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Abstract- The structural network of the human brain has a rich topology which many have sought 
to characterise using standard network science measures and concepts. However, this 
characterisation remains incomplete and the non-obvious features of this topology have largely 
confounded attempts towards comprehensive constructive modelling. This calls for new 
perspectives. Hierarchical complexity is an emerging paradigm of complex network topology based 
on the observation that complex systems are composed of hierarchies within which the roles of 
hierarchically equivalent nodes display highly variable connectivity patterns. Here we test the 
hierarchical complexity of the human structural connectomes of a group of seventy-nine healthy 
adults. Binary connectomes are found to be more hierarchically complex than three benchmark 
random network models. This provides a new key description of brain structure, revealing a rich 
diversity of connectivity patterns within hierarchically equivalent nodes. Dividing the connectomes 
into four tiers based on degree magnitudes indicates that the most complex nodes are neither those 
with the highest nor lowest degrees but are instead found in the middle tiers. Spatial mapping of 
the brain regions in each hierarchical tier reveals consistency with the current anatomical, functional 
and neuropsychological knowledge of the human brain. The most complex tier (Tier 3) involves 
regions believed to bridge high-order cognitive (Tier 1) and low-order sensorimotor processing (Tier 
2). We then show that such diversity of connectivity patterns aligns with the diversity of functional 
roles played out across the brain, demonstrating that hierarchical complexity can characterise 
functional diversity strictly from the network topology. 
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Introduction 
 
The physical connections between regions of the human brain transcend their geometrical localities 
to support globally efficient and complex functional principles1,2. Characterisations of this structure 
as a network allows us to probe hidden architectural patterns, facilitating a deeper understanding 
of the brain’s wholescale organisation3–5. Such characterisations are enabled by network indices, 
which are used to measure and rank specific topological properties of networks, and null models, 
which are used to compare how networks differ from random networks designed with in-built 
topological characteristics. Yet much remains to be understood about these patterns and how they 
support the brain ’s multifaceted roles in, for example, information processing, creativity and 
cognition. Global network characteristics are modelled on the basis of brain regions and the 
connections between them. Important findings show efficiency3, fractal modular organisation4 and 
rich-club structures between hub nodes6 of brain networks. It has also been suggested that the 
inability to find simple generative models of the connectome implies the existence of a variety of 
different biological mechanisms working in conjunction with each other7. Methods to combine such 
mechanisms to explain brain structure have been attempted with moderate success, suggesting 
distance-based penalties and a tendency for neighbouring nodes to share neighbours being two 
key factors8,9. However, it has yet to be determined whether dissimilarity of connectivity patterns is 
itself a feature which can advance our understanding of brain structure. Just such a feature can be 
extracted using the recently developed hierarchical complexity paradigm10,11. 
 
Here, for the first time, we analyse the hierarchical complexity of the human structural connectome 
created from structural and diffusion magnetic resonance imaging (MRI) data acquired from a 
sample of working age individuals. This includes a detailed analysis of complexity within the 
hierarchical levels of these connectomes. This recently introduced paradigm has been validated 
only in an electroencephalogram (EEG) functional connectivity study10. It posits that network 
complexity is characterised by nodes of the same degree (hierarchically equivalent nodes) being 
connected in highly variable ways with respect to the degrees of nodes they connect to (having 
highly variable connectivity patterns), as illustrated in Figure 1. This concerns wholly separate 
considerations of topology to the well-known paradigms of small-world12 and scale-free13 complex 
networks— the former stemming from the idea that there are no more than six degrees of separation 
between any two people, which is exhibited with network characteristics of high clustering and low 
shortest path lengths, and the latter being that complex networks display power-law degree 
distributions, crudely identifiable by having few hub nodes with many connections and many 
peripheral nodes with few connections. Similarly, in seeking to define the notion of complexity, it 
takes a different stance to the standard notion of complexity arising between random and ordered 
systems14, instead proposing that both such systems have inherently more predictable connectivity 
patterns than real-world complex networks10.  
 
