1	
2	
3	A Chemically-triggered Transition from Conflict to
4	Cooperation in Burying Beetles
5	
6	
7	Bo-Fei Chen ^{\dagger1,2,3} , Mark Liu ^{\dagger3} , Dustin R. Rubenstein ⁴ , Syuan-Jyun Sun ³ , Jian-Nan
8	Liu ³ , Yu-Heng Lin ³ and Sheng-Feng Shen ^{1,2,3*}
9	
10	
11	¹ Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
12	11677
13	² Biodiversity Program, Taiwan International Graduate Program, Academia Sinica
14	and National Taiwan Normal University, Taipei, Taiwan 11529
15	³ Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
16	⁴ Department of Ecology, Evolution and Environmental Biology, Columbia
17	University, 1200 Amsterdam Avenue, New York, NY 10027 USA
18	
19	
20	[†] These authors contributed equally to this work
21	
22	*Corresponding author:
23	Sheng-Feng Shen
24	
25	Address: Biodiversity Research Center, Academia Sinica, 11529, Taiwan
26	Email: <u>shensf@sinica.edu.tw</u>
27	
28	
29	
30	
31	
32	
33	

34 Although interspecific competition has long been recognized as a major 35 driver of trait divergence and adaptive evolution¹⁻³, relatively little effort has focused on how it influences the evolution of intraspecific cooperation⁴⁻ 36 37 ⁶. Here we identify the mechanism by which the perceived pressure of 38 interspecific competition influences the transition from intraspecific 39 conflict to cooperation in a facultative cooperatively breeding species, the 40 Asian burying beetle Nicrophorus nepalensis. In their natural environment 41 in central Taiwan, N. nepalensis are typically aggressive to conspecifics and 42 only cooperate with others of their own species at critical carcass resources 43 in the presence of blowflies, their primary competitors⁷. We demonstrate that beetles form larger groups and are more cooperative in carcass 44 45 preparation in warmer environments where the pressure of interspecific 46 competition with blowflies is highest⁸. To test the hypothesis that the 47 presence of blowflies promotes beetle cooperation and to identify the mechanism by which this occurs, we manipulated blowfly larvae on 48 49 carcasses in the lab. We not only found that beetles are more cooperative at 50 carcasses when blowfly maggots have begun to digest the tissue, but that 51 this social cooperation appears to be triggered by a single chemical cue— 52 dimethyl disulfide (DMDS)—emitted from carcasses consumed by blowflies 53 but not from control carcasses lacking blowflies. Our results provide 54 experimental evidence that interspecific competition promotes the 55 transition from intraspecific conflict to cooperation in N. nepalensis via a 56 surprisingly simple social chemical cue that is a reliable indicator of 57 interspecific competition. This finding helps bridge the gap between the 58 proximate and ultimate factors regulating the transition between 59 cooperation and conflict and moves toward a more comprehensive 60 understanding of the evolution of mechanisms governing intraspecific 61 variation in social behaviour. 62 63 Burying beetles (Nicrophorus spp.) use small vertebrate carcasses as their sole 64 resource for reproduction and often face intense intra- and interspecific

65 competition for access to these precious but limiting resources⁹⁻¹¹. Previous work

66 has suggested that the key benefit of cooperation in the Asian burying beetle *N*.

67 *nepalensis* is that cooperative carcass preparation—including carcass cleaning, 68 shaping, and burial, as well as the elimination of competing species⁹⁻¹²—enables 69 beetles to outcompete their primary competitor, blowflies (family Calliphoridae), 70 particularly in warmer environments where blowflies are most abundant. By 71 experimentally manipulating burying beetle group size along an elevational 72 gradient, we showed that in cooler environments where the pressure of 73 interspecific competition is low, beetles in large groups are more aggressive 74 toward same-sex conspecifics and often engage in intense and even lethal fights 75 that result in a single individual monopolizing the carcass and having a higher 76 probability of breeding successfully than those in large groups⁸. In contrast, in 77 warmer environments where blowflies are more common, burying beetles 78 cooperate with conspecifics to more quickly bury carcasses and escape blowfly 79 competition⁷, ultimately gaining greater reproductive success⁸. Although the 80 presence of blowflies at carcasses appears to facilitate a shift from competitive to 81 cooperative behaviour in *N. nepalensis*, it remains unclear what drives this 82 transition in beetle social behaviour and how individuals know to reduce conflict 83 and tolerate conspecifics.

