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Mathematical modelling studies of C. trachomatis transmission predict that interventions to 

screen and treat chlamydia infection will reduce prevalence to a greater degree than that 

observed in empirical population-based studies. We investigated two factors that might 

explain this discrepancy: partial immunity after natural infection clearance and differential 

screening coverage according to infection risk. We used four variants of a compartmental 

model for heterosexual C. trachomatis transmission, parameterized using data from England 

about sexual behaviour and C. trachomatis testing, diagnosis and prevalence, and Markov 

Chain Monte Carlo methods for statistical inference. A model in which partial immunity 

follows natural infection clearance and the proportion of tests done in chlamydia-infected 

people decreases over time fitted the data best. The model predicts that partial immunity 

reduced susceptibility to reinfection by 72% (95% Bayesian credible interval 57-86%). The 

estimated screening rate was 4.6 (2.6-6.5) times higher for infected than for uninfected 

women in 2000; this decreased to 2.1 (1.4-2.9) in 2011. Other factors not included in the 

model could have further reduced the expected impact of screening. Future mathematical 

modelling studies investigating the effects of screening interventions on C. trachomatis 

transmission should incorporate host immunity and changes over time in the targeting of 

screening. 
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INTRODUCTION 

There is ongoing debate about the evidence to support screening for Chlamydia trachomatis 

(chlamydia) infection to reduce prevalence.1-3 C. trachomatis is the most commonly reported 

bacterial sexually transmitted infection (STI) in high-income countries; in 2016, about 

128,000 cases of C. trachomatis were diagnosed among young people aged 15-24 years in 

England4 and over 1 million in the United States of America 5. C. trachomatis can cause pelvic 

inflammatory disease (PID) in women, which can lead to ectopic pregnancy and tubal factor 

infertility.6 However, C. trachomatis infection is often asymptomatic, so screening has been 

promoted to detect and treat asymptomatic infection to prevent reproductive tract 

morbidity and reduce transmission. In England, screening for chlamydia increased 

considerably with the National Chlamydia Screening Programme (NCSP) in 2003. Through 

the NCSP, free opportunistic screening is offered to sexually active women and men under 

25 years of age, with nationwide roll-out achieved in 2008. Testing coverage in young 

women increased from 4% in 2000 to 35% in 2012.7 However, chlamydia prevalence, 

estimated in two cross-sectional population-based British National Surveys of Sexual 

Attitudes and Lifestyles (Natsal) was similar in adults aged 18 to 24 years; in 1999-2001 

(Natsal-2), women 3.1% (95% confidence interval, CI 1.8-5.2) and men 2.9% (1.3-6.3) and in 

2010-2012 (Natsal-3). Women 3.2% (2.2-4.6) and men 2.6% (1.7-4.0).8,9 

Transmission dynamic modelling studies predict that screening at levels achieved by the 

NCSP in England should reduce C. trachomatis prevalence.10 These modelling studies 

describe sexual networks and the dynamics of infection transmission using different 

structures and levels of complexity.11-14 In a simpler model, without detailed sexual 

behaviour, Lewis and White inferred changes in C. trachomatis prevalence and incidence 

using time-series data about chlamydia testing and diagnoses in England between 2000-
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2015.7,15 Their model output proposed that prevalence had declined as chlamydia testing 

increased and increased as testing levels fell. An assumption in these models, irrespective of 

structure, is that amongst people without symptoms suggestive of infection, testing for 

chlamydia is not influenced by the underlying risk of infection in the screened population. In 

reality, the NCSP in England, and other chlamydia screening interventions, primarily test 

people at an increased risk of chlamydia.16 Further, with increasing chlamydia test coverage 

and falling test positivity7, if prevalence stayed at similar levels then the proportion of tests 

done in those at lower risk of infection must have increased. 

Immunity also affects the model-predicted impact of screening if treatment inhibits the 

development of immunity otherwise experienced after natural clearance of infection.17,18 In 

a model accounting for immunity, individuals that clear infection naturally are temporarily or 

partially protected from the force of infection which results in a less rapid turnover of C. 

trachomatis within the modelled population. This reduces the predicted impact of screening. 

Immunity is often not included as part of the natural history in C. trachomatis transmission 

models10 and, in practice, not much is known about the strength and duration of immunity. 

