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An underlying question for virtually all single-cell RNA sequencing experiments is how to 
allocate the limited sequencing budget: deep sequencing of a few cells or shallow 
sequencing of many cells? A mathematical framework reveals that, for estimating many 
important gene properties, the optimal allocation is to sequence at the depth of one read 
per cell per gene. Interestingly, the corresponding optimal estimator is not the widely-used 
plug-in estimator but one developed via empirical Bayes. 

Single-cell RNA sequencing (scRNA-Seq) technologies have revolutionized biological 
research over the past few years by providing us with the tools to simultaneously interrogate the 
transcriptional states of thousands of cells in a single experiment. In contrast to bulk RNA-Seq 
which probes the average gene expression in a cell population, single-cell RNA-Seq has 
unlocked the potential of extracting higher-order information, granting us access to the 
underlying gene expression distribution. Indeed, this unprecedented look into population-level 
heterogeneity has been key in the success of scRNA-Seq leading up to new biological 
discoveries [1-2]. 

Although early single-cell RNA-Seq assays were labour intensive and initially constrained 
by the small number of cells that could be processed in a single experiment, recent technological 
advances have allowed hundreds of thousands of cells to be assayed in parallel [3], eliminating 
the otherwise prohibitive per cell cost overhead. From a sequencing budget perspective, 
however, this seemingly unconstrained increase in the number of cells available for scRNA-Seq 
introduces a practical limitation in the total number of reads that can be sequenced per cell. More 
reads can significantly reduce the effect of the technical noise in estimating the true 
transcriptional state of a given cell, while more cells can provide us with a broader view of the 
biological variability in the population. A natural experimental design question arises (Fig. 1a): 
how many cells should we choose to profile for a given study and at what sequencing depth? 

The experimental design question has attracted a lot of attention in the literature [4-8], but 
as of now there has not been a clear answer. Several studies provide evidence that a relatively 
shallow sequencing depth is sufficient for common tasks such as cell type identification and 
principal component analysis (PCA) [9-11], while others recommend deeper sequencing for 
accurate gene expression estimation [12-15]. Despite the different recommendations, the 
approach to providing experimental design guidelines is shared among all: given a deeply 
sequenced dataset with a predefined number of cells, how much subsampling can a given method 
tolerate? An example of this conventional approach is also evident in the mathematical model 
used in [11] to study the effect of sequencing depth on PCA. Although practically relevant, this 
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line of work does not provide a comprehensive solution to the underlying experimental design 
question because of three reasons: 1) the number of cells is fixed and implicitly assumed to be 
enough for the biological question at hand; 2) the deeply sequenced dataset is considered to be 
the ground truth; 3) the corresponding estimation method is chosen a priori and is tied to the 
experiment. 

In this work, we propose a mathematical framework for single-cell RNA-Seq that fixes not 
the number of cells but the total sequencing budget, and disentangles the biological ground truth 
from both the sequencing experiment as well as the method used to estimate it. In particular, we 
consider the output of the sequencing experiment as a noisy measurement of the true underlying 
gene expression and evaluate our fundamental ability to recover the gene expression distribution 
using the optimal estimator. The two design parameters in our proposed framework are the total 
number of cells to be sequenced !"#$$%  and the sequencing depth in terms of the total number of 
reads per cell !&#'(%, both of which affect the optimal estimation error. Now, the experimental 
design trade-off becomes apparent when these two quantities are tied together under a total 
sequencing budget constraint ) =	!"#$$% × !&#'(%	  (Fig. 1a, sequencing budget allocation 
problem). More specifically, we consider a hierarchical model [16] to analyze the trade-off in the 
sequencing budget allocation problem (see Methods). At a high level, we assume an underlying 
gene expression distribution -. that carries the biological information we are interested in and is 
independent of the sequencing process (Fig. 1a top). The cells in the experiment are therefore 
associated with gene expression levels ./, 	.1,⋯ sampled from -., while we can only observe 
the read counts 3/, 31,⋯ that are generated from the corresponding gene expression levels via 
sequencing (Fig. 1a bottom). In this context, it is clear that with many cells !"#$$%  we can 
estimate the read count distribution -3 accurately while with more reads per cell !&#'(% we can 
make sure that individual observations 3/, 31,⋯ are much closer to the ground truth expression 
levels ./, 	.1,⋯ of the cells. The optimal trade-off is then derived to reconcile the two.  

