMed Central PMCID:
 PMCPMC5385559.
- 521 24. Burmester T. Expression and evolution of hexamerins from the tobacco hornworm, Manduca
 522 sexta, and other Lepidoptera. Insect biochemistry and molecular biology. 2015;62:226-34. doi:
 523 10.1016/j.ibmb.2014.11.009. PubMed PMID: 25497415.
- Lee BC, Kaya A, Ma S, Kim G, Gerashchenko MV, Yim SH, et al. Methionine restriction extends
 lifespan of Drosophila melanogaster under conditions of low amino-acid status. Nature
 communications. 2014;5:3592. doi: 10.1038/ncomms4592. PubMed PMID: 24710037; PubMed
 Central PMCID: PMC4350766.
- 528 26. Tetlak AG, Burnett JB, Hahn DA, Hatle JD. Vitellogenin-RNAi and ovariectomy each increase
 529 lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.
 530 Biogerontology. 2015;16(6):761-74. doi: 10.1007/s10522-015-9599-3. PubMed PMID: 26298568;
 531 PubMed Central PMCID: PMC4605866.
- 532 27. Osanai M, Okudaira M, Naito J, Demura M, Asakura T. Biosynthesis of L-alanine, a major amino
 533 acid of fibroin in Samia cynthia ricini. Insect biochemistry and molecular biology. 2000;30(3):225-32.
 534 PubMed PMID: 10732990.
- 535 28. Tojo S, Nagata M, Kobayashi M. Storage Proteins in the Silkworm, Bombyx Mori. . Insect536 Biochem. 1980;10:5.
- 537 29. Khokhar A, Chen N, Yuan JP, Li Y, Landis GN, Beaulieu G, et al. Conditional switches for
 538 extracellular matrix patterning in Drosophila melanogaster. Genetics. 2008;178(3):1283-93. doi:
 539 10.1534/genetics.106.065912. PubMed PMID: 18245854; PubMed Central PMCID: PMCPMC2278091.
- S40 30. Chan D, Thomas CJ, Taylor VJ, Burke RD. Integrins on eggs: focal adhesion kinase is activated at
 fertilization, forms a complex with integrins, and is necessary for cortex formation and cell cycle
 initiation. Mol Biol Cell. 2013;24(21):3472-81. doi: 10.1091/mbc.E13-03-0148. PubMed PMID:
 23985318; PubMed Central PMCID: PMCPMC3814141.
- 544 31. Levi BP, Ghabrial AS, Krasnow MA. Drosophila talin and integrin genes are required for
 545 maintenance of tracheal terminal branches and luminal organization. Development.
 546 2006;133(12):2383-93. doi: 10.1242/dev.02404. PubMed PMID: 16720877.
- 547 32. Jin J. Folic Acid Supplementation for Prevention of Neural Tube Defects. JAMA. 2017;317(2):222.
 548 doi: 10.1001/jama.2016.19767. PubMed PMID: 28097357.
- 33. Grzelakowska B, Zielinska ZM. Folate Derivatives in the Metabolism of Insects. Ii. Biosynthesis of
 Nucleic Acids in the Polytrophic Ovaries of the Diapausing Larvae of Acantholyda Nemoralis Thoms. As
 Promoted by Folic Acid and Its 4-Aminoanalogue. Journal of insect physiology. 1965;11:431-42.
 PubMed PMID: 14288372.
- Blatch SA, Stabler SP, Harrison JF. The effects of folate intake on DNA and single-carbon pathway
 metabolism in the fruit fly Drosophila melanogaster compared to mammals. Comparative

Running title: SP1 increased hatchability during silkworm domestication

biochemistry and physiology Part B, Biochemistry & molecular biology. 2015;189:34-9. doi:
10.1016/j.cbpb.2015.07.007. PubMed PMID: 26219578.

557 35. Zielinska ZM, Grzelakowska B. Folate Derivatives in the Metabolism of Insects. I. Mitoses in Cells

of the Follicular Epithelium as Evoked in Acantholyda Nemoralis Thoms. By Folate and Its 4-Aminoanalogue. Journal of insect physiology. 1965;11:405-11. PubMed PMID: 14288370.

