
Dimensional phenotypes and CSTC effective connectivity 

 1 

Transdiagnostic variations in impulsivity and compulsivity in obsessive-compulsive 

disorder and gambling disorder correlate with effective connectivity in cortical-striatal-

thalamic-cortical circuits 

 
Linden Parkes1, Jeggan Tiego1, Kevin Aquino1, Leah Braganza1,2, Samuel R. Chamberlain3, 
Leonardo Fontenelle1,4, Ben J. Harrison2, Valentina Lorenzetti1,5, Bryan Paton6,7, Adeel 
Razi1,8,9, Alex Fornito1*, Murat Yücel1* 

 

1Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neuroscience and School of 
Psychological Sciences, Monash University, Melbourne, Australia. 
2Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne 
Health, Victoria, Australia. 
3Department of Psychiatry, University of Cambridge and Cambridge Peterborough NHS Foundation Trust, 
Cambridge, United Kingdom. 
4Obsessive, Compulsive, and Anxiety Spectrum Research Program, Institute of Psychiatry, Federal University of 
Rio de Janeiro & D'Or Institute for Research and Education, Rio de Janeiro, Brazil. 
5School of Psychology, Faculty of Health, Australian Catholic University, Fitzroy, Australia 
6School of Psychology, Faculty of Science, University of Newcastle, Newcastle, Australia. 
7Cognition & Philosophy Lab, Monash University, Melbourne, Australia. 
8Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, United 
Kingdom. 
9Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan 
 
*These authors contributed equally 
 
Corresponding author: Linden Parkes, linden.parkes@monash.edu, 770 Blackburn Road, Clayton, Victoria 
3168, Australia 
 
Abbreviated title: Dimensional phenotypes and CSTC effective connectivity 
 
Keywords: Impulsivity, compulsivity, disinhibition, OCD, GD, DCM 
 
Manuscript word count: 3,774 
Abstract word count: 248 
Number of Figures: 1 
Number of Tables: 1 
Number of Supplementary Information: 1 
 
Acknowledgements: L.P. was supported by an Australian Postgraduate Award. 
J.T. was supported by National Health and Medical Research Council (ID:1002458, 1046054). 
A.F. was supported by the Charles and Sylvia Viertel Foundation, the Australian Research Council (ID: 
FT130100589) and the National Health and Medical Research Council (ID: 3251213, 3251250, 3251392). 
M.Y. was supported by a National Health and Medical Research Council Fellowship (ID: 1117188), Monash 
University and the David Winston Turner Endowment Fund. 
 
Disclosures: S.R.C consults for Cambridge Cognition, Shire, and Promentis. The remaining authors declare no 
competing financial interests. 
 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389320doi: bioRxiv preprint 

https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/389320
http://creativecommons.org/licenses/by-nc/4.0/


Dimensional phenotypes and CSTC effective connectivity 

 2 

Background: Individual differences in impulsivity and compulsivity is thought to underlie 

vulnerability to a broad range of disorders and are closely tied to cortical-striatal-thalamic-

cortical (CSTC) function. However, whether impulsivity and compulsivity in clinical disorders 

is continuous with the healthy population and explains CSTC dysfunction across different 

disorders remains unclear. 

Methods: We characterized the relationship between CSTC effective connectivity, estimated 

using dynamic causal modelling of functional magnetic resonance imaging data, and 

dimensional phenotypes of impulsivity and compulsivity in two symptomatically distinct but 

phenotypically related disorders, obsessive-compulsive disorder (OCD) and gambling disorder 

(GD). 487 online participants provided data for modelling of dimensional phenotypes. These 

data were combined with 34 OCD patients, 22 GD patients, and 39 healthy controls, who 

underwent functional magnetic resonance imaging.  

Results: Three core dimensions were identified: disinhibition, impulsivity, and compulsivity. 

Patients’ scores on these dimensions were continuously distributed with the healthy 

participants, supporting a continuum model of psychopathology. Across all participants, 

higher disinhibition correlated with lower bottom-up connectivity in the dorsal circuit and 

increased bottom-up connectivity in the ventral circuit, and higher compulsivity correlated 

with reduced bottom-up connectivity in the dorsal circuit. Similar changes in effective 

connectivity were observed with increasing clinical severity that were not accounted for by 

phenotypic variation, demonstrating convergence towards behaviourally and clinically 

relevant changes in brain dynamics. Effective connectivity did not differ as a function of 

traditional diagnostic labels. 
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Conclusions: CSTC dysfunction across OCD and GD is better characterized by dimensional 

phenotypes than diagnostic comparisons, supporting investigation of quantitative liability 

phenotypes. 
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Introduction 

Psychiatric research is gradually shifting away from studying classically diagnosed disorders 

towards an understanding of the underlying constructs and mechanisms that drive 

maladaptive behavior (1; 2). In this context, impulsivity and compulsivity feature prominently 

as putative intermediate phenotypes linked to symptom variation across multiple disorders 

(3-7), and likely explain a substantial fraction of commonly observed comorbidities (7-9).  

 

Historically, impulsivity and compulsivity have been quantified using scores on either 

behavioral tasks (e.g., response inhibition paradigms) or self-report questionnaires (10; 11), 

and the relation between the two constructs has been unclear (3; 5); some suggest that they 

are diametrically opposed on a single continuum (12; 13), whereas others propose that they 

are orthogonal dimensions (4; 6). Recent Confirmatory Factor Analyses (CFA) of multiple 

measures of impulsivity and compulsivity has shown that the constructs form two distinct but 

positively correlated traits, which each predict poorer quality of life (7). Using Structural 

Equation Modelling (SEM) of 12 self-report measures of impulsivity and compulsivity in a large 

normative sample, we reported evidence for a bifactor model in which a unitary, general 

‘disinhibition’ dimension, characterized by high impulsivity, uncertainty intolerance and 

obsessive beliefs, coupled with low desire for predictability, perfectionism, and threat 

estimation, was the strongest predictor of the co-occurrence of addictive and obsessive-

compulsive symptomatology, with residual, specific dimensions of ‘impulsivity’ and 

‘compulsivity’ explaining additional unique variance (9). Thus, our model successfully 

captures both correlated (disinhibition) and orthogonal variance associated with different 

measures of impulsivity and compulsivity that are relevant to understanding behavior and 

psychopathology. 
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One implication of our model is that clinically diagnosable disorders of impulsivity and 

compulsivity represent extreme expressions of traits that are distributed continuously with 

the healthy population (the continuity hypothesis). This postulate, while consistent with the 

implicit assumption of the Research Domain Criteria (RDoC) initiative (1; 2), has seldom been 

formally tested in psychiatry. Hence, it remains unclear how subclinical variation in impulsivity 

and compulsivity relate to case-level psychopathology, either at the level of observable 

behavior or underlying neurobiology.  

 

Here, we test the continuity hypothesis using impulsivity and compulsivity as 

intermediate phenotypes and diagnosed gambling disorder (GD) and obsessive-compulsive 

disorder (OCD) as exemplars of psychopathology at the extreme ends of these phenotypes. 