In the human brain, we particularly expect such behaviour. The brain is composed of numerous 
regions with myriad functional specialisations, a phenomenon which we hypothesise to necessitate 
a wide variety of connectivity patterns in the supporting structure. We test this hypothesis by 
comparing the network index for hierarchical complexity of structural connectomes against those 
of three node- and edge-matched randomised models. Complementing this, we seek to answer 
where in the network hierarchy, as well as in the brain biology, such complexity is prominent. We 
do this by splitting the structural connectome into hierarchical tiers and performing within tier 
analyses before analysing which regions lie consistently (in more than two thirds of participants) 
within one of these tiers. Critically, it is well established that hub regions exist in the brain15,16 and it 
is suggested that their degradation is a key mechanism in brain disorders17. Therefore, it is of 
interest to understand whether or not hub nodes are drivers behind the brain’s structural complexity 
or if other hierarchy levels are more complex and what implications this may have in our 
understanding of brain connectivity and how this could be implemented to aid our understanding 
of pathology. Finally, we study specific notable ROIs to understand how their unique connectivity 
patterns may be explained by their known functional roles. 
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Figure 1. Illustration of hierarchical complexity. Two networks are shown with 25 nodes, 44 edges and identical degree distributions. 
Node colours signify degrees as in the legend. The connectivity patterns (degrees of nodes a node is connected to) of degree 2 nodes 
are highlighted in the images by red edges and node boundaries. In a hierarchically ordered network, left, same degree nodes have 
homogeneous connectivity patterns. In a hierarchically complex network, right, same degree nodes have heterogeneous connectivity 
patterns. For example, node c is connected to only low degree nodes (2 and 3), and node b to only high degree nodes (5 and 8). 
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Materials and Methods 
 
For reference, a block diagram of the methodological pipeline used in this study is provided in 
Figure 2. Two sets of network analyses were produced to undertake a comprehensive analysis of 
hierarchical complexity in the adult human structural connectome. The first concerned the 
hierarchical complexity of binary structural connectomes. The second concerned the hierarchical 
tiers most responsible for the hierarchical complexity of the binary connectomes and the regions 
within these tiers. The latter was then used to compute ROI connectivity profiles, relaying the 
fractions of Tier 1, Tier 2, Tier 3 and Tier 4 nodes to which the ROI was connected. 
 
Subjects 
Eighty normal, healthy volunteers (40 males, 40 females) aged 25–64 (median 43, IQR 17) years 
were recruited by advertisement from staff working at the University of Edinburgh, the Western 
General Hospital and Royal Infirmary, Edinburgh, Scotland. Health status was assessed using 
medical questionnaires and all structural MRI scans were reported by a neuroradiologist. 

 
Figure 2. Block diagram of the employed methodological pipeline. Adjacency matrices are computed from the MRI signal. Random 
models are then generated with matching network size and density. Network indices are then computed from which the results are 
derived. 
 
Volunteers were recruited if they were native English speakers, were not on any long-term 
medication, had not been diagnosed with any chronic medical condition including diabetes mellitus 
or hypertension, had not undergone previous cranial surgery, and were able to undergo brain MRI. 
The study was approved by the Lothian Research Ethics Committee (05/S1104/45), and subjects 
gave written informed consent. 
 
MRI acquisition 
All MRI data were acquired using a GE Signa Horizon HDxt 1.5 T scanner (General Electric, 
Milwaukee, WI, USA) using a self-shielding gradient set with maximum gradient strength of 
33	𝑚𝑇/𝑚  and an 8-channel phased-array head coil. Briefly, subjects provided high resolution 
structural (𝑇& -, 𝑇' -, 𝑇'∗ - and fluid attenuated inversion recovery (FLAIR)-weighted scans) and 
diffusion MRI data in the same session. The diffusion MRI examination consisted of 7 𝑇'- weighted 
(𝑏 = 0	𝑠	𝑚𝑚-' ) and sets of diffusion-weighted (𝑏 = 1000	𝑠	𝑚𝑚-' ) single-shot spin-echo echo-
planar (EP) volumes acquired with diffusion gradients applied in 64 non-collinear directions18. 
Volumes were acquired in the axial plane with a field-of-view of 256	 × 	256	𝑚𝑚, contiguous slice 
locations, and image matrix and slice thickness designed to give 2	𝑚𝑚 isotropic voxels. A 3D 𝑇&-
weighted inversion recovery-prepared fast spoiled gradient-echo (FSPGR) volume was also 
acquired in the coronal plane with 160 contiguous slices and 1.3	𝑚𝑚4 voxel dimensions.  
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Image processing 
Each 3D 𝑇&-weighted FSPGR volume was parcellated into 85 cortical (34 per hemisphere) and sub-
cortical (eight per hemisphere) regions-of-interest (ROI), plus the brain stem, using the Desikan-
Killiany atlas and default settings in FreeSurfer v5.3 (http://surfer.nmr.mgh.harvard.edu). The results 
of the segmentation procedure were visually checked for gross errors and then used to construct 
grey and white matter masks for use in network construction and to constrain the tractography 
output. Using tools provided by the FDT package in FSL (http://fsl.fmrib.ox.ac.uk/fsl), the diffusion 
MRI data were pre-processed to reduce systematic imaging distortions and bulk subject motion 
artifacts by affine registration of all subsequent EP volumes to the first 𝑇'-weighted EP volume19. 
Brain extraction was performed on the registered 𝑇' -weighted EP volumes and applied to the 
fractional anisotropy (FA) volume calculated by DTIFIT in each subject20. The neuroanatomical ROIs 
determined by FreeSurfer were then aligned from 3D 𝑇&-weighted volume to diffusion space using 
a cross-modal nonlinear registration method. As a first step, linear registration was used to initialize 
the alignment of each brain-extracted FA volume to the corresponding FreeSurfer extracted 3D 𝑇&-
weighted brain volume using a mutual information cost function and an affine transform with 12 
degrees of freedom19. Following this initialization, a nonlinear deformation field based method 
(FNIRT) was used to refine local alignment21. FreeSurfer segmentations and anatomical labels were 
then aligned to diffusion space using nearest neighbour interpolation. 
 