84

To determine how ecology influences inter- and intraspecific social interactions in natural burying beetle populations, we first quantified beetle social behaviour and dynamics by video recording their breeding behaviours at 25 sites along two elevational gradients in eastern and western Taiwan, each spanning more than 1000 m in elevation. We calculated the time that beetles spend on cooperative

90	carcass preparation (hereafter cooperative investment) both in terms of total			
91	investment (i.e. the cumulative time of the social group) and on a per capita basis			
92	for large (groups larger than the median size) and small groups (groups smaller			
93	than the median size), as well as in cool (<14.5°C) and warm environments			
94	(>14.5°C). We found that group size peaked at moderate temperatures (χ^{2}_{1} =			
95	5.52, $P = 0.019$, n = 245; Fig. 1a) and that per capita cooperative investment along			
96	the temperature gradient varied with group size (group size × temperature			
97	interaction, $\chi^{2}_{1} = 11.20$, $P = 0.001$, $n = 89$). Specifically, per capita cooperative			
98	investment increased with daily minimum temperature in large groups (χ^{2}_{1} =			
99	5.39, <i>P</i> = 0.02, <i>n</i> = 33), but not in small groups (χ^{2}_{1} = 0.05, <i>P</i> = 0.83, <i>n</i> = 56; Fig			
100	1b). Similarly, total cooperative investment increased with daily minimum			
101	temperature in large groups (χ^2_1 = 4.88, <i>P</i> = 0.03, <i>n</i> = 33), but not in small groups			
102	(χ^2_1 = 0.24, <i>P</i> = 0.60, <i>n</i> = 56; Fig. 1c). In contrast, per capita social conflict along			
103	the temperature gradient, measured as the number of intraspecific conflict			
104	events for each individual, varied with group size (mean group size $ imes$			
105	temperature interaction, $\chi^{2}_{1} = 6.64$, $P < 0.01$, $n = 82$, Fig. 2b), such that conflict			
106	increased with group size in cool environments (χ^2_1 = 11.24, <i>P</i> < 0.001, <i>n</i> = 40;			
107	Fig. 1d), but not in warm environments ($\chi^2_1 = 1.59$, <i>P</i> = 0.2, <i>n</i> = 42; Fig. 1d).			
108				
109	To confirm that these patterns of social conflict and cooperation were the result			
110	of changes in social behaviour and not simply changes in activity associated with			
111	differences in ambient temperature, we further separated cooperative			

112 investment into (1) time spent simply walking on the carcass and (2) more

113	complex carcass-preparation behaviours, which are presumably more costly—
114	including maggot and rotten tissue removal, as well as carcass dragging,
115	depilation, and burial. We found that time spent on more complex carcass
116	preparation behaviours increased with increasing daily minimum temperature in
117	large groups (χ^{2}_{1} = 5.39, <i>P</i> = 0.02, n = 33; Fig. 2a), but not in small groups (χ^{2}_{1} =
118	0.17, $P = 0.68$, n = 56; Fig. 2a). However, there was no significant relationship
119	between walking time and daily minimum temperature in large (χ^{2}_{1} = 0.24, P=
120	0.60, n = 33; Fig. 2b) or small groups (χ^{2}_{1} = 0.79, <i>P</i> = 0.37, n = 56; Fig. 2b),
121	suggesting that the increase in total cooperative investment in warmer
122	environments was not simply the result of increased activity at warmer
123	temperatures.
124	
124 125	Our field results demonstrate that <i>N. nepalensis</i> exhibits remarkably flexible
	Our field results demonstrate that <i>N. nepalensis</i> exhibits remarkably flexible social behaviours along elevational and thermal gradients: beetles are normally
125	
125 126	social behaviours along elevational and thermal gradients: beetles are normally
125 126 127	social behaviours along elevational and thermal gradients: beetles are normally asocial and aggressive towards conspecifics in cooler environments but become
125 126 127 128	social behaviours along elevational and thermal gradients: beetles are normally asocial and aggressive towards conspecifics in cooler environments but become social and cooperate with conspecifics in warmer environments where the
125 126 127 128 129	social behaviours along elevational and thermal gradients: beetles are normally asocial and aggressive towards conspecifics in cooler environments but become social and cooperate with conspecifics in warmer environments where the competition for critical resources with other species is intense ⁷ . However, to
125 126 127 128 129 130	social behaviours along elevational and thermal gradients: beetles are normally asocial and aggressive towards conspecifics in cooler environments but become social and cooperate with conspecifics in warmer environments where the competition for critical resources with other species is intense ⁷ . However, to demonstrate experimentally that blowfly competition for carcasses drives the
125 126 127 128 129 130 131	social behaviours along elevational and thermal gradients: beetles are normally asocial and aggressive towards conspecifics in cooler environments but become social and cooperate with conspecifics in warmer environments where the competition for critical resources with other species is intense ⁷ . However, to demonstrate experimentally that blowfly competition for carcasses drives the transition from intraspecific competition to intraspecific cooperation, we