GD and OCD are both associated with dysfunctional levels of impulsivity and compulsivity (14-

18) and have overlapping pathophysiology centered on cortical-striatal-thalamic-cortical 

(CSTC) circuits (19-22), which are thought to play a critical role in mediating impulsive and 

compulsive behaviors (5; 23-26). An advantage of studying a behavioral addiction such as GD 

is that it allows us to uncover pathophysiological processes without the confounding effects 

of substance abuse or dependence (27-29). 

 

The CSTC circuitry of the brain comprises a series of parallel yet integrated loops that 

topographically connect distinct regions of frontal cortex predominantly with ipsilateral 

striatum and thalamus (30; 31). These circuits are functionally specialized and broadly 

segregate into ventral limbic, dorsal associative, and caudal sensorimotor systems (30-33). 

Altered functional coupling (dysconnectivity) of the dorsal and ventral circuits has been 
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similarly implicated in both GD and OCD (19; 21; 22; 34-41), but the two disorders have not 

been directly compared and the degree to which any neural similarities or differences relate 

to variations in impulsivity and compulsivity are unclear. Some have suggested that the 

ventral and dorsal striatum respectively drive impulsive and compulsive behaviors, while top-

down cortical projections inhibit these behaviors (5), but these assertions have not been 

directly tested. Moreover, most work to date has relied on simple (undirected) models of 

network interactions, based on correlational measures of functional coupling between 

regions (i.e., functional connectivity), which cannot disentangle causal top-down or bottom-

up influences in CSTC circuitry. 

 

 In this study, we addressed two primary aims. First, we extended our prior modelling 

work (9) by combining our existing normative cohort with a new sample of healthy controls 

(HCs), individuals with OCD, and individuals with GD to replicate our model and formally test 

the continuity hypothesis; that is, that GD and OCD participants lie at the extreme ends of our 

quantitative phenotypes. Second, we investigated how our quantitative and clinical 

phenotypes relate to CSTC function. We mapped the effective connectivity (i.e., the causal 

interactions between brain regions) of the CSTC circuitry using Dynamic Causal Modelling 

(DCM) (42-45) of resting-state functional Magnetic Resonance Imaging (rs-fMRI) data and 

linked effective connectivity parameters to our quantitative impulsivity and compulsivity 

phenotypes, as well as to traditional diagnostic groupings, in a Bayesian framework. As 

opposed to undirected estimates of functional connectivity, our approach allowed us to 

distinguish top-down from bottom-up influences in CSTC circuitry, and to evaluate whether 

quantitative trait variation or diagnosis is a stronger correlate of brain function. 
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Methods and Materials 

Participants 

Participants included 487 individuals used in our previous work (9), recruited online through 

the Amazon Mechanical Turk community (online dataset), and 96 participants (39 HCs, 34 

OCD, and 23 GD) recruited locally for neuroimaging (imaging dataset). All participants 

completed a self-report questionnaire battery used to model impulsivity and compulsivity. 

See supplement for details on recruitment and eligibility. 

 

Impulsivity and compulsivity 

We measured diverse aspects of impulsivity and compulsivity using self-report indices that 

assessed the phenotypes as multidimensional constructs, had good validity and reliability, 

were not measures of disorder-specific severity, and were sensitive to clinical and subclinical 

variation. Impulsivity was measured using the 59-item UPPS-P Impulsivity scale (46; 47). 

Compulsivity was measured with the Obsessive Beliefs Questionnaire 44-item version (OBQ-

44) and the 12-item version of the Intolerance of Uncertainty Scale (IUS-12) (48-52). 

 

Structural equation modelling 

We modelled the dimensional structure of the self-report measures mentioned above using 

SEM, as per procedures described in Tiego et al (9). Briefly, item-level data from the OBQ-44, 

IUS-12, and UPPS-P were combined across the online and imaging datasets. Data were fit to 

a bifactor model that included a general disinhibition dimension as well as specific dimensions 

for impulsivity and compulsivity (9). Factor score estimates were obtained for the dimensional 

phenotypes of disinhibition, impulsivity, and compulsivity for use in subsequent analysis of 
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the imaging dataset. Details of model estimation as well as comparison to competing models 

are provided in the supplement. 

 

Magnetic Resonance Imaging and Dynamic Causal Modelling 

Functional (echoplanar imaging, EPI) and structural (T1-weighted MP-RAGE) data were 

acquired on a Siemens MAGNETOM Skyra 3T scanner. Scans were processed using Matlab 

code available online (https://github.com/lindenmp/rs-fMRI). Pre-processing and quality 

control was performed as per Parkes et al (53) and are detailed in the supplement. Effective 

connectivity was estimated using spectral DCM (spDCM) (54; 55) implemented in SPM12 

r7219 (Wellcome Trust Centre for Neuroimaging, London, UK; code available at: 

https://github.com/lindenmp/rs-fMRI/tree/master/stats/spDCM). spDCM was developed 

specifically for modelling rs-fMRI data and provides a computationally efficient way to 

estimate effective connectivity by fitting cross spectra rather than the time series (54). Owing 

to projections within CSTC circuitry being predominantly ipsilateral (30; 31), we estimated 

CSTC effective connectivity separately in each hemisphere. 

 

Generation of DCM nodes 

We defined functional regions of interest (ROI) that sampled key regions of the CSTC circuits 

implicated in impulsivity, compulsivity, GD, and OCD. The dorsal circuit comprised the dorsal 

striatum, anterior cingulate cortex (aCC), orbitofrontal cortex/ventromedial prefrontal cortex 

(OFC/vmPFC), and anterior thalamus (5; 36). The ventral circuit comprised the ventral 

striatum, aCC, OFC/vmPFC, dorsolateral prefrontal cortex (dlPFC), and posterior thalamus (5; 

35). Dorsal and ventral striatal subregions were extracted from a striatal parcellation based 

on structural connectivity (32). All other ROIs were generated using a subject-specific 
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approach based on seed-based functional connectivity from these striatal subregions, details 

of which can be found in the supplement. In brief, for each CSTC circuit and subject, each 

anatomical ROI outside the striatum was refined into a spherical DCM ROI with radius 3-mm 

that satisfied the following criteria: (i) within a 16-mm radius of the second-level main effect 

of striatal seed for the whole sample (12-mm for the thalamus); (ii) within the boundaries of 

the corresponding anatomical ROI; (iii) at least 20-mm away from the center-of-mass of the 

corresponding striatal seed; and (iv) did not overlap with DCM ROIs generated for any of the 

other anatomical ROIs. 

