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ABSTRACT. The genetic architecture of complex human traits and diseases is affected by large

number of possibly interacting genes, but detecting epistatic interactions can be challenging. In
the last decade, several studies have alluded to problems that linkage disequilibrium can create
when testing for epistatic interactions between DNA markers. However, these problems have
not been formalized nor have their consequences been quantified in a precise manner. Here we
use a conceptually simple three locus model involving a causal locus and two markers to show
that imperfect LD can generate the illusion of epistasis, even when the underlying genetic
architecture is purely additive. We describe necessary conditions for such “phantom epistasis” to
emerge and quantify its relevance using simulations. Our empirical results demonstrate that
phantom epistasis can be a very serious problem in GWAS studies (with rejection rates against
the additive model greater than 0.2 for nominal p-values of 0.05, even when the model is purely
additive). Some studies have sought to avoid this problem by only testing interactions between
SNPs with R-sq. <0.1. We show that this threshold is not appropriate and demonstrate that the
magnitude of the problem is even greater with large sample size. We conclude that caution must
be exercised when interpreting GWAS results derived from very large data sets showing strong

evidence in support of epistatic interactions between markers.

Keywords: epistasis, apparent epistasis, phantom epistasis, GWAS, linkage disequilibrium,

imperfect LD, missing heritability, Big Data.

Introduction

A big challenge in genetics is to understand how variation at the DNA sequences translates into
phenotypic variation. Genome-wide-association (GWA) studies address part of this challenge by
testing for the association between phenotype (or a disease indicator) with genotype, one locus
at a time. In the last decade, many GWA studies were conducted; these studies have reported
thousands of SNP’s (single nucleotide polymorphism) associated to complex traits and diseases
(http://www.ebi.ac.uk/gwas).

Recently, several studies in model organisms (e.g., Mackay 2014), humans (Strange, Ask, and

Nielsen 2013) and agricultural species (e.g., Huang, Xu, and Cai 2014), have used genotype data
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linked to phenotypes to investigate the presence of epistatic interactions between loci. Cordell
(2002, 2009) and Wei, Hermani, and Haley (2014) provide comprehensive reviews of the methods

commonly used to detect epistatic interactions.

There are several issues associated with studies aimed at detecting interactions, including
matters of scale, the importance of the contribution of epistasis at the level of the genotype
effects or at the level of the genotypic variance (e.g., Hill, Goddard, and Visscher 2008) and how
an interaction detected in a linear statistical model may be associated to biological pathways that
underlie a complex trait (e.g., Wang, Elston, and Zhu 2010; Aschard 2016). The latter becomes
particularly problematic when the markers used to assess associations between SNPs and
phenotypes (or a disease indicator) are in imperfect linkage disequilibrium (LD) with the alleles
at the causal loci (i.e., those responsible for inter-individual genetic differences in a trait or
disease phenotype). Under those conditions, evidence supporting the existence of a non-null
interaction between markers do not necessarily provide definite evidence of epistasis at causal
loci. Indeed, when the SNPs used in association analyses are in imperfect LD with the alleles at
causal loci, linear regression on SNPs may lead to unaccounted variance, or missing heritability
(e.g., Manolio et al. 2009; de los Campos, Sorensen, and Gianola 2015). Furthermore, the un-
accounted additive signal may be correlated with interaction contrasts, thus creating the

“illusion” of epistasis even for traits that are purely additive.