Clinical and animal studies suggest that immunity is probably partial instead of fully 

protective.19,20 In one modelling study, Johnson and colleagues estimated a period of 

immunity of 6-17 years by fitting their model to chlamydia notification data, but they 

assumed that immunity was fully protective.18  

In this paper, we use data about sexual behaviour and the prevalence of C. trachomatis in 

the general population of Great Britain from Natsal-2 and Natsal-3 and time-series data 

about chlamydia testing and diagnoses in England and across the same time period. Using a 

C. trachomatis transmission model, we investigated two hypotheses about factors that 

might attenuate the effects of a chlamydia screening intervention: the existence of long-
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lasting partial immunity; and differential chlamydia test coverage according to the risk of 

being infected. 

METHODS 

Data 

Natsal is conducted by face-to-face and computer-assisted questionnaire amongst a 

stratified random sample of the resident population of Great Britain at ten year intervals 

since 1990.21 Natsal-2 includes data about 12,110 respondents aged 16-44 years from 1999-

2001, and Natsal-3 includes data about 15,162 respondents aged 16-74 years from 2010-

2012. 22,23 Starting with Natsal-2, a random sample of participants who have ever had sexual 

intercourse has been invited to provide a first catch urine sample, which is tested for the 

presence of C. trachomatis using a nucleic acid amplification test (3,608 respondents aged 

18-44 years in Natsal-2 and a 4,550 respondents aged 16-44 years in Natsal-3). We used data 

from heterosexual respondents between 16-44 years about the number of new heterosexual 

partners in the last year, the respondent’s age at first heterosexual intercourse and the 

respondent’s age and partner ages at the time of first sexual intercourse with the first, 

second and third most recent heterosexual partner. We aggregated these data for both 

surveys because there were no significant differences for these variables between the 

datasets.22 

We used estimates for the numbers of chlamydia tests and diagnoses from 2000 to 2011 in 

England from Chandra and colleagues.7 In this study, available data from several monitoring 

and surveillance systems in England, including NCSP, were collated to construct plausible 

minimum and maximum estimates for the numbers of tests and diagnoses each year for 

men and women in five-year age groups: 15-19, 20-24, 25-34 and 35-44 year olds. Chlamydia 
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testing data did not distinguish between tests provided to people with symptoms suggestive 

of infection with C. trachomatis and screening tests amongst people without symptoms. 

Chlamydia transmission model 

We developed a mathematical model to describe heterosexual C. trachomatis transmission 

in England from 2000 to 2011. The model uses differential equations and is described in 

detail in the Supplementary Information, part I; a brief summary is provided here. Model 

compartments and transmission rates are shown in Fig. 1 and Table 1. 

 

 

The model describes the transmission of chlamydia among susceptible people (𝑆𝑆), infected 

people with a primary infection (𝐼𝐼), people that have recovered naturally (𝑅𝑅) and people 

with a repeated infection (𝑌𝑌). People are further stratified by sex 𝑘𝑘 (men, women), age 𝑎𝑎 

(15-17, 18-19, 20-24, 25-34 and 35-44 years old) and sexual activity class 𝑗𝑗 (low, high, 

defined by the average number of new heterosexual partners per year). Detailed age mixing 

behaviour and mixing between activity classes is modelled using methods proposed in a 

previous publication, where we accounted for differences in sexual behaviour reported by 

men and women.24 People can switch between activity classes at a rate that is proportional 
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(1 − 𝜅𝜅)(1 − 𝑞𝑞𝑘𝑘)𝜆𝜆𝑘𝑘,𝑗𝑗,𝑎𝑎 

𝑞𝑞𝑘𝑘𝜆𝜆𝑘𝑘,𝑗𝑗,𝑎𝑎 (1 − 𝜅𝜅)𝑞𝑞𝑘𝑘𝜆𝜆𝑘𝑘,𝑗𝑗,𝑎𝑎 

𝜔𝜔𝜔𝜔𝜒𝜒𝑆𝑆 

𝛾𝛾 

𝜔𝜔𝜔𝜔𝜒𝜒𝑘𝑘,𝑗𝑗,𝑎𝑎
𝐴𝐴 (𝑡𝑡) 

𝜔𝜔𝜔𝜔𝜒𝜒𝑆𝑆 

(1 − 𝑞𝑞𝑘𝑘)𝜆𝜆𝑘𝑘,𝑗𝑗,𝑎𝑎 

𝛾𝛾 + 𝜔𝜔𝜔𝜔𝜒𝜒𝑘𝑘,𝑗𝑗,𝑎𝑎
𝐴𝐴 (𝑡𝑡) 

