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ABSTRACT	
	
Identifying	 causal	 variants	 underling	 disease	 risk	 and	 adoption	 of	 personalized	
medicine	 are	 currently	 limited	 by	 the	 challenge	 of	 interpreting	 the	 functional	
consequences	 of	 genetic	 variants.	 	 Predicting	 the	 functional	 effects	 of	 disease-
associated	protein-coding	variants	 is	 increasingly	 routine.	Yet	 the	vast	majority	of	
risk	 variants	 are	 non-coding,	 and	 predicting	 the	 functional	 consequence	 and	
prioritizing	variants	 for	 functional	validation	remains	a	major	challenge.	 	Here	we	
develop	a	deep	learning	model	to	accurately	predict	locus-specific	signals	from	four	
epigenetic	assays	using	only	DNA	sequence	as	input.		Given	the	predicted	epigenetic	
signal	from	DNA	sequence	for	the	reference	and	alternative	alleles	at	a	given	locus,	
we	 generate	 a	 score	 of	 the	 predicted	 epigenetic	 consequences	 for	 438	 million	
variants.	 	 These	 impact	 scores	 are	 assay-specific,	 are	 predictive	 of	 allele-specific	
transcription	 factor	 binding	 and	 are	 enriched	 for	 variants	 associated	 with	 gene	
expression	 and	 disease	 risk.	 	 Nucleotide-level	 functional	 consequence	 scores	 for	
non-coding	 variants	 can	 refine	 the	mechanism	 of	 known	 causal	 variants,	 identify	
novel	risk	variants	and	prioritize	downstream	experiments.		 	
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INTRODUCTION	
	
Genome-wide	 association	 studies	 (GWAS)	 have	 identified	 thousands	 of	 loci	
associated	 with	 risk	 to	 human	 diseases	 (Visscher	 et	 al.	 2017).	 	 Yet	 progress	 in	
understanding	 the	 molecular	 etiology	 of	 disease	 and	 the	 development	 of	 novel	
therapies	 has	 been	 limited	 by	 the	 fact	 that	 these	 studies	 are	 often	 not	 able	 to	
identify	 a	 specific	 causal	 variant	 and	mechanistically	 relevant	 gene	due	 to	 linkage	5	
disequilibrium	 (LD)	 (Visscher	 et	 al.	 2017;	 Spain	 and	 Barrett	 2015;	 Hindorff	 et	 al.	
2009;	 Pritchard	 and	 Przeworski	 2001).	 	 Integrating	 independent	 biological	
knowledge	has	the	potential	to	increase	the	resolution	of	the	associated	region	and	
improve	the	interpretation	of	GWAS	results	(Claussnitzer	et	al.	2015;	Kichaev	et	al.	
2014;	 Pickrell	 2014).	 	 Most	 notably,	 risk	 variants	 are	 enriched	 in	 non-coding	10	
regulatory	 regions	 (Finucane	 et	 al.	 2015;	 Maurano	 et	 al.	 2012;	 Farh	 et	 al.	 2015).		
While	interpreting	the	functional	consequences	of	protein	coding	variants	has	been	
remarkably	 successful	 and	 improved	 the	 understanding	 of	 the	 biology	 of	 human	
disease	 (Lek	 et	 al.	 2016;	 Chong	 et	 al.	 2015),	 the	 rules	 governing	 the	 functional	
effects	 of	 variants	 in	 non-coding	 regulatory	 DNA	 have	 been	 more	 challenging	 to	15	
decipher.	 	 Novel	 approaches	 are	 needed	 to	 interpret	 non-coding	 variants	 from	
ongoing	 whole	 genome	 sequencing	 projects,	 for	 example,	 of	 somatic	 variants	 in	
cancer	(Zhang	et	al.	2018)	and	de	novo	variants	in	autism	(Werling	et	al.	2018).	
	
Recent	 work	 has	 sought	 to	 better	 understand	 the	 regulatory	 genome	 by	20	
characterizing	 the	 epigenetic	 differences	 in	 transcription	 factor	 (TF)	 binding,	
chromatin	 accessibility	 and	 histone	 modifications	 between	 tissues	 and	 cell	 types	
(Roadmap	Epigenomics	Consortium	et	al.	2015;	ENCODE	Project	Consortium	2012;	
Andersson	et	al.	2014).		Yet	these	epigenetic	tracks	can	cover	a	substantial	portion	
of	the	genome,	even	though	polymorphisms	at	only	a	fraction	of	sites	are	presumed	25	
to	 have	 a	 functional	 consequence.	 	 Moreover,	 these	 efforts	 have	 generally	 not	
integrated	 genetic	 variation.	 	 Other	 efforts	 have	 focused	 on	 the	 effects	 of	 genetic	
variation	on	gene	expression	(Aguet	et	al.	2017;	Lappalainen	et	al.	2013;	Fromer	et	
al.	 2016)	 as	well	 as	multiple	 epigenetic	 assays	 (Grubert	 et	 al.	 2015;	Waszak	 et	 al.	
2015;	Chen	et	al.	2016a).		Yet	these	xQTL	studies	are	subject	to	the	same	challenges	30	
with	 linkage	disequilibrium	as	GWAS	so	 they	generally	cannot	pinpoint	 the	causal	
variant,	or	predict	the	functional	consequence	of	a	rare	variant	not	observed	in	the	
dataset.		
	
Recent	 progress	 in	 developing	 computational	 models	 able	 to	 predict	 TF	 binding,	35	
chromatin	accessibility,	and	histone	modifications	from	only	the	genome	sequence	
in	 the	 surrounding	 region	 offers	 a	 novel	 paradigm	 to	 interpret	 the	 functional	
consequences	 of	 non-coding	 variants	 (Zhou	 and	 Troyanskaya	 2015;	 Kelley	 et	 al.	
2018;	Lee	et	al.	2015;	Kelley	et	al.	2016;	Zhou	et	al.	2018).	 	These	models	leverage	
advances	 in	deep	 learning	(LeCun	et	al.	2015)	to	use	DNA	sequence	context	 in	the	40	
predictive	model	of	 functional	consequences.	 	Yet	with	one	exception	(Kelley	et	al.	
2018),	 these	 computational	 approaches	 consider	only	 the	discrete	 absence	 versus	
presence	 of	 an	 epigenetic	 signal	 (Zhou	 and	 Troyanskaya	 2015;	 Lee	 et	 al.	 2015;	
Kelley	et	al.	2016;	Zhou	et	al.	2018).		Moreover,	these	methods	rely	on	the	sequence	
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of	the	reference	genome	so	they	do	not	model	the	contribution	of	genetic	variation	45	
driving	 the	 epigenetic	 signal.	 	 Based	 on	 the	 extensive	 contribution	 of	 genetic	
variation	to	molecular	phenotypes	(Grubert	et	al.	2015;	Waszak	et	al.	2015;	Chen	et	
al.	2016a;	Aguet	et	al.	2017;	Fromer	et	al.	2016;	Lappalainen	et	al.	2013),	and	 the	
increasing	availability	of	epigenetics	datasets	from	multiple	individuals	paired	with	
genetic	data	(Girdhar	et	al.	2018;	Waszak	et	al.	2015;	Chen	et	al.	2016a;	Grubert	et	50	
al.	 2015),	 integrating	 genetics	 into	 model	 training	 has	 the	 potential	 to	 improve	
prediction	 accuracy	 and	 increase	 power	 of	 variant	 impact	 predictions.	 	 Finally,	
although	these	methods	are	trained	jointly	across	many	datasets,	they	only	consider	
a	single	experiment	from	a	given	cell	type	and	assay.	
	55	
Here	we	introduce	a	deep	learning	framework	for	functional	interpretation	of	genetic	
variants	 (DeepFIGV).	 	 We	 develop	 predictive	 models	 of	 quantitative	 epigenetic	
variation	 in	 chromatin	 accessibility	 from	 DNase-seq	 and	 histone	 modifications	
(H3K27ac,	 H3K4me3,	 and	 H3K4me1)	 from	 75	 lymphoblastoid	 cell	 lines	 (LCL)	
(Grubert	 et	 al.	 2015).	 	By	modeling	quantitative	variation	 in	 the	epigenetic	 signal,	60	
integrating	whole	genome	sequencing	to	create	a	personalized	genome	sequence	for	
each	 individual,	 and	 training	 the	models	on	many	experiments	 from	 the	same	cell	
type	and	assay,	we	identify	variants	with	functional	effects	on	the	epigenome.			
	
	65	
RESULTS	
	
Deep	learning	maps	from	genome	sequence	to	epigenetic	signal	
DeepFIGV	 combines	 the	 quantitative	 signal	 from	 epigenetic	 experiments	 across	
multiple	individuals	with	whole	genome	sequencing	into	a	single	machine	learning	70	
task	(Figure	1).		While	standard	xQTL	analyses	rely	on	the	correlation	between	the	
epigenetic	 signal	 and	 a	 given	 genetic	 variant	 (Figure	1A-B),	 deep	 learning	using	 a	
convolutional	neural	network	explicitly	models	the	DNA	sequence	context	to	train	a	
predictive	 model	 (Figure	 1C-D).	 	 Evaluating	 the	 predicted	 effect	 of	 each	 variant	
produces	 a	 large	 database	 of	 nucleotide-level	 scores	 (Figure	 1E-F)	 that	 can	 be	75	
integrated	with	other	 analyses	 to	 refine	 the	mechanism	of	 known	causal	 variants,	
identify	novel	risk	variants	and	prioritize	downstream	experiments	(Figure	1G).			
	