Several authors have expressed concerns about the role that LD can have on the detection of
epistasis (e.g., Wei, Hermani, and Haley 2014). However, these problems have not been
quantified nor have they been given a precise mathematical treatment. In this study, we present
a simple three locus model involving a causal (unobserved) locus and two markers that makes
explicit how phantom epistasis may emerge even in systems that are strictly additive. We use
this model to derive a set of conditions that are necessary for the occurrence of phantom
epistasis, and quantify the magnitude of the problem using simulations based on real human
genotypes from the UK-Biobank. Our results suggest that imperfect LD can lead to seriously
inflated type-l error rates. We also show that the rate of detection of phantom epistatic
interactions increases with sample size; this should be considered when testing for epistatic

interactions using big data sets such as the ones that are becoming available.
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Materials and Methods

To study what factors may induce phantom epistasis we consider a simple model with three bi-
allelic loci. One of them, denoted as z;, represents a causal locus (also referred as to the
‘quantitative trait locus’, QTL) and has a direct effect on the expression of a phenotype y;. The
other two loci, denoted as x;; and x,;, are markers that are possibly in LD with the QTL but have
no causal effect on y;. For SNPs, a standard practice is to code genotypes (z;, x1;, X2;) by counting
at each of the loci the number of copies of a reference allele carried by the i" individual. Here, to
facilitate the presentation we assume that genotypic codes and phenotypes are expressed as
deviations from their corresponding means; therefore E(z;) = E(x;1;) = E(x3;) = E(y;) = 0.1n
this setting, a single-locus strictly additive model takes the form
Yi =z;b + 6, [1]

where b is the additive effect of an allele substitution at locus z, and §; is an error term. Evidently,
with only one causal locus there is no epistasis. We assume that [1] represents the causal model.
Next, suppose that an instrumental regression of the form

Vi = X1iP1 + X282 + X1:%2:P12 + & [2]
is used to investigate the presence of epistasis. Here, the B's are regression coefficients that are
functions of the QTL effect (b) and of the (multi-locus) LD involving the two markers and the QTL
genotypes. In the population, given the centered genotype codes, the regression coefficients

entering in the right-hand-side of [2] are

P
4
P12

-1
E(x})  EQxyxy) E@fixz)| [E(yxy)
= |E(xyxy) E(xZ)  E(xyx3) E(yixy;)
E(x%xy) E(qix%) E(ckxs) E(yix1ix2;)

If the random residual §; in expression [1] is orthogonal to the genotypes, then E(y;xy;) =
E(z;x1))b, E(yixy;) = E(z;x3;)b and E(y;xqix;) = E(z;x1;x;)b. Thus, the population

regression coefficients are defined by

-1

By E(xf)  E(xyxy) E(xfixg) E(zixy;)

[,32 = [E(yx)  E(3)  E(ux3)| |E(zixy) |b. 3]
B2 E(x%xy) E(ex%) E@Zx2)|  LE@ixuxy)
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103 This indicates that the regression coefficients of the instrumental model [2] are not only
104  functions of the QTL effect (b) and of pair-wise (1* order) LD but also of higher order LD, e.g.,
105  joint disequilibrium at three loci, E (z;x,;x,;). The moments involved in the right hand-side of [3]
106  are diploid genotypic measurements of LD. Under random mating these genotypic measures of
107 LD are equal to twice the standard haploid measures of LD (the D-coefficients for two and tree

108 loci linkage disequilibrium; see Section 1 of the Supplementary Methods for further details).

109 In the population, the interaction effect f;, is given by a linear combination of two-loci LD
110  between each of the markers and the QTL and by three-loci LD involving the two markers and
111 the QTL: By = [t31E(zixy) + t32E(Zix5;) + t33E(2;x1;%5;)]1b. Here, the t's are the entries of
112 the third row of the inverse of the coefficient matrix

-1
E(x{)  E(xyxy) E(xfixg)

113 T~1=|E(yxy)  E(3)  E(xyx3)
E(x12ix2i) E(xyx3)  E(xfx3)

114  expressions to study the conditions that lead to a null interaction between markers.

115 Conditions that lead to phantom epistasis

116  Next, we describe sufficient conditions for f;, = 0. These sufficient conditions also imply
117  necessary conditions for phantom epistasis, 5;, # 0, to emerge.