Figure 1: Schematic illustration of the C. trachomatis transmission model. S susceptible; IA asymptomatically infected; IS 
symptomatically infected; R partially immune; YA asymptomatic reinfection; YS symptomatic reinfection. Parameters are described in 
Table 1. 
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to the size of these classes.25 There is a time-dependent force of infection 𝜆𝜆𝑘𝑘,𝑗𝑗,𝑎𝑎 that involves 

the per partnership transmission probability (𝛽𝛽) and the heterosexual mixing patterns 

between ages and sexual activity classes. A fraction 𝑞𝑞 of all new infections is symptomatic, 

the remainder being asymptomatic. People in the recovered compartment are partially 

immune with a reduced susceptibility to reinfection.  

We assumed that all symptomatically infected people receive a chlamydia test at rate χ𝑆𝑆 and 

are subsequently treated. After treatment, symptomatically infected people become 

susceptible again at rate 𝜔𝜔 𝜔𝜔 𝜒𝜒𝑆𝑆, where 1 − 𝜔𝜔 is the probability of treatment failure, 1 − 𝜔𝜔 

the probability of being reinfected by a partner immediately after successful treatment and 

1/𝜒𝜒𝑆𝑆 the average duration until treatment. Asymptomatically infected people can clear their 

infection naturally at rate 𝛾𝛾, or are screened at a sex- and age-dependent rate 𝜒𝜒𝑘𝑘,𝑎𝑎
𝐴𝐴 (𝑡𝑡) that 

depends on time t. The chlamydia screening rate amongst asymptomatic individuals differs 

according to the risk of being infected, which we refer to as differential screening coverage. 

In the model, we define differential screening coverage as the ratio of the screening rates in 

asymptomatic individuals who are infected with C. trachomatis and asymptomatic 

individuals who are uninfected. Arguably, this ratio decreases until 2011, as more screening 

is offered and becomes less targeted. We model differential screening coverage by a time-

dependent parameter 𝜂𝜂𝑘𝑘,𝑎𝑎(𝑡𝑡) that decreases exponentially as a function of the total yearly 

number of screening tests 𝛯𝛯𝑘𝑘,𝑎𝑎(𝑡𝑡): 

 𝜂𝜂𝑘𝑘,𝑎𝑎�𝛯𝛯𝑘𝑘,𝑎𝑎�(𝑡𝑡) = 1 + (𝜂𝜂1 − 1)exp (−𝜂𝜂2 𝛯𝛯𝑘𝑘,𝑎𝑎(𝑡𝑡)))). (1) 

 

𝜂𝜂𝑘𝑘,𝑎𝑎�𝛯𝛯𝑘𝑘,𝑎𝑎� starts at 𝜂𝜂1 and converges to one as the number of tests 𝛯𝛯𝑘𝑘,𝑎𝑎 becomes large, 

reflecting the situation in which screening is distributed homogeneously among all people. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 15, 2018. ; https://doi.org/10.1101/389387doi: bioRxiv preprint 

https://doi.org/10.1101/389387
http://creativecommons.org/licenses/by/4.0/


  8 
 

We then calculated the screening rate in asymptomatically infected people, 𝜒𝜒𝑘𝑘,𝑎𝑎
𝐴𝐴 (𝑡𝑡), from 

𝛯𝛯𝑘𝑘,𝑎𝑎(𝑡𝑡) and 𝜂𝜂𝑘𝑘,𝑎𝑎(𝑡𝑡) by dividing the total number of screening tests in a given year by the 

total number of people eligible to receive screening, accounting for the differential screening 

coverage between asymptomatically infected and uninfected people: 

 𝜒𝜒𝑘𝑘,𝑎𝑎
𝐴𝐴 (𝑡𝑡) = 𝜂𝜂𝑘𝑘,𝑎𝑎

𝛯𝛯𝑘𝑘,𝑎𝑎(𝑡𝑡)
∑ [𝑆𝑆𝑘𝑘,𝑗𝑗,𝑎𝑎(𝑡𝑡) + 𝑅𝑅𝑘𝑘,𝑗𝑗,𝑎𝑎(𝑡𝑡) + 𝜂𝜂𝑘𝑘,𝑎𝑎 (𝐼𝐼

𝑘𝑘,𝑗𝑗,𝑎𝑎
𝐴𝐴 (𝑡𝑡) + 𝑌𝑌𝑘𝑘,𝑗𝑗,𝑎𝑎

𝐴𝐴 (𝑡𝑡))𝑗𝑗 ]
. 