 

Specification and inversion of DCM at the First Level 

For each participant and hemisphere, a sparse parent model (Figure 1) was created that 

modelled connectivity from the cortical DCM ROIs to the corresponding striatal DCM ROI, 

from the striatal DCM ROI to the corresponding thalamic DCM ROI, and from the thalamic 

DCM ROI back to the corresponding cortical DCM ROIs. We excluded connections within the 

CSTC circuits that were not relevant to our hypotheses. Hence, cortico-cortico connections 

were not modelled as we were primarily interested in examining the connectivity between 

cortex and subcortex. This procedure was repeated for each CSTC circuit and both were 

combined into a single DCM. To link the two circuits, the dorsal and ventral striatal subregions 

were connected reciprocally. Nested models were generated by systematically turning off 

each of the connections present in the parent model. The parent model was inverted using 

spDCM (spm_dcm_fit.m), and the nested models were inverted using Bayesian model 

reduction (spm_dcm_bmr.m) (56). Because nested models are defined only by the removal 

of connections included in the parent model, they differ only in terms of their priors, which 
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allows efficient/rapid estimation of nested DCM models by using the posterior of the parent 

model. 

 

Second level DCM analysis using parametric empirical Bayes 

We used the parametric empirical Bayes (PEB) routines to perform second level analysis and 

Bayesian model averaging (spm_dcm_peb.m & spm_dcm_peb_bmc.m). PEB is a fully 

Bayesian and hierarchical second-level analysis framework. In hierarchical models, the 

posterior density over model parameters is constrained by the posterior from the level above. 

In group studies, this translates to modelling how within-subject effects relate to second-level 

group effects and differs from classical testing in that it considers the full posterior density 

over the parameters (i.e., both the expected connection strengths and their covariance from 

each first-level DCM). We used a pair of second-level PEB routines to examine: (1) the effects 

of disinhibition, impulsivity, compulsivity, and case-control/case-case comparisons on 

effective connectivity; and (2) the effects of clinical severity on effective connectivity. 

For the first PEB model, a second-level design matrix space was defined using a 

constant in the first column (modelling the mean across the sample), the three phenotypes 

of disinhibition, impulsivity, and compulsivity, as well as covariates for age, gender, IQ, 

medication status (medicated/unmedicated), and mean framewise displacement (mFD), a 

summary measure of head motion (53). To examine the effect of case-control/case-case 

comparisons on effective connectivity, we included linear contrasts for all possible 

combinations of our diagnostic groups (HC, OCD, and GD). We generated the following 

contrasts: (i) HC>OCD; (ii) HC>GD; (iii) HC<OCD; (iv) HC<GD; (v) OCD>GD; and (vi) OCD<GD. 

These six contrasts were input as separate columns in the design matrix of our PEB model. 
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The second PEB model retained only the OCD and GD participants and included an 

aggregate measure of symptom severity alongside all the same variables and contrasts from 

the first PEB model. We indexed clinical severity separately for the OCD and GD groups using 

the Obsessive-Compulsive Inventory-Revised (OCI-R (57)) and the Problem Gambling Severity 

Index (PGSI (58)), respectively. Then, as a proxy for transdiagnostic symptom severity, we z-

scored each measure within each group separately, combined across both groups to produce 

a single measure of severity, z-scored again, and included severity in the PEB model. 
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Results 

 

Participants and data 

579 participants were included in the phenotype modelling analyses, of which 95 participants 

(39 HCs, 34 OCD patients, and 22 GD patients) were from the imaging dataset. Demographics 

are provided in Table 1. Further exclusion was applied to the imaging dataset (see 

Supplementary Results) that yielded a final imaging dataset of 38 HC participants, 32 OCD 

participants, and 20 GD participants. See supplementary results for details of participant 

exclusion, quality control of rs-fMRI data, and co-ordinates for ROIs. 

 

Table 1. Sample characteristics. 

Characteristic HC (n=39) OCD (n=34) GD (n=22) Online cohort (n=487) 

Age in years, mean (SD) 34 (9.47) 31.68 (9.40) 36.32 (12.21) 34.2 (9.30) 

Male, No. (%) 19 (49) 16 (47) 14 (64) 240 (49) 

IQ, mean (SD) 115.31 (10.65) 115.56 (9.09) 111.64 (8.86) - 

SSRI Medication, No. (%) 0 (0) 20 (59) 5 (23) - 

Note, online cohort is the same as used in Tiego et al (9) 

 

Impulsivity and Compulsivity phenotypes 

We first confirmed that the bifactor model from our prior work (9) (Figure S1, Supplement) 

provided the best fit (χ2(31) = 52.903, p = .057; RMSEA = .035; 90% CI = .018 - .50; CFI = .99; 

SRMR = .041) to this new, extended dataset, relative to several competing models (Table S1, 

Supplement). We then generated factor score estimates for each of the three phenotypes for 

subsequent analyses. The distributions of the factor score estimates were univariate and 
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multivariate normal, providing evidence for a continuous distribution for the disinhibition, 

impulsivity, and compulsivity phenotypes that spans the non-clinical and clinical spectrum.  

 

Next, we examined whether clinical GD and OCD participants lie at the extreme ends 

of our phenotypes. A MANOVA revealed significant differences between HC, OCD and GD 

participants (Pillai’s = .110, F (6,1150) = 11.164, p < .001; ηp
2 = .055, on the disinhibition (F 

(2,576) = 21.197, p < .001, ηp
2= .071), impulsivity (F (2,576) = 10.210, p < .001, ηp

2 = .034), and 

compulsivity (F (2,576) = 3.304, p = .037, ηp
2 = .011) phenotypes. Pairwise post hoc 

comparisons corrected using the Benjamini-Hochberg False Discovery Rate (FDR, q = .05) (59) 

revealed that the OCD (M = .917 , SE = .167, 95%CI =.589 – 1.244, p < .001) and GD participants 

(M =.809, SE = .205, 95%CI =.407 – 1.211, p < .001) were significantly higher on disinhibition 

than HCs; GD participants were higher on impulsivity than HCs (M =.697, SE = .190, 95%CI 

=.352 – 1.069, p < .001) and OCD participants (M = 1.073, SE = .238, 95%CI =.605 – 1.541, p < 

.001); and OCD participants were higher on compulsivity than GD participants (M =.590, SE = 

.294, 95%CI =.101 – 1.079, p = .023), but not HCs (M = .118, SE = .164, 95%CI =-.204 – .441, p 

= .585).  

 

Effective connectivity 

Having demonstrated support for the continuity hypothesis, we examined associations 

between scores on the disinhibition, impulsivity, and compulsivity phenotypes and CSTC 

effective connectivity in the imaging dataset. For all analyses, we thresholded the effective 

connectivity results using a posterior probability of >95%. We present effects from the left 

hemisphere in the main text (see Figure S2 for right hemisphere results). 
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Figure 1 shows the effect of each phenotype on effective connectivity, whilst 

controlling for the effects of the nuisance covariates, diagnostic contrasts, and the other 

phenotypes. Figure 1 shows that individuals with higher scores on disinhibition exhibited (i) 

reduced bottom-up effective connectivity from the left anterior thalamus to the left dorsal 

aCC (daCC) in the dorsal circuit; (ii) increased bottom-up effective connectivity from the left 

posterior thalamus to the left dlPFC in the ventral circuit; and (iii) reduced inhibitory activity 

in the self-connection for the medial OFC (meOFC) in the ventral circuit. Individuals with 

higher levels of compulsivity exhibited (i) reduced bottom-up effective connectivity from the 

left anterior thalamus to the left daCC in the dorsal circuit; and (ii) reduced inhibitory activity 

in the self-connection for the posterior thalamus in the ventral circuit. Individuals with high 

impulsivity showed no differences in effective connectivity, but rather reduced inhibitory 

activity in the self-connection for the medial OFC (meOFC) in the ventral circuit. No effects 

were observed for any case-control or case-case contrasts. A complementary analysis using 

traditional frequentist analysis applied to estimates of undirected functional connectivity 

yielded largely null findings, demonstrating the sensitivity of our Bayesian analysis of effective 

connectivity (Supplementary Results). 