118 Complete Linkage Equilibrium. If the QTL is in LE with the two markers, then (z;, x1;, X2;) =
119 p(z)p(xy, x2;)- Consequently, E(z;xy;) = E(x1)E(z;) = 0, E(z;x3;) = E(x3;)E(z;) = 0, and
120  E(z;x1;%2;) = E(xq;x5;)E(z;) = 0. Therefore, all elements of the right-hand-side of [3] are

121  equal to zero and, thus B; = 5, = B, = 0. Therefore, a first necessary condition for phantom

122 epistasis to emerge is that the QTL must be in LD with at least one of the SNPs.

123 Perfect Linkage Disequilibrium. On the other extreme, if there is perfect LD between the QTL
124 and the marker pair (x;;X5,;), then the QTL genotype can be expressed as a linear function of the
125  two marker genotypes z; = x1;; + x; 5. In this case, a linear regression on the two markers
126  captures fully the QTL variance and therefore the interaction term will be equal to zero. (A

127  derivation of this intuitive result is presented section 2 of the Supplementary Methods.)

128  Therefore, perfect LD is a sufficient condition for §;, = 0. Consequently, a second necessary

129  condition for phantom epistasis to emerge is imperfect LD between the QTL and the marker pair.
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130  This guarantees that some fraction of the QTL variance is not captured by linear regression on
131 the two marker genotypes. Furthermore, if the left-out QTL signal is not orthogonal to the

132  interaction contrast x;;x,;, then 5;, # 0.

133 Independence of one of the markers prevents phantom epistasis. Consider now an
134 intermediate case where one of the markers (say x,;) is independent of the pair formed by the
135 QTLand the other marker (z;, x1;). This implies that p(z;, x1;, X2;) = p(2;, x1;)p(x2;). Under this
136  condition, because the two markers are in LE, the coefficient matrix and its inverse (T 1) is

_ E(zixqix3:)

137  diagonal; therefore, B, = =22 b, Moreover, E(z;xq;x5;) = E(z;x1;)E(x5;) = 0, implying
E(x§x3;

138 that f;, = 0. Therefore, a third necessary condition for phantom epistasis to emerge is that the

139  three loci must be jointly in LD.

140 In summary, phantom epistasis can emerge if the three loci are in mutual but imperfect LD.

141 Simulation

142  The analytical results presented in the previous section indicates that multi-locus LD plays an
143  important role in determining whether phantom epistasis may emerge. To shed light on the
144  nature and the magnitude of the problem we conducted Monte Carlo simulations to assess how
145 LD among the three genotypes (z;, x4;, x,;) affects the rates at which H,: 5;, = 0 is rejected.
146  Data were generated according to an additive model with a single causal locus that had strictly
147  additive gene action (as in expression [1]) and then analyzed using an instrumental model such

148  asthe onein [2]. In this setting, rejection of Hy: ;, = 0 is indicative of phantom epistasis.

149 Simulations were based on real human genotypes of distantly related white Caucasian
150 individuals from the UK-Biobank, a cohort study consisting of about half a million participants
151 aged between 40-69 years who were recruited in 2006-2010. The National Research Ethics
152  Committee approved the study and informed consent was obtained from all participants. Study
153  details are described elsewhere (Sudlow et al. 2015).

154 To avoid confounding due to population structure and long-range LD due to family
155 relationships we focused on distantly related white Caucasian individuals. Therefore, we only
156  considered subjects whose self-reported ethnicity was Caucasian and confirmed their genetic

157  race/ethnicity using SNP-derived principal components. From these individuals, we identified
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ik—261)(x ;26
158  ~270,000 subjects that have pairwise genomic relationships, G;; = p~* £=1 Gk 229 k()l(x’ek )2 k),
4G 4

159  smaller than 0.03. Here, x;; and x;;, are genotypes (coded as 0, 1, 2) at the k% SNP of the ith

160 and j*h individual, respectively, and 6, is the frequency of the allele counted at the k* loci.
161  Genomic relationships were computed using the getG() function of the BGData R-package
162  (Grueneberg and de los Campos 2017).