Datasets	 from	each	of	 four	epigenetic	assays	 (DNase-seq	and	H3K27ac,	H3K4me3,	
and	H3K4me1	histone	marks)	were	analyzed	separately	(Figure	2).		The	parameters	80	
of	the	convolutional	neural	network	were	optimized	to	minimize	the	 least	squares	
prediction	error.		Extensive	steps	were	taken	to	avoid	overfitting,	and	all	prediction	
results	 are	 reported	on	a	 set	 of	 individuals	 and	 chromosomes	 that	were	 excluded	
from	 the	 training	 set	 (see	 Methods,	 Supplementary	 Figure	 1).	 	 Increasing	 the	
number	 of	 individuals	 in	 the	 training	 set	 and	 including	 genetic	 variation	 in	 the	85	
genome	 sequence	 of	 each	 individual	 decreased	 prediction	 error	 on	 withheld	 test	
data	(Supplementary	Figure	2).		Although	the	model	uses	only	DNA	sequence	in	the	
predictions,	 the	 predicted	 DNase	 signal	 shows	 strong	 concordance	 in	 the	 test	 set	
with	 the	observed	 signal	 (Spearman	 rho	=	0.485,	Pearson	R	=	0.707)	 (Figure	2A).		
Focusing	on	 the	more	robust	 (i.e.	 rank	based)	Spearman	correlation	metric	shows	90	
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that	 these	 predictive	 models	 give	 substantial	 accuracy	 for	 all	 four	 assays	 for	 the	
quantitative	 epigenetic	 signal	 (Figure	 2B).	 	 Examining	 the	 predicted	 signal	 for	 all	
four	 assays	 from	 a	 representative	 example	 in	 the	 test	 set	 along	 a	 segment	 of	
chromosome	22	shows	notable	concordance	with	the	observed	signal	(Figure	2C).		
	95	
Functional	 impact	scores	 from	the	predicted	difference	 in	epigenetic	signal	 for	 the	
reference	versus	 the	 alternate	 allele	were	 evaluated	 for	208	million	biallelic	 SNPs	
from	 the	 gnomAD	 database	 of	 15	 thousand	 whole	 genome	 sequences	 (Lek	 et	 al.	
2016).	 	 The	 delta	 value	 for	 each	 variant	 is	 defined	 as	 Δ	 =	 SALT	 –	 SREF	 with	 terms	
representing	 the	 predicted	 epigenetic	 signal	 from	 the	 alternative	 and	 reference	100	
alleles,	respectively.		Thus,	a	positive	delta	value	indicates	that	the	alternative	allele	
increases	 the	epigenetic	 signal	 compared	 to	 the	 reference	allele.	 	As	expected,	 the	
mean	 and	median	delta	 values	 for	 all	 assays	were	 very	 close	 to	 zero	 (Figure	 2D).		
Transforming	 these	 delta	 values	 to	 a	 standard	 scale	 by	 dividing	 by	 the	 standard	
deviation	 for	 each	 assay	 shows	 an	 excess	 of	 variants	 with	 scores	 near	 zero	105	
compared	to	the	standard	normal	distribution	(Figure	2E).	 	This	is	consistent	with	
the	vast	majority	of	variants	having	no	functional	effect	on	the	epigenome.		Yet	there	
is	an	excess	of	variants	with	large	effects	on	all	 four	epigenetic	assays,	with	DNase	
showing	the	highest	excess	followed	by	H3K27ac,	H3K4me3	and	finally	H3K4me1.					
	110	
Genomic	correlates	of	predicted	variant	effects	
Although	 no	 prior	 biological	 information	 is	 included	 in	 training	 the	 model,	
DeepFIGV	 recovers	multiple	 aspects	 of	 known	 regulatory	 biology	 (Figure	 3).	 	 The	
predictive	model	learned	by	the	convolutional	neural	network	is	composed	of	a	set	
of	 local	 sequence	 features	 called	 filters.	 	 Although	 learned	de	novo,	 the	 predictive	115	
sequences	 features	 extracted	 by	 these	 filters	 are	 often	 similar	 to	 known	
transcription	 factor	 bindings	 site	 (TFBS)	 motifs.	 	 Some	 filters	 have	 a	 direct	
correspondence	to	a	known	motif,	but	other	filters	model	only	a	portion	of	a	motif	
so	 that	 multiple	 filters	 combine	 to	 capture	 the	 signal	 encoded	 by	 the	 sequence	
(Figure	 3A).	 	 Variants	 in	 TFBS	 motifs	 are	 enriched	 for	 the	 alternative	 allele	120	
decreasing	 the	DNase	 signal	 (Figure	3B).	 	TFBS	nucleotides	with	high	 information	
content	 (i.e.	 high	 weight)	 in	 the	 position	 weight	 matrix	 have	 an	 even	 stronger	
enrichment	 for	 decreasing	 the	 DNase	 signal,	 consistent	 with	 variants	 being	more	
likely	to	weaken	rather	than	strengthen	the	affinity	of	a	TFBS	motif	(Supplementary	
Figure	3).	 	The	TFBS	enrichments	are	 consistent	with	 the	biology	of	 these	assays:	125	
variants	predicted	to	affect	the	open	chromatin	assay	DNase	are	most	enriched	for	
TFBS	 motifs,	 followed	 by	 the	 H3K4me3	 promoter	 mark	 and	 the	 H3K27ac	 active	
promoter	and	enhancer	mark	(Figure	3C).		H3K4me1	is	an	enhancer	mark	that	tags	
active	or	repressed	sequences	and	is	not	enriched	for	strong	variants	in	TFBS.			
	130	
The	role	of	TFBS	in	regulating	gene	expression	and	epigenetics	is	well	established,	
and	consequences	of	variants	in	TFBS	motifs	are	more	interpretable	than	variants	in	
other	 genome	 annotations	 (ENCODE	 Project	 Consortium	 2012;	 Kheradpour	 and	
Kellis	2014;	Lambert	et	al.	2018).	 	Yet	despite	notable	enrichment	 in	TFBS	motifs,	
variants	 in	 these	motifs	 account	 for	 a	minority	 of	 variants	with	 strong	 DeepFIGV	135	
scores.		Only	15.2%	of	sites	with	an	absolute	z-score	between	9	and	10,	and	19.9%	
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with	 an	 absolute	 z-score	 between	19	 and	20	 for	DNase	 fall	 in	 a	TFBS	 (Figure	3D,	
Supplementary	 Figure	 4).	 	 Including	 flanking	 nucleotides	 within	 5	 or	 10	 bp	
increases	these	percentages,	but	for	most	z-score	cutoffs,	variants	in	or	proximal	to	
known	TFBS	motifs	are	a	minority.		While	variants	in	TFBS	motifs	are	enriched	for	140	
variants	 predicted	 to	 affect	 DNase	 signal,	 the	 enrichment	 is	 not	 observed	 when	
expanding	beyond	these	proximal	nucleotides	(Figure	3E	for	DNase,	Supplementary	
Figure	3C	 for	ChIPseq).	 	 Therefore,	 the	majority	of	 variants	with	 strong	predicted	
effects	on	all	four	assays	do	not	fall	in	nor	are	they	proximal	to	these	known	TFBS,	
indicating	that	DeepFIGV	models	a	more	complicated	relationship	between	genetic	145	
variants	in	epigenetic	signal	than	is	encoded	by	TFBS	motifs	alone.	
	
Variant	 effects	 show	 a	 degree	 of	 cell	 type	 specificity	 as	 variants	 with	 strong	
predicted	effects	on	DNase,	H3K27ac	and	H3K4me3	are	more	enriched	around	the	
transcription	 start	 site	 (TSS)	 of	 genes	 expressed	 in	 LCLs,	 compared	 to	 genes	 not	150	
expressed	 in	 LCLs	 (Figure	 3F,	 Supplementary	 Figure	 5).	 	 Variants	 with	 strong	
predicted	 effects	 are	 also	 more	 enriched	 around	 the	 TSS	 of	 LCL-specific	 genes,	
compared	 to	 tissue-specific	 genes	 from	 each	 of	 52	 additional	 GTEx	 tissues	
(Supplementary	 Figure	 6).	 	 Moreover,	 variants	 with	 strong	 predicted	 effects	 on	
DNase,	H3K27ac	and	H3K4me3	are	enriched	in	CpG	islands	and	ChromHMM	tracks	155	
from	LCLs	(Supplementary	Figures	7	and	8).	 	Finally,	variants	with	large	predicted	
effects	are	depleted	among	common	variants	(minor	allele	frequency	>	1%)	and	are	
enriched	 in	 rare	 variants	 across	 multiple	 human	 populations,	 consistent	 with	
negative	 selection	 against	 variants	 that	 disrupt	 the	 epigenome	 (Figure	 3G,	
Supplementary	Figure	9).		160	
	
Concordance	with	xQTLs		
Lead	cis-QTL	variants	(i.e.	 the	 local	variant	with	 the	smallest	p-value)	 for	multiple	
assays	are	enriched	for	having	strong	predicted	effect	on	the	epigenome	(Figure	4,	
Supplementary	 Figure	 10).	 	 Variants	 that	 are	 lead	 cis-QTLs	 for	 DNase	 from	 the	165	
current	dataset	 (Grubert	et	al.	2015)	are	particularly	enriched	 for	having	a	strong	
predicted	 effect	 on	DNase	 and	H3K4me1	 (Figure	4A).	 	 Similarly,	 variants	 that	 are	
lead	cis-QTLs	for	gene	expression	in	an	independent	dataset	of	LCLs	from	European	
individuals	 (Lappalainen	et	al.	2013)	are	most	enriched	 for	variants	with	a	strong	
predicted	 effect	 on	 DNase	 (Figure	 4B).	 	 Rare	 variants	 associated	with	 expression	170	
outliers	 in	multiple	 tissues	 types	 (Li	 et	 al.	 2017a)	 are	 enriched	 for	 variants	 with	
strong	predicted	effects	on	DNase	(Figure	4C),	but	not	ChIP-seq.		Moreover,	somatic	
variants	in	cancer	that	drive	changes	in	expression	of	nearby	genes	are	enriched	for	
variants	with	strong	predicted	effects	on	DNase,	H3K4me3	and	H3K27ac	(Zhang	et	
al.	2018)	(Figure	4D).	 	Furthermore,	candidate	causal	variants	for	expression	QTLs	175	
identified	by	statistical	 fine	mapping	(Brown	et	al.	2017)	are	enriched	for	variants	
with	 strong	 predicted	 effects	 on	DNase	 (Figure	 4E).	 	 For	 example,	 rs11547207	 is	
identified	as	an	eQTL	in	LCLs	from	European	individuals,	but	this	SNP	is	in	linkage	
disequilibrium	 with	 many	 nearby	 variants	 (Figure	 4F).	 	 Statistical	 fine	 mapping	
indicates	that	this	SNP	has	a	high	probably	of	being	the	causal	variant	in	this	region	180	
driving	gene	expression	variation.		Although	analysis	of	the	DNase	signal	from	LCLs	
does	not	identify	this	SNP	as	a	QTL,	DeepFIGV	directly	models	the	sequence	context	
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of	this	variant	and	predicted	a	strong	effect	of	the	epigenetic	signal	in	this	region.		In	
silico	 saturation	 mutagenesis	 in	 this	 region	 gives	 predictions	 at	 nucleotide-
resolution	and	 indicates	 that	variants	within	~5	bp	are	also	predicted	 to	decrease	185	
the	DNase	signal	despite	not	falling	in	a	known	TFBS	(Kheradpour	and	Kellis	2014).	
	
DeepFIGV	variant	scores	predict	allele	specific	binding	
The	 predicted	 functional	 effect	 of	 genetic	 variants	 on	 each	 of	 the	 four	 epigenetic	
assays	 analyzed	 in	 DeepFIGV	 can	 identify	 allele-specific	 binding	 (ASB)	 of	 TFs	 in	190	
independent	 ChIP-seq	 experiments	 in	 LCLs	 (Chen	 et	 al.	 2016b;	 Shi	 et	 al.	 2016)	
(Figure	5).		Heterozygous	variants	can	be	divided	into	3	categories	based	on	ASB:	no	
allele	 specific	 effect,	 ASB	 favoring	 the	 reference	 allele,	 and	 ASB	 favoring	 the	
alternative	allele	(Figure	5A).	 	We	evaluated	the	ability	of	DeepFIGV	to	distinguish	
between	 these	categories	even	 though	no	allele-specific	 information	 is	 included	 in	195	
model	 training.	 	 The	 predicted	 effect	 on	 the	 DNase	 signal	 can	 classify	 variants	
showing	ASB	versus	no	ASB	for	CCCTC-binding	factor	(CTCF)	with	an	area	under	the	
precision	recall	(AUPR)	curve	of	0.202	compared	to	0.0493	for	a	random	classifier	
(Figure	5B,C).	 	Given	a	variant	with	an	allele-specific	effect,	 the	predicted	effect	on	
DNase	 signal	 is	 able	 to	 classify	 the	 direction	 of	 the	 effect	 (i.e.	 favoring	 reference	200	
versus	alternative)	for	CTCF	with	an	AUPR	of	0.704	compared	to	a	random	classifier	
of	 0.36	 (Figure	 5D,E).	 	 Since	 the	 number	 of	 sites	 in	 each	 category	 varied	
substantially	across	TFs,	we	consider	the	increase	in	AUPR	from	the	DeepFIGV	score	
compared	 to	 a	 TF-specific	 baseline.	 	 DeepFIGV	 scores	 show	 an	 increase	 in	 AUPR	
compared	 to	 a	 TF-specific	 random	 classifier	 for	 distinguishing	 the	 ASB	 status	 of	205	
variants	for	independent	assays	of	multiple	transcription	factors	in	LCLs	(Figure	5F)	
and	HeLa	S3	cells	(Supplementary	Figure	11).	
	