135	Our first experiment introduced blowfly competition to burying beetles by
136	exposing carcasses to adult blowflies in an incubator at 26°C for two days,
137	conditions that match those in the field and are optimal for blowflies to lay eggs
138	and for their maggots to partially consume the carcass. We then allowed six
139	beetles (three males and three females) to breed on the carcass. We found that
140	more beetles cooperated (t = 5.26, $P < 0.001$; Fig. 3a), and that each individual
141	beetle spent significantly more time cooperating, in the blowfly treatment than in
142	the control treatment containing carcasses but no blowflies (t = 3.27 , $P = 0.002$;
143	Fig. 3b). As a consequence, the total cooperative investment was higher in the
144	blowfly treatment than in the control treatment (t = 5.37 , $P < 0.001$; Fig. 3c).
145	Although there was no difference in per capita social conflict between the blowfly
146	and control treatments (t = -0.33, P = 0.75; Fig. 3d), after controlling for total
147	investment time by dividing per capita social conflict by the total cooperative
148	investment, the adjusted per capita number of social conflicts per unit time was
149	significantly lower in the blowfly treatment than in the control treatment (t = -
150	2.58, $P = 0.013$; Fig. S1). Thus, social conflict in burying beetles was lower and
151	cooperation higher when blowflies were present on carcasses.
152	

What is the mechanism driving the transition from intraspecific competition to
intraspecific cooperation? Since blowfly species are diurnal but *N. nepalensis* is
nocturnal, it is unlikely that the physical presence of blowflies influences *N. nepalensis* behaviour. Previous studies have demonstrated that sulfur-containing
volatile organic compounds (S-VOCs) emitted from decomposing carcasses

158	attract burying beetles to this key resource ^{13,14} . Because GC-MS analysis showed
159	that dimethyl disulfide (DMDS) appeared earlier and was more abundant in the
160	blowfly treatment than in the control (Fig. 4a), we hypothesized that DMDS is the
161	key infochemical ¹⁵ —indicating not only the presence of a decaying carcass but
162	also the degree of interspecific competition at that carcass—that mediates the
163	transition between cooperative and competitive strategies in <i>N. nepalensis</i> .
164	
165	To experimentally test this hypothesis, we injected DMDS into the body cavity of
166	mouse carcasses. We found that more individuals cooperated (t = -3.76, P <
167	0.001; Fig. 4b), and that each individual spent more time cooperating, in DMDS
168	treated carcasses relative to controls (t = -2.55 , $P = 0.014$; Fig. 4c). Thus, there
169	was a higher total cooperative investment in the DMDS treatment than in the
170	control (t = -3.8, <i>P</i> < 0.001; Fig. 4d). These results were similar to those observed
171	in the blowfly treatment from the initial experiment. The only difference between
172	the DMDS and blowfly treatments was that there was marginally more social
173	conflict in the DMDS treatment than in the hexane control (t = -1.97, P = 0.054;
174	Fig. 4e), whereas this trend—while in the same direction—was not significant in
175	the blowfly treatment (t = -0.33, P = 0.75), presumably because there were no
176	real competitors that beetles need to remove in the DMDS treatment.
177	
178	Our study shows that burying beetles transition from competitive to more

179 cooperative interactions as the pressure of interspecific competition increases.

180 Accumulating empirical evidence from other animals suggests that social conflict 181 in cooperative societies is often lower in adverse environments with strong 182 interspecific competition⁵. This pattern of reduced social conflict under strong 183 interspecific competition has largely been explained by the fact that the cost of 184 engaging in competitive interactions increases under adverse conditions¹⁶. Yet, 185 there is little empirical evidence demonstrating that social animals increase their 186 investment in cooperation under the threat of interspecific competition. One 187 exception comes from cooperatively breeding superb fairy-wrens (Malurus 188 *cyaneus*) who cooperate more in nest defence when exposed to a greater threat 189 of interspecific brood parasitism¹⁷. However, it remains unclear how intraspecific 190 conflict in fairy-wrens is influenced by the threat of interspecific competition. 191 Our study helps fill this knowledge gap by showing that cooperative carcass 192 preparation to reduce blowfly competition in warmer environments is critical for 193 predicting both the cooperative and competitive interactions among individuals 194 of the same species. 195

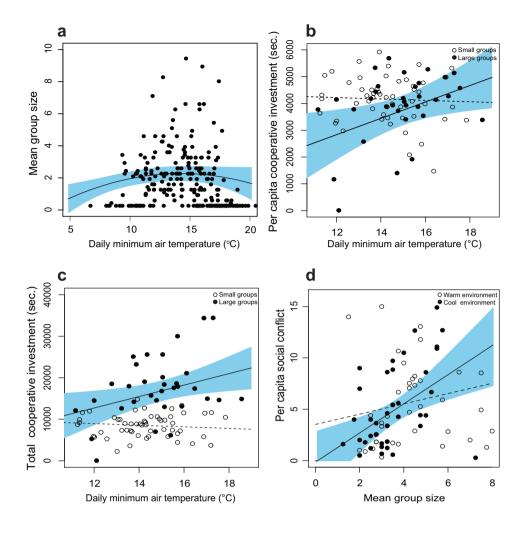
Furthermore, we show that the conditional cooperative and competitive
strategies^{18,19} used by *N. nepalensis* to maximize their utility of carcasses are
mediated by a surprisingly simple chemical mechanism. DMDS is produced
during the decomposition process and acts as an indicator of the level of
competition from blowflies. Although interspecific competition has long been
recognized as a major ecological force that drives adaptive evolution¹⁻³, relatively
little effort has focused on how it influences intraspecific cooperation⁴⁻⁶. Our