560 36. Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, et al. Complete Resequencing of 40 Genomes Reveals

561 Domestication Events and Genes in Silkworm (Bombyx). Science. 2009. PubMed PMID: 19713493.

37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics
Analysis version 6.0. Molecular biology and evolution. 2013;30(12):2725-9. doi:
10.1093/molbev/mst197. PubMed PMID: 24132122; PubMed Central PMCID: PMCPMC3840312.

565 38. Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing CRISPR/Cas guide RNA

with reduced off-target sites. Bioinformatics. 2015;31(7):1120-3. doi: 10.1093/bioinformatics/btu743.
PubMed PMID: 25414360; PubMed Central PMCID: PMCPMC4382898.

39. Ghosh S, Chan CK. Analysis of RNA-Seq Data Using TopHat and Cufflinks. Methods Mol Biol.
2016;1374:339-61. doi: 10.1007/978-1-4939-3167-5 18. PubMed PMID: 26519415.

570

571

Running title: SP1 increased hatchability during silkworm domestication

573 Figure Legends

- 574 Figure 1. Molecular evolution of silkworm SPs. (A) Phylogenetic tree of insect
- 575 Storage proteins based on Bayesian inference analyses. Full-length amino acid
- sequences were aligned to generate a phylogenetic tree. Bayesian posterior probability
- 577 was shown for each node. Cf, *Choristoneura fumiferana*; Bm, *Bombyx mori*; Hc,
- 578 Hyalophora cecropia; Sr, Samia ricini; Ms, Manduca sexta; Ob, Operophtera
- 579 brumata; Hyc, Hyphantria cunea; Sl, Spodoptera litura; Sn, Sesamia nonagrioides;
- 580 Cs, Chilo suppressalis; Pi, Plodia interpunctella; Px, Plutella xylostella; Ad,
- 581 *Anopheles darlingi*; Ca, Corethrella appendiculata; Dm, Drosophila melanogaster;
- 582 Pm, Perla marginata; Td, Thermobia domestica. Accession number for each protein is
- indicated ahead of abbrevation of each species. (B-C). Selection signatures of the
- silkworm SPs. Signature index— Population divergence coefficient (Fst) between the
- 585 Chinese local trimoulting(CHN_L_M3) domestic silkworm group and the wild
- silkworms and nucleic acid diversity (π) in the silkworm populaton is shown along the
- genomic regions covering the SP genes. Dashed lines represent the top 1% Fst cutoff.
- 588 The red square represents *SP1* region which is located in Chromosome 23 and the
- blue squares represents the other *SPs* which are clustered in Chromosome 3. (D)
- Plotting of frequency of reference genotype for each SNP position in the upstream 2
- kb region of SP1, indicating many mutant alleles with fairly high allelic frequency in
- the wild silkworm population. (E) Expression level indicated as FPKM of SP1 in the
- 593 ova of domestic and wild silkworms. The three data pot indicate the highest value
- with 95% confidence, the average and the lowest value with 95% confidence,

Running title: SP1 increased hatchability during silkworm domestication

595	respectively. ***, FDR corrected p <0.001. Dome, the domestic silkworm. Wild, the	е
596	wild silkworm.	

597 Figure 2. Cas9/sgRNA mediated gene editing of *SP1* in the silkworm. (A)

598 Schematic diagram of sgRNA targeting sites. The five boxes indicate the five exons

of *BmSp1*, and the black line with blocks represents the gene locus (blocks, exons;

600 lines between blocks, introns). All sgRNA targeting sites are located on the first exon

(S1, S2, and S3) and the PAM sequence is labeled in red. Sp1-F and Sp1-R were the

primers used for mutation screening. (B) Various types of mutations in G0 injected

603 embryos. Deletions are indicated by hyphens and insertions are shown in blue

lowercase letters. The PAM sequence is in red. (C) Two types of mutations identified

from homozygous mutant silkworms. W, wild type. MU1, SP1 mutant type 1. There

was an 8bp insertion followed by a 63 bp deletion in the *SP1* coding sequences; MU2,