163 Genotypes where from the Affymetrix UK BiLEVE Axiom and Affymetrix UK Biobank
164 Axiom® arrays. Only SNPs with minor-allele-frequency greater than 0.1% and those with
165  missing calling rate smaller than 3% were used for simulations. Furthermore, since we focused
166  on asingle locus model, we used only SNPs mapped to chromosome 1. There were 66,331 SNPs
167  mapped to chromosome 1, of those, 45,866 passed our minor-allele frequency and calling rate

168 inclusion criteria.

169 Marker-QTL pairs. The position of the QTL genotype z; was determined by randomly
170  choosing a marker position on chromosome 1. In a first simulation scenario, the two chosen
171  markers were those flanking the QTL (i.e., those immediately adjacent to it). In subsequent
172 simulation scenarios, the marker locus “to the right” (x,;) of the QTL z; was placed at increasing
173  base-pair lags from the QTL, whereas the marker locus to the left (x;;) of z; remained always the
174  most proximal marker “to the left of z;”. In this manner, the LD between one of the markers and
175 the QTL was approximately constant whereas the LD between the distal marker, x,;, and the
176  marker-QTL pair (x;, z;) decreased as base-pair distance between the two markers increased.
177  For each simulation scenario, we conducted 10,000 Monte Carlo replicates with random
178  assignment of the QTL position within chromosome 1.

179 Phenotypes were generated according to a single-locus additive model (expression [1]). with
180 the QTL explaining one-half-of-one percent (0.005) of the phenotypic variance.

181 Inferences were based on a linear model such as that of expression [2] extended with

182  inclusion of an intercept and the top 5 SNP-derived PCs, that is
183 Yi=u+ 215'=1 PCiyj + x1iB1 + X282 + x1;%2:B12 + & [2b]
184  Principal components were included to avoid any confounding that may emerge from any

185  remaining substructure that may have been present. The PCs used in [2b] were derived using 50K
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186  SNPs evenly distributed in the entire genome. The model of expression [2b] was fitted via least
187  squares using the 1s.fit ()function of R (R Development Core Team 2012). Then for each
188  scenario and MC replicate we saved the p-value associated to the interaction term and counted
189  the proportion of times that HO: ;, = 0 was rejected when using a significance level of 0.05.
190 Genotypic measures of LD between pairs of loci, R?(x4,x,), R*(x1,z) and R?(x,,z) , were
191  computed using the squared correlation between genotypes at the two loci. This information was
192  stored for each MC replicate of each simulated scenario. The proportion of variance of the QTL
193  genotype explained by linear regression on the two markers, R?(z~ x; + x,), was computed by
194  Analysis of Variance, of a linear model where the QTL genotype was regressed, via least squares,
195  on the two markers using a main effects additive model of the form: z; = u + xy;a; + x5;a, +
196  ¢;. The R-squared from this model was also saved for each MC replicate of each scenario and
197  then used to analyze the relationship between this LD measure and the rate of rejection of
198 HO: B, = 0.

199 Effect of sample size. The power to detect a non-null interaction effect depends on two main
200 factors: the proportion of variance explained by that interaction and sample size. The first factor
201 iscontrolled in our simulation by controlling the distance between the QTL and the distal marker;
202  this affects LD among the three loci and thus the size of the marker-interaction (see Methods).
203  To assess the effect of sample size on inferences we carried out simulations using four different
204  sample sizes: n=10K (K=1,000, this is representative of the size of a standard GWAS cohort) and
205 n=50K, 100K and 250K (these sample sizes are more representative of modern large biomedical
206  data sets).