203	discovery of a novel social chemical cue provides unambiguous evidence that
204	interspecific competition has shaped social evolution in <i>N. nepalensis</i> . DMDS acts
205	as a kairomone because it is produced by heterospecifics (i.e. blowfly digestion),
206	but benefits the receiver ¹⁵ , and not as a pheromone produced by conspecifics ^{20,21} .
207	Pheromones are often used for kin discrimination, and studying the olfactory
208	sensory system and its genes have greatly advanced our understandings of the
209	role that chemically-driven kin recognition has played in social evolution,
210	especially in ants ^{22,23} . Here we demonstrate that interspecific chemical
211	communication is also important to insect social evolution. Ultimately, by
212	showing that chemically-mediated interspecific competition is a key driver of
213	intraspecific cooperation and of social evolution more generally, our work
214	demonstrates the value of integrating ultimate and proximate levels to study the
215	evolution of cooperation ²⁴ .
215 216	
	evolution of cooperation ²⁴ . Methods
216	
216 217	Methods
216 217 218	Methods Field Study. The field study was conducted in Taiwan from 2012 to 2015 along
216 217 218 219	Methods Field Study. The field study was conducted in Taiwan from 2012 to 2015 along elevational gradients composed primarily of uncultivated forest in Nantou county
216 217 218 219 220	Methods Field Study. The field study was conducted in Taiwan from 2012 to 2015 along elevational gradients composed primarily of uncultivated forest in Nantou county (spanning 1688 m to 2650 m above sea level) and Hualien county (spanning
216 217 218 219 220 221	Methods Field Study. The field study was conducted in Taiwan from 2012 to 2015 along elevational gradients composed primarily of uncultivated forest in Nantou county (spanning 1688 m to 2650 m above sea level) and Hualien county (spanning 1193 m to 2720 m above sea level). A variety of social behaviours, including per
216 217 218 219 220 221 222	Methods Field Study. The field study was conducted in Taiwan from 2012 to 2015 along elevational gradients composed primarily of uncultivated forest in Nantou county (spanning 1688 m to 2650 m above sea level) and Hualien county (spanning 1193 m to 2720 m above sea level). A variety of social behaviours, including per capita social conflict and investment in cooperative carcass preparation (i.e.
216 217 218 219 220 221 222 223	Methods Field Study. The field study was conducted in Taiwan from 2012 to 2015 along elevational gradients composed primarily of uncultivated forest in Nantou county (spanning 1688 m to 2650 m above sea level) and Hualien county (spanning 1193 m to 2720 m above sea level). A variety of social behaviours, including per capita social conflict and investment in cooperative carcass preparation (i.e. cooperative investment), were scored on the first night of video observation
216 217 218 219 220 221 222 223 223 224	Methods Field Study. The field study was conducted in Taiwan from 2012 to 2015 along elevational gradients composed primarily of uncultivated forest in Nantou county (spanning 1688 m to 2650 m above sea level) and Hualien county (spanning 1193 m to 2720 m above sea level). A variety of social behaviours, including per capita social conflict and investment in cooperative carcass preparation (i.e. cooperative investment), were scored on the first night of video observation (from 19:00 to 05:00) using the Observer® XT 14 (Noldus). To quantify total

227 carcasses during carcass burial and preparation. We measured per capita 228 cooperative investment as the total cooperative investment divided by the mean 229 group size, defined as the maximum number of beetles that stayed on or under 230 carcasses averaged over three time periods (22:30 to 22:40; 01:30 to 01:40 and 231 04:30 to 04:40) during each video observation. Investment in cooperation was 232 quantified as the duration of cumulative time sampled for a 10 mins observation 233 period in each hour (i.e. 100 mins for each breeding experiment). In total, there 234 were 89 breeding experiments (resulting in 8900 mins of video recordings) from 235 which we were able to quantify total cooperative investment. Aggressive 236 interactions were defined as social conflict if a beetle attacked, wrestled, chased, 237 or escaped from another same-sexed individual (see below for definitions of each 238 behaviour). We measured total social conflict as the total number of aggressive 239 interactions over the 240 mins observation period. We measured per capita 240 social conflict as the total number of aggressive interactions divided by the mean 241 group size for each observation period. Conflict was quantified as the total 242 number of aggressive interactions sampled for two 120 mins observation periods 243 (from 19:30 to 21:30 and from 23:30 to 1:30). In total, there were 82 breeding 244 experiments (resulting in 19,680 mins of video recordings) from which we were 245 able to quantify conflict behaviour. We determined the mean group size on the 246 first night of each beetle's arrival in 245 breeding experiments (resulting in 7350 247 mins of video recordings).