Tractography 
Whole-brain probabilistic tractography was performed using FSL’s BedpostX/ProbTrackX 
algorithm22. Probability density functions, which describe the uncertainty in the principal directions 
of diffusion, were computed with a two-fibre model per voxel23. Streamlines were then constructed 
by sampling from these distributions during tracking using 100 Markov Chain Monte Carlo iterations 
with a fixed step size of 0.5	𝑚𝑚 between successive points. Tracking was initiated from all white 
matter voxels and streamlines were constructed in two collinear directions until terminated by the 
following stopping criteria designed to minimize the amount of anatomically implausible 
streamlines: (i) exceeding a curvature threshold of 70 degrees; (ii) entering a voxel with FA below 
0.1; (iii) entering an extra-cerebral voxel; (iv) exceeding 200	𝑚𝑚 in length; and (v) exceeding a 
distance ratio metric of 10. The distance ratio metric24 excludes implausibly tortuous streamlines. 
For instance, a streamline with a total path length 10 times longer than the distance between end 
points was considered to be invalid. The values of the curvature, anisotropy and distance ratio 
metric constraints were set empirically and informed by visual assessment of the resulting 
streamlines. Data is available online at https://www.brainsimagebank.ac.uk. 
 
Network construction 
Connections were recorded in an 85	 × 	85  adjacency matrix, where the entry 	𝑎78  denotes the 
connection (edge) weight between node 𝑖 and node 𝑗, where each node represents the aggregated 
tissue of one of the 85 ROIs. FA-weighted networks were computed by recording the mean FA 
value along interconnecting streamlines. Across the cohort, only connections which occurred in at 
least two-thirds of subjects were retained25. Self-connections were removed as these cause 
unwanted complications to network analyses, and if no streamlines were found between a pair of 
nodes, the corresponding matrix entry was set to zero. Network construction failed in one subject 
giving structural connectome data for seventy-nine subjects. 
 
Hierarchical complexity 
The hierarchical complexity of the structural connectomes was implemented to analyse how similar 
the connections established by nodes of the same degree were in terms of the degrees of the nodes 
they were connected to. This was achieved by computing the variability of the ordered node 
neighbourhood degree sequences.  Let 𝐺	 = 	 (𝒱, ℰ) be a graph with node set 𝒱 = {1,… , 𝑛}	and edge 
set ℰ	 = 	 {(𝑖, 𝑗):	𝑖, 𝑗	 ∈ 	𝒱}, and let 𝒦	 = 	 {𝑘&,⋯ , 𝑘J} be the set of degrees of 𝐺, where 𝑘7  is the number 
edges adjacent to vertex 𝑖. Further, let 𝒦K	be the set of nodes of degree 𝑝. For neighbourhood 
degree sequence 𝒔K7 = 	 {𝑠K7(1),⋯ , 𝑠K7(𝑝)} of node 𝑖 of degree 𝑝, the hierarchical complexity is 
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where 𝒟 is the number of distinct degrees in the network and 𝜇K(𝑗) is the mean of the 𝑗th entries of 
all 𝑝  length neighbourhood degree sequences10. For the tier-based analyses, we used degree 
specific hierarchical complexity by averaging hierarchical complexity over a given range of degrees, 
i.e. the degrees within the given tier definitions. 
 