 

 Second, we examined the effect of clinical severity on effective connectivity in the 

OCD and GD patients. Consistent with the effects of disinhibition and compulsivity, symptom 

severity was associated with reduced bottom-up effective connectivity from the left anterior 

thalamus to the left daCC in the dorsal circuit. Critically, the effects of disinhibition and 

compulsivity reported above remained when controlling for the effect of severity, indicating 

that the effects are independent. Increased severity was also associated with increased 

inhibitory activity in the self-connection for the middle OFC (miOFC) in the dorsal circuit.  
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Figure 1. Effective connectivity between regions in cortical-striatal-thalamic-cortical (CSTC) circuits covaries with 

individual differences in disinhibition, compulsivity, and impulsivity. Left, brain regions in the left hemisphere 

(i.e., search volumes for subject-specific DCM ROIs) and wiring diagram representing the model that was 

specified. Solid lines represent connectivity between regions. Arrow heads depict direction of connection. 

Dashed lines represent inhibitory self-connections. Right, effects of phenotypes and clinical severity on effective 

connectivity within CSTC circuits in the left hemisphere as assessed using parametric empirical Bayes. Effective 

connectivity parameters are described in Hz (right panel, bold numbers), where the activity in one node 

influences the rate of change in the activity in another. Self-connections are (log)scaled. In both cases, the 

interpretaion is the same, with increasing scores on a given phenotype the effective connectivity between, or 

the inhibitory activity within, nodes decreases/increases as specified. The DCM ROIs have each been labeled 

according to which subregions of their respective anatomical ROI they were localized to during DCM ROI 

generation (see supplementary methods and supplementary results for details). daCC = dorsal anterior cingulate 

cortex, vaCC = ventral anterior cingulate cortex, miOFC = middle orbitofrontal cortex, meOFC = medial 

orbitofrontal cortex, aThal = anterior thalamus, pThal = posterior thalamus, dlPFC = dorsolateral prefrontal 

cortex, DS = dorsal striatum, VS = ventral striatum. 
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Discussion 

The potential benefits of understanding the neurobiology of quantitative traits that underlie 

risk for mental illness are widely acknowledged, and underpin the RDoC model (1; 2). Here, 

we first characterized the dimensional structure of impulsivity and compulsivity in a sample 

of non-clinical individuals and people with clinically diagnosed OCD and GD, and then 

examined how effective connectivity within CSTC circuitry relates to quantitative variation in 

these dimensional traits. Complementing our earlier work (9), we find that variance in a broad 

battery of impulsive and compulsive self-report measures is best explained by a bifactor 

model, comprising a unitary disinhibition factor with loadings from nearly all scales, coupled 

with specific constructs capturing residual variance in impulsivity and compulsivity. We 

further show that OCD and GD patients typically occupied the extreme ends of a distribution 

that is continuous with non-clinical individuals, providing evidence for a continuum model of 

psychopathology in OCD and GD. Finally, we report that high levels of disinhibition and 

compulsivity correlate with altered bottom-up signalling from subcortical to cortical areas in 

dorsal and ventral CSTC systems, and that variance in effective connectivity was better 

explained by quantitative, transdiagnostic variation in these constructs than traditional 

diagnostic categories. Together, our results support the utility of using dimensional constructs 

that cut across traditional diagnostic boundaries for understanding pathophysiological 

processes in psychiatry. Our use of DCM to distinguish between top-down and bottom-up 

influences in CSTC circuitry also suggests that the pathological expression of these 

dimensional traits may be related to altered subcortical signaling to cortical regions (4; 5). 
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Disinhibition, impulsivity, compulsivity and the continuum model 

We previously validated a model in a large online normative sample and found that various 

measures of impulsivity and compulsivity were best represented by three empirically-distinct 

phenotypes of disinhibition, impulsivity, and compulsivity (9). Furthermore, we demonstrated 

that these phenotypes explained subclinical variation in a broad range of impulsive, addictive, 

and obsessive-compulsive symptomatology (9). Here, we extended these findings by applying 

the model to an expanded sample that also included individuals with diagnosed GD and OCD. 

We show that a bifactor model comprising disinhibition, impulsivity, and compulsivity 

constructs remains the best fit to the data supporting the robustness of the previously 

proposed model. Furthermore, OCD and GD groups generally sat on the extreme ends of traits 

that had univariate and multivariate normal distributions, supporting a continuum model in 

which disorder represents the extreme expression of traits with a continuous population 

distribution. Thus, our results are in line with the basic premise of the RDoC initiative, and 

support characterization of the full range of variation between normal and abnormal 

functioning as a critical first step to developing individually targeted treatment strategies in 

psychiatry (2). 

 

Quantitative traits covary with bottom-up signalling in CSTC circuitry  

Higher scores on the disinhibition dimension correlated with reduced resting-state bottom-

up connectivity in the dorsal circuit and increased bottom-up connectivity in the ventral 

circuit. These findings demonstrate that concurrent increases in impulsivity, uncertainty 

intolerance, and obsessive beliefs, in conjunction with reductions in desire for predictability, 

perfectionism, and threat estimation are associated with divergent changes across distinct 

CSTC circuits. Our results are the first to demonstrate that dysfunction in these aspects of 
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impulsivity and compulsivity may be associated with a dysfunctional behavioral drive 

subserved by the ventral and dorsal striatal subregions (4; 5). Previous resting-state work 

using functional connectivity has shown increased ventral CSTC connectivity in both OCD and 

GD (19; 22; 35), which is reduced in OCD via deep brain stimulation to the ventral striatum 

(35) and our results suggest that this effect may arise through the remediation of excessive 

bottom-up connectivity from the ventral striatum. 

 

We also found that higher scores on the compulsivity-specific dimension correlated 

with reductions in resting-state bottom-up connectivity in the dorsal CSTC circuit. This result 

appears counter to previous task-based fMRI studies showing dorsal striatum hyperactivation 

and increased functional connectivity with the ACC in OCD patients who develop compulsive 

habits relative to those who do not (36). This apparent discrepancy may be related to the use 

of task-based versus resting-state fMRI protocols. Gillan et al (36) explain dorsal CSTC 

dysfunction as a deficit in goal-directed control over behavior, which leads to an over-reliance 

on habits. Our resting-state design did not overtly engage goal-driven behavioral systems. 