207

208 Data availability

209 The genotypes used in the simulation were from the UK Biobank. Data was acquired under
210  project identification number 15326. The data are available for all bonafide researchers and can
211 be obtained by applying at http://www.ukbiobank.ac.uk/register-apply/. The Institutional
212  Review Board (IRB) of Michigan State University has approved this research with the IRB number
213  15-745.
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214 Results

215  Figure 1 shows measures of linkage disequilibrium between the three loci (z;, x,;, x5;) involved
216  inthe system. The average (across Monte Carlo replicates) proportion of variance of the QTL (z;)
217  explained by the most adjacent marker (x;;) averaged was about 0.085 (Figure 1); however, the
218  distribution of this statistic is highly skewed. When x;; and x,; were the two flanking markers of
219 the QTL, on average they jointly explained on average 15% of the QTL variance. Therefore, on
220  average there was a sizable fraction of imperfect LD between the QTL and the markers. This leads
221  to asizable rate of “missing” heritability. The LD between x,; and the pair (x;;, z;) decreased as
222 the distance between x,; and the pair (x;;, z;) increased. The R-sq. between x,; and either the
223  other markerorthe QTL, falls very quickly for lags between 0-0.5Mb and reached near zero values

224  atapproximately 1 Mb (Figure 1).

225
o
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Figure 1. Average R-squared between pairs of loci and proportion of variance of the QTL
genotype explained by the two markers, R?(z;~x,; + x,;), versus distance between the

QTL (z;) and the distal marker (x,;). Marker x;; was always adjacent to the QTL.
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226

227  Inoursimulation rejection of Hy: 81, = 0 was performed using a significance level of 0.05. Figure
228  2displays the estimated rates of rejection by BP-distance between the QTL and the distal marker
229  (x,;) and sample size. For the largest sample size, the curve relating empirical rejection rates with
230  BP distance was clearly above 0.05 for distances of up to 2MB. The highest rejection rate was
231  observed for n=250,000 when x,; and the QTL were at a distance of about 0.15 MB; here the
232  empirical rejection rate was ~0.13—this is more than twice the value expected under the absence
233  of phantom epistasis. The curves relating empirical rejection rates with physical distance reach
234  the nominal rejection rate of 0.05 at ~1Mb for n=10,000; however, for larger sample size the

235  curves stayed above 0.05 even for distances longer than 1Mb.

<
-
o

0.08 0.10 0.12
| | |

Estimated Rejection Rate

0.06
|

0.0 0.5 1.0 1.5 2.0

BP difference (MB)

Figure 2. Estimated rejection rates versus distance between the QTL and the distal marker,
by sample size. In the simulations one of the markers (x;;) was adjacent to the QTL (z;) and
the other marker (x,;) was placed at increasing distance from the pair (xy;, z;).
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238 The extent of LD varies substantially along the genome; therefore, for a given BP distance some
239  regions may have very weak LD while others may have, at the same distance, SNPs in moderate
240  or high LD. Figure 3 shows another way of viewing the simulation results displayed in Figure 2
241  where the average rejection rate is calculated within bins of R-sq. between the two markers.
242  When the two markers were un-correlated, rejection rates were very close to 0.05 indicating
243  absence of phantom epistasis. However very small LD between the two markers generates
244  considerably higher rejection rates: an R?(x;;, X,;)~0.1 leads to rejection rates as high as 0.21
245  with the largest sample size. The maximum rejection rates occur when the R-sq. between
246  markers is between 0.1 to 0.2. Beyond this value in the range (0.2-0.9) rejection rates shows a

247 linear decline.

0.20
|

Estimated Rejection Rate

0.05
|

0.0 0.2 0.4 0.6 0.8

R2(x1,x2)

Figure 3. Estimated rejection rates by R-sq. between the two markers and sample size.
In the simulations one of the markers (x;;) was adjacent to the QTL (z;)) and the other
marker (x,;) was placed at increasing distance from the pair (z;, x4;).