(2) 

 

Table 1: Description of parameters used in the transmission model and their values or prior distributions 

Parameter Description Value/ 
Prior 

Source 

Fixed parameters 
𝑐𝑐𝑘𝑘,𝑗𝑗,𝑎𝑎 Heterosexual partner change rate per year See SI 21,24 
𝜌𝜌𝑘𝑘,𝑎𝑎,𝑎𝑎′ Partner age distribution See SI 21,24 
𝑝𝑝𝑘𝑘,𝑎𝑎 Probability of having had sex for the first time in the 

previous year 
See SI 21,24 

𝑓𝑓𝑘𝑘,𝑗𝑗 Proportion of people in high activity class See SI 21,24 
𝛼𝛼 Aging rate per year 1 - 
𝑚𝑚 Redistribution rate between activity classes 1 25 

1/𝛾𝛾 Duration of the asymptomatic period without 
screening (years) 

433/365 17 

𝜔𝜔 Probability of successful treatment 0.921 39 
𝜔𝜔 Probability of not being reinfected by a partner 

shortly after treatment 
0.806 40 

1/𝜒𝜒𝑆𝑆 Duration of the symptomatic period (years) 33/365 41 
𝜏𝜏𝑘𝑘,𝑎𝑎,𝑦𝑦 Number of tests offered to people in class (𝑘𝑘,𝑎𝑎) See SI 7 

MCMC inferred parameters 
𝛽𝛽 Per partnership transmission probability Beta(1,1)  
𝜖𝜖 Sexual mixing coefficient Beta(1,1)  
𝑞𝑞𝑀𝑀 Fraction of symptomatic infections in men Beta(1,1)  
𝑞𝑞𝐹𝐹 Fraction of symptomatic infections in women Beta(1,1)  
𝜂𝜂1 Parameter 1 for per capita ratio of screening 

between infected and susceptibles 
U[1,10]  

𝜂𝜂2 Parameter 2 for per capita ratio of screening 
between infected and susceptibles 

Exp(U[-2,1])  

𝜅𝜅 Factor by which susceptibility to subsequent 
infection is reduced through partial immunity 

Beta(1,1)  
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Parameter inference 

We inferred the values of certain parameters using Markov Chain Monte Carlo (MCMC) 

sampling (Table 1).26 We ran five separate MCMC chains for 10,000 MCMC steps. We 

assumed a binomial likelihood for the prevalence data and a negative binomial (NB) 

likelihood for the diagnoses data (Supplementary Information, part II). We checked 

convergence of the MCMC chains by computing the Gelman-Rubin convergence diagnostic.27 

We used fixed values for the sexual behaviour parameters and some of the other 

parameters (𝛾𝛾, 𝜔𝜔 and 𝜒𝜒𝑆𝑆) (Table 1). To explore the sensitivity of the model outcomes to 

parameters 𝛾𝛾, 𝜔𝜔 and 𝜒𝜒𝑆𝑆, we varied their values by 10% and ran the same MCMC algorithm 

again. 

Comparison of model variants 

We used the chlamydia transmission model to investigate whether long-lasting partial 

immunity and differential screening coverage can explain discrepancies between model-

predicted effects of screening and observed data in England. We considered four different 

model variants (Table 2). In models 1 and 2 we assumed no partial immunity (by fixing 𝜅𝜅 to 

zero), whereas models 3 and 4 can account for immunity (0 < 𝜅𝜅 ≤ 1, estimated using 

MCMC). In models 1 and 3, we assumed a differential screening coverage that does not 

change as screening increases in time, i.e. (𝜂𝜂1estimated using MCMC and fixing 𝜂𝜂2 to zero). 

In models 2 and 4 we allowed for a differential screening coverage that changes as screening 

increases (𝜂𝜂1, e and 𝜂𝜂2 both estimated using MCMC). We compared the goodness of fit of 

the different model variants using the deviance information criterion (DIC). 28,29 

Model code (available on request) was implemented using R version 3.4.0. 
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Table 2: Summary of parameters (mean and 95% CI of posterior distributions) for different models. The last two rows show 
the fit statistics of the models. *Kept as fixed values in these models. 