Hence, dysfunction in the dorsal CSTC circuit may be context-specific, such that connectivity 

is increased when compulsive behavior is expressed but decreased at rest. Concurrent 

modelling of effective connectivity during task and rest could be used to test this hypothesis 

in future.  

 

Finally, effects in the dorsal circuit that overlapped with those found for disinhibition 

and compulsivity were also observed with increasing clinical severity, demonstrating that the 

variation in effective connectivity explained by our phenotypes was clinically relevant. 
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The utility of effective connectivity models 

Functional connectivity estimates undirected coupling between measured neurophysiological 

signals, whereas effective connectivity is based on a model of the causal interactions between 

neuronal populations that drive the measured signals (42). Previous research has shown 

effective connectivity is more sensitive to age-related changes than functional connectivity 

(60). Indeed, effective connectivity should offer a more precise characterization of 

pathophysiological processes that is less susceptible to various nuisance factors that can 

contaminate measures of functional connectivity (61). Here, we combined estimates of 

effective connectivity (54) with a fully Bayesian analysis framework (56). While the application 

of these methods in psychiatry is growing, so far they have been predominantly applied to 

schizophrenia (56; 62; 63). Thus, to demonstrate the utility of DCM in psychiatry, we 

replicated our analyses using functional connectivity and found no associations that survived 

correction for multiple comparisons. Our results thus support the superior sensitivity of a fully 

Bayesian analysis of effective connectivity for uncovering brain-behavior relationships in 

psychiatry. 

 

Limitations 

Head motion is a pernicious issue in rs-fMRI data (64-66) that confounds pathophysiological 

inferences (53). To rigorously address this issue, we adopted state-of-the-art denoising 

methods (67; 68) and stringent participant exclusion criteria (53; 69) that minimized motion-

related confound in our data. Our cross-sectional design is another limitation given that OCD 

and GD patients may express different levels of impulsivity and compulsivity throughout the 

course of their illness (6). Longitudinal investigations could clarify how latent phenotypes and 

their neural substrates change over time. More than half of our OCD patients and four of the 
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GD patients were on SSRI medication. Covarying for medication status had no impact on our 

findings, but to our knowledge the precise effects of SSRIs on CSTC effective connectivity have 

not been investigated.  

 

Conclusions 

Intermediate phenotypes are viewed as a promising method for understanding behavioral 

and biological mechanisms of risk for diverse disorders (1; 2; 70). We show that dimensional 

constructs related to impulsivity and compulsivity more closely track neuronal dynamics 

within cortico-striatal-thalamic-cortical circuits than the traditional diagnostic categories of 

OCD and GD. We also show that model-based estimates of effective connectivity successfully 

differentiate top-down and bottom-up dynamics, whereas estimates of functional 

connectivity yield largely null results. These findings suggest that Bayesian analysis of 

effective connectivity may provide a valuable tool for identifying biomarkers that cut across 

diagnostic boundaries. 
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Supplementary Methods 

 

Participants 

Data were obtained from two independent samples. The first consisted of 487 participants 

(50.7% female) aged 18 – 55 years (M = 34.2, SD = 9.3) recruited online through the Amazon 

Mechanical Turk community, hereafter referred to as the ‘online dataset’. The online 

dataset largely consisted of individuals from the United States (93.3%), with a small 

proportion from Australia (6.1%). Participants provided written informed consent prior to 

completing an online battery of self-report questionnaires and were reimbursed $2 (USD) per 

hour for their time.  

 

The second dataset consisted of 39 HCs, 34 patients with obsessive-compulsive 

disorder (OCD), and 23 patients with gambling disorder (GD) that were recruited as part of a 

broader study, hereafter referred to as the ‘imaging dataset’. All participants from the 

imaging dataset provided informed written consent in accordance with the Monash 

University Human Research Ethics Committee guidelines. OCD patients were recruited from 

specialist clinical services located in Melbourne, Australia. GD patients and HCs were 

recruited from the community. To be eligible for study inclusion, all participants in the 

imaging dataset were required to have no lifetime history of concussion, neurological disease, 

or drug abuse/dependence. OCD patients were required to score >8 on the severity section 

of the Florida Obsessive-Compulsive Inventory (FOCI (1)) and have their diagnosis confirmed 

by treatment services as well as the Mini International Neuropsychiatric Interview version 5 

conducted by L.P. and L.B. All GD patients engaged at least weekly in Electronic Gaming 
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Machine (EGM) gambling, were required to score >8 on the Problem Gambling Severity Index 

(PGSI (2)), and had their diagnosis confirmed by the Structured Clinical Interview for DSM-IV 

conducted by L.P. and L.B. The presence of either depression or anxiety, indexed by the MINI, 

in either OCD or GD patients was not excluded so long as the OCD and GD symptoms 

constituted the primary cause of distress and interference in the participant’s life. Participants 

were excluded if they met criteria for any other psychiatric disorders, including the concurrent 

presence of OCD and GD. 

 

Measures 

 

Structural Equation Modelling 

Data screening and preliminary analyses were conducted in IBM SPSS Statistics Version 23. 

Univariate outliers were identified and removed using a sequential fence procedure 

constructed using the upper and lower quartiles, defined as: fQ = n/4 + (1/4), and a 2.2 

multiplicative of the interquartile range (3). All confirmatory factor analysis (CFA) models 

were estimated in Mplus 7.2 using the covariance matrix (4). A two-step analysis strategy was 

used as described in Tiego et al (5): (i) item-level data obtained from the UPPS-P, IUS-12, OBQ-

44, questionnaires were analyzed using separate first-order CFAs to determine their optimal 

latent structure; (ii) Factor score estimates representing individual differences on each of 

these first-order latent dimensions were entered as variables for estimation of the second-

order dimensional phenotypes model. First-order CFA models of ordered categorical data 

were estimated using the Weighted Least Squares Means and Variance adjusted estimator 

(WLSMV) and Theta parameterization with item loadings and thresholds freely estimated and 

the error variance of latent response variables fixed at one (4; 6).  

 

 Second-order CFA of the factor score estimates generated from the first-order models 

were estimated using Full Information Maximum Likelihood and the Bollen-Stine Bootstrap 

procedure with 10,000 posterior draws (4; 7). Latent variable scaling was performed using the 

fixed factor method (6). Post hoc model fitting was performed using the Benjamini-Hochberg 

False Discovery Rate (FDR) and freely estimated error covariances were retained if statistically 

significant with the FDR set at q = .05 . Model fit was assessed using a combination of absolute 

and incremental fit indices, including the chi square test statistic (χ2), Root Mean Square Error 
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of Approximation (RMSEA) (ε < .05 close approximate fit; ε = .05 - .08 close approximate fit; ε 

= .08 – 1.0 reasonable approximate fit), Comparative Fit Index (CFI) (³.90 = reasonable fit; 

³.95 = good fit), and Standardized Root Mean Square Residual (SRMR; <.08 = good fit), or 

Weighted Root Mean Residual (WRMR; £.950 = good fit) for categorical variables (8-12). 