For our main results, we focused on 3’-end sequencing technologies [17-19] and used the 
above framework to study the experimental design trade-off for estimating several important 
quantities of the underlying gene distribution, such as the coefficient of variation (cv) and the 
Pearson correlation (Methods). In the context of 3’-end sequencing, -. naturally models the 
unknown high-dimensional distribution of mRNA abundances across cells while the read counts 
for the cells, 3/, 31,⋯, correspond to the number of unique molecular identifiers (UMIs [20]) 
observed via sequencing. Our main result states that the optimal budget allocation (i.e., the one 
that minimizes the estimation error) is achieved by maximizing the number of cells while making 
sure that at least ~1 UMI per cell will be observed for the genes of biological interest to the 
experiment. Although our framework is non-parametric — in the sense that no particular prior is 
assumed for the underlying gene distribution -., it is instructive to illustrate the result in the 
context of the widely-used negative binomial (NB) overdispersion model (Methods, Supp. Note 
5.1). In this case, one would be interested in estimating the underlying gamma distribution -. ∼
56776(9, :) that gives rise to the NB-distributed counts after sequencing via Poisson sampling, 
effectively distinguishing the biological variability from the technical variability. As a 
demonstrating example, in Fig.1b we consider the T-helper marker gene CD4 to be of biological 
interest and evaluate the optimal trade-off for the total sequencing budget used to generate the 
10x Genomics’ pbmc_4k dataset (4340 cells, Supp. Note 6.2); our analysis suggests that the 
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optimal trade-off would have been attained by sequencing 4 times deeper using ¼ as many cells, 
reducing the error by two folds. 

As the example indicates, an important aspect of our framework is to allow flexible 
experimental design at a single-gene resolution. The researcher can thus design the experiment 
based on the mean expression level of a set of important genes related to the biological question, 
where the mean expression level can be obtained via previous studies or bulk RNA-Seq and is 
stable for cells within the same tissue (Supp. Fig. 1). We illustrate the proposed experimental 
design procedure by considering PBMCs with the corresponding marker genes (Fig. 1c). Since 
our goal is to ensure reliable estimation for all these genes, among which the lowest gene 
expression level (CD4) naturally defines the reliable detection limit <∗ at which we should 
guarantee an observation of one read per cell. Thus, given a budget B, choosing !&#'(%∗ = 1/<∗ 
and	!"#$$%∗ = )/!&#'(%∗  achieves the optimal trade-off for reliable detection at <∗. In this example, 
CD4 will be sequenced ~1 UMI per cell. Interestingly, this approach suggests a slightly deeper 
sequencing for current 10x datasets (Fig. 1b, Supp. Figs. 1-2). Moreover, although the exact 
optimal depth is task-dependent, our empirical evaluations have shown that the above 
recommendation is remarkably consistent across all quantities considered in this paper — 
typically lying in a narrow range between 0.2 and 1 (Fig. 1d, Supp. Fig. 4). Last but not the least, 
our trade-off analysis can also provide a post-hoc guidance for reliable estimation for existing 
datasets, namely for certain quantities, to determine which genes can be reliably estimated and 
which cannot, based on their mean expression level (Fig. 1e).  

Another important result arising from our experimental design framework is the 
fundamental role of the estimator in the optimal trade-off. A very common — almost routine — 
practice in the literature is to use the so-called plug-in estimator, which, as a general recipe, 
blindly uses the read counts 3/, 31,⋯ as a proxy for the true gene expression levels ./, 	.1,⋯, 
effectively estimating the corresponding distributional quantities by “plugging-in” the observed 
values. For example, the plug-in estimator naturally estimates the mean of the gene expression 
distribution -. by that of -3 , the variance of -. by that of -3, etc. This approach, although very 
accurate for deeply sequenced datasets, becomes increasingly problematic in the limit of shallow 
sequencing; overdispersion and inflated dropout levels in lowly expressed genes, typically 
associated in the literature with scRNA-Seq, are some of the more pronounced consequences. 
For the sequencing budget allocation problem, we did not restrict our results to any particular 
estimator; our analysis suggested that the optimal trade-off cannot be achieved by the 
conventional plug-in approach but with another class of estimators developed via Empirical 
Bayes (EB, Supp. Note Table 1). EB estimators are inherently aware of the Poisson sampling 
noise introduced by sequencing, and therefore can adapt to varying sequencing depths. In Fig. 2 
we provide a comprehensive evaluation of their performance in several key applications and 
show that they provide remarkably consistent estimates across varying sequencing depths and 
different datasets. Also, they are shown to be biologically meaningful (Fig. 2d, Supp. Fig 12). In 
contrast, the plug-in approach — being sensitive to the sequencing depth, significantly 
overestimates the variability in gene expression (cv) due to the inevitable zero-inflation 
occurring at shallow sequencing (Fig. 2a), and subsequently limits the performance of common 
downstream tasks such as PCA and gene network analysis (Methods, Fig. 2b-d).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 9, 2018. ; https://doi.org/10.1101/389296doi: bioRxiv preprint 