Parameter Model 1 Model 2 Model 3 Model 4 
𝛽𝛽 0.61(0.57,0.65) 0.6(0.56,0.63) 0.85(0.79,0.92) 0.84(0.77,0.91) 
𝜖𝜖 0.75(0.55,0.94) 0.81(0.62,1) 0.79(0.61,0.97) 0.84(0.67,1.01) 
𝑞𝑞𝑀𝑀 0.13(0.09,0.18) 0.09(0.02,0.16) 0.14(0.09,0.18) 0.1(0.04,0.16) 
𝑞𝑞𝐹𝐹 0.14(0.07,0.21) 0.1(0,0.19) 0.14(0.07,0.21) 0.1(0.02,0.19) 
𝜂𝜂1 2.06(1.36,2.76) 6.05(2.28,9.83) 2.51(1.68,3.34) 6.04(2.69,9.38) 
𝜂𝜂2 0* 1.20 (0.19,7.59) 0* 0.98(0.42,2.29) 
𝜅𝜅 0* 0* 0.7(0.57,0.84) 0.72(0.57,0.86) 

Log likelihood -781(-783,-778) -776(-780,-773) -764(-767,-761) -760(-763,-757) 
DIC 1431 1424 1401 1389 

 

 

RESULTS 

The posterior probability distributions for the model-estimated parameters were different 

for each model variant and resulted in a different goodness of fit (DIC) to the empirical data 

on C. trachomatis prevalence and diagnoses (Table 2). Comparing the DIC values allowed us 

to investigate the validity of the assumptions distinguishing the four model variants. A model 

including a decreasing per capita ratio of screening tests in infected compared to susceptible 

people and partial immunity (model 4) described the data better (lowest DIC) than models 

where the composition of the screened population was assumed fixed in time or without 

partial immunity (Table 2). A model including partial immunity but no changes over time in 

the composition of the screened population (model 3) fitted second best to the data with a 

12 points’ higher DIC value. Models without partial immunity fitted considerably worse to 

the data. The model fit and the posterior distributions showed limited sensitivity to the exact 

values of the fixed parameters 𝛾𝛾, 𝜔𝜔 and 𝜒𝜒𝑆𝑆 (Supplementary Information, part III). In all 

models, the MCMC chains converged well (Gelman-Rubin diagnostic below 1.1).  
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Partial immunity decreased susceptibility to reinfection after natural clearance of a first 

infection by 72% (95% Bayesian credible interval (CrI) 57%-86%) in model 4 (Table 2). The 

estimate of partial immunity in the second-best fitting model 3 (fixed per capita ratio of tests 

in infected compared to susceptible people) was similar (70%, 95% CrI 57%-84%).  

 

Figure 2: Model fit to age-specific chlamydia prevalence for men and women in 2000 and 2011. Black dots and vertical bars: 
Estimated prevalence from Natsal (mean and 95% confidence intervals). Grey boxes: Full model (model 4) including changes 
in the proportion of tests done in infected individuals and partial immunity (posterior mean and 95% Bayesian credible 
intervals). 
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Fig. 2 shows the posterior prevalence predicted by the best-fitting model 4 and the observed 

levels of C. trachomatis prevalence in England in 1999-2000 and 2010-2011. The uncertainty 

about the prevalence estimates from empirical data is large due to small sample sizes.8,9 The 

model predicted a drop in prevalence for women between 15-24 years of 51% (95% CrI 47%-

54%) and for men between 15-24 years of 56% (95% CrI 51%-60%), also see Fig. 5. The mean 

model-predicted prevalence falls within the confidence intervals of the prevalence data for 

all age groups and both periods, with the exception of women aged 18-19 years in 2011. 

However, some inconsistencies remain between the observed and model-predicted 

chlamydia prevalence. In particular, for women the mean model-predicted prevalence is 

higher than the mean prevalence from data for 2000 and lower for 2011 for almost all age 

groups. 