Factor score estimates were generated in Mplus using the regression method and their 

reliability and validity were calculated using factor score determinacy and H index values (13; 

14). The H index varies from 0 – 1, with values greater than .70 indicating adequate 

replicability of the factors across studies using the same variables . Factor score determinacies 

(ρ) also vary from 0 – 1, with values of approximately ³.9 indicating that the factor score 

estimates provide a valid measure of individual differences on the corresponding latent 

dimensions (13; 15). 

 

Acquisition, pre-processing, denoising, and quality control of magnetic resonance imaging 

data 

For the imaging dataset, a high-resolution anatomical image was obtained using a T1-

weighted MP-RAGE structural scan (TE = 2.55ms, TR = 1.52s, flip angle = 9°, 208 slices with 1 

mm isotropic voxels) and an eyes-closed rs-fMRI sequence was obtained using BOLD contrast 

sensitive gradient echoplanar imaging (EPI) (TE = 30ms, TR = 2.5s, flip angle = 90°, 189 

volumes, 44 slices). 

T1-weighted data were processed by removing the neck (FSL’s robustfov), segmenting 

into white matter (WM), cerebrospinal fluid (CSF), and gray matter (GM) probability maps 

(SPM8’s New Segment), and spatially warping the T1 and associated tissue maps to MNI space 

using the nonlinear deformation algorithm implemented in the Advanced Normalization 

Tools (ANTs (16)). In order to yield more specific estimates of WM and CSF signals for 

subsequent denoising, we applied up to five erosion cycles to the WM mask and up to two 

erosion cycles to the CSF mask following extraction of the ventricles and before spatial 

normalization (17; 18). 

Prior to denoising, EPI data were processed by removing the first four volumes and 

applying slice-time correction (SPM8), spatial realignment (SPM8), co-registration to the T1-

weighted image and nonlinear warping to MNI space using the warps derived above. The data 
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were then linearly detrended and intensity-normalized to mode 1000 units. Then, EPI data 

were spatially smoothed with a 6 mm FWHM kernel, denoised using ICA-AROMA (19; 20) and 

regression of the mean WM/CSF signals, before being bandpass filtered (between 0.008 and 

0.08 Hz) (17). Bandpass filtering was done using fast Fourier transform and suppressing 

frequencies outside the bandpass range. 

As per recommendations in Parkes et al (17), participants were excluded from analysis 

if any of the following were true: (i) mean framewise displacement (mFD) was >0.2mm; (ii) 

FD contained >20% motion spikes, where spikes were defined as a single FD of >0.25mm; or 

(iii) any FDs >5mm. Additionally, we report the residual cross-subject correlation between FD 

and whole brain functional connectivity following denoising, quantified both as a percentage 

of connections significantly impacted by motion (i.e., QC-FC correlations), as well as the 

impact that distance between brain regions has on this effect (i.e., QC-FC distance-

dependence). 

Generation of DCM nodes 

The anatomical brain regions for each CSTC circuit defined in the main text cover large parts 

of the brain and likely contain multiple heterogenous signals, which is not ideal for 

connectivity analysis. As such, to generate subject-specific DCM ROIs we combined our a 

priori anatomical constraints with group-level functional neuroanatomy (21). 

First, the dorsal and ventral striatal subregions were defined using a parcellation of 

the striatum based on structural connectivity developed in our previous work (22). Second, 

we mapped the seed-based functional connectivity of the dorsal and ventral striatal 

subregions for each subject using a whole-brain general linear model as implemented in 

SPM12. For each striatal subregion, subject-specific contrast images were included in a 3 x 2 

factorial design (group (HC, OCD, PG) by hemisphere (left, right)). To estimate the main effect 

of striatal subregion at the second level, single-sample t-tests were run for each striatal 

subregion and each hemisphere separately, collapsing across all three groups. Third, 

anatomical masks were generated in each hemisphere using the following AAL region (s): (i) 

thalamus; (ii) aCC; (iii) OFC/vmPFC; and (iv) dlPFC. Fourth, for each striatal subregion, 

anatomical mask, and hemisphere, we generated a spherical search volume with a 16-mm 

radius (12-mm was used for the thalamus due to the smaller anatomical size of this region) 

centered on the maximum t-value from the second level main effect. We multiplied each 
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search volume by the corresponding anatomical mask to ensure voxels outside our 

anatomical regions of interest were not included. To ensure we were not capturing effects 

from within the striatal subregions themselves, we also removed voxels from the search 

volumes that were within 20-mm of the center of mass of the corresponding striatal 

subregion and subtracted voxels that overlapped with other search volumes (this only 

occurred for the aCC for the ventral CSTC circuit). This resulted in a set of search volumes for 

each CSTC circuit that captured the group level functional connectivity between each striatal 

subregion and the corresponding anatomical masks. Finally, for each subject and search 

volume, we found the maximal functional connectivity value (using the first-level contrast 

images) and generated a sphere with radius 3-mm as the DCM ROI. For each DCM ROI, time 

series were extracted as the principal eigenvariate of all voxel time series. 

In summary, the above procedure resulted in subject-specific DCM ROIs with radius 3-

mm that satisfied the following criteria: (i) within a 16-mm radius of the second-level main 

effect of striatal seed for the whole sample (12-mm for the thalamus); (ii) within the 

boundaries of the corresponding anatomical ROI; (iii) at least 20-mm away from the center-

of-mass of the corresponding striatal seed; and (iv) did not overlap with DCM ROIs generated 

for any of the other anatomical ROIs. 
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Supplementary Results 

 

Participant exclusion 

Of the 487 participants from the online dataset, three were excluded because of outlying 

scores on the phenotypes from our bifactor model (see below). Of the 96 participants from 

the imaging dataset, one individual from the GD group was excluded due to outlying scores 

on phenotypes from our bifactor model (see below). This yielded a final phenotype modelling 

sample of 579 participants, of which a subset of 39 HC participants, 34 OCD participants, and 

22 GD participants underwent imaging. Following phenotype modelling, four more individuals 

from the imaging dataset were excluded due to excessive motion (one from the HC group, 

one from OCD, and two from GD) and one individual from the OCD group was excluded due 

to poor EPI quality. This yielded a final imaging sample of 38 HC participants, 32 OCD 

participants, and 20 GD participants. 