Enrichment	for	disease	risk	variants	and	interpreting	causal	variants	
Integrating	 DeepFIGV	 scores	 with	 large-scale	 genome-wide	 association	 studies	210	
shows	that	risk	variants	for	common	disease	are	enriched	for	variants	predicted	to	
impact	 the	 epigenome	 (Figure	 6).	 	 We	 applied	 stratified	 LD-score	 regression	
(Finucane	 et	 al.	 2015)	 to	 evaluate	 the	 contribution	 of	 variants	 with	 different	
genomic	annotations	to	disease	risk.	 	Analysis	of	19	traits	identified	a	contribution	
of	variants	passing	multiple	DeepFIGV	z-score	cutoffs	to	trait	heritability,	even	after	215	
accounting	for	a	baseline	set	of	32	genomic	annotations	(see	Methods)	(Figure	6A,	
Supplementary	 Figure	 12,13).	 	 Immune	 traits	 show	 the	 strongest	 contribution	 of	
DeepFIGV	variants	to	trait	heritability	since	the	model	was	trained	in	LCLs	(a	B-cell	
lineage),	yet	there	are	also	cell	type	autonomous	effects	and	a	contribution	to	non-
immune	 traits.	 	 Further	 investigation	 of	 the	 impact	 of	 immune	 traits	 shows	 that	220	
candidate	causal	variants	identified	by	statistical	fine	mapping	(Farh	et	al.	2015)	are	
enriched	 for	 variants	 with	 strong	 DeepFIGV	 effects	 (Figure	 6B,	 Supplementary	
Figure	14).										
	
DeepFIGV	 scores	 can	 elucidate	 the	 molecular	 mechanism	 of	 a	 causal	 variant	 and	225	
prioritize	 downstream	 experiments.	 	 Integrating	 DeepFIGV	 scores	 with	 candidate	
causal	variants	for	inflammatory	bowel	disease	(Huang	et	al.	2017a)	shows	that	for	
rs10748781,	which	has	99%	posterior	probability	of	being	the	causal	variant	in	this	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/389056doi: bioRxiv preprint 

https://doi.org/10.1101/389056
http://creativecommons.org/licenses/by-nc-nd/4.0/


Functional	Interpretation	of	Genetic	Variants	

region,	the	alternative	allele	is	predicted	to	decrease	the	DNase	signal	in	this	region	
in	 LCLs	 (Figure	 6C).	 	 This	 result	 gives	 a	 specific	 cell	 type	 and	 biological	 assay	 to	230	
design	 a	 validation	 experiment.	 	 Moreover,	 this	 variant	 disrupts	 a	 CpG	 site,	 is	 a	
known	DNA	methylation	QTL,	 and	 the	methylation	 at	 nearby	 sites	 is	 predicted	 to	
mediate	 the	 effect	 of	 the	 variant	 on	 disease	 risk	 (Hannon	 et	 al.	 2017)	
(Supplementary	Figure	15).			
	235	
	
DISCUSSION	
	
Translating	 findings	 of	 genetic	 studies	 to	 a	 molecular	 understanding	 of	 disease	
etiology	 and	 then	 to	 novel	 therapies	 has	 been	 hindered	 by	 the	 challenge	 of	240	
interpreting	 the	 functional	 consequence	 of	 genetic	 variants.	 	 There	 is	 a	 widely	
recognized	need	for	accurate	computational	predictions	of	the	functional	impact	of	
non-coding	regulatory	variants	(Albert	and	Kruglyak	2015).	 	 	Genomic	annotations	
of	 the	 non-coding	 regions	 have	 generally	 taken	 one	 of	 four	 approaches.		
Evolutionary	 conservation	 or	 selection	 can	 identify	 functional	 regions	 of	 the	245	
genome,	 but	 consecutive	 nucleotides	 often	 have	 very	 similar	 scores	 and	 this	
approach	 does	 not	 give	 cell	 type-	 and	 assays-specific	 functional	 consequences	
(Siepel	et	al.	2005;	Gulko	et	al.	2015;	Huang	et	al.	2017b).	 	Epigenetic	maps	across	
multiple	cell	types,	tissues	and	assays	provide	a	functional	interpretation,	but	peaks	
from	these	assays	cover	millions	of	nucleotides	(ENCODE	Project	Consortium	2012;	250	
Roadmap	 Epigenomics	 Consortium	 et	 al.	 2015).	 	 xQTL	 studies	 correlate	 genetic	
variants	 with	 gene	 expression	 or	 epigenetic	 signals,	 but	 interpretation	 of	 this	
correlation	 analysis	 is	 limited	 by	 linkage	 disequilibrium	 and	 is	 only	 applicable	 to	
variants	observed	in	the	dataset	(Aguet	et	al.	2017;	Lappalainen	et	al.	2013;	Fromer	
et	al.	2016).		Most	recently,	deep	convolutional	neural	networks	have	been	used	to	255	
develop	 predictive	 models	 linking	 the	 genome	 sequence	 to	 splicing	 (Xiong	 et	 al.	
2015),	 protein	 binding	 (Alipanahi	 et	 al.	 2015),	 and	 epigenetic	 signals	 (Zhou	 and	
Troyanskaya	2015;	Lee	et	al.	2015;	Kelley	et	al.	2016;	Zhou	et	al.	2018).	 	Although	
these	deep	 learning	methods	have	been	promising,	 their	biological	application	has	
so	far	been	limited.		260	
	
Here	we	present	a	deep	learning	framework	that	learns	a	predictive	model	linking	
DNA	 sequence	 to	 quantitative	 variation	 in	 epigenetic	 signal	 and	 evaluates	 the	
predicted	functional	impact	of	genetic	variants	on	multiple	assays.		This	framework	
models	 quantitative	 variation	 in	 the	 epigenome,	 integrates	 whole	 genome	265	
sequencing	 to	 create	 a	 personalized	 genome	 sequence	 for	 each	 individual,	 and	
trains	 on	 many	 experiments	 from	 the	 same	 cell	 type	 and	 assay.	 	 Because	 this	
framework	fits	a	predictive	model	based	on	sequence	context,	 it	 is	 less	susceptible	
to	issues	of	linkage	disequilibrium	and	can	predict	the	functional	impact	of	variants	
even	if	they	are	not	observed	in	the	training	dataset.			270	
	
Application	 to	 epigenetic	 assays	 of	 open	 chromatin	 (DNase-seq)	 and	 histone	
modifications	 (H3K27ac,	 H3K4me3,	 and	 H3K4me1)	 from	 75	 lymphoblastoid	 cell	
lines	 (LCL)	 (Grubert	 et	 al.	 2015)	produces	 functional	 consequence	 scores	 that	 are	
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concordant	 with	 other	 genomic	 annotations	 while	 capturing	 sequence	 context	275	
information	 beyond	 known	 TFBS	 motifs.	 	 We	 note	 that	 potential	 mechanisms	 of	
variants	outside	these	motifs	include	affecting	local	DNA	shape,	DNA	methylation	or	
nucleosome	 positioning	 (Slattery	 et	 al.	 2014;	 Deplancke	 et	 al.	 2016),	 but	
interpretation	remains	an	open	challenge	(Shrikumar	et	al.	2017).		We	demonstrate	
that	 these	 functional	 consequence	 scores	 inform	 molecular	 mechanism,	 are	280	
concordant	with	xQTL	analysis,	are	predictive	of	allele-specific	binding,	and	inform	
interpretation	 of	 risk	 variants	 for	 common	 disease.	 	 Moreover,	 these	 scores	 can	
prioritize	 variants	 for	 downstream	 experiments	 and	 indicate	 the	 appropriate	 cell	
type	and	functional	assay.		DeepFIGV	scores	are	complementary	to	other	non-coding	
variant	scores,	and	compared	 to	DeepSea	(Zhou	and	Troyanskaya	2015)	 identifies	285	
more	 variants	 with	 extreme	 z-scores	 particularly	 for	 sites	 with	 minor	 allele	
frequency	less	than	5%	(Supplementary	Methods,	Supplementary	Figures	16,17).	
	
The	differing	performance	of	 the	prediction	and	biological	enrichments	across	 the	
four	epigenetic	assays	is	attributable	to	both	biological	and	technical	factors.		These	290	
assays	 differ	 in	 the	 biological	 processes	 they	 measure.	 	 DNase	 measures	 open	
chromatin	with	high	signal	representing	protein	interacting	with	the	DNA	within	a	
narrow	region	of	~150	bp.		Thus	DNase	signal	is	largely	determined	by	the	proximal	
DNA	 sequence	 and	 especially	 TF	 binding.	 	 Histone	modification	 ChIP-seq	 is	more	
complex	readout	of	chromatin	state	with	H3K4me3	at	active	promoters,	H3K27ac	at	295	
active	 promoters	 and	 enhancers,	 and	 H3K4me1	 at	 either	 active	 or	 repressed	
enhancers.	 	 Due	 to	 spatial	 chromatin	 spreading,	 the	 role	 of	 trans-factors,	 and	 the	
increased	 width	 of	 these	 marks	 (300	 bp	 to	 1kb),	 sequence-based	 prediction	 is	
known	 to	 be	 less	 accurate	 (Zhou	 and	 Troyanskaya	 2015).	 	 Since	 genetic	 variants	
conferring	disease	risk	or	regulating	gene	expression	can	act	 through	a	number	of	300	
mechanisms	(Grubert	et	al.	2015;	Maurano	et	al.	2012;	Huang	et	al.	2017a;	Aguet	et	
al.	 2017;	 Albert	 and	 Kruglyak	 2015),	 the	 value	 of	 additional	 epigenetic	 assays	
depends	on	the	accuracy	of	a	predictive	model	as	well	as	the	regulatory	mechanism	
of	interest.	
	305	
Scalable	 experimental	 approaches	 to	measure	 the	 functional	 consequence	 of	 non-
coding	 variants	 have	 recently	 been	 proposed	 (Starita	 et	 al.	 2017;	 Tewhey	 et	 al.	
2016;	Ulirsch	 et	 al.	 2016;	 Ernst	 et	 al.	 2016;	Arnold	 et	 al.	 2013).	 	 These	massively	
parallel	report	assays	(MPRA)	couple	thousands	to	millions	of	nucleotide	sequences	
to	 a	molecular	 readout	 that	 can	 be	 quantified	 by	 short	 read	 sequencing.	 	 Despite	310	
their	 remarkable	experimental	 throughput,	 these	assays	are	 limited	 to	cell	 culture	
and	they	assay	 the	 function	of	 the	query	sequence	either	 in	an	episomal	vector	or	
through	random	insertion	into	the	genome.		Thus	the	degree	to	which	results	from	
MPRAs	recapitulate	 function	 in	 the	disease	relevant	cell	 type	and	natural	genomic	
context	remains	unclear	(Inoue	et	al.	2017;	Muerdter	et	al.	2018;	Ernst	et	al.	2016).		315	
In	 contrast,	 predictive	 models	 based	 on	 sequence	 context	 use	 natural	 genetic	
variation,	 are	 extensible	 to	 multiple	 biological	 assays,	 and	 evaluate	 sequences	 in	
their	native	chromosomal	context.		Moreover,	they	are	applicable	to	cell	culture,	as	
well	as	cells	from	post	mortem,	biopsy	or	blood	draws	to	more	precisely	target	the	
relevant	 cell	 type.	 	 In	 fact,	 variants	 found	 to	 drive	 changes	 in	 gene	 expression	 in	320	
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LCLs	 by	 a	 recent	 MPRA	 (Tewhey	 et	 al.	 2016)	 are	 enriched	 for	 having	 strong	
predicted	effects	on	DNase	by	DeepFIGV	(Supplementary	Figure	18).			
	