 

Figure 3: Model fit to age-specific per capita number of diagnoses for men and women between 2000 and 2011. Vertical 
bars: Minimum and maximum estimates for number of diagnoses from Chandra and colleagues.7 Coloured lines and shaded 
areas: Full model (model 4) including changes in the proportion of tests done in infected individuals and partial immunity 
(posterior mean and 95% Bayesian credible intervals).  
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Empirical data show that the per capita number of diagnoses of C. trachomatis infections has 

increased between 2000 and 2011 (Fig. 3). Although model 4 could roughly reproduce this 

trend, some differences remain between the model fit and the data. In general, the model 

shows a less steep increase in the number of diagnoses from 2000 to 2011 for men and 

women between 20-24 years than was estimated by Chandra and colleagues.7 For men aged 

15-19 years, the model-predicted number of diagnoses increased more steeply than 

observed from data. 

In model 4, the expected screening rate was 4.6 (95% CrI 2.6-6.5) times higher for infected 

than for uninfected women in 2000; this decreased to 2.1 (95% CrI 1.4-2.9) in 2011. For men, 

this ratio decreased from 5.5 (95% CrI 2.7-7.9) in 2000 to 3.2 (95% CrI 2.0-4.4) in 2011 (Fig. 

4). The Bayesian credible intervals around these estimates are large. For men and women 

aged 25-44 years, we found no decrease in the ratio. The decrease in differential screening 

coverage in the model is the consequence of increased testing volume and not of decreased 

chlamydia prevalence, but it does affect prevalence. To show this, we investigated what 

would have happened to the predicted chlamydia prevalence if the estimated differential 

screening coverage as estimated for 2000 is maintained, while increasing the total number 

of screening tests as in the data. We used the estimated posterior distribution for 𝜂𝜂1 from 

model 4, while fixing 𝜂𝜂2 to zero. In this hypothetical scenario, the predicted decrease of 

chlamydia prevalence was significantly higher than the decrease predicted by model 4 (Fig. 

5). 
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Figure 4: Differential screening coverage: Model-estimated change in the ratio of the screening rates in infected vs. 
susceptible individuals for men and women of 16-24 years old between 2000 and 2011. Coloured lines and shaded areas: 
Posterior mean and 95% Bayesian credible intervals. 

 

 

 
Figure 5: Model-estimated change in chlamydia prevalence in men and women between 2000 and 2011. Best-fit: Full model 
(model 4) including changes in the proportion of tests done in infected individuals and partial immunity (posterior mean and 
95% Bayesian credible intervals). Hypothetical: Scenario in which the proportion of screening tests in infected individuals is 
kept at the same level as was estimated for 2000. 
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Discussion 

In this study, we compared four model variants in a compartmental model of C. trachomatis 

infection dynamics that includes partial immunity after natural clearance of infection and 

changes in differential screening coverage over time. The model variant that fitted best to 

empirical data about C. trachomatis prevalence and diagnoses in England between 2000 and 

2011 (model 4) included both partial immunity (a reduction of susceptibility of 56%-82%) 

and a decreasing proportion of screening tests done in infected people over time. Although 

both factors attenuate the model-predicted effectiveness of screening, the model including 

both factors still predicted a decrease of chlamydia prevalence between 2000 and 2011 of 

50-60% in the age groups targeted for screening.  

A strength of this study is the availability of time-series data about chlamydia testing and 

diagnosis data,7 and repeated cross-sectional surveys of C. trachomatis prevalence and 

sexual behavioural data from the same population over the same time period.22,23 The 

testing data avoided the need, in other modelling studies, for strong assumptions about 

(unobserved) levels of screening coverage.11,13,30 Second, because of the importance of age 

as a risk factor for chlamydia, we included detailed age structure and age-dependent sexual 

behaviour in our model, which allowed us to estimate chlamydia prevalence in different age 

groups and fitted these to data about age-specific prevalence and diagnoses.24 We made 

optimal use of age-specific data to estimate the values about the unknown model 

parameters, including those quantifying immunity and the distribution of screening tests. 

Third, by synthesizing the data in a Bayesian framework we could quantify the distinct 

effects of partial immunity and dynamic changes in the distribution of screening tests, whilst 

accounting for uncertainty about the model parameters.  
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Our study has also limitations. First, the testing and diagnosis data, rather than the 

chlamydia prevalence data mainly drove the Bayesian inference in our model. Prevalence 

data added less to the total likelihood because the surveys included a small sample of the 

target population for two periods only (1999-2001 and 2010-2012), whereas the data about 

diagnoses are from the whole of England for each year between 2000-2011. To down weight 

the diagnosis data compared with the prevalence data, we modelled their likelihood using a 

negative binomial distribution instead of a Poisson distribution, which introduced a 