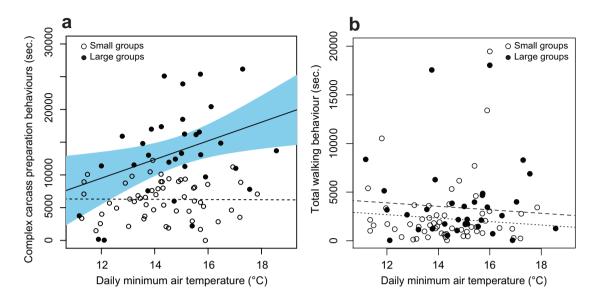
248

249	Collection and maintenance. Lab experiments were carried out using <i>N</i> .
250	nepalensis individuals from laboratory-reared strains that originated from
251	Meifeng, Nantou County, Taiwan (24°5' N, 121°10'). Burying beetles were
252	collected using hanging pitfall traps baited with 100 g rotten chicken breasts.
253	Collected beetles were randomly paired and supplied with frozen and re-thawed
254	75 \pm 5 g dead rats (<i>Rattus norvegicus</i>) in 23 × 15.5 × 16 cm plastic boxes filled
255	with 10 cm moist peat for reproduction. The emerged beetles were housed
256	individually in 7.3 \times 7.3 \times 3.5 cm plastic boxes filled with 2 cm moist peat and fed
257	with dead superworms (Zophobas morio) once a week. All individuals were kept
258	in environmental chambers at 13.2 \sim 19.7 °C (to resemble the natural daily
259	temperature fluctuation in their natural habitat) on a 14 L:10 D photoperiod.
260	Experimental beetles were between 40 and 80 days of age, which is their optimal
261	age for reproduction (individuals can live for over three months in the
262	laboratory).
263	
264	Experimental design and procedure. For each experimental replicate, three

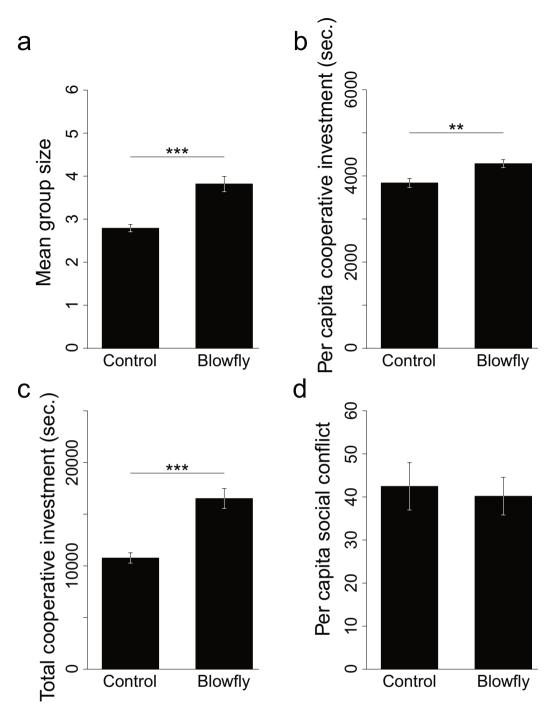

unrelated males and three unrelated females were randomly chosen from
different families to avoid relatedness affecting their behaviours. Each individual
was weighed to the nearest 0.1 mg and marked with a Uni POSCA paint marker
on the elytra and coated with Scorch® Super GlueGel for individual identification
in videos. The marking and weighing of beetles was done 2 hrs prior to beginning
an experiment to ensure that all beetles would return to normal activity levels.
All six marked beetles were placed into the experimental boxes in random order

272	at the beginning of each experiment. Experimental boxes consisted of a smaller
273	plastic container (23 \times 15.5 \times 13.5 cm filled with 13.5 cm moist peat) located
274	inside a larger plastic container (45 × 34.5 × 25 cm filled with 13.5 cm moist
275	peat). A 4 cm high iron net with 2 cm 2 mesh was placed around the small
276	container to prevent beetles moving carcasses outside the field of view of the
277	digital cameras, but beetles could still move freely between the inner and outer
278	areas. A digital camera was fitted on the top of a $25 \times 20 \times 55$ cm acrylic box,
279	which was fixed on the cap of the large container. To equalize the temperature of
280	the experimental apparatus, boxes were filled with moist peat and put into the
281	environmental chambers one day before the experiments began.
282	The blowfly treatment was conducted by exposing a 75 \pm 5 g rat thawed
283	carcass to blowflies, oriental latrine flies (<i>Chrysomya megacephala</i>), in 32 × 32 ×
284	32 fly cages for 50 hrs before the start of each experiment. Fly cages contained
285	oriental latrine flies that had emerged from 10 g pupa and been kept in
286	environmental chambers at 26°C on a 14 L:10 D photoperiod. Except for maggot-
287	digested carcasses, all other carcasses in the same weight range were thawed at
288	4°C for 24 hrs before experiments began. Carcasses used in all treatments were
289	moved into the environmental chambers 8 hrs prior to the start of experiments
290	to equalize their temperatures. The hexane control and DMDS treatment used
291	thawed-only carcasses injected with 2 ml hexane or 0.01 M DMDS solution,
292	respectively, into abdominal cavities through the anus using 3 ml Terumo ${ m I\!R}$
293	Syringes and needles 1 hr prior to the start of the experiment. The thawed-only
294	carcasses served as controls. The carcasses in controls and all treatments were