248
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250  The results in Figures 2 and 3 are in line with the conceptual model described in the previous
251  section. Analytically, the conditions needed for phantom epistasis to emerge include
252  simultaneous but imperfect LD between the three loci. When the distal marker becomes
253  independent of the QTL-proximal-marker pair, there is no phantom epistasis. This happens at
254  about 2MB (Figure 2) and requires the R-sq. between the two markers to be very close to zero
255  (Figure 3). When the LD between the QTL and the marker pair is very high but imperfect (e.g.
256 0.9 < R%(z~x; + x,) < 1), some phantom epistasis is generated. However, for those R-sq.
257  values the amount of signal that is not captured by the linear regression on the two markers and
258  that can be recaptured by an interaction term involving both is small. Therefore, a very large
259  sample size is required to detect the phantom epistasis (compare the empirical rejection rates in

260  Figure 3 for R-sq. in the range 0.9-1).

261 Discussion

262  There is a substantial amount of literature reporting the presence of epistasis affecting complex
263  traits but results, when scrutinized, have been controversial. Sometimes the controversy spawns
264  from the suspicion that epistatic interactions may be capturing additive signals that were missed
265 by the baseline additive model used to test interactions. For instance, Hermani et al. (2014)
266 identified 30 pairs of SNPs that interact influencing gene expression and that were replicated
267  across two independent studies. In a subsequent study (Wood et al. 2014) replicated many of the
268 interactions reported by Hermani et al.; however, in each case, using sequence data, a single
269  third variant could explain all the apparent epistasis. This happened even after removal of all
270  pairs of SNPs with 72 < 0.1 which was suggested by Wei, Hermani, and Haley (2014) to minimize
271  confounding due to “haplotype effects”.

272 However, the problem of why and under what conditions additive effects may generate
273  “epistatic signals” has not be formalized. In this work, we use a simple three locus model to reveal
274  the conditions that lead to phantom epistasis. We show that phantom epistasis emerges in the
275  presence of simultaneous but imperfect mutual LD between the three loci (the QTL and the two
276  markers involved in the interaction). This conceptually simple three loci model can be extended

277  to more complex settings (e.g., multiple QTL-marker trios) without affecting the underlying

12
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278  source of the principle: if additive QTL variance is imperfectly captured by linear regression on
279  markers and the unexplained variation is not orthogonal to interaction contrasts, then phantom

280  epistasis emerges.

281 Testing interactions among weakly correlated SNPs only (e.g., considering only SNP-pairs
282  with 2 < 0.1) is not a solution. Our simulations demonstrate that phantom epistasis can
283  emerge even when the two markers involved in the interaction are very weakly correlated. R-
284  squared values greater than 0.05 or even smaller generate strong evidence of phantom epistasis

285  particularly when sample size is large (Figure 3).

286 Inferences under imperfect LD. In a series of recent studies, we (de Los Campos et al. 2013;
287  delos Campos, Sorensen, and Gianola 2015b; Gianola et al. 2015) and others (e.g., M E Goddard
288  2009) have studied the role of imperfect LD on related inferential problems, including missing
289  heritability (i.e., in generating a gap between the trait heritability and the amount of variance
290  that can be captured by a SNP set) and whether imperfect LD can lead to estimates of genomic
291 correlations between traits that are different than the underlying genetic correlations (Gianola
292 et al. 2015). In all these cases, imperfect LD generates inferential difficulties; therefore, phantom
293  epistasis should be seen as one of many issues arising when the markers used for inferences are

294  inimperfect LD with causal variants.

295 Perils of Big Data. The power to detect a small non-null interaction between markers
296  emerging from phantom epistasis increases with sample size. Our simulation results demonstrate
297  this clearly: for pairwise R-sq. between markers of 0.1 there are clear signs of phantom epistasis;
298 however, rejection rates are not highly elevated over the significance level when sample size was
299  moderate (n=10k) because at that R-sq. the size of the interaction effect is small and therefore
300 the power to detect such small interaction effect with moderate sample size is low. Big Data is a
301 blessing for genomic analysis of complex traits; however, some problems cannot be addressed
302  with larger sample size. Moreover, in some cases, large sample size can make an inferential

303  problem even more problematic.