The	 growth	 of	 large-scale	 resources	 pairing	 quantitative	 epigenetic	 assays	 with	
genetic	 data	 offers	 an	 opportunity	 to	 train	 rich	 predictive	 models	 on	 disease	325	
relevant	 cell	 types	 (PsychENCODE	 Consortium	 et	 al.	 2015;	 Chen	 et	 al.	 2016a;	
Girdhar	et	al.	2018).		Finally,	we	have	developed	a	public	resource	of	the	DeepFIGV	
predicted	functional	scores	for	438	million	variants	available	at	deepfigv.mssm.edu.	
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METHODS	330	
	
Epigenomic	data	from	lymphoblastoid	cell	lines	
The	dataset	comprises	ChIP-seq	experiments	for	3	histone	modifications	(H3K27ac,	
H3K4me1	 and	 H3K4me3)	 for	 75	 individuals	 and	 DNase	 I	 hypersensitivity	
experiments	for	69	individuals	(Grubert	et	al.	2015).		All	individuals	are	of	Yoruban	335	
ancestry	 from	 the	1000	Genomes	Project	 (The	1000	Genomes	Project	Consortium	
2012).	 	 Processed	 data	 was	 downloaded	 from	 the	 ChromoVar3D	 website	
(chromovar3d.stanford.edu).	 	 Peak	 coordinates	 and	 signal	 intensities	 for	 each	
sample	 and	 each	 DNase	 peak	 were	 extracted	 from	
DNase_removeBlacklist_Log10PvalueThreshold_5_DATA_MATRIX.gz,	 and	340	
corresponding	files	were	used	for	the	3	histone	modifications.		VCF	of	variants	from	
whole	genome	sequencing	was	obtained	from	the	same	website.	
	
Deep	learning	with	a	convolutional	neural	network		
The	 basset	 software	 (Kelley	 et	 al.	 2016)	 was	 used	 to	 learn	 parameters	 in	 a	345	
predictive	model	mapping	 from	genome	 sequence	 as	 input	 to	 epigenetic	 signal	 as	
output.		The	analysis	was	customized	to	take	advantage	of	this	particular	dataset	by	
1)	 integrating	 genetic	 variation	 from	whole	 genome	 sequencing,	 2)	 modeling	 the	
quantitative	variation	in	the	epigenetic	signal	and	3)	combining	many	experiments	
from	 the	 same	 cell	 type	 into	 a	 large	 single-task	 learning	 application.	 	 This	350	
customized	analysis	enables	a	focus	on	genetic	variants	with	relatively	small	effects	
on	the	quantitative	signal	value,	rather	than	the	strong	effect	required	to	completely	
lose	 or	 gain	 a	 binding	 or	 histone	 modification	 event.	 	 Each	 of	 the	 4	 assays	 was	
analyzed	separately	using	a	single-task	learning	approach.	
	355	
Constructing	DNA	sequence	as	input	to	neural	network	
Personalized	 genome	 sequences	 were	 constructed	 using	 the	 GRCh37	 reference	
genome	 with	 sites	 modified	 according	 to	 biallelic	 SNPs	 in	 the	 whole	 genome	
sequence	using	 the	bcftools consensus	 command.	 	 At	 homozygous	 alternate	
sites	the	reference	allele	is	simply	replaced	by	the	alternative	allele.	 	Heterozygous	360	
sites	 are	 represented	 using	 the	 IUPAC	 nucleotide	 ambiguity	 codes	 (Comnish-
Bowden	1985),	so	that	for	example	an	A/C	heterozygote	is	indicated	with	the	letter	
‘M’.		Only	biallelic	SNPs	are	considered,	so	there	are	6	ambiguity	codes,	one	for	each	
pair	of	nucleotides.			
	365	
Non-ambiguous	 sites	 are	 one-hot	 coded	 as	 a	 matrix	 of	 mostly	 0’s	 with	 4	 rows	
corresponding	to	‘A’,	‘T’,	‘C’,	and	‘G’.			Coding	a	1	in	the	‘T’	row	indicates	the	presence	
of	 that	 nucleotide	 in	 the	 corresponding	 position	 in	 the	 genome	 sequence.		
Ambiguous	 sites	 are	 encoded	with	 a	 value	 of	 0.5	 in	 the	 two	 corresponding	 rows.		
Thus	the	training	data	does	not	explicitly	include	any	information	about	phasing	of	370	
the	SNPs	or	allele-specific	signals.	
	
For	each	peak	interval	called	in	the	processed	data,	the	genome	sequence	within	a	
specified	 distance	 from	 the	 center	 of	 the	 peak	was	 extracted	 and	matched	 to	 the	
corresponding	 signal	 value.	 	 Peaks	 exceeding	 an	 assay-specific	 width	 cutoff	 were	375	
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excluded	 from	 the	 analysis	 (Supplementary	 Table	 1).	 	 	 An	 assay-specific	 window	
size	between	300	and	2000	bp	was	used	 to	extract	 regions	 from	the	personalized	
reference	 genomes	 (Supplementary	 Table	 1).	 	 Larger	 window	 sizes	 have	 been	
shown	 to	 increase	prediction	performance	 (Zhou	and	Troyanskaya	2015),	 and	we	
used	the	largest	window	size	where	encoding	the	DNA	sequence	from	all	peaks	and	380	
all	 individuals	to	one-hot	coded	format	could	be	computed	on	a	machine	with	256	
Gb	RAM.												
	
Model	training	and	testing	
Basset	was	trained	with	a	3	layer	deep	neural	network	and	300	convolutional	filters	385	
each	19	bp	wide	(Supplementary	Table	3).		Changing	the	number	of	filters	between	
100	and	400	and	changing	the	filter	width	between	10	and	20	bp	did	not	produce	a	
substantial	 change	 in	prediction	accuracy.	 	 	 	A	30%	dropout	was	applied	 to	 avoid	
overfitting.	 	All	training	was	performed	on	NVIDIA	Tesla	K20X	GPU.	 	Training	on	a	
single	 assay	 took	 between	 14	 and	 45	 GPU	 hours.	 	 Multiple	 restarts	 gave	 similar	390	
prediction	accuracy.	

	
The	dataset	was	divided	into	training,	validation	and	testing	sets.		In	order	to	avoid	
overfitting,	an	early	stopping	approach	was	used	where	the	parameter	values	in	the	
model	 were	 learned	 from	 the	 training	 set,	 but	 the	 final	 values	 were	 selected	 to	395	
minimize	 the	 squared	 prediction	 error	 in	 the	 validation	 set.	 	 The	 prediction	
performance	for	each	assay	was	reported	based	on	the	test	set.	
	
The	 training,	 validation	 and	 testing	 sets	 were	 specially	 constructed	 using	 a	
conservative	approach	in	order	to	ensure	independence	of	the	three	sets.		Since	the	400	
signal	values	at	a	given	peak	are	relatively	similar	across	individuals,	including	the	
same	peak	region,	albeit	from	different	individuals,	in	both	the	training	and	testing	
sets	 could	 overstate	 the	 prediction	 performance.	 	 Similarly,	 peaks	 from	 the	 same	
individual	are	generated	under	the	same	experimental	conditions	and	are	subject	to	
technical	batch	effects.			Thus,	including	peaks	from	the	same	individual	in	both	the	405	
training	and	testing	set	could	also	overstate	the	prediction	performance.		In	order	to	
avoid	 this	 issue,	 the	 test	 set	 is	 composed	 of	 peaks	 on	 chr1-chr8	 from	 60%	 of	
individuals,	 the	 validation	 set	 is	 composed	 of	 peaks	 on	 chr9-chr15	 from	 the	 next	
20%	of	individuals,	and	the	test	set	is	composed	of	peaks	on	chr16-chr22	from	last	
20%	 of	 individuals.	 	 Thus,	 the	 three	 sets	 have	 no	 overlap	 in	 either	 peaks	 or	410	
individuals	 (Supplementary	 Table	 1,	 Supplementary	 Figure	 1)	 to	 ensure	 a	
conservative	estimate	of	prediction	performance.			
	
We	 describe	 the	 analysis	 workflow	with	 numbers	 from	DNase	 data;	 numbers	 for	
other	assays	are	shown	in	Supplementary	Table	1.		There	were	681,990	total	DNase	415	
peak	 intervals	 from	 69	 individuals.	 	 In	 order	 to	 focus	 on	 peaks	 of	 approximately	
equal	size,	peaks	exceeding	250	bp	were	excluded.		This	left	463,094	peaks	(67.9%	
of	total)	with	a	mean	width	of	150.7	bp.		Multiplying	the	number	of	remaining	peaks	
by	the	number	of	individuals	gives	a	dataset	of	31,953,486	examples.	 	Since	DNase	
and	 histone	 modification	 ChIP-seq	 are	 not	 strand	 specific-assays,	 the	 reverse	420	
complement	 sequence	 gives	 the	 same	 epigenetic	 signal	 as	 the	 original	 sequence.		
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Augmenting	 the	 dataset	 by	 including	 the	 reverse	 complement	 of	 each	 example	
doubles	 the	 number	 of	 sequence-signal	 pairs.	 	 Constructing	 the	 training	 set	 from	
peaks	 on	 chr1-chr8	 from	 the	 first	 60%	 of	 individuals	 gives	 229,421	 unique	 peak	
regions	and	18,812,522	total	examples.	425	
	
Genomic	correlates	
Minor	allele	frequency	across	populations	were	obtained	from	gnomAD	r2.0.2	(Lek	
et	al.	2016).		Genomic	locations	of	transcription	factor	binding	motifs	were	obtained	
from	 ENCODE	 (Kheradpour	 and	 Kellis	 2014).	 	 Genomic	 locations	 from	 ChIP-seq	430	
experiments	for	transcription	factors	in	LCL	GM12878	(ENCODE	Project	Consortium	
2012)	 were	 downloaded	 from	
http://egg2.wustl.edu/roadmap/src/chromHMM/bin/COORDS/hg19/TFBS/gm128
78/.	 	 List	 of	 genes	 expressed	 in	 LCLs	 were	 obtained	 from	
http://egg2.wustl.edu/roadmap/src/chromHMM/bin/COORDS/hg19/expr/gm128435	
78/.	 	 ChromHMM	 tracks	 (Roadmap	 Epigenomics	 Consortium	 et	 al.	 2015)	 for	 LCL	
GM12878	 were	 downloaded	 from	
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/Chm
mModels/core_K27ac/jointModel/final/E116_18_core_K27ac_dense.bed.gz.		
Genome	 annotation	 of	 sites	 were	 obtained	 from	 VEP	 v85	 (McLaren	 et	 al.	 2016)	440	
provided	by	gnomAD	(Lek	et	al.	2016).	 	CpG	 islands	were	obtained	 from	Annotatr	
(Cavalcante	and	Sartor	2017).		
	