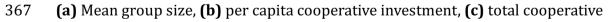
295	moved into the experimental boxes and put on the surface of peat in smaller
296	containers 1 hr before experiments began. Behavioural videos were recorded
297	either from 7 PM until the day and time at which a carcass was completely buried
298	into peat or for 72 hrs if the beetles did not completely bury the carcass (under
299	natural conditions, a carcass would be completely consumed by blowflies if
300	beetles did not completely bury it within 72 hrs). In total, 1020 hrs of videos
301	were analyzed from 23 blowfly control replicates, 23 blowfly treatment
302	replicates, 32 hexane control replicates, and 24 DMDS replicates. Social conflict
303	and cooperative investment behaviours were recorded in the first 10 hrs (7 PM
304	to 5 AM) of each experimental treatment using The Observer $^{ m B}$ XT 14 (Noldus).
305	
306	Gas chromatography-mass spectrometry (GC-MS) analysis. The composition
307	of volatile organic compounds (VOCs) emitted by carcasses was determined from
308	two control and two blowfly treated carcasses prepared using the same
309	procedure described previously. The prepared carcasses were put on the peat
310	
	surface in glass vacuum desiccators (15 cm diameter \times 22 cm tall) filled with 5
311	surface in glass vacuum desiccators (15 cm diameter \times 22 cm tall) filled with 5 cm of moist peat. The stopcock and ground-glass rim of the desiccator lid were
311 312	
	cm of moist peat. The stopcock and ground-glass rim of the desiccator lid were
312	cm of moist peat. The stopcock and ground-glass rim of the desiccator lid were greased with a thin layer of petroleum jelly to prevent the leakage of emitted
312 313	cm of moist peat. The stopcock and ground-glass rim of the desiccator lid were greased with a thin layer of petroleum jelly to prevent the leakage of emitted VOCs, as well as contamination from the atmosphere. The VOCs were sampled
312 313 314	cm of moist peat. The stopcock and ground-glass rim of the desiccator lid were greased with a thin layer of petroleum jelly to prevent the leakage of emitted VOCs, as well as contamination from the atmosphere. The VOCs were sampled using solid-phase micro-extraction (SPME) ²⁵ . The SPME holder with CAR/PDMS


318	sample was GC-MS-analyzed using a 6890N Network Gas Chromatograph
319	(Agilent Technologies) equipped with a HP-5ms column (Agilent J&W) and a
320	5975 Mass Selective Detector (Agilent Technologies). The GC oven was operated
321	at an initial temperature 40° C for 1 min and then ramped up at a rate 10° C per
322	min to 250°C (with a 10 mins hold). The temperatures of the GC inlet and
323	detector were set to 200°C and 260°C, respectively. The SPME samples were GC
324	analysed split-less. Helium (1 ml per min) was used as a carrier gas. Since the GC-
325	MS results showed DMDS was the major VOC emitted by the blowfly-treated
326	carcasses, DMDS was injected into carcasses in the further experiments. Two
327	DMDS-injected carcasses (also prepared using the same procedure described
328	previously) were used in GC-MS analyses (following the procedure described
329	above) to determine the composition of the VOCs they emitted.
330	
331	Statistical analyses. Multivariate analyses were performed using generalized
332	linear models (GLMs) to determine statistical significance for differences
333	between controls and blowfly treatments or hexane controls and DMDS
334	treatments in mean group size, total and per capita cooperative investment, and
335	total and per capita social conflict. All statistical analyses were performed in R

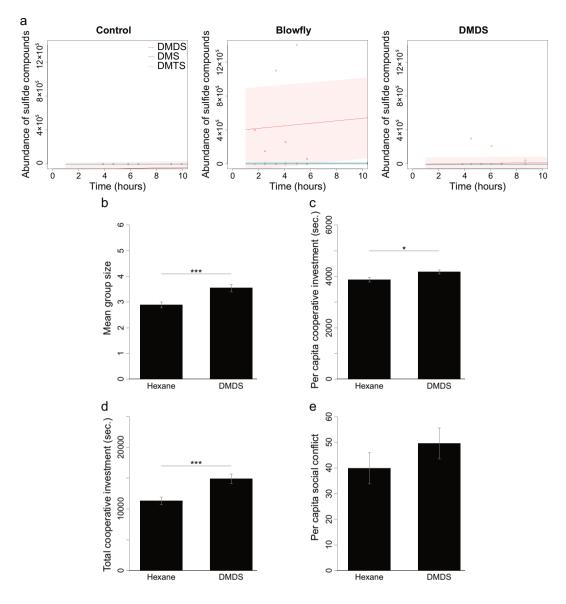
- 336 using the packages stats, lme4, car, multcomp (http://cran.r-project.org/), and
- 337 glmmADMB (http://glmmadmb.r-forge.r-project.org/).