304 Dominance can also contribute to phantom epistasis. The conceptual and empirical

305 model used in the simulation was based on a purely additive genetic architecture. In the

306 presence of dominance, the true single-locus model becomes y; = az; + dz? + §; where a and
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307 d areadditive and dominance values, respectively. If the empirical model of expression [2] is used
308 totest for epistatic interactions then the left-hand-side of expression [3] remains unchanged, but

309 theright-hand-side becomes

E(x4;2;) E(x1;27)
310 E(xyz;) |a+| E(xyz?) |d
E(x1ix5:2;) E(xy;x2;27)

311 indicating that both dominance and additive effects can contribute to phantom epistasis. The
312  conditions needed for phantom epistasis to emerge are similar to those under the pure additive
313  model. These include, first, imperfect LD between (z;, z*) and the marker pair (x;, x,;) such that
314  neither z; nor zi2 can be fully explained by a linear combination of the two markers. Secondly,
315 phantom epistasis requires mutual LD at the three loci. If one of the markers (say x,;) is
316 independent of the other-marker-QTL pair, then, E(xy;x;z)a + E(xy;%5;z7)d =

317 E(x)|E(xyxpz)a + E(xy;27)d] = 0.

318 Local epistasis? Several studies have reported results highlighting the importance of ‘local’
319 epistatic interactions (e.g., Wei, Hermani, and Haley 2014; He et al. 2017). From a biological
320 perspective it is plausible that multiple mutations in a gene may have collectively a larger impact
321  than the simple sum of the effects of each mutation individually. And this could manifest as
322  “haplotype effects” (e.g., Haig 2011). However, phantom epistasis provides an alternative
323  explanation of why most of the epistatic interactions detected in GWAS occur between loci that
324  are physically close. Indeed, we show analytically and empirically that LD between SNPs is
325 required for phantom epistasis to appear, thus, phantom epistasis is expected to be

326  predominantly a ‘local’ phenomena.

327 The additive-non-additive conundrum. Quantitative genetics studies properties of
328 complex traits using regression analysis. In the field a careful distinction is made between
329  observable and causal features of complex traits. For instance, it is well established that the
330 linear regression of a phenotype on allele content yields estimates of the average effect of
331  allele substitution and that both truly additive as well as dominance and epistatic effects can
332 contribute to allele substitution effects. Furthermore, theoretical and empirical research has

333 demonstrated that highly non-linear systems can generate signals that can often be
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334  explained almost completely with a linear model (Hill, Goddard, and Visscher 2008). For this
335 reason, in general, one cannot make causal statements about gene action from observational
336 variance component analyses (e.g., W. Huang and T. F. C. Mackay, 2016). Complicating
337  matters even further we show in this study that the opposite can happen: under a purely

338  additive model, imperfect LD can generate non-additive signals!

339 The recognition that phantom epistasis may be an important phenomenon does not
340 negate the relevance of gene-gene interactions at the causal level. It simply stresses the
341  difficulties that one faces when trying to learn about causal features of a system using
342  observational data and inputs (markers) which are proxies for the underlying variants that
343  may have causal effects on traits.

344 Phantom epistasis: an opportunity to improve predictive performance? In this work
345 we have stressed that imperfect LD can limit the possibility to learn about causal effects.
346 However, linear and non-linear genomic regressions can be very powerful predictive machines,
347 and it is well-established that the model that is best for inferences is not necessarily the best
348  predictive tool. Phantom epistasis creates inferential problems but also opens opportunities for
349  improving prediction models. Indeed, by capturing signals that are missed by an additive model,
350 non-linear models using interactions between markers may increase the amount of genetic
351 variance captured and improve prediction accuracy. This may explain, for instance why some
352  non-linear models such as kernel regressions have shown better predictive performance than
353  additive models, especially in breeding populations with long-span LD and low marker density

354  (de los Campos et al. 2010).
355
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446 Supplementary Methods

447

448 1. Equivalence between genotype and haplotype measures of LD

449 In this section we present the standard haplotype two- and three-loci measures of LD and
450  establish the connection between these measures and the genotype moments involved in
451  expression [3].