moderate dispersion in the diagnoses data, reflecting additional bias that we could not 

model explicitly. Second, the assumption of an exponential relationship between the total 

number of tests 𝑇𝑇 in a given year and the per capita ratio of testing in infected compared 

with susceptible people 𝜂𝜂(𝑇𝑇) in that year might be an over-simplification. An exponential 

function makes sense because convergence to one as the number of tests becomes large 

indicates the increasingly equal distribution of tests among all sexually active people but 

another, non-continuous function might be more suitable, particularly when screening policy 

has changed over time.31 Finally, we assumed only one level of partial immunity, which is a 

likely over-simplification, given the possibility of heterogeneity in immune response at the 

level of the individual or strain-specific immunity, and potential effects of repeat infection. It 

is unclear how these assumptions and levels of heterogeneity would affect our results. 

The results of our study suggest that mathematical models that neglect changes over time in 

the distribution of screening tests among modelled subpopulations or do not include 

protective immunity after natural clearance of C. trachomatis10-14 over-estimate the effects 

of screening interventions on prevalence. However, our model did not fully reconcile the 

model predictions with the data either, with a larger model-predicted decrease of C. 

trachomatis prevalence between 2000-2011 than expected from data.9 According to our 
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model, screening and treating C. trachomatis-infected people resulted in a reduction in 

prevalence even when accounting for immunity. This finding does not support the results of 

a modelling study that suggested that widespread testing and treatment diminish population 

level immunity and can result in an increase in incidence and prevalence.32 Other factors 

have been proposed as reasons for the similarity of estimated C. trachomatis prevalence in 

the Natsal-2 and Natsal-3 surveys. First, increases in sexual risk-taking behaviour could have 

resulted in increased transmission of C. trachomatis, countering the effects of screening. 

However, amongst the sexual behaviours measured in Natsal-2 and Natsal-3, the only 

difference among heterosexual adults was a slight decrease in the proportion of men with 

multiple partners with whom no condoms was used.22 We do not believe that this change 

would be sufficient to abolish the model-predicted reduction in prevalence and we did not 

investigate this possibility because our model did not explicitly include condom use. Second, 

a temporary reduction in C. trachomatis prevalence could have occurred during the period 

between the Natsal surveys. In the modelling study by Lewis and White, which also used the 

data on chlamydia testing and diagnoses reported by Chandra and colleagues, model-

inferred prevalence decreased until 2008 and then increased back to baseline.15 That model 

did not take into account differential screening coverage over time and inferred large 

increases in incidence to balance the increase in screening rates.33 In theory, a reduction in 

the rate of successful partner notification could also limit the impact of a chlamydia 

screening intervention. However, in a study that compared a pair model including partner 

notification with a simpler model without partnerships,34 changes in partner notification 

rates resulted in very modest changes in incidence. Third, it has been suggested that C. 

trachomatis transmission is maintained by infection in the female rectum that is not 
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adequately treated.35,36 We deemed an analysis of the role of anorectal infections beyond 

the scope of this study because of the uncertainty about autoinoculation probabilities. 

Our findings have implications for future research and practice. First, discrepancies remain 

between the observed estimates of C. trachomatis prevalence and the model predictions, 

even in our best-fitting model. Future modelling studies should investigate other factors, 

such as those listed above, which could bridge the remaining gap between data and the 

model predictions. Second, clinical immunological studies that can provide more information 

about the strength and duration of immunity following natural clearance of C. trachomatis 

would be very valuable. Third, our model predicted a larger reduction in C. trachomatis 

prevalence if the ratio of screening coverage in infected compared with uninfected 

individuals remained high. This finding has implications for defining targets for screening 

performance. After 2011 in the NCSP in England, targets for screening coverage were 

replaced by indicators for diagnosis rates to maintain high levels of diagnosed infections for 

a given test volume.37 The optimal diagnosis rate and its relationship with population 

prevalence, however, remains unknown.38 

In conclusion, partial immunity against reinfection and changes in differential screening 

coverage over time might have limited the reduction in C. trachomatis prevalence that 

would be expected for the level of screening coverage achieved in England. The full range of 

factors that account for discrepancies between the observed prevalence data and model-

predictions has not been elucidated. Future mathematical modelling studies that aim to 

investigate the effects of screening interventions on C. trachomatis transmission should 

incorporate host immunity and changes over time in the targeting of screening. 
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