Connectivity and network analysis 
Connectivity matrices were first binarised by setting all non-zero entries to 1 to obtain binary 
network topologies. For each connectivity matrix, three randomised graphs were generated with 
the same number of nodes (always 𝑛 = 85) and edges (𝑚 = 1281.5	 ± 	136.72). 
 
Firstly, Erdos-Renyi random graphs were generated as a baseline randomisation in which each 
node has an equal probability of being connected to any other. Random uniform weights were 
computed for each edge and the m largest weights were kept as edges. Secondly, to test the 
differences between brain connectivity and a closest distance-based connectivity of points placed 
randomly in 3D space, we generated random geometric graphs (RGGs)26. These were created by 
generating uniformly random 3D coordinates (representing nodes) and computing the distances 
between each pair of coordinates (representing weighted edges). The 𝑚 closest number of edges 
were then taken as the binary topology. Thirdly, we tested the difference between brain connectivity 
and graphs with the same degree distribution but with randomised edges, known as configuration 
models27. This allowed us to test the hierarchical complexity of the human structural connectome 
against a randomised null model controlling for graph heterogeneity and thus overcame any bias 
found simply due to a different level of heterogeneity in graph degrees. 
 
Hierarchical complexity was computed for all connectomes and null models alongside the following 
network indices: 

1. The degree variance28, 
𝑉 = 𝑣𝑎𝑟(𝒦), 

characterising the spread of the degree hierarchy and thus associated with the dominance of the 
network hubs. 

2. Assortativity29, 
𝑟 =	

∑ Qefg-hfhg 'i⁄ Uhfhgfg
∑ Qhfefg-hfhg 'i⁄ Uhfhgfg

,  
characterising the similarity of neighbouring node degrees and thus helping to understand whether 
or not hierarchically equivalent nodes group together. 

3. The normalised clustering coefficient10,12,  
𝛾 = 𝐶/𝑃,  

where 𝑃 = 2𝑚/𝑛(𝑛 − 1) is the network density (number of edges out of total possible in a network 
with 𝑛 nodes) and 𝐶 is the global clustering coefficient defined as the ratio of the number of triangles 
(3 nodes all sharing edges) in the network and the number of triples (paths of length 2) in the 
network. This measures the extent of segregation within the network, i.e. the tendency for nodes to 
cluster into highly intra-connected groups. These other indices are computed for comparisons and 
to allow for greater insight into topological differences. 
 
Hierarchy tiers 
Once the global connectivity patterns were assessed we then performed a more refined analysis of 
hierarchical complexity through different degree strengths in the network. We split each network 
into four tiers and then eight tiers based on maximum degree magnitudes, where each tier 
comprised a rounded 25% (12.5% for 8 tiers) of degrees, and so that each tier in the 4-tier split 
comprised of two tiers in the 8-tier split. The first tier comprised nodes in the top 25% (12.5%) of 
degrees in the network, the second tier comprised of nodes with the next 25% (12.5%) of largest 
degrees, and so on. This was implemented on the human brain structural connectomes alongside 
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the randomized structural connectomes to investigate if there were any tiers that were particularly 
responsible for the differences in hierarchical complexity found. Note that, due to the differences in 
structural connectomes between subjects, these tiers are not the same for each subject. Making 
the tiers the same across subjects would obfuscate results as nodes of a certain degree in one 
network may be regarded as hub nodes, but not so in another network. After this, we computed 
which regions were consistently—in over two thirds of participants— within one of the tiers to 
understand the relationship between the cognitive/physiological function of the region and its 
hierarchical complexity. 
 
Neighbourhood degree variance 
Next, to investigate the diversity of connectivity patterns in the brain, we first isolated notable ROIs 
by computing the variance of degrees in each region’s neighbourhood. That is, we computed  

𝑉7 = 𝑣𝑎𝑟(𝒔7) 
for each tiered region, 𝑖, and then averaged over participants. We also did this for the random 
configuration models for comparison. Of these computations, we marked ROIs which were over 
one standard deviation from the mean within each tier for further analysis. These were targeted as 
regions with particularly notable structural behaviour. For these we assessed under- and over-
representation of tiers. This was done for individual ROIs as follows. The number of neighbouring 
nodes of the ROI, 𝑛7h, within a given tier, 𝑘, was noted. The fraction of nodes coming from a single 
tier was then taken as 𝑛7h/∑ 𝑛7hh , which we called the observed fraction. At the same time, the 
expected fraction was taken using the number of nodes in each tier within the whole network, 𝑁h, 
as a fraction of the total number of tiered nodes, 𝑁h/∑ 𝑁hh . 
 