Comparison	to	canonical	motifs	
Filters	learned	by	basset	were	compared	to	known	motifs	from	CisBP	(Weirauch	et	445	
al.	2014)	using	tomtom	(Gupta	et	al.	2007).		Motifs	were	visualized	using	ggseqlogo	
(Wagih	2017).		
	
Evaluating	variant	effects	
Coordinates	 and	 alleles	 of	 SNPs	 were	 obtained	 from	 multiple	 public	 resources	450	
(Supplementary	 Table	 2)	 and	 combined	 into	 a	 non-redundant	 list	 comprising	
413,223,060	 sites	 and	437,960,283	 variants	 (due	 to	multi-allelic	 sites).	 	 The	delta	
between	 the	 predicted	 signal	 from	 the	 reference	 and	 alternative	 alleles	 was	
evaluated	for	each	of	the	four	epigenetic	assays.		The	median	and	standard	deviation	
of	the	delta	values	for	each	assay	were	obtained	for	208	million	biallelic	SNVs	from	455	
whole	genome	sequencing	(WGS)	from	gnomAD	r2.0.2	and	were	used	to	compute	z-
scores	for	the	entire	set	of	variants	for	the	corresponding	assay.		This	approach	used	
sites	 distributed	 across	 the	 genome	 that	 were	 identified	 independently	 of	 their	
predicted	functional	consequence	and	avoids	double	counting	multiallelic	sites.		The	
standard	 deviation	was	 computed	 using	 a	 robust	method	 (i.e.	 winsorized)	where	460	
delta	 values	 below	 the	 1st	 percentile	 or	 above	 the	 99th	percentile	were	 set	 to	 the	
value	at	the	corresponding	cutoff.		This	approach	reduced	the	effect	of	variants	with	
extreme	 scores.	 	 Changing	 the	 cutoff	 values	 had	 a	 very	 minimal	 effect	 of	 the	
resulting	z-scores.	
	465	
Evaluating	all	variants	for	the	4	assays	took	5,929	GPU	hours	using	10	NVIDIA	Tesla	
K20X	GPUs.	
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Integration	with	xQTLs	
We	 downloaded	 QTLs	 for	 gene	 expression,	 DNase	 and	 histone	 modifications	 on	470	
Yoruban	 individuals	 (Grubert	et	al.	2015),	QTLs	 for	gene	expression	on	LCLs	 from	
multiple	 European	 populations	 (Lappalainen	 et	 al.	 2013).	 	 Enrichment	 was	
evaluated	by	 comparing	 the	DeepFIGV	absolute	 z-cores	 from	 the	 lead	QTLs	 to	 the	
scores	for	to	variants	ranked	between	5th	and	10th.	 	Statistical	fine	mapping	results	
were	 obtained	 from	 multiple	 cell	 types	 (Brown	 et	 al.	 2017).	 	 Rare	 variants	475	
associated	with	gene	expression	outliers	from	multiple	tissues	were	obtained	from	
GTEx	 (Li	 et	 al.	 2017a).	 	 Enrichments	 are	 evaluated	 based	 on	 2,113	 rare	 variants	
associated	with	outliers	and	67,044	not	associated	with	outliers.	
	
Cancer	somatic	variants	driving	gene	expression	480	
We	downloaded	somatic	variants	 in	tumors	that	were	 identified	by	whole	genome	
sequencing	 and	 results	 from	 an	 eQTL	 analysis	 combining	 nearby	 variants	 and	
testing	the	association	with	proximal	genes	(Zhang	et	al.	2018).		We	considered	the	
569	 genes	with	 cis-eQTLs	 at	 FDR	 <	 30%	 and	 evaluated	 the	DeepFIGV	 z-score	 for	
each	of	4	epigenetic	assays	 for	 the	2309	somatic	variants	 in	 the	proximal	 regions.		485	
The	enrichment	analysis	compared	these	variants	to	somatic	variants	in	this	dataset	
that	were	not	associated	with	gene	expression	changes	and	which	were	matched	for	
distance	to	transcription	start	site.					
	
Prediction	of	allele	specific	binding	(ASB)	 	490	
DeepFIGV	scores	were	used	to	predict	the	presence	and	direction	of	ASB	using	sites	
identified	 from	 transcription	 factor	 ChIP-seq	 and	 DNase	 I	 hypersensitivity	
experiments	in	LCLs	(Chen	et	al.	2016b;	Shi	et	al.	2016)	and	HeLa-S3	cells	(Shi	et	al.	
2016).	 	 For	 AlleleDB	 (Chen	 et	 al.	 2016b),	 the	 ASB	 status	 for	 42	 ChIP-seq	 targets	
across	14	 individuals	 totaling	77	experiments	were	 reported	at	 a	 total	of	276,589	495	
sites	with	sufficient	read	coverage	(accB.auto.v2.1.aug16.txt.gz).		Shi,	et	al.	(Shi	
et	 al.	 2016)	 reported	 ABS	 for	 36	 targets	 across	 7	 LCL	 and	 HeLa-S3	 cells	 across	
51,518	 total	 sites	 (ASB_GM12878_HeLa_1based.txt, ASB_other_GMs_1based.txt).		
Sites	 from	 the	 two	 databases	were	 combined	 to	 produce	 a	 non-redundant	 set,	 so	
sites	identified	for	the	same	target	and	individual	in	both	databases	were	not	double	500	
counted.		Sites	were	considered	as	ASB	or	non-ASB	based	on	a	Benjamini-Hochberg	
corrected	p-value	(beta-binomial	for	AlleleDB	and	binomial	for	Shi,	et	al.)	<	0.05,	or	
>	0.99,	respectively.		Only	assays	with	at	least	20	ASB	examples	were	considered.			
	
Precision-recall	 (PR)	 curves	 and	 area	 under	 the	 PR	 curve	 (AUPR)	 were	 used	 to	505	
evaluate	the	classification	performance	since	the	ASB	vs	non-ASB	class	counts	were	
very	 imbalanced.	 	PR	curves	and	AUPR	of	empirical	and	random	classes	classifiers	
were	evaluated	with	the	PRROC	package	(Grau	et	al.	2015).	
	
No	allele-specific	signal	was	used	in	the	training	of	DeepFIGV	and	no	re-training	was	510	
performed	for	the	ASB	analysis.	 	The	DeepFIGV	z-scores	for	each	of	the	4	assays	in	
the	training	set	were	extracted	for	each	site,	and	the	PR	and	AUPR	were	computed	
by	 the	 intersecting	 these	 scores	with	 the	 combined	 ASB	 dataset.	 	 Classifying	 ASB	
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sites	 from	non-ASB	 sites	used	 the	 absolute	 value	of	 the	 z-scores,	while	 classifying	
the	 direction	 of	 ASB	 used	 the	 z-score	 itself.	 	 ASB	magnitude	was	 encoded	 as	 the	515	
number	of	 alternative	 reads	at	 a	 site	divided	by	 the	 total	number	of	 reads	at	 that	
site.	 	 Thus,	 a	 positive	ASB	magnitude	 corresponds	 to	 a	 positive	DeepFIGV	 z-score	
indicating	that	the	alternative	allele	is	predicted	to	increase	signal	compared	to	the	
reference	allele.					
	520	
Computing	disease	enrichments:	LD-score	regression	
Publically	available	GWAS	summary	statistics	were	obtained	for	immune	diseases	as	
well	 as	 other	 representative	 diseases	 and	 traits.	 	 We	 performed	 a	 partitioned	
hereditably	 analysis	 with	 LD-score	 regression	 (LDSC)	 (Finucane	 et	 al.	 2015)	 in	
order	 to	 quantify	 the	 contribution	 to	 the	 trait	 heritability	 of	 variants	 with	 high	525	
absolute	 DeepFIGV	 z-scores.	 	 The	 per-SNP	 heritability	 was	 computed	 after	
accounting	for	the	32	other	genomic	annotations.		Annotations	included	28	provided	
with	 LDSC	 baseline	 model	 (i.e.	 TFBS,	 TSS,	 UTR,	 intron,	 promoter,	 enhancer,	
superenhancer,	epigenetic	assays	multiple	sources	(H3K27ac,	H3K4me1,	H3K4me3,	
H3K9ac,	 DNase))	 in	 addition	 to	 peak	 regions	 from	 the	 4	 assays	 in	 LCLs	 used	 by	530	
DeepFIGV.	 	 DeepFIGV	 was	 the	 only	 annotation	 with	 nucleotide	 level	 resolution;	
other	annotations	were	10s	or	100s	of	bases	wide.			
	
This	 analysis	was	 restricted	 to	 common	 variants	 outside	 of	 the	MHC	 region.	 	 The	
per-SNP	heritability	was	evaluated	for	site	exceeding	absolute	z-score	cutoffs	for	1,	535	
2,	3,	4	and	5.		There	we	not	a	sufficient	number	of	sites	with	larger	scores,	since	only	
common	variants	were	considered.			
	
Computing	disease	enrichments:	Candidate	causal	variants	
Candidate	 causal	 SNPs	 identified	 from	 finemapping	 analysis	 of	 autoimmune	540	
diseases	 were	 obtained	 from	 http://www.broadinstitute.org/pubs/finemapping	
(Farh	 et	 al.	 2015).	 	 The	DeepFIGV	 z-scores	were	 obtained	 for	 the	 8741	 candidate	
causal	SNPs	for	39	traits.	 	Enrichments	for	each	trait	were	evaluated	by	comparing	
the	number	of	candidate	causal	sites	with	a	DeepFIGV	absolute	z-score	exceeding	a	
given	 cutoff	 to	 the	 expected	 value	 from	 a	 random	 set	 of	 sites	 from	 a	 null	545	
distribution.	 	This	null	was	constructed	for	each	site	by	drawing	10,000	sites	from	
across	 the	genome	matching	the	MAF,	gene	density,	distance	to	nearest	genes	and	
number	of	sites	within	LD	of	0.5	of	the	original	site	(Pers	et	al.	2015).			
	