607 SP1 mutant type 2. there was a 4 bp insertion followed by a 65 bp deletion. (D)

608 Comparison of inferred amino acid sequences of homozygous mutant silkworms and

the wild type. The missing amino acids are replaced with dashes. Premature stop

610 codons are shown in red asterisk. (E) Phenotype assay of the mutants. Hatching rate

of SP1 mutants (MU1) decreased to about 51%. In total, 83 replicates of hatchings for

MU1, 43 replicates for MU2 and 14 replicates for wild-type were used for statistical

analysis. Number of egg produced, whole cocoon weight, pupa weight and cocoon

614 layer weight, and pupa weight/whole cocoon weight ratio of mutants and wild-type

silkworms, indicating no significant differences. In total, 32 replicates for mutants and

616 11 replicates for wild-type were used. Error bar: SD. (F) Expression level indicated as

27 / 34

Running title: SP1 increased hatchability during silkworm domestication

617	FPKM of $SP1$ and Vg in the ova of domestic and wild silkworms. The three data pots
618	indicate the highest value with 95% confidence, the average and the lowest value with
619	95% confidence, respectively. *, ** and *** represented significant differences at the
620	0.05, 0.01, 0.001 level (t-test).
621	Figure 3. The artificial selection on SP1 might improve silkworm hatching rate
622	during domestication. (A) The egg production and hatching rates in the domestic
623	group and wild silkworms. Error bar: SD. Wild_1 and Wild_2 indicated the results
624	from two repeat times (B) Expression level indicated as FPKM of Vg in the ova of
625	domestic and wild silkworms. The three data pots indicate the highest value with 95%
626	confidence, the average and the lowest value with 95% confidence, respectively. *, **
627	and *** represented significant differences at the 0.05, 0.01, 0.001 level.
628	Figure 4. Differential expressed genes (DEGs) and functional enrichment
628 629	Figure 4. Differential expressed genes (DEGs) and functional enrichment analysis of the common genes from DEGs of two comparisons, i.e., from mutant
629	analysis of the common genes from DEGs of two comparisons, i.e., from mutant
629 630	analysis of the common genes from DEGs of two comparisons, i.e., from mutant VS the wild type, and from the wild and the dometic silworm. (A) Venn diagram
629 630 631	analysis of the common genes from DEGs of two comparisons, i.e., from mutant VS the wild type, and from the wild and the dometic silworm. (A) Venn diagram of the DEGs between the wild type and the mutant, as well as domestic and wild
629 630 631 632	analysis of the common genes from DEGs of two comparisons, i.e., from mutant VS the wild type, and from the wild and the dometic silworm. (A) Venn diagram of the DEGs between the wild type and the mutant, as well as domestic and wild silkworm (<i>Bombyx mandarina</i>). The blue venn diagram represents the total
629 630 631 632 633	analysis of the common genes from DEGs of two comparisons, i.e., from mutant VS the wild type, and from the wild and the dometic silworm. (A) Venn diagram of the DEGs between the wild type and the mutant, as well as domestic and wild silkworm (<i>Bombyx mandarina</i>). The blue venn diagram represents the total differentially expressed gene, The green venn diagram and the red venn diagram
 629 630 631 632 633 634 	analysis of the common genes from DEGs of two comparisons, i.e., from mutant VS the wild type, and from the wild and the dometic silworm. (A) Venn diagram of the DEGs between the wild type and the mutant, as well as domestic and wild silkworm (<i>Bombyx mandarina</i>). The blue venn diagram represents the total differentially expressed gene, The green venn diagram and the red venn diagram represent down-regulated differentially expressed and up-regulated differentially
 629 630 631 632 633 634 635 	analysis of the common genes from DEGs of two comparisons, i.e., from mutant VS the wild type, and from the wild and the dometic silworm. (A) Venn diagram of the DEGs between the wild type and the mutant, as well as domestic and wild silkworm (<i>Bombyx mandarina</i>). The blue venn diagram represents the total differentially expressed gene, The green venn diagram and the red venn diagram represent down-regulated differentially expressed and up-regulated differentially expressed, respectively. (B) Functional enrichment analysis of common genes shared