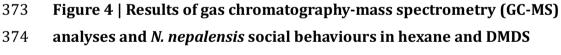

338

339 Figure 1 | Changes in *N. nepalensis* group size and social behaviours during carcass preparation along a temperature gradient. The relationship between 340 341 daily minimum air temperature and (a) mean group size, (b) per capita cooperative investment, (c) total cooperative investment in large (closed circles) 342 343 and small groups (open circles). Group size peaked at moderate temperatures, whereas per capita and total cooperative investment increased with daily 344 345 minimum temperature in large but not small groups. Solid lines denote predicted 346 relationships from GLMs, whereas dashed lines denote non-significant 347 relationships. (d) Per capita social conflict increased with group size in cool 348 environments (closed circles), but not in warm environments (open circles). 349 Lines represent least-squared means (solid lines denote significant relationships 350 and dotted lines non-significant relationships), and blue shaded areas represent 351 95% confidence intervals expected from GLMMs.


353 Figure 2 | Complex carcass preparation and simple walking behaviours 354 during cooperative carcass preparation along the temperature gradient. 355 The time that beetles spent on (a) complex carcass preparation behaviours and 356 (b) walking on the carcass in relation to daily minimum air temperature in large 357 and small groups. Compared to small groups (open circles), large groups (closed 358 circles) spent more time on complex carcass preparation but not on walking as 359 daily minimum air temperature increased, suggesting that the increase in total 360 cooperative investment in warmer environments was not simply the result of 361 increased activity at warmer temperatures. Lines represent least-squared means 362 (solid lines denote significant relationships and dotted lines non-significant 363 relationships), and the blue shaded area represent 95% confidence intervals 364 expected from GLMMs.

352


Figure 3 | *N. nepalensis* social behaviours in control and blowfly treatments.


investment, and **(d)** per capita social conflict of burying beetles on carcasses.

- 369 Beetles formed larger groups and had greater per capital and total cooperative
- investment in carcass preparation in the presence of blowflies than in control
- 371 treatments where blowflies were absent. ** $P \le 0.01$; *** $P \le 0.001$.

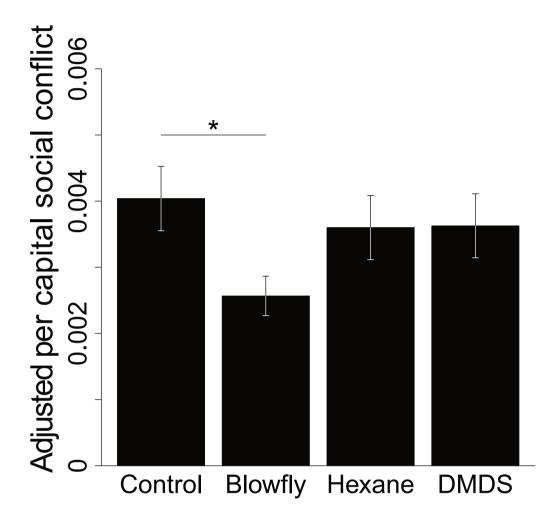
bioRxiv preprint doi: https://doi.org/10.1101/389163; this version posted August 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

372

treatments. (a) GC-MS analyses showed an abundance of sulfide compounds,
including dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and dimethyl

trisulfide (DMTS) in control, blowfly, and DMDS treatments during the first 10

378 hrs. DMDS was the major sulfide compound emitted by maggot-digested


- areas carcasses. Shaded areas represent 95% confidence intervals expected from
- 380 GLMMs. (b) Mean group sizes, (c) per capita cooperative investment, (d) total
- 381 cooperative investment, and **(e)** per capita social conflict of burying beetles on
- 382 carcasses in DMDS and hexane control treatments. Beetles formed larger groups
- and had greater per capital and total cooperative investment on carcasses in the
- 384 DMDS treatment compared to the hexane control treatment. * $P \le 0.05$; *** $P \le$
- 385 0.001.

386 Author contributions: S.-F.S. conceived the idea for the study. B.-F.C., M.L., D.R.R. and S.-F.S. design the 387 experiments. B.-F.C., M.L., S.-J.S. performed field experiment. B.-F.C. and J.-N.L. 388 389 performed lab behavior experiments. B.-F.C. and Y.-H.L. did the GC-MS analysis. 390 B.-F.C., M.L., D.R.R. and S.-F.S. analyzed the data and wrote the paper. 391 392 Acknowledgements 393 S.-F.S was supported by Career Development Award and Investigator Award, 394 Academia Sinica and Ministry of Science and Technology of Taiwan (100-2621-B-395 001-001, 103-2621-B-001 -003 -MY3). D.R.R. was supported by the US National 396 Science Foundation (IOS-1257530 and IOS-1656098). 397 398 399 **Reference:** 400 Bolnick, D. I. et al. Ecological release from interspecific competition leads 1 401 to decoupled changes in population and individual niche width. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 277, 1789-1797 (2010). 402 403 2 Pianka, E. R. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. 404 USA 71, 2141-2145 (1974). Hardin, G. The competitive exclusion principle. Science 131, 1292-1297 405 3 406 (1960). 407 4 Celiker, H. & Gore, J. Competition between species can stabilize public-408 goods cooperation within a species. *Mol. Syst. Biol.* **8** (2012). 409 5 Korb, J. & Foster, K. R. Ecological competition favours cooperation in 410 termite societies. Ecol. Lett. 13, 754-760 (2010). 411 6 Mitri, S., Xavier, J. B. & Foster, K. R. Social evolution in multispecies 412 biofilms. Proc. Natl. Acad. Sci. USA 108, 10839-10846 (2011). 413 7 Liu, M. et al. Ecological transitions in grouping benefits explain the 414 paradox of environmental quality and sociality. (in review). 415 Sun, S.-J. et al. Climate-mediated cooperation promotes niche expansion in 8 416 burying beetles. *eLife* **3**, e02440 (2014). 417 9 Pukowski, E. Ökologische Untersuchungen an Necrophorus F. Zeitschrift 418 fur Morphologie und Ökologie der Tiere **27**, 518 – 586 (1933). 419 10 Scott, M. P. The ecology and behavior of burying beetles. *Annu. Rev.* 420 Entomol. 43, 595-618 (1998).