https://doi.org/10.1101/389296
http://creativecommons.org/licenses/by-nc-nd/4.0/


                  

Methods 

Model. For a scRNA-Seq experiment, let !"#$$%  be the number of cells and !&#'(% be the average 
UMIs per cell. The total number of UMIs ) =	!"#$$% × !&#'(% is used to denote the available 
budget for this experiment. Given a fixed budget, we are interested in the optimal allocation 
between !"#$$%  and !&#'(% for estimating certain distributional quantities that are important to 
scRNA-Seq analysis. 

We adopt an empirical Bayes model for the analysis (Supp. Note Sec. 1). Let 5 be the number of 
genes and for each cell @ = 1,⋯ , !"#$$% , let ." = [B"/,⋯ , B"C] ∈ FC  be the relative gene 
expression level, assumed to be drawn i.i.d. from some unknown cell distribution -.. The gene 
expression level ." is measured by the observed UMIs 3" ∈ ℕC  via sequencing, of which the 
stochastic process is modelled using Poisson noise. In addition, we assume a size factor H"  for 
each cell that accounts for the variation in cell sizes. To summarize, the model can be written as  

." ∼ -., H" ∼ -I,	
																																						J"K|B"K, H" ∼ -MNOH"P&	B"KQ,∀@ ∈ [P"], S ∈ [5],																																						(1) 

where @ is the cell index and S is the gene index.  

Quantities to estimate. We consider five distributional quantities of -. that are commonly-used 
in scRNA-Seq analysis, namely the moment, covariance matrix, inactive probability, pairwise 
inactive probability, and gene distribution (Supp. Note Sec. 2). The T-th gene moment is defined 
as UV,K = W[B"KV] and the moments can be used to calculate quantities like mean expression 
level, coefficient of variation or Fano factor. The covariance matrix can be used for spectrum 
methods like PCA or spectral clustering. It also gives the Pearson correlation matrix, which can 
be used in gene network analysis. The inactive probability is defined as <X,K(Y) = W[Z[\]^_] and 
is designed to quantify the proportion of cells where gene S is inactive. Since within a cell an 
inactive gene may still be measured at a low expression level, the exponential function is used to 
down-weight the small non-zero part of -.. The pairwise inactive probability, defined similarly 
as <X,K`Ka(Y) = W[Z[\(]^_`b]^_a)], can further be used for gene co-expression analysis.  

Optimal budget allocation. We consider a single gene and derive the optimal budget allocation 
for estimating all the above quantities of its distribution -]_(Supp. Note Sec. 5). Since the mean 
relative expression level of a gene <K is relatively stable within a specific tissue/sample and does 
not vary a lot across different experiments (Supp. Fig. 1), one can safely estimate that for an 
experiment with budget ), the total number of reads for gene S is around <K). Then the trade-
off with respect to gene S can be written as <K) = !&#'(%,K × !"#$$%, where !&#'(%,K is the mean 
read counts per cell for gene S, satisfying the relation !&#'(%,K = <K!&#'(%.  

Theorem 1. (Optimal budget allocation, informal) 

For estimating moments, covariance matrix, inactive probability, pairwise inactive probability 
and distribution, the optimal budget allocation is 
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!&#'(%,K∗ ∼ 1,					!"#$$∗ ∼ )<K. 

The optimality is in the sense of minimizing the worst-case error over a family of distributions 
-]_  with mild assumptions and the optimal error rate is achieved by the EB estimators.  