28 / 34

Running title: SP1 increased hatchability during silkworm domestication

639 Supporting Information Caption

- 640 S1 Fig. SNPs between wild and domestic silkworm groups that cause non-
- 641 synonymous mutations of SP1. (A). Amino acid alignment of SP1 protein of the
- 642 domestic silkworm (*B.mori*) and the deduced SP1 protein sequence of the wild
- silkworm (*B. mandarina*) by inferred SNP data. (**B**). Allelic frequencies of the 11
- non- synonymous mutations in the wild (the left column) and domestic silkworm (the
- right column). Blue, reference allele; Black, alternative allele. The 11 mutations of
- amino acid were labelled with numerals in red.
- 647 S2 Fig. Scheme of ECM-receptor interaction pathway. The shared DEGs of ova in
- two sets of comparison (SP1 mutant vs wild type and wild vs domestic silkworm) are
- 649 indicated by red frames.
- 650 S3 Fig. Scheme of folate biosynthesis pathway. The shared DEGs of ova in two sets
- of comparison (SP1 mutant vs wild type and wild vs domestic silkworm) are indicated
- 652 by red frames.
- 653 S4 Fig. Scheme of Ribosome pathway. The DEGs of ova between the wild and
- domestic silkworm are indicated by red frames.
- 655 S1 Table. Summary of RNA-seq data.
- 656 S2 Table. Information of the differentially expressed genes between SP1 mutant
- 657 (MU1) and the wild type (WT) domestic silkworm.
- 658 S3 Table. Information of the differentially expressed genes between the wild and
- 659 the domestic (Dome) silkworms.

Running title: SP1 increased hatchability during silkworm domestication

	Protein length (KD)	Protein weight (No. amino acid)	No. Met	Proportion of Met (%)
SP1	87.25	747	82	10.98
SSP2	83.45	703	23	3.27
SP2	83.46	704	27	3.84
SP3	82.85	696	22	3.16
Bmor_9524	87.39	743	49	6.59
Bmor_9525	99.02	866	18	2.08
Bmor_9527	77.61	651	20	3.07
Bmor_9880	47.42	441	3	0.73

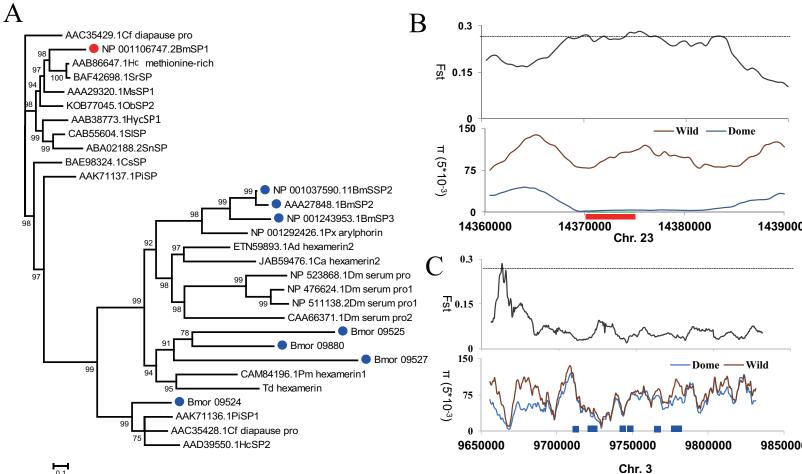
661 Table 2 Primers used in this study

Primer	Name	Primer
Sp1gRNA1-f	gaaattaatacgactcactataTCTAGTACTACTGGCCTGCTgttttagagctagaaatagc	Preparation of sgRNA templates
Sp1gRNA2-f	gaaattaatacgactcactataACTACTGGCCTGCTTGGCCGgttttagagctagaaatagc	Preparation of sgRNA templates
Sp1gRNA3-f	gaaattaatacgactcactataGGTCTTCACCAAGGAACCAAgttttagagctagaaatagc	Preparation of sgRNA templates
Sp1gRNA-r	AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTA	Preparation of sgRNA templates
	TTTTAACTTGCTATTTCTAGCTCTAAAAC	
Sp1-F	CGGAAATATGGCCTATAATGCT	Identification of somatic mutations
Sp1-R	TGTCTACACGGATCATCACC	Identification of somatic mutations