Comparison	to	other	variant	scoring	methods	550	
Variant-level	 scores	 were	 obtained	 from	 DeepSea	 (Zhou	 and	 Troyanskaya	 2015)	
evaluated	 on	 17	 DNase	 datasets	 and	 deltaSVM	 (Lee	 et	 al.	 2015)	 evaluated	 on	 35	
DNase	datasets,	and	CAPE	(Alvarez	et	al.	2018)	evaluated	on	2	datasets.			In	addition	
we	included	CADD	(Kircher	et	al.	2014)	and	LINSIGHT	(Huang	et	al.	2017b).		Scores	
were	obtained	from:		555	
https://www.ncbi.nlm.nih.gov/research/snpdelscore/rawdata/	
For	DeepSea	and	deltaSVM	the	reported	delta	values	 for	 the	predicted	signal	 from	
the	 reference	 and	 alternative	 alleles	 were	 transformed	 to	 a	 z-score	 using	 the	
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observed	standard	deviation.		Analysis	was	performed	on	a	shared	set	of	12	million	
variants.	560	
	
Analysis	of	LCL	MPRA	results	
Results	were	downloaded	from	Tewhey,	et	al.	(2016)	and	variants	were	dived	into	3	
classes:	 1)	 expression	 modulating	 variants	 that	 showed	 significant	 difference	 in	
expression	 between	 reference	 and	 alternative	 alleles,	 2)	 variants	 that	 drove	565	
expression	but	did	not	show	allelic	differences,	and	3)	variants	whose	sequence	did	
not	drive	 expression	 in	 this	 assay.	 	 Enrichment	of	 expression	modulating	variants	
(i.e.	class	1)	were	compared	to	the	other	two	classes	as	a	function	of	high	predicted	
epigenetic	signal	or	DeepFIGV	z-scores	for	each	assay.	
	570	
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FIGURES	580	
	
Figure	 1:	 Computational	 workflow	 for	 Deep	 Functional	 Interpretation	 of	
Genetic	Variants	(DeepFIGV).		
A)	 Quantitative	 signal	 from	 epigenetic	 assay	 (i.e.	 ChIP-seq,	 DNase-seq)	 across	
multiple	 individuals	 and	 genomic	 regions.	 	B)	 Standard	 genetic	 analysis	 stratifies	585	
quantitative	 signal	 by	 the	 allelic	 state	 at	 a	 given	 SNP,	 yet	 linkage	 disequilibrium	
complicates	 the	 interpretation	of	 the	 causal	 variant.	 	C)	DeepFIGV	encodes	a	DNA	
sequences	as	an	‘image’	matrix	of	mostly	zeros	with	a	1	(i.e.	a	dark	box)	indicating	
the	 presence	 of	 a	 particular	 nucleotide	 at	 that	 position.	 	 Heterozygous	 SNPs	 are	
encoded	 as	 a	 0.5	 for	 each	 allele.	 	 Convolutions	 are	 local	 matrix	 operations	 with	590	
parameter	values	learned	from	the	data.		A	neural	network	uses	the	convolutions	to	
predict	the	epigenetic	signal	from	the	DNA	sequence.		D)	Training	the	computational	
model	 links	DNA	sequences	from	many	individuals	to	the	epigenetic	signal	 in	each	
region.	 	 E)	 The	 epigenetic	 signal	 is	 estimated	 for	 a	 query	 sequence	 with	 the	
reference	 and	 the	 alternate	 allele.	 	 The	 difference	 between	 the	 estimated	 signal	595	
values	 (i.e.	 delta)	 indicates	 the	 predicted	 effect	 of	 the	 variant.	 	 F)	 In	 silico	
mutagenesis	 evaluates	 the	 delta	 value	 for	 every	 possible	 single	 nucleotide	
substitution.		G)	DeepFIGV	delta	values	are	used	to	predict	allele	specific	binding	of	
transcription	factors	and	identify	candidate	causal	variants.		
		600	
Figure	2:	Evaluating	DeepFIGV	model	and	interpreting	variant	scores.			
A)	Predicted	DNase	signal	compared	to	observed	DNase	signal	evaluated	on	the	test	
set.		B)	Spearman	correlation	between	predicted	and	observed	epigenetic	signal	on	
the	 test	 set	 for	 4	 assays.	 	 C)	 Predicted	 and	 observed	 DNase	 signal	 for	 a	 300kb	
segment	on	chr22	 in	 the	 test	 set.	 	D)	Mean,	median	and	standard	deviation	of	 the	605	
delta	scores	for	208	million	biallelic	SNPs	for	each	assay.		E)	Density	plot	of	z-scores	
for	4	assays.		Dashed	line	indicates	the	null	distribution	of	the	z-scores,	which	is	the	
standard	normal	distribution.			
	
Figure	3:	Genomic	enrichments	of	predicted	functional	variants	610	
A)	Canonical	transcription	factor	binding	motif	along	with	the	motif	representation	
of	 convolutional	 filters	 learn	 from	 the	 DNase	 dataset.	 	 P-values	 indicate	 the	
probability	 of	 concordance	 this	 high	between	 a	 canonical	motif	 and	 convolutional	
filter	occurring	by	 chance	given	 the	motif	 database.	 	Q-values	 correct	 for	multiple	
testing	since	300	convolutional	filters	were	queried.		B)	Ratio	indicating	the	fraction	615	
of	 sites	where	 the	 alternative	 allele	 increases	 the	DNase	 signal	 (i.e	 has	 a	 positive	
DeepFIGV	z-score)	for	DNase	for	4	cutoffs.		Ratios	are	shown	for	variants	within	or	
outside	 a	 TFBS	motif.	 	 A	 value	 of	 0.5	 indicates	 an	 equal	 number	 of	 variants	with	
positive	 and	 negative	 z-scores.	 	 A	 value	 <	 0.5	 indicates	 an	 depletion	 of	 variants	
where	the	alternative	allele	increases	the	DNase	signal,	corresponding	to	an	excess	620	
of	 variants	 where	 the	 alterative	 allele	 decreases	 DNase	 signal.	 	 C)	 Fraction	 of	
variants	 in	 transcription	 factor	 binding	 sites	 that	 exceed	 a	 DeepFIGV	 absolute	 z-
score	of	10	for	each	of	4	assays.		D)	Fraction	of	sites	that	are	in	a	transcription	factor	
binding	site	motif,	or	in	the	flanking	5	or	10	bp,	for	a	range	of	DeepFIGV	absolute	z-
score	cutoffs	for	DNase.		E)	Enrichment	of	variants	near	a	TFBS	motif	exceeding	4	z-625	
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score	 cutoffs	 for	 DNase.	 	 Black	 box	 indicates	 median	 size	 of	 TFBS	 motif.	 	 F)	
Enrichment	 of	 sites	 with	 absolute	 z-scores	 greater	 than	 5	 near	 the	 transcription	
start	site	of	genes	stratified	by	whether	the	genes	are	expressed	in	LCLs.		Sites	with	
absolute	z-scores	less	than	the	genome-wide	mean	are	used	as	the	baseline	for	the	
enrichment.	 	G)	Fraction	of	sites	with	absolute	z-scores	 for	DNase	greater	than	10	630	
within	 7	 minor	 allele	 frequency	 bins	 based	 on	 non-Finnish	 Europeans	 from	
gnomAD.	 	Dashed	 line	 indicates	genome-wide	 fraction	of	 sites.	 	P-value	 is	based	a	
logistic	regression	where	the	response	is	a	binary	variable	indicating	if	the	absolute	
z-scores	is	greater	than	10	and	the	log	minor	allele	frequency	is	the	predictor.		Error	
bars	show	95%	confidence	intervals.	635	
	
Figure	4:	DeepFIGV	scores	predict	results	of	xQTL	analysis.	
A,B)	Lead	variants	from	xQTL	analysis	from	lymphoblastoid	cell	lines	are	enriched	
for	SNPs	with	DeepFIGV	absolute	z-score	exceeding	a	range	of	cutoffs.		Enrichments	
are	 evaluated	 using	 (A)	 DeepFIGV	 scores	 for	 4	 assays	 for	 DNase-QTLs	 and	 (B)	640	
expression	 QTLs.	 	 Shaded	 regions	 indicated	 95%	 confidence	 intervals.	 	 	 C)	 Rare	
variants	 associated	 with	 gene	 expression	 outliers	 are	 enriched	 for	 DeepFIGV	
absolute	z-score	for	DNase	compared	to	rare	variants	not	associated	with	outliers.		
Shaded	 regions	 indicated	 95%	 confidence	 intervals.	 	 D)	 Enrichment	 of	 somatic	
variants	in	cancer	that	drive	gene	expression	changes	(Zhang	et	al.	2018)	for	strong	645	
DeepFIGV	 scores.	 	 E)	 Candidate	 causal	 variants	 for	 expression	 QTLs	 with	 higher	
posterior	probability	are	enriched	for	exceeding	a	DeepFIGV	absolute	z-score	of	10	
for	DNase.	 	 Enrichments	 are	 shown	 for	 skin	 and	LCL	 samples	 from	TwinsUK,	 and	
LCL	samples	 from	GEAUVIDIS	 (Lappalainen	et	al.	2013).	 Shaded	regions	 indicated	
95%	 confidence	 intervals.	 F)	 DeepFIGV	 independently	 identifies	 candidate	 causal	650	
variant	rs11547207	(shown	 in	red)	 for	QTL	affecting	expression	of	both	CIB2	and	
IDH3A.	 	eQTL	analysis	of	GEUAVDIS	identifies	many	correlated	variants	associated	
with	 these	 genes,	 but	 statistical	 fine-mapping	 identifies	 a	 signal	 candidate	 variant	
(Brown	et	 al.	 2017).	 	 Although	 this	 variant	 is	 not	 an	DNase	QTL	 in	LCLs	Yoruban	
individuals	(Grubert	et	al.	2015),	DeepFIGV	analysis	on	the	same	data	identifies	the	655	
same	 candidate	 causal	 variant	 identified	 by	 statistical	 fine	 mapping.	 	 In	 silico	
mutagenesis	of	50bp	around	rs11547207	indicates	that	variants	at	nearby	positions	
are	 predicted	 to	 decrease	 the	 DNase	 signal.	 	 Size	 of	 letters	 in	 DNA	 sequence	 is	
proportional	to	the	maximum	absolute	delta	at	that	position.	 	Bottom	panel	shows	
TFBS	motifs.							660	
	
Figure	5:	DeepFIGV	scores	predict	allele	specific	 transcription	 factor	binding	
in	LCLs	
A)	Diagram	 illustrating	3	categories	of	allele	 specific	binding	 (ASB):	1)	no	ASB,	2)	
ASB	 favoring	 the	 reference	 allele,	 and	 3)	 ASB	 favoring	 the	 alternative	 allele.	 	B)	665	
Precision-recall	 curve	 indicating	 performance	 of	 absolute	 DeepFIGV	 z-score	 for	
DNase	in	predicting	ASB	of	CTCF.	AUPR	indicates	the	area	under	the	precision-recall	
curve.	 	 Dashed	 line	 indicates	 the	 performance	 of	 a	 random	predictor.	 	C)	Density	
plot	 showing	 absolute	DeepFIGV	 z-score	 for	 variants	 in	 (B)	 in	 the	ABS	or	no	ASB	
classes.	 	D)	Precision-recall	 curve	 indicating	performance	of	DeepFIGV	z-score	 for	670	
DNase	 in	 predicting	 the	 directionality	 of	 ASB	 (reference	 versus	 alternative)	 for	
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CTCF.	 AUPR	 indicates	 the	 area	 under	 the	 precision-recall	 curve.	 	 Dashed	 line	
indicates	the	performance	of	a	random	predictor.		E)	Plot	of	ASB	magnitude	versus	
DeepFIGV	DNase	z-score	from	(D).		F)	Increase	in	AUPR	of	predicting	ASB	status	for	
DeepFIGV	 scores	 for	 4	 epigenetic	 assays	 compared	 to	 a	 TF-specific	 random	675	
predictor.	 	 Increase	 in	AUPR	 is	shown	for	predicting	ASB	versus	no	ASB	(left)	and	
predicting	 the	 directionality	 of	 ASB	 (reference	 versus	 alternative)	 (center).	 	 Right	
panel	shows	the	number	of	ASB	SNPs	considered	in	each	analysis.			
	