The expression !&#'(%,K∗ ∼ 1 in Theorem 1 implies that the optimal sequencing depth is given by 
some constant independent of the sequencing budget. Therefore, for a scRNA-Seq experiment, 
we should aim at a certain sequencing depth; when the budget increases, we should keep the 
same depth and allocate the additional budget towards collecting more cells. In other words, after 
having achieved a certain sequencing depth, deeper sequencing does not help as much as having 
more cells. We also note that the actual value of this optimal sequencing depth may be different 
for estimating different quantities, which is further investigated in the following section. In 
addition, Theorem 1 suggests that EB estimators should be used for optimal estimation, whose 
effectiveness is demonstrated in Fig. 2.  

Experimental design. The exact values of the optimal sequencing depth !&#'(%,K∗  for estimating 
different quantities are investigated both theoretically and via simulations. First, the closed-form 
expressions of the optimal depth !&#'(%,K∗  are derived for estimating the mean, the second 
moment, and the gamma parameters, which depend on the distribution -]_but are nonetheless 
around 1 for typical cases (Supp. Note Lemma 2). Second, estimation errors under different 
budget splits are simulated by subsampling from an existing dataset with deeply sequenced genes 
and many cells (top 72 genes of brain_1.3m, Fig. 1d), where the subsample procedure is 
provable to closely resemble the reality (Supp. Note. 6.5). Third, a more controlled simulation 
that assumes the Poisson model is conducted to provide a more comprehensive evaluation (Supp. 
Fig. 2). Both simulations exhibit similar qualitative behaviours and imply that the optimal 
sequencing depth !&#'(%,K∗  for estimating different quantities are between 0.2 and 2. Therefore, 
we reach the conclusion that the optimal budget allocation for a single gene is to have ~1 read 
per cell.  

When there are many genes of interest, the gene among them with the smallest relative mean 
expression level becomes the bottleneck since it has the least number of reads (Fig. 1c, top). We 
call its relative mean expression level <∗ the reliable detection limit, below which the estimation 
performance cannot be guaranteed. The optimal sequencing depth for the entire experiment 
!&#'(%∗  is chosen so that the gene at the reliable detection limit has 1 read per cell, which 
minimizes the worst-case error for all genes of interest. Compared to this optimal allocation, 
deeper sequencing (green) gives a homogeneous error across genes but at a much higher level, 
while a shallower sequencing (blue) gives a small error for a few highly expressed genes but its 
performance quickly deteriorates (Fig. 1c, bottom). 

The recommended budget allocation in general suggests a slightly deeper sequencing depth as 
compared to existing datasets, e.g. 30k UMIs per cell for the pbmc_4k dataset (Fig. 1b, Supp. 
Fig. 2). Such a depth is feasible for the current 10x Genomics technology, which is estimated to 
be able to sequence at least 45k UMIs per cell (Supp. Note Sec. 3.1). In addition, under such 
sequencing depth all analyses are valid since the Poisson model is still a good approximation of 
the sequencing process. Regarding the rare genes, since the UMI efficiency for the 10x 
technology is estimated to be 15%, in order to achieve one read per cell, the gene needs to have 
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at least 1/0.15 ≈ 7	transcripts in the cell. Genes with smaller copy numbers are beyond the 
scope of this paper. 

Designing EB estimators. The empirical Bayes (EB) estimators refer to the estimators that are 
aware of the noise model (which is Poisson here) and correct for the noise introduced by it. As 
an illustrating example, consider a simplified model:  

B" ∼ -]_, J"K	|B"K ∼ Poi(B"K). 

The plug-in estimator estimates the gene variance by the sample variance of UMIs, i.e. 

k6lm nopq[rs =
1

!"#$$% − 1
u (J"K − Jv"K)1
w^xyyz

"{/

. 

The problem with this is that the estimated value is usually overly variable due to the presence of 
the Poisson noise. Indeed, a simple calculation shows that  

|[k6lm nopq[rs] = Var[J"K] = Var[B"K] + W[B"K], 

where the second term W[B"K] corresponds to the technical variation introduced by the Poisson 
noise. Then conceptually we can write: 

plug-in variance = biological truth + Poisson noise, 

from which we can see that the plug-in estimate is overly inflated by the Poisson noise. In this 
case, this bias can be easily corrected by simply subtracting the mean; the corresponding EB 
variance estimator can be written as  

k6lm ÅÇ =
1

!"#$$% − 1
u (J"K − Jv"K)1
w^xyyz

"{/

−
1

!"#$$%
u J"K

w^xyyz

"{/

. 