Statistical Analysis 
Population 𝑡-tests were carried out to assess the significance of the differences of distributions of 
network index values between adult structural connectomes and random null models as well as 
between pairs of random null models. The effect sizes were also computed with Cohen’s 𝑑. 
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Results 
 
Analysis of global binary topology 
We first tested the hypothesis that the adult human structural connectome is hierarchically complex 
by a comparison with relevant null models. We then employed a comparative analysis with a 
number of well substantiated network indices to understand what new information was provided 
by hierarchical complexity. The results of hierarchical complexity, 𝑅, of the binary human structural 
connectome, alongside more standard measures of network topology— heterogeneity ( 𝑉 ), 
assortativity (𝑟) and segregation (𝛾)— are plotted against network density (𝑃) in Figure 3. The 
hierarchical complexity of the human structural connectome data is notably larger than the three 
randomised null models, Figure 3(a). Values of 𝑅	for human structural connectomes have a mean 
and standard deviation of 0.224 ± 0.055 whereas randomly reconfiguring edges drops 𝑅 by almost 
half to 0.137 ± 0.030  (effect size of 1.400 with respect to structural connectome values). 
Additionally, much lower values of 𝑅 are obtained by RGGs (0.087 ± 0.032 with an effect size of 
1.670) and random graphs (0.013 ± 0.003 with an effect size of 1.870). The effect size between 
RGGs and configuration models was 1.261. All of these comparisons drew 𝑝 values of statistical 𝑡-
tests less than 0.0001. 
 
Correlations between index values achieved by structural connectomes were computed, including 
additional computations of characteristic path length and rich-club coefficients. These data show 
that hierarchical complexity was the least overall correlated index, see supplementary material 
Section II. On the other hand, values for clustering coefficient, degree variance, characteristic path 
length and mean rich-club coefficient were all highly correlated indicating that they point to the 
same topological phenomenon of these networks. Furthermore, index values were assessed for 
associations with age and sex. Findings indicated that the hierarchical complexity of structural 
connectomes was independent of these factors, whereas the correlated indices produced a 
significant effect. This indicated that degree variance and clustering coefficient, in particular, were 
both higher in older people and in women.  
 
Each null model used takes up a distinct region of the hierarchical complexity spectrum whereas 
overlaps are present between the MRI data and one of the null models in all of the other spectrums 
analysed, as shown by the mean ±	standard deviation of network measure values presented in 
Table 1. Conceptual ranges for each network measure are illustrated to the right of the plots in 
Figure 3. The human structural connectome is the most hierarchically complex of all the models but 
has the same amount of hierarchical structure (degree variance, Figure 3(b)) as the configuration 
models since the degree distribution is fixed. As for random graphs, human structural connectomes 
are neither assortative nor disassortative indicating that nodes of a given degree are neither likely 
nor unlikely to be connected to nodes of a self-similar degree, Figure 3(c). Finally, as for RGGs, 
human structural connectomes have similar levels of high segregation, indicating that nodes tend 
to cluster together in the connections they make in a similar manner to that in distance-based 
networks, Figure 3(d). 

Note. 𝑅: hierarchical complexity, 𝑉: degree variance, 𝑟: assortativity, 𝐶: clustering coefficient. The underlined values in each row 
indicate cases where standard deviations overlap with each other’s means. 

Table 1. Mean ± standard deviaton of network measures of brain connectomes and 
random graph models.  

Table 1 Brain MRI Randomised 
MRI 

RGG Random Graph 

𝑹 0.224 ± 0.055	 0.137 ± 0.030	 0.087 ± 0.032	 0.013 ± 0.003	

𝑽 195.252 ± 36.233	 195.252 ± 36.233	 106.166 ± 25.009	 18.578 ± 2.944	

𝒓 − − 0.057 ± 0.029	 −0.176 ± 0.029	 0.116 ± 0.058	 −0.025 ± 0.020	

𝑪 0.600 ± 0.026	 0.483 ± 0.048	 0.623 ± 0.019	 0.347 ± 0.038	
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Figure 4 provides an illustration of why the human brain structural connectome has such high 
hierarchical complexity. In this instance, for 31-degree nodes, the participant’s structural 
connectome (bottom left) has three nodes with widely varied neighbourhood degree sequences. 
On the other hand, the random null models have much more homogeneous neighbourhood degree 
sequences. 
 