Figure	6:	Disease	risk	variants	are	enriched	for	large	DeepFIGV	scores.	680	
A)	 Linkage-disequilibrium	 score	 regression	 (LDSC)	 (Finucane	 et	 al.	 2015)	
partitioned	heritability	estimates	for	diseases	in	4	categories.		Heritability	per	SNP	is	
computed	 for	 variants	 that	 exceed	 5	 cutoffs	 for	 DeepFIGV	 absolute	 z-score	 for	
DNase.	 	 Error	 bars	 indicate	 2	 standard	 deviations.	 	 B)	 Enrichment	 of	 candidate	
causal	variants	for	autoimmune	disease	(Farh	et	al.	2015)	are	variants	exceeding	6	685	
cutoffs	 DeepFIGV	 absolute	 z-score	 for	 DNase.	 	 Error	 bars	 indicate	 2	 standard	
deviations.	 	C)	DeepFIGV	elucidates	molecular	function	of	candidate	causal	variant	
for	 inflammatory	 bowel	 disease	 (Huang	 et	 al.	 2017a).	 	 GWAS	 identifies	 many	
correlated	 variants	 associated	 with	 disease	 risk,	 but	 statistical	 fine	 mapping	
identifies	a	single	SNP	(shown	in	red)	as	the	candidate	causal	variant.		This	variant,	690	
rs10748781,	 disrupts	 a	 CpG	 site	 and	 is	 predicted	 to	 decrease	 the	DNase	 signal	 in	
this	region.		In	silico	mutagenesis	of	50bp	around	this	SNP	indicates	that	variants	at	
nearby	positions	are	predicted	to	decrease	the	DNase	signal.		Size	of	letters	in	DNA	
sequence	 is	proportional	 to	 the	maximum	absolute	delta	at	 that	position.	 	Bottom	
panel	 shows	 TFBS	 motifs.	 	 Disease	 abbreviations:	 AD	 (Atopic	 dermatitis),	 ALZ	695	
(Alzheimer’s),	 AS	 (Ankylosing	 spondylitis),	 ASD	 (Autism	 spectrum	 disorder),	 	 AT	
(Autoimmune	 thyroiditis),	 	 BMD	 (Bone	mineral	 density),	 BMI	 (Body	mass	 index),	
CAD	(Coronary	artery	disease),	CD	(Crohn's	disease),	CKD	(Chronic	kidney	disease)	
HbA1c	 (HbA1c	 protein	 level	 in	 blood),	 HDL	 (High-density	 lipoprotein),	 IBD	
(Inflammatory	bowel	disease),	JIA	(Juvenile	idiopathic	arthritis),	LDL	(Low-density	700	
lipoprotein),	 Liver	 enz	 (gamma	glutamyl	 transferase),	 	MI	 (myocardial	 infarction),	
MS	 (Multiple	 sclerosis),	 PBC	 (Primary	 biliary	 cirrhosis),	 PSC	 (Primary	 sclerosing	
cholangitis),	PSP	(Progressive	supranuclear	palsy),	PS	(Psoriasis),	RA	(Rheumatoid	
arthritis),	 SLE	 (Systemic	 lupus	 erythematosus),	 SWB	 (Subjective	well-being),	 T1D	
(Type	1	diabetes),	T2D	(Type	2	diabetes),	TC	(total	cholesterol),	TG	(Triglycerides),	705	
UC	(Ulcerative	colitis).		 	
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SUPPLEMENTARY	FIGURES	
	
Supplementary	 Figure	 1:	 Design	 of	 training,	 validation	 and	 testing	 sets	 for	
DNase.			The	training	set	is	composed	of	peaks	from	41	individuals	on	chromosomes	710	
1-9.		The	validation	set	is	composed	of	peaks	from	13	individuals	on	chromosomes	
8-16.		The	test	set	is	composed	of	peaks	from	14	individuals	on	chromosomes	16-22.	
	
Supplementary	 Figure	 2:	 Design	 of	 training	 dataset	 decreases	 prediction	
error.		Increasing	the	number	of	individuals	in	the	training	set	and	including	genetic	715	
variation	from	whole	genome	sequencing	decreased	the	prediction	error	for	DNase	
signal.		Left	panel	shows	results	for	training	on	between	1	and	16	individuals.		Right		
panel	is	the	same	results	but	zoomed	in.	
	
Supplementary	Figure	3:	Transcription	factor	binding	site	motifs	are	enriched	720	
for	 variants	 with	 large	 DeepFIGV	 absolute	 z-scores.	 	 A)	 Ratio	 indicating	 the	
fraction	of	sites	with	positive	DeepFIGV	z-scores	for	4	cutoffs.		Ratios	are	shown	for	
sites	with	 a	TFBS	motif	 or	 not	 in	 a	TFBS	motif.	 	 A	 value	 of	 0.5	 indicates	 an	 equal	
number	of	variants	with	positive	and	negative	z-scores.	 	A	value	<	0.5	indicates	an	
excess	of	variants	with	negative	scores	that	decrease	the	epigenetic	signal.		B)	Ratio	725	
indicating	 the	 fraction	 of	 sites	 with	 positive	 DeepFIGV	 z-scores	 for	 sites	 in	 TFBS	
motifs	annotated	where	each	site	 is	annotated	as	 low	or	high	 information	content.		
C)	 Fraction	 of	 sites	 exceeding	 4	 cutoffs	 for	 DeepFIGV	 absolute	 z-score	 based	 on	
distance	to	TFBS	motifs.		Black	box	indicates	median	size	of	TFBS	motif.	
	730	
Supplementary	 Figure	 4:	 Fraction	 of	 sites	 that	 are	 in	 a	 transcription	 factor	
binding	 site	 motif,	 or	 in	 the	 flanking	 5	 or	 10	 bp,	 for	 a	 range	 of	 DeepFIGV	
absolute	z-score	cutoffs.		Results	are	shown	for	for	A)	H3K27AC,	B)	H3K4ME1	and	
C)	H3K4ME3.		

Supplementary	 Figure	 5:	 	 Enrichment	 of	 variants	 with	 large	 DeepFIGV	735	
absolute	 z-scores	 around	 transcription	 start	 sites.	 	 Enrichment	 of	 sites	 with	
absolute	z-scores	greater	than	5	near	the	transcription	start	site	of	genes	stratified	
by	whether	the	genes	are	expressed	in	LCLs.		Sites	with	absolute	z-scores	less	than	
the	genome-wide	mean	are	used	as	the	baseline	for	the	enrichment.	
	740	
Supplementary	 Figure	 6:	 	 Enrichment	 around	 transcription	 start	 sites	 of	
tissue-specific	genes.		For	each	of	53	tissues	from	GTEx,	the	expression	magnitude	
of	 each	gene	was	 summarized	as	 the	mean	 transcripts	per	million	 (TPM)	 from	all	
samples	from	that	tissue.	 	Tissue-specific	genes	were	defined	by	evaluating	the	set	
of	 protein	 coding	 genes	 expressed	 in	 each	 GTEx	 tissue	 and	 subtracting	 the	 set	 of	745	
ubiquitously	 expressed	 genes.	 	 An	 expression	 cutoff	 of	 >=	 1	 TPM	 was	 used.		
Ubiquitously	expressed	genes	were	determined	based	on	passing	this	cutoff	in	all	53	
tissues.	 	A)	 The	 enrichment	 around	 the	 transcription	 start	 site	 of	 the	 LCL-specific	
genes	was	evaluated	for	variants	with	|z|	>	5	compared	to	variants	with	|z|	less	than	
the	 genome-wide	 mean.	 	 Enrichments	 are	 show	 for	 variants	 from	 4	 epigenetic	750	
assays.	 	 Black	 circles	 indicate	 the	 maximum	 enrichment	 value	 used.	 	 B)	 The	
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Functional	Interpretation	of	Genetic	Variants	

maximum	 enrichment	 value	 is	 shown	 for	 each	 tissue	 and	 assay.	 	 For	 LCL-specific	
genes,	this	value	corresponds	to	the	largest	enrichment	for	each	assay	as	shown	in	
(A).	 	The	values	 for	all	other	genes	are	defined	based	on	 the	 set	of	 tissue-specific	
genes.	 	 	 The	 vertical	 dashed	 line	 indicates	 the	 enrichment	 for	 LCL-specific	 genes.		755	
Since	 the	DeepFIGV	model	was	 trained	on	LCLs	(but	 from	a	different	dataset),	 the	
fact	that	LCL-specific	genes	show	the	largest	enrichment	illustrates	the	specificity	of	
the	DeepFIGV	variant	impact	scores.	
	
Supplementary	Figure	7:	Enrichment	of	variants	with	large	DeepFIGV	absolute	760	
z-scores	 in	 CpG	 islands.	 	 Fraction	 of	 sites	 exceeding	 4	 cutoffs	 for	 DeepFIGV	
absolute	z-score	based	on	distance	to	CpG	islands.		Results	are	shown	for	DeepFIGV	
z-score	for	4	epigenetic	assays.		Black	box	indicates	median	size	of	CpG	island.		That	
the	H3K4ME1	is	shown	in	a	different	scale.	
	765	
Supplementary	Figure	8:	Enrichment	of	variants	with	large	DeepFIGV	absolute	
z-scores	 in	 ChromHMM	 segments.	 Fraction	 of	 sites	 exceeding	 4	 cutoffs	 for	
DeepFIGV	 absolute	 z-score	 based	 on	 distance	 to	 ChromHMM	 segment	 from	 LCLs	
(GM12878).		Results	are	shown	for	DeepFIGV	z-score	for	4	epigenetic	assays.		Black	
box	indicates	median	size	of	ChromHMM	segment,	if	it	is	less	than	5kb.		ChromHMM	770	
tracks	with	no	enrichment	are	omitted.			
	
Supplementary	 Figure	9:	Relationship	of	 predicted	 functional	 score	 to	 allele	
frequency.	 	Fraction	of	sites	with	absolute	z-scores	for	A)	DNase,	B)	H3K27ac,	and	
C)	 H3K4me3	 greater	 than	 10	 within	 7	 minor	 allele	 frequency	 bins	 based	 on	 7	775	
populations	from	gnomAD.		Dashed	line	indicates	genome	wide	fraction	of	sites.		P-
value	 is	 based	 a	 logistic	 regression	 where	 the	 response	 is	 a	 binary	 variable	
indicating	 if	 the	 absolute	 z-scores	 is	 greater	 than	 10	 and	 the	 log	 minor	 allele	
frequency	is	the	predictor.		Error	bars	show	95%	confidence	intervals.	
	780	
Supplementary	 Figure	 10:	 Lead	 xQTL	 variants	 are	 enriched	 for	 large	
DeepFIGV	 absolute	 z-scores.	 	 Lead	 variants	 from	 xQTL	 analysis	 from	
lymphoblastoid	 cell	 lines	 are	 enriched	 for	 SNPs	 with	 DeepFIGV	 absolute	 z-score	
exceeding	 a	 range	 of	 cutoffs	 compared	 to	 variants	 ranked	 between	 5th	 and	 10th.		
Enrichments	 are	 evaluated	 using	 DeepFIGV	 scores	 for	 4	 assays	 for	 QTLs	 DNase,	785	
H3K27ac,	 H3K4me1,	H3K4me3,	 and	 gene	 expression	 (i.e.	 RNA).	 from	 69	 Yoruban	
individuals	(Grubert	et	al.	2015).	 	The	 last	column	indicates	expression	QTLs	from	
373	 European	 individuals	 from	 the	 GEUAVIDIS	 study	 (Lappalainen	 et	 al.	 2013).		
Shaded	regions	indicate	95%	confidence	intervals.	
	790	
Supplementary	 Figure	 11:	 DeepFIGV	 scores	 predict	 allele	 specific	
transcription	factor	binding	in	HeLa-S3	cells.		Increase	in	AUPR	of	predicting	ASB	
status	for	DeepFIGV	scores	for	4	epigenetic	assays	compared	to	a	random	predictor.		
Increase	 in	AUPR	 is	 shown	 for	predicting	ASB	versus	no	ASB	(left)	and	predicting	
the	directionality	of	ASB	(reference	versus	alternative)	(center).		Right	panel	shows	795	
the	number	of	ASB	SNPs	considered	in	each	analysis.			
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Functional	Interpretation	of	Genetic	Variants	

Supplementary	 Figure	 12:	 Disease	 risk	 variants	 are	 enriched	 for	 large	
DeepFIGV	 scores	 for	 partitioned	 heritability	 analysis.	 Linkage-disequilibrium	
score	 regression	 partitioned	 heritability	 estimates	 for	 3	 epigenetic	 assays:	 for	A)	800	
H3K27ac,	 B)	 H3K4me1	 and	 C)	 H3K4me3.	 Heritability	 per	 SNP	 is	 computed	 for	
variants	exceed	5	cutoffs	for	DeepFIGV	absolute	z-score	for	each	assay.	 	Error	bars	
indicate	2	standard	deviations.	