11	Rozen, D., Engelmoer, D. & Smiseth, P. Antimicrobial strategies in burying
	beetles breeding on carrion. <i>Proc. Natl. Acad. Sci. USA</i> 105 , 17890-17895
	(2008).
12	Cotter, S. C. & Kilner, R. M. Sexual division of antibacterial resource defence
	in breeding burying beetles, Nicrophorus vespilloides. J. Anim. Ecol. 79 , 35-
	43 (2010).
13	Kalinova, B., Podskalska, H., Růžička, J. & Hoskovec, M. Irresistible bouquet
	of death—how are burying beetles (Coleoptera: Silphidae: Nicrophorus)
	attracted by carcasses. <i>Naturwissenschaften</i> 96 , 889-899 (2009).
14	Podskalská, H., Růžička, J., Hoskovec, M. & Šálek, M. Use of infochemicals
	to attract carrion beetles into pitfall traps. Entomol. Exp. Appl. 132, 59-64
	(2009).
15	Dicke, M. & Sabelis, M. W. Infochemical terminology: based on cost-benefit
	analysis rather than origin of compounds? <i>Funct. Ecol.</i> 2 , 131-139 (1988).
16	De Jaegher, K. & Hoyer, B. By-product mutualism and the ambiguous
	effects of harsher environments – A game-theoretic model. J. Theor. Biol.
	393 , 82-97, doi: <u>https://doi.org/10.1016/j.jtbi.2015.12.034</u> (2016).
17	Feeney, W. E. et al. Brood Parasitism and the Evolution of Cooperative
	Breeding in Birds. <i>Science</i> 342 , 1506-1508, doi:10.1126/science.1240039
	(2013).
18	Gross, M. R. Alternative reproductive strategies and tactics: diversity
	within sexes. <i>Trends in Ecology & Evolution</i> 11 , 92-98,
	doi: <u>http://dx.doi.org/10.1016/0169-5347(96)81050-0</u> (1996).
19	Tomkins, J. L. & Hazel, W. The status of the conditional evolutionarily
	stable strategy. <i>Trends Ecol. Evol.</i> 22 , 522-528 (2007).
20	Keller, L. & Nonacs, P. The role of queen pheromones in social insects:
	queen control or queen signal? <i>Anim. Behav.</i> 45 , 787-794 (1993).
21	Vander Meer, R. K., Breed, M. D., Winston, M. & Espelie, K. <i>Pheromone</i>
	Communication in Social Insects. (Westview Press, 1998).
22	Trible, W. <i>et al.</i> Orco mutagenesis causes loss of antennal lobe glomeruli
	and impaired social behavior in ants. <i>Cell</i> 170 , 727-735. e710 (2017).
23	Yan, H. <i>et al</i> . An Engineered orco Mutation Produces Aberrant Social
	Behavior and Defective Neural Development in Ants. <i>Cell</i> 170 , 736-
	747.e739, doi: <u>https://doi.org/10.1016/j.cell.2017.06.051</u> (2017).
24	Hofmann, H. A. et al. An evolutionary framework for studying mechanisms
	 13 14 15 16 17 18 19 20 21 22 23

- 456 of social behavior. *Trends Ecol. Evol.* **29**, 581-589,
- 457 doi:<u>http://dx.doi.org/10.1016/j.tree.2014.07.008</u> (2014).
- 458 25 Vas, G. & Vékey, K. Solid-phase microextraction: a powerful sample
- 459 preparation tool prior to mass spectrometric analysis. J. Mass Spectrom.
- 460 **39**, 233-254, doi:doi:10.1002/jms.606 (2004).
- 461

464

465 **Figure S1 | Adjusted per capita social conflict in different experimental**

466 **treatments.** Adjusted per capita social conflict (i.e. per capita social conflict

467 divided by the total cooperative investment time) was lower in the blowfly than

- 468 control treatments. There was no difference in adjusted per capita social conflict
- between the DMDS and hexane control treatments. * P < 0.05.