For an extensive comparison of plug-in and EB estimators in various cases, see Supp. Note, 
Table 1 and Sec. 4. 

Empirical evaluation of the trade-off. We conducted two sets of simulations to evaluate the 
estimation error under different budget splits, which differ in how the data are generated. The 
first simulation (Fig. 1d) subsamples from a high-budget dataset consisting of the top 72 genes 
from the brain_1.3m dataset, where each gene has at least 10 reads per cell and there are 1.3 
million cells. This simulation better resembles the reality as the subsample procedure does not 
assume the Poisson model (Supp. Note 6.5). However, since we do not know the true gene 
distribution, the plug-in estimates of the high-budget dataset that we subsample from are used as 
proxies against which we evaluate the estimation error. The second simulation generates the data 
according to model (1), where the true gene distribution -. is obtained by using the empirical 
distribution of the first 100 highly-expressed genes in the pbmc_4k dataset (Supp. Fig. 4). This 
setting better validates the theory since it assumes the same model. Moreover, the estimation 
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error is exact since the ground truth is available. Both simulations include many genes to address 
the heterogeneity of the gene distribution and the genes considered here, being top genes in the 
dataset, have similar mean expression levels so that the mean reads over all genes can well 
represent the mean reads for each gene. Both simulations exhibit similar qualitative behaviours 
that the optimal depth (mean reads per cell per gene) is a constant that does not depend on the 
budget, implying the theory matches the reality.   

Post-hoc guidance for reliable estimation. The feasible region (top) and the post-hoc table 
(bottom) are obtained via simulation, where we fix the number of cells (1k, 5k, 10k, 30k, 70k) 
and investigate how the error decreases as a function of the depth (Supp. Fig. 5-6). The data are 
generated according to model (1) similar to the second trade-off simulation, where the empirical 
distributions of the marker genes in pbmc_4k and brain_9k are used as the true gene distribution 
respectively to account for heterogeneity in different tissues. The true gene distribution is 
normalized so that each gene has the same mean expression level. As a result, the mean reads 
over all genes is exactly the mean reads for each gene, providing a single-gene level error 
characterization. The post-hoc table is obtained by finding the smallest depth such that the 
relative error is smaller than 0.1(-2 in the log10 scale for the relative squared error and -1 for 
other errors, Supp. Sec. 6.4). The results for both simulations are very similar. Hence only the 
table for pbmc_4k is included. 

Comparing the performance of plug-in and EB estimators. Fig. 2a demonstrates that the EB 
estimator is adaptive to different sequencing depth while the plug-in estimator is not. The top 
panel shows the estimated cv using plug-in and EB under different sequencing depths, where we 
can see a clear inflation for plug-in. The full data is from pbmc_4k and the subsample rate ranges 
from 0.2 to 1 (full data). The experiment is repeated 5 times and the 3-std confidence interval is 
provided. The results for other genes as well as for estimating the inactive probability can be 
found in Supp. Fig. 7. The middle panel compares the estimated cv from two datasets of the 
same tissue. Genes with at least 0.1 reads per cell are considered since we believe genes below 
this level cannot be reliably estimated. The EB estimator may produce an invalid result when the 
plug-in variances are smaller than the plug-in means, where the Poisson model will break down. 
Such cases are not common and are excluded while counting the number of genes above/below 
the red line. Hence the total number genes for the two panels may slightly differ. More results 
are in Supp. Fig. 8-9. The bottom panel shows that EB can recover the gene distribution from a 
shallow sequencing data. The shallow data is generated by subsampling from the full data and is 
5times shallower. To evaluate the error, the recovered distribution is rescaled to have the same 
mean as the empirical distribution from the full data. More results are in Supp. Fig. 10. 

Fig. 2b investigates a common task that the features (genes) are selected based on cv and PCA is 
then performed on selected features. The data is from pbmc_4k and is clipped at the 99th 
quantile to prevent outliers. Such procedure also appears in previous works on PCA [11]. The 
top 500 genes with the highest cv are selected and the PCA scores are plotted for the 2nd and 3rd 
PC direction. The first direction is skipped because it usually corresponds to the variation in cell 
sizes. The results on the full data and a subsampled data (3 times shallower) are compared, where 
EB is more consistent than plug-in.  