 

Structural Equation Modelling   

Results from the first-order CFA revealed that bifactor models provided a reasonable fit to 

the data for the UPPS-P (χ2 (1589) = 2854.092, p <.001; RMSEA = .037; 90%CI = .035 - .039; 

CFI = .976; WRMR = 1.346), IUS-12 (χ2 (31) = 43.464, p = .068; RMSEA = .026; 90%CI = .000 - 

.043; CFI = .999; WRMR = .314), OBQ-44 (χ2 (355) = 3931.902, p <.001; RMSEA = .079; 90%CI 

= .076 - .081; CFI = .916; WRMR = 1.727) in the combined sample, replicating previous results 

reported for the American Mechanical Turk sample (5). Factor score estimates were 

generated for each of these 12 latent dimensions and screened for univariate outliers (UPPS-

P Impulsivity General = 2; OBQ-44 Obsessive Beliefs General = 1; IUS-12 Importance & Control 

of Thoughts - Specific = 1; IUS-12 Responsibility & Threat Estimation – Specific = 1). The 

correlations matrix for the factor score estimates used in the second-order CFA models are 

displayed in Table S1. The Overlapping Dimensional Phenotypes bifactor model (see Figure 

S1) was replicated from the previous study (5) and provided an acceptable fit to the data (χ2 

(31) = 52.903, p = .057; RMSEA = .035; 90%CI = .018 - .050;CFI = .990; SRMR = .041) with 12 

error covariances freely estimated (FDR q < .05). Several competing models were also 

estimated to determine if they provided a better fit, including one-, two-, and three-factor 

models. Fit statistics for these competing models are provided in Table S2. Similar to results 

reported in Tiego et al (5), none of these competing models provided an acceptable fit to the 
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data. Furthermore, several variables did not load significantly on their respective factors and 

had to be dropped from the One Factor (Intolerance of Uncertainty – General), Two-Factor A 

(RT-, ICT-, & Need for Predictability in the Face of Uncertainty-Specific); Two-Factor B and 

Three-Factor (IUS-12 & OBQ-44 General) models, suggesting that they did not adequately 

capture the covariances in the data. 

 

 From the bifactor model, construct replicability was acceptable for disinhibition 

(.779), impulsivity (.771), and compulsivity (.721), suggesting these factors would be reliably 

estimated across studies using the same variables (14; 23). Factor determinancies were high 

for disinhibition (ρ = .978), impulsivity (ρ = .903), and compulsivity (ρ = .930), indicating that 

the factor scores estmates provided accurate measurements of the underlying latent 

dimensions (13). Intercorrelations between the factor scores estimates were weak 

(disinhibition with impulsivity r = .078, p = .058 & compulsivity r = -.100, p = .016; impulsivity 

with compulsivity r = -.152, p < .001), demonstrating that the factor score estimates for each 

phenotype were not contaminated by variance from the other two factors (13). Factor score 

estimates were generated for the disinhibition, impulsivity, and compulsivity dimensions as 

measured in the final Overlapping Dimensional Phenotypes bifactor model (Figure S1). The 

distributions of factor score estimates were screened for univariate outliers, with one GD 

participant exhibiting Impulsivity exceeding 2.2 times the interquartile range, and results of 

three HC participants from the online dataset exceeding the critical Malhalanobis distance (χ2 

(3) >16.266, p < .001) (3; 24). As mentioned above, these participants were excluded from 

further analyses. The distributions of the factor score estimates were univariate and 

multivariate normal based on the skewness and kurtosis statistic divided by their standard 

errors for disinhibition (Z = 1.257, p = .209; Z = -.340, p = .725), impulsivity (Z = 1.794, p = .073; 

Z = 1.223, p = .220), and compulsivity (Z = 1.554, p = .120; Z = -1.202, p = .230) and as evaluated 

by Small’s test of multivariate skewness (χ2 (3) = 7.014, p = .072) and kurtosis (χ2 (3) = 3.207, 

p = .361) (24-26). This suggests that values for these latent variables obtained in the OCD and 

GD groups were continuous with the non-clinical population, consistent with the assumption 

of normally distributed dimensional phenotypes.
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Table S1. Intercorrelations Amongst the First-Order Factor Score Estimates Used as Variables for the Second-Order Confirmatory Factor Analysis Models 

 

 
1 2 3 4 5 6 7 8 9 10 11 12 

1. Age             

2. Impulsivity -.018            

3. Urgency -.016 .131**           

4. Sensation Seek -.123** .085* .596***          

5. Premeditation .016 .085* .429*** .421***         

6. Perseverance -.032 .057 .214*** .051 .458***        

7. Intolerance -.037 .394*** -.055 -.235*** -.424*** -.141**       

8. Paralysis -.101* .372*** .185*** .065 .121** .335*** .097*      

9. Predictability .035 -.378*** -.211*** -.104* -.308 -.378*** .087* -.712***     

10. Obsessive -.086* .394*** .117** -.060 -.241*** -.078 .616*** .171*** -.039    

11. Control -.040 .188*** .280*** .064 .217*** .100* -.012 .210*** -.257*** .082*   

12. Perfection .021 -.169*** -.159*** -.101* -.287*** -.328*** .176*** -.142*** .255*** .066 -.113**  

13. Threat .097* -.315*** -.172*** -.006 -.129** -.255*** -.053 -.387*** .413*** .016 -.324*** .141** 

Note. Impulsivity = Impulsivity-General (UPPS-P); Urgency = Negative and Positive Urgency-Specific (UPPS-P); Sensation Seek = Sensation Seeking-Specific (UPPS-P); Premeditation = Lack of Premeditation Specific 
(UPPS-P); Perseverance = Lack of Perseverance-Specific (UPPS-P); Intolerance = Intolerance of Uncertainty-General (IUS-12); Paralysis = Paralysis of Cognition and Action in the Face of Uncertainty-Specific (IUS-12); 
Predictability = Desire for Predictability-Specific (IUS-12); Obsessive = Obsessive Beliefs General (OBQ-44); Perfectionism = Perfectionism Specific (OBQ-44); Importance = Importance and Control of Thoughts Specific 
(OBQ-44); Responsibility = Responsibility and Threat Assessment (OBQ-44). ***p < .001;**p < .01; *p < .05. N = 583.
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Table S2. Summary of Fit Statistics for the Competing Second-Order Confirmatory Factor Analysis Models of 

Impulsivity and Compulsivity 

 Model df χ2 p  RMSEA (90%CI) SRMR CFI AIC 

1 Three Factor 1,2, 

 (UPPS-P, OBQ-44, 

IUS-12) 

30 302.836 <.001 .125 (.112 - .138) .079 .829 12381.555 

2 Two Factor A 1,3 

 (Impulsivity & 

Compulsivity) 

24 526.127 <.001 .189 (.176 - .204) .139 .656 12839.687 

3 Two Factor B 1,2 

 (separate 

Intolerance to 

Uncertainty 

factor) 

24 62.417 .001 .052 (.037 - .069) .035 .976 12153.136 

4 One Factor 1,4 34 247.257 <.001 .104 (.092 - .116) .064 .883 13758.133 

5 Bifactor 1 

 (Overlapping 

Dimensional 

Phenotypes) 

31 52.903 .057 .035 (.018 - .050) .041 .990 14721.144 

Note. df = Degress of Freedom; χ2 = Chi square value for test of model fit estimated using Maximum Likelihood; p = significance value of the 
chi square test statistic using the Bollen-Stine Bootstrap with 10,000 posterior draws; RMSEA = Root Mean Square Error of Approximation; 
CI = Confidence Interval; SRMR = Standardized Root Mean Residual; CFI = Comparative Fit Index; AIC = Akaike Information Criterion. 1Included 
freely estimated error covariances; 2No IUS-12 or OBQ-44 general variables; 3No RT-, ICT-, & Need for Predictability in the Face of 
Uncertainty-Specific variables; 4No IUS-12 General variable. 