452  Two-loci haplotype measure of LD. Consider a pair of bi-allelic loci (A and B, with alleles A;/A;
453  and B;/B,, respectively). The haplotype linkage disequilibrium parameter is D,z = p(A4,,B;) —
454  p(A)p(By).Let X = 1 when allele 4, is present and X = 0 when allele A, is present. Likewise,
455 let Y = 1 when allele B, is present and Y = 0 when allele B, is present. Then E(X) = p(4,),
456 E(Y) =p(B;), E(XY) =p(A,,B;) and the covariance between X and Y is Cov(X,Y) =
457 E(XY) — E(X)E(Y) which reduces to D,g, thus

458 Dyg = Cov(X,Y) = E(XY) —E(X)E(Y)

459  If the two genotypes are centered, then E(X) = E(Y) = 0 and

460 Dyg = Cov(X,Y) = E(XY) (4]

461  This is a haplotype analog of the 1*' order measures of LD entering in expression [3].

462

463  Three-loci haplotype measure of LD. For a system involving three bi-allelic loci (4, B and C, with
464  alleles A;/A;, B1/B,, and C;/C;, respectively) a three-loci haplotype measure of LD can be defined
465  as (Bennett 1954)

466 Dypc = p(A1, By, 1) — p(A1)Dpc — p(B1)Dac — p(C1)Dap — p(A)p(B)p(Cy).

467  Extending the two-loci system by introduction of three binary random variables X, Y, and Z, that
468  take values 1 when the allelic forms A;, B; and C; are present, respectively, and take values 0

469 othewise, yields

470 Dypc = E(XYZ) — E(X)[E(YZ) — E(Y)E(Z)]
471 —E()[E(XZ) — E(X)E(2)]
472 —E)[E(XY) — E(X)E(Y)]

473 —EX)EY)E(Z)
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474  The three terms in square brackets represent pairwise disequilibria. When the three random
475  variables are centered their marginal expectations are zero and the expression reduces to

476 Dypc = E(XYZ). [5]

477  Relationship with genotype measures of LD. The disequilibria measures described above involve
478  associations between alleles within gametes, whereas in the body of the paper, the expectations
479 involve different genotypes. Assuming random mating, the expectations involving genotypes

480 resultin twice those involving gametes.

481
482 2. Perfect LD between markers and QTL prevents phantom epistasis

483 We demonstrate (the very intuitive result) that if a response (z;) can be fully captured by

484  regression on a set of predictors (x;), then the regression of z; on x; plus w;,

485 z; = x;'by + wiby, + 1, (6]

486  vyields by, = 0 in the population.

487  Demonstration: In the population, the regression coefficients of [6], are defined by the following

488  system

P P b X
489 [ X XW] X — [ XZ]
ZWX z'W bW 2-“WZ

490 Where the X’s represent covariance matrices: Xy = Cov(x;, x;"), 2y = Cov(w;,w;") and

491 Xy = Cov(x;,w;") = Zyx. It follows that

492 bex + EXWbW = ZXZ [7]
493 and
494 ZWXbX + Ewa = ZWZ' [8]

495  Solving [7] for by yields by = X5 (Zyx, — Zxwby ). Plugging this into [8] yields,

497 by =[Zw — ZwxZx Zxw] [ Zw, — ZwxZx  Zx.]. [9]
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498  Now if z; can be fully explained by regression on x;, that is if z; = x;'a, with a = Z3'Xy,,
499 then, ZWZ = COU(WU xl’a) = ZWXa = EWXZ)?lZXZ, thus, [EWZ - ZWXZ)_(lz'XZ] == 0 and
500 therefore, by, = 0. QED.

501 Implication. Let z; be the QTL genotype, x; = (x;;, X»;)" be a vector containing the two marker
502 genotypes and w; = x;;X,; be the two-marker interaction contrast. Under perfect LD between
503 the QTL and the markers the QTL genotype can be fully explained by linear regression on the two
504  markers, thatis z; = x;'a. Therefore, the above result (by, = 0) implies 8;, = 0, i.e., absence of

505 phantom epistasis.

506
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