Fig. 3c considers recovering gene functional group using Pearson correlation. We use the 
pbmc_4k dataset here since the biological structure of the PBMCs is well-understood. The major 
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cell populations identified in this dataset are T-cells (IL7R, CD3D/E/, LCK), NK-cells (NKG7, 
PRF1, KLRD1, GZMA, HOPX, CST7), B-cells (CD79A, BANK1, IGHD, LINC00926, 
MS4A1), myeloid-derived cells (S100A8/9, MNDA, FGL2, CLEC7A, IFI30) and 
megakaryocytes/platelets (PF4, PPBP). The heatmap of the EB estimated Pearson correlation of 
those genes are visualized in Fig. 3c top, which shows that EB can well capture the gene 
functional groups. A subsample experiment is then conducted to investigate how well the 
estimators can recover the modules from the shallow sequencing data. The data are subsampled 
from the full data with the rate 100% (full), 25%, 10% and 5%. EB can recover the module at a 
much shallower depth as compared to plug-in. 

Gene network analysis of the 10x Genomics’ pbmc_4k dataset. The gene network (Fig. 2d 
top) is constructed based on the EB estimated Pearson correlation using the pbmc_4k dataset. 
The genes are filtered based on whether the EB estimated variance is larger than 0.1, which 
leaves 791 genes. A correlation larger than 0.8 is considered as a gene-gene edge. We found that 
varying the threshold from 0.4 to 0.95 does not significantly affect the result. The gene modules 
are identified based on knowledge of marker genes and gene pathways as well as previous 
studies on PBMCs (Supp. Note 6.6). We also note that the existence of megakaryocytes/platelets 
may be due to the imperfection of PBMC isolation and since many genes are expressed in 
multiple cell populations (e.g. CD74, CD27), the resulting annotation only gives a rough picture 
of the underlying gene functional groups.  

Next, we consider some important genes and plot their correlations with all other genes (Fig. 2d 
middle, Supp. Fig. 11). As a general phenomenon, the EB estimated values are more spread out 
and exhibit different modes corresponding to genes that interact differently with the gene of 
interest. The plug-in estimated values are nonetheless much closer to zero even for the genes that 
are known to be well-correlated.  