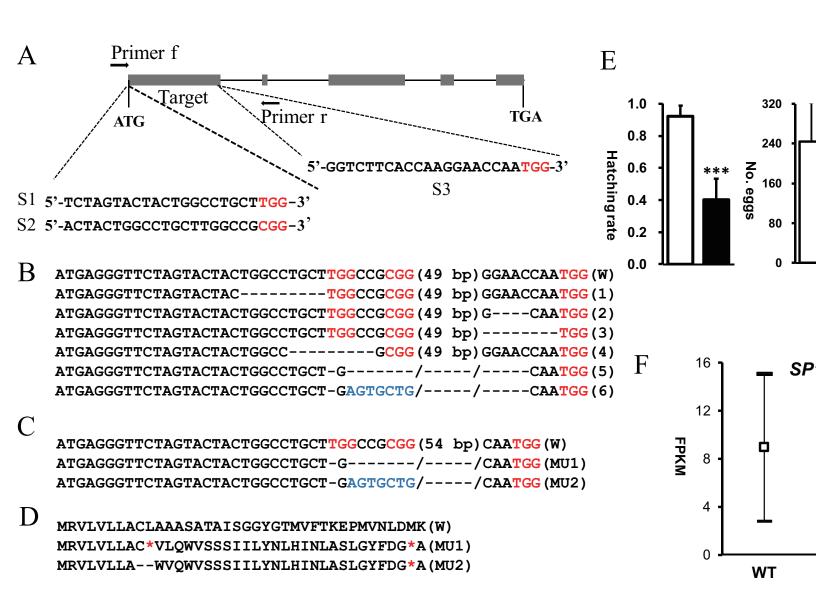
Note: Sp1gRNA1-f, Sp1gRNA2-f, Sp1gRNA3-f, Sp1gRNA-r were used for amplification of DNA templates to generate gRNAs targeting S1,

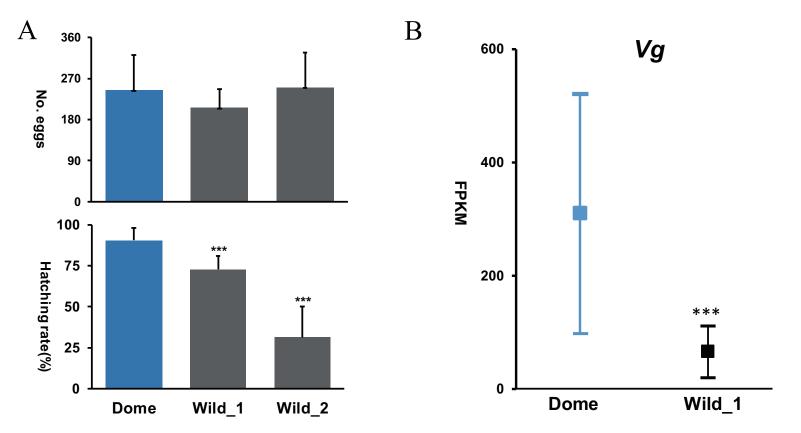
663 S2, S3 sites; Sp1-F and Sp1-R for detection of targeting sites.