Supplementary	 Figure	 13:	 Heritability	 enrichment	 from	 linkage-
disequilibrium	score	regression.		Estimated	enrichment	in	heritability	from	same	805	
analysis	as	in	Supplementary	Figure	10.	

Supplementary	 Figure	 14:	 Enrichment	 of	 candidate	 causal	 variants	 for	
autoimmune	disease.	 	Enrichments	are	evaluated	for	variants	exceeding	6	cutoffs	
DeepFIGV	 absolute	 z-score	 for	 H3K27ac,	 H3K4me1	 and	 H3K4me3.	 	 Error	 bars	
indicate	2	standard	deviations.	 	Disease	abbreviations:	AD	(Atopic	dermatitis),	ALZ	810	
(Alzheimer’s),	 AS	 (Ankylosing	 spondylitis),	 ASD	 (Autism	 spectrum	 disorder),	 	 AT	
(Autoimmune	 thyroiditis),	 	 BMD	 (Bone	mineral	 density),	 BMI	 (Body	mass	 index),	
CAD	(Coronary	artery	disease),	CD	(Crohn's	disease),	CKD	(Chronic	kidney	disease)	
HbA1c	 (HbA1c	 protein	 level	 in	 blood),	 HDL	 (High-density	 lipoprotein),	 IBD	
(Inflammatory	bowel	disease),	JIA	(Juvenile	idiopathic	arthritis),	LDL	(Low-density	815	
lipoprotein),	 Liver	 enz	 (gamma	glutamyl	 transferase),	 	MI	 (myocardial	 infarction),	
MS	 (Multiple	 sclerosis),	 PBC	 (Primary	 biliary	 cirrhosis),	 PSC	 (Primary	 sclerosing	
cholangitis),	PSP	(Progressive	supranuclear	palsy),	PS	(Psoriasis),	RA	(Rheumatoid	
arthritis),	 SLE	 (Systemic	 lupus	 erythematosus),	 SWB	 (Subjective	well-being),	 T1D	
(Type	1	diabetes),	T2D	(Type	2	diabetes),	TC	(total	cholesterol),	TG	(Triglycerides),	820	
UC	(Ulcerative	colitis).	
	
Supplementary	Figure	15.		Inflammatory	bowel	disease	risk	from	rs10748781	
is	 mediated	 by	 DNA	 methylation.	 	 A)	 Posterior	 probability	 of	 each	 variant	 in	
chr10:101,275,149−101,295,862	being	causal.		Red	point	indicates	rs10748781.		B)	825	
rs10748781,	shown	as	a	red	 line,	 is	a	methylation	QTL	for	CpG	sites	 in	this	region		
(Hannon	 et	 al.	 2017).	 	 C)	 Summary	 Mendelian	 randomization	 analysis	 of	
inflammatory	bowels	disease	where	each	point	is	a	DNA	methylation	probe.		

Supplementary	 Figure	 16.	 	 Comparison	 of	 DeepFIGV	 scores	 for	 DNase	 with	
DNase	scores	from	other	methods.		All	methods	were	evaluated	on	a	shared	set	of	830	
12	million	 variants.	 	A)	Density	 plot	 of	 z-scores	 for	DeepFIGV	 as	well	 as	DeepSea	
(Zhou	and	Troyanskaya	2015)	and	deltaSVM	(Lee	et	al.	2015)	evaluated	on	DNase	
data	from	LCL	GM12878.		Dashed	line	indicates	the	null	distribution	of	the	z-scores,	
which	is	the	standard	normal	distribution.	 	B)	Plot	of	z-scores	from	DeepFIGV	and	
DeepSea.		C)	Plot	of	z-scores	for	DeepFIGV	and	deltaSVM.	D)	Spearman	correlation	835	
between	 all	 pairs	 of	 XXX	 scores.	 	 Scores	 include	 DeepFIGV,	 	 plus	 DeepSea	 and	
deltaSVM	evaluated	on	data	from	multiple	cell	types.		Also	included	are	CAPE	(Li	et	
al.	2017b),	CADD	(Kircher	et	al.	2014)	and	LINSIGHT	(Huang	et	al.	2017b)	methods.	
	
Supplementary	Figure	17.		Comparison	between	DeepFIGV	and	DeepSea	840	
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(evaluated	on	LCL	GM12878)	as	a	function	of	allele	frequency.	A,B)	Evaluate	the	
fraction	of	variants	for	which	the	z-score	from	one	methods	exceeds	the	z-score	
from	the	other	method.		For	variants	that	pass	a	z-score	cutoff	from	the	first	method,	
plot	the	fraction	of	sites	for	which	the	z-score	from	the	first	method	is	greater	than	
the	z-score	from	the	second	method.		Fractions	are	shown	for	a	range	of	z-score	845	
cutoffs	and	are	stratified	by	the	minor	allele	frequency	in	the	Yoruban	population.		
Fractions	were	evaluated	by	a	applying	the	z-score	cutoff	to	A)	DeepFIGV	and	B)	
DeepSea.	C,D)	Barplots	show	finer	detail	from	the	plots	in	(A)	and	(B).		Fractions	
were	evaluated	by	a	applying	the	z-score	cutoff	to	C)	DeepFIGV	and	D)	DeepSea.		
Error	bars	indicated	2	standard	deviations.	850	

Supplementary	 Figure	 18.	 	 Enrichment	 of	 analysis	 of	 DeepFIGV	 with	
experimental	 massively	 parallel	 reporting	 assay	 (MPRA).	 	 Tewhey,	 et	 al.	
performed	an	MPRA	of	32K	variants	in	LCLs	by	inserting	150	bp	sequences	centered	
at	the	variant	into	an	episomal	vector	(Tewhey	et	al.	2016).		Based	on	experimental	
readout,	 Tewhey,	 et	 al.	 divided	 the	 sequences	 into	 3	 classes:	 1)	 expression	855	
modulating	 variants	 that	 showed	 significant	 difference	 in	 expression	 between	
reference	and	alternative	alleles,	2)	variants	that	drove	expression	but	did	not	show	
allelic	differences,	and	3)	variants	whose	sequence	did	not	drive	expression	in	this	
assay.	 	Here,	we	 compare	 the	properties	 of	 variants	with	 allelic	 effect	 (class	1)	 to	
variants	 that	 are	 expressed	 (class	 2)	 or	 not	 expressed	 (class	 3).	 	 A)	 DeepFIGV	860	
computational	 predictions	 of	 epigenetic	 signal	 distinguish	 sequences	 with	
expression	 modulating	 variants	 from	 sequences	 that	 do	 not	 drive	 expression.		
Expression	modulating	variants	are	enriched	 for	having	a	 strong	epigenetic	 signal	
by	multiple	assays	compared	to	variants	that	did	not	drive	expression.		Enrichment	
is	shown	for	increasing	epigenetic	signal	values.		B)	DeepFIGV	predicted	SNP	effects	865	
can	 distinguish	 sequences	 with	 expression	 modulating	 variants	 from	 sequences	
with	 no	 allelic	 effect.	 	 Enrichment	 is	 shown	 for	 increase	 absolute	 z-score	 cutoffs.		
The	 enrichment	 compared	 to	 sequences	 that	 do	 not	 drive	 expression	 is	 largest.		
Distinguishing	 between	 sequence	 with	 and	 without	 allelic	 effects	 is	 more	
challenging	because	the	experimental	effect	sizes	are	small	(Tewhey	et	al.	2016),	yet	870	
DNase	 predicted	 variant	 effects	 shown	 a	 significant	 enrichment	 across	 a	 range	 of	
cutoffs.		Shaded	regions	indicate	95%	confidence	intervals.	

Supplementary	Table	1.		Summary	of	DNA	sequence	inputs	to	neural	network	
and	split	of	training,	validation	and	test	sets.			

Supplementary	Table	2.		List	of	databases	with	variant	sets	875	

Supplementary	Table	3.	Parameters	for	basset	convolutional	neural	network		
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Figure 6
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Supplementary Figure 1
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Supplementary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Figure 6

DNase H3K27AC H3K4ME1 H3K4ME3

−4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4
0.25

0.5

1

2

4

8

Distance to TSS (kb)

lo
g 2

En
ric

hm
en

t

Cells − EBV−transformed lymphocytes
A

B DNase H3K27AC H3K4ME1 H3K4ME3

8 9 10 3.5 4.0 4.5 1.22 1.24 1.26 1.28 1.30 5.5 6.0 6.5 7.0 7.5 8.0
Whole Blood

Vagina
Uterus

Thyroid
Testis

Stomach
Spleen

Small Intestine − Terminal Ileum
Skin − Sun Exposed (Lower leg)

Skin − Not Sun Exposed (Suprapubic)
Prostate
Pituitary

Pancreas
Ovary

Nerve − Tibial
Muscle − Skeletal

Minor Salivary Gland
Lung
Liver

Kidney − Cortex
Heart − Left Ventricle

Heart − Atrial Appendage
Fallopian Tube

Esophagus − Muscularis
Esophagus − Mucosa

Esophagus − Gastroesophageal Junction
Colon − Transverse

Colon − Sigmoid
Cervix − Endocervix
Cervix − Ectocervix

Cells − Transformed fibroblasts
Breast − Mammary Tissue

Brain − Substantia nigra
Brain − Spinal cord (cervical c−1)
Brain − Putamen (basal ganglia)

Brain − Nucleus accumbens (basal ganglia)
Brain − Hypothalamus
Brain − Hippocampus

Brain − Frontal Cortex (BA9)
Brain − Cortex

Brain − Cerebellum
Brain − Cerebellar Hemisphere

Brain − Caudate (basal ganglia)
Brain − Anterior cingulate cortex (BA24)

Brain − Amygdala
Bladder

Artery − Tibial
Artery − Coronary

Artery − Aorta
Adrenal Gland

Adipose − Visceral (Omentum)
Adipose − Subcutaneous

Cells − EBV−transformed lymphocytes

Enrichment (log2)

tis
su

e

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/389056doi: bioRxiv preprint 

https://doi.org/10.1101/389056
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 7
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Supplementary Figure 8
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Supplementary Figure 9
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Supplementary Figure 10
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Supplementary Figure 11
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Supplementary Figure 12
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Supplementary Figure 13
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Supplementary Figure 14
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Supplementary Figure 15
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Supplementary Figure 16
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Supplementary Figure 17
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Supplementary Figure 18
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