Finally, we consider the gene pairs where the estimated values for EB and plug-in differ 
significantly (>0.7). Out of 1054 such pairs, 91 are also annotated based on STRING [20], 
yielding a p-value of 4.2e-11 while testing against the null that these pairs are selected at random 
(Supp. Note 6.6). We plot the histograms of several such pairs and show that all of them have 
clear biological interpretations (Fig. 2d bottom, Supp. Fig. 12). LY86 (also known as MD1) is a 
secreted protein that has been shown to play an important role in T-cell activation while CD3E is 
expressed within T-cells (Supp. Note 6.6). These two genes are not co-expressed and hence are 
negatively correlated. POMP encodes a chaperone for proteasome assembly while PSMA7 is one 
of the 17 essential subunits for the complete assembly of the 20S proteasome complex. Hence, 
the two genes work together for proteasome assembly and should be positively correlated. In 
spite of the strong biological evidence, the plug-in estimator produces very small values due to 
the presence of sequencing noise (See also Supp. Fig. 12). 
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Figure 1. a) Sequencing budget allocation problem. Consider estimating the underlying gene 
distribution (top) from the noisy read counts obtained via sequencing (bottom). With a fixed 
number of reads to be sequenced, deep sequencing of a few cells accurately estimates each 
individual cell but lacks a coverage of the entire distribution (left), while a shallow sequencing of 
many cells covers the entire population but introduces a lot of noise (right).  
b) Optimal trade-off. The T-helper marker gene CD4 has 1.1k reads in the pbmc_4k dataset. 
For estimating the underlying gamma distribution -]_ ∼ 56776(lK,ÉK), the relative error is 
plotted as a function of the sequencing depth, where the optimal error is obtained at the depth of 
one read per cell (orange star) and is 2 times smaller than that at the current depth of pbmc_4k 
(red triangle). c) Experimental design. To determine the sequencing depth for an experiment, 
first the relative gene expression level can be obtained via bulk RNA-Seq (top left). Second the 
researcher can select a set of genes of interest (black dots), of which the smallest relative 
expression level <∗ defines the reliable detection limit. Finally, the optimal sequencing depth is 
determined as P&∗ = 1/<∗ (top right). The errors under different trade-offs are visualized as a 
function of the genes ordered from the most expressed to the least (bottom). The optimal 
sequencing (orange) minimizes the worst-case error over all the genes of interest (left of the red 
dashed line), while both the deeper sequencing (green) and the shallower sequencing (blue) yield 
worse results. d) Simulation of error under different budget allocation. The top panel 
simulates the error for estimating the first principal direction using plug-in (blue) and EB 
(orange) respectively. Three budgets are considered )/(0.6k/gene) < )1(3k) < )Ñ(15k) and the 
depth (mean reads per cell per gene) ranges from 0.02 to 10. The optimal depth for EB is the 
same (~0.1) for all three budgets, validating the theory that the optimal depth is independent of 
the budget. The cases for the coefficient of variation and the Pearson correlation (bottom) also 
show similar qualitative behaviours. e) Post-hoc guidance for reliable estimation. We 
visualized the top 4k genes of some popular datasets (top), where a triangle residing in the green 
region means the Pearson correlation of corresponding genes can be reliably estimated (relative 
error<10%). For example, we can reliably estimate the first 2k genes for the brain_1k dataset and 
all 4k genes for the brain_9k dataset. A more comprehensive result is summarized in the bottom 
table. For example, the first element (mean, 1k) shows that with 1k cells, a gene need to have at 
least 0.1 reads per cell for reliably estimating the mean. 
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Figure 2. a) Consistent estimation. Top: For estimating the cv, the plug-in estimates get more 
inflated as the sequencing depth become shallower (from right to left along the x-axis) while the 
EB estimates are nonetheless consistent. Middle: brain_1k and brain_1.3m are both from E18 
mice brain. Hence a similar estimated cv is expected for each gene. This is indeed the case for 
EB (right), which is adaptive to different sequencing depths. However, since brain_1k is twice 
deeper than brain_1.3m, a bias is introduced for plug-in that most points are above the 45-degree 
line (red). Bottom: EB recovers the distribution for the gene GZMA from a data that is 
subsampled to be 5times shallower (left). The result shows a good estimation of the zero 
proportion as well as the tail shape, thus incurring a small total variation error (TV) (right).  
b) Feature selection and PCA. The task is to first select features (genes) based on cv and then 
perform PCA on the selected features. The results on the full data (pbmc_4k) and a subsampled 
are compared, where the subsampled data is 3 times shallower. Both the cv ranks (top) and the 
PCA plots (bottom) are more consistent for EB between the full data and the subsampled data.  
c) Gene module recovery. The EB estimated Pearson correlation for the marker genes in 
pbmc_4k are visualized and are sorted according to different cell populations (top). The clear 
block-diagonal structure implies that EB can well capture the gene functional groups. As a 
comparison, the plug-in estimator also recovers those modules but with a weaker contrast 
(bottom left most). A subsample experiment is further conducted to investigate how well the 
estimators can recover the modules from the shallow sequencing data. EB can recover the 
module at the depth of 10% while for plug-in, the first block (T-cells) is blurred at the depth of 
25% and the entire structure vanishes at the depth of 10%. d) Gene network. Top: a gene 
network based on the EB estimated Pearson correlation using the pbmc_4k dataset. Most gene 
modules are found to correspond to either important cell populations or cell functions, including 
T-cells, B-cells, NK-cells, myeloid-derived cells, megakaryocytes/platelets, ribosomal protein 
genes, and mitochondrially encoded protein coding genes. Middle: the estimated Pearson 
correlations of all genes with LCK and CD3D respectively, where the two genes are known to be 
enriched in T-cells. There are three modes for the EB estimated values, where the positive mode, 
the zero mode, and the negative mode correspond to genes in the same module, different 
modules, and irrelevant genes respectively. The plug-in estimated values are nonetheless much 
closer to zero even for the truly correlated ones, indicating an artificial shrinkage of the estimated 
values. Bottom: two instances where EB significantly differs from plug-in. The axes represent 
read counts and the dots show color-coded histogram over the cells. Both pairs of genes are 
biologically validated (Methods).  
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