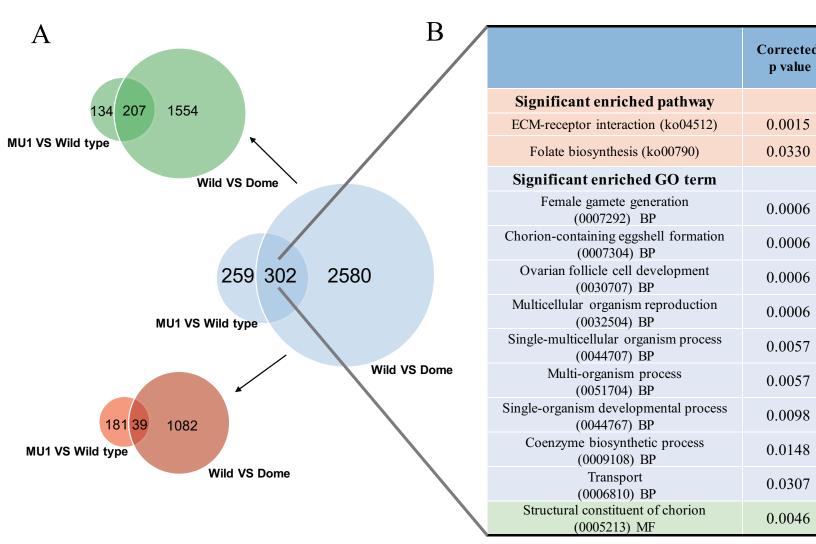
ID	Description	Corrected p value	Enrichment fold	No. DEGs	No. down regulated genes
ko04512	ECM-receptor interaction	0.07278	1.78230	7	5
Molecular Function					
GO:0005213	Structural constituent of chorion	0.00008	16.35621	6	5
GO:0004497	Monooxygenase activity	0.00204	3.73348	14	4
GO:0016491	Oxidoreductase activity	0.00295	1.92136	39	21
GO:0005506	Iron ion binding	0.01655	2.91085	14	6
GO:0004517	Nitric-oxide synthase activity	0.04483	24.53431	2	0
GO:0046906	Tetrapyrrole binding	0.04483	2.99199	10	4
GO:0005215	Transporter activity	0.04483	1.75245	30	23
Biological Process					
GO:0051704	Multi-organism process	0.00000	10.6227	13	7
GO:0007292	Female gamete generation	0.00001	15.2532	6	5
GO:0030703	Eggshell formation	0.00001	15.2532	6	5
GO:0030707	Ovarian follicle cell development	0.00001	15.2532	6	5
GO:0002376	Immune system process	0.00005	7.9582	8	2
GO:0009607	Response to biotic stimulus	0.00008	8.8977	7	1
GO:0042742	Defense response to bacterium	0.00027	9.1519	6	0
GO:0006810	Transport	0.00070	1.7538	44	32
GO:0019731	Antibacterial humoral response	0.00208	8.1713	5	0


 Table 3. Functional Enrichment of differential expressed genes between the loss-of-function SP1 mutants and the wild-type domestic silkworms.

Running title: SP1 increased hatchability during silkworm domestication


GO:0044707	Single-multicellular organism process	0.00715	3.5503	9	7
GO:0006809	Nitric oxide biosynthetic process	0.01570	22.8797	2	0
GO:0000041	Transition metal ion transport	0.03106	8.5799	3	1
GO:0051188	Cofactor biosynthetic process	0.04184	5.3835	4	3
GO:0018149	Peptide cross-linking	0.04248	15.2532	2	0
GO:0072593	Reactive oxygen species metabolic process	0.04273	7.6266	3	0


Table 4. Functional enrichment of differential expressed genes between the wild and domestic silkworms.


ID	Description	Corrected p value	Enrichment fold	No. DEGs	No. down regulated genes
ko03010	Ribosome	0.00001	2.08066	50	49
Molecular					
Function					
GO:0003735	Structural constituent of ribosome	0.00003	2.12234	44	42
Biological Process					
GO:0007292	Female gamete generation	0.12304	2.99379	6	5
GO:0007304	Chorion-containing eggshell formation	0.12304	2.99379	6	5
GO:0046700	Heterocycle catabolic process	0.12304	2.56610	8	5
GO:0009653	Anatomical structure morphogenesis	0.12304	2.99379	6	5
GO:0019953	Sexual reproduction	0.12304	2.99379	6	5
GO:0030707	Ovarian follicle cell development	0.12304	2.99379	6	5
GO:1901361	Organic cyclic compound catabolic process	0.12304	2.69441	9	6
GO:1901564	Organonitrogen compound metabolic process	0.12304	1.29411	117	98
GO:0043603	Cellular amide metabolic process	0.12304	1.50499	62	57
GO:0043604	Amide biosynthetic process	0.12304	1.48862	60	55
GO:0043043	Peptide biosynthetic process	0.12304	1.42885	56	52

0.1