 
 

 

 



 
Figure S1. Overlapping Dimensional Phenotypes (bifactor) model, consisting of a general Disinhibition factor, and two group factors, Impulsivity and Compulsivity.  
Note. Sensation Seeking = Sensation Seeking-Specific (UPPS-P); Urgency = Positive/Negative Urgency-Specific (UPPS-P); Lack of Premed = Lack of Premeditation-Specific (UPPS-P); Lack of Persevere = Lack of 
Perseverance (UPPS-P); Impulsivity (UPPS-P) = General factor of the UPPS-P; IU = General factor of the IUS-12; Paralysis Cognition = Paralysis of Cognition and Action in the face of Uncertainty-Specific (IUS-12); Desire 
for Predict = Desire for Predictability and an Active Engagement in Seeking Certainty -Specific (IUS-12); Obsessive Beliefs = General factor of the OBQ-44; Control of Thoughts = Importance and Control of Thoughts-
Specific (OBQ-44); Perfection = Perfectionism-Specific (OBQ-44); Threat Estimation = Responsibility and Threat-Estimation-Specific (OBQ-44). Standardized parameter estimates are in bold type face, unstandardized 
estimates appear below with bootstrapped standard errors in brackets. For identification purposes, factor scaling was set using the fixed factor method, such that the variances of three factors were standardized and 
fixed at 1.000. All parameters were significant at p < .001 unless otherwise indicated. ** p < .01; * p < .05. 
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Quality control of rs-fMRI scans 

Adequate control over motion-related artefacts in rs-fMRI is crucial to conducting group 

analyses (17; 27-29). The mFD averaged over the clinical dataset was 0.07±0.03, indicating 

the level of motion was low following exclusion. At the group level, mFD was the same across 

HC (mFD = 0.07±0.03), OCD (mFD = 0.07±0.03), and GD (mFD = 0.07±0.03) groups. Only 3.73% 

of whole brain functional connections were significantly correlated (p <.05, uncorrected; 

absolute median QC-FC correlation was 0.10) with motion following denoising with ICA-

AROMA and the distance-dependence on this effect was 0.04 (Spearman’s ρ), indicating that 

motion contamination was low in our data.  

 

DCM ROI generation 

As mentioned above, we generated participant-specific DCM ROIs that were within a 16-mm 

(12-mm for the thalamus) radius of the second-level main effect of seed for each anatomical 

ROI in our model. We found that the dorsal and ventral striatal subregions functionally 

connected to distinct subregions of our anatomical ROIs, these foci are listed below in Table 

S3. Specifically, we found that the dorsal striatum preferentially connected to the dorsal aCC 

(daCC), the middle OFC (miOFC) and the anterior thalamus, whereas the ventral striatum 

preferentially connected to the ventral aCC (vaCC), the medial OFC (meOFC), and the 

posterior thalamus. The second-level functional foci for each of these regions were the center 

points that constrained the generation of our participant-specific DCM ROIs for the dorsal and 

ventral CSTC circuits. 

 

Table S3. MNI co-ordinates of peak group-level connectivity within cortico-striatal-thalamic-cortical circuits. 

These co-ordinates formed the centre points of search volumes used to define participant-specific ROIs for 

dynamic causal modelling.  

 Dorsal CSTC circuit (x,y,z) Ventral CSTC circuit (x,y,z) 

 left right left right 

Thalamus -8,-4,8 2,-4,10 -16,-28,2 12,-28,4 

aCC -10,40,26 10,40,6 -8,24,-4 4,28,-6 

OFC -22,56,2 22,62,0 -12,24,-8 4,30,-12 

dlPFC N/A N/A -24,-4,74 50,-8,56 
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Effective connectivity 

In the main text we presented results in the left hemisphere, here we present results for the 

right hemisphere. Results are shown below in Figure S2. Similar to the left hemisphere, we 

found that none of our diagnostic group contrasts yielded any supra-threshold effect on 

effective connectivity between regions in the CSTC circuits. However, unlike the left 

hemisphere, we found that disinhibition, compulsivity, and impulsivity also had little impact 

on effective connectivity between CSTC regions, suggesting our results were largely 

lateralized to the left hemisphere. 

 

 
Figure S2. Effective connectivity between regions in cortical-striatal-thalamic-cortical (CSTC) circuits in the right 

hemisphere covaries with individual differences in disinhibition, compulsivity, and impulsivity. Left, brain regions 

(i.e., search volumes for subject-specific DCM ROIs) and wiring diagram representing the model that was 

specified. Solid lines represent connectivity between regions. Arrow heads depict direction of connection. 

Dashed lines represent inhibitory self-connections. Right, effects of phenotypes and clinical severity on effective 

connectivity within CSTC circuits in the right hemisphere as assessed using parametric empirical Bayes. Effective 
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connectivity parameters are described in Hz (right panel, bold numbers), where the activity in one node 

influences the rate of change in the activity in another. Self-connections are (log)scaled. In both cases, the 

interpretaion is the same, with increasing scores on a given phenotype the effective connectivity between, or 

the inhibitory activity within, nodes decreases/increases as specified. The DCM ROIs have each been labeled 

according to which subregions of their respective anatomical ROI they were localized to during DCM ROI 

generation (see supplementary methods and supplementary results for details). daCC = dorsal anterior cingulate 

cortex, vaCC = ventral anterior cingulate cortex, miOFC = middle orbitofrontal cortex, meOFC = medial 

orbitofrontal cortex, aThal = anterior thalamus, pThal = posterior thalamus, dlPFC = dorsolateral prefrontal 

cortex, DS = dorsal striatum, VS = ventral striatum. 
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Analysis using functional connectivity 

In the main text we present results of a fully Bayesian analysis of effective connectivity and 

show that phenotypes from our bifactor model (5) covary with bottom-up connectivity in 

CSTC circuits. Here, we contrast this Bayesian analysis of effective connectivity with 

frequentist analysis of functional connectivity. We estimated functional connectivity as a 

Pearson correlation between the eigenvariate time series from the DCM ROIs that elicited an 

effect in our PEB analysis (see main text), not including the self-connections. This resulted in 

undirected functional connectivity being estimated between the anterior thalamus and daCC 

from the dorsal CSTC circuit as well as between the posterior thalamus and dlPFC from the 

ventral CSTC circuit. The relationship between functional connectivity and the phenotypes 

was assessed using a general linear model that included the same nuisance covariates as in 

the DCM analysis (i.e., age, gender, IQ, medication status, and mean FD). None of the model 

coefficients were significant at p<0.05, corrected for multiple comparisons. The negative 

relationship between compulsivity and anterior thalamus-daCC functional connectivity in the 

dorsal CSTC circuit was marginally significant at uncorrected levels (r = -0.05, p = 0.049). These 

results demonstrate that estimates of effective connectivity derived from DCM analyzed 

using Bayesian methods are more sensitive to relationships with our dimensional phenotypes.  
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