Analysis of hierarchy tiers 
We then examined which nodes in the hierarchy are contributing to greater complexity. To do this 
we split the nodes up into a number of tiers based on their degrees and looked at the effect size of 
hierarchical complexity within tiers between structural connectomes and edge-randomised 
connectomes. Table 2 displays these results for 4-tier and 8-tier strategies, with the individual data 
points plotted per subject in Figure 5. An analysis of regional (ROI) consistency within the tiers can 
be found in the supplementary material, Section III, alongside the reported mean and standard 
deviations of the mean degree within each tier. 
 

Figure 3. Hierarchical characteristics of the human structural connectome compared to relevant randomised graphs (a-b). Included 
are the assortativity (c) and random graph normalised clustering coefficient (d) for comparison. While the other characteristics cannot 
separate all the different network types, hierarchical complexity displays a scale ranging from hierarchically simple Erdos- Renyi (E-
R) random networks through random geometric graphs (RGGs), then random networks with the same degree distributions as human 
MRI networks, and finally to the most hierarchically complex human MRI networks. 
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Table 2. Effect size (Cohen’s 𝒅) of hierarchical complexity, 𝑹, within tiers between 
structural and randomised connectomes 

# of Tiers  Tier 4b  Tier 4(t)  Tier 3b  Tier 
3(t) 

 Tier 
2b 

 Tier 
2(t)  

 Tier 
1b 

 Tier 
1(t) 

4-Tier - 0.754**     - 1.320**      - 1.105**     - 0.491 

8-Tier 0.489 0.702** 1.043** 1.110** 0.821** 0.501* 0.3432 0.120 
Note. * denotes population t-test with  p<0.01, ** denotes population t-test with  p<0.0001 
 
The results show that hub nodes (Tier 1(t)) and peripheral nodes (Tier 4(b)) are contributing less to 
the greater complexity exhibited in the human brain connectome than middle tiers. In fact, this is 
particularly true of hub nodes, with lowest effect sizes notable in Tier 1 and Tier 1t in respective 4-
and 8-tier strategies. Indeed, the additional tiers in the 8-tier analysis— splitting each 4-tier tier into 
a top (t) and bottom (b) tier— shows that there is no significant difference between configuration 
model and human brain data in Tier 1t, corresponding to the top half of Tier 1 in the 4-tier analysis 
(population 𝑡 -test 𝑝 = 0.492 , 𝑡 = 0.690 ). However, the bottom half of Tier 1 in the human 
connectome has an effect size over two and a half times greater and does show a slight significant 
difference to the configuration model (𝑝 = 0.043, 𝑡 = 2.040). The same pattern repeats itself in the 
analysis of the last tier where the extremity shows least difference. The difference between human 
brain and randomised data for the Tier 4b nodes in the 8-tier analysis had 𝑝 = 0.179	(𝑡 = 1.378), 
whereas the difference found in Tier 4t had 𝑝 < 0.0001	(𝑡 = 4.611). 
 
The ROIs relating to the four tiers—those which are in a given tier in more than two-thirds of 
participants—are as in Table 2. Such consistency was found for over 70% of brain ROIs (61 of 83). 

Figure 4. An example of neighbourhood degree sequences of nodes of degree 31 for the structural connectome of a single subject 
(bottom left) compared to node and edge matched random models. For this subject, the randomized connectome and the RGG there 
are three nodes of degree 31 in the network whereas for the random graph there are five. Note how each degree sequence in the 
structural connectome is distinct, whereas degree sequences are far more similar in the random models. 
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These have been mapped to the MRI image in Figure 6 with different colours representing the 
different tiers. The same computations were applied to the 8-tier split, however very little regional 
consistency was found within tiers (only 20%-17 of 83- ROIs could be classified), suggesting that 
the 4-tier strategy provided the right size for such analysis. 
 
Analysis of ROI tier connectivity profiles  
Here, we performed an analysis using neighbourhood degree variances to determine particularly 
notable connectivity patterns within ROIs. The relative neighbourhood degree variances for each 
ROI (value for brain ROI – value for configuration model ‘ROI’) were plotted onto a cortical surface 
map, Figure 7. The absolute values for each ROI and their configuration model counterparts can be 
found in Section IV of the supplementary material. Configuration models had values most likely 
independent of the average degree of the ROI and did not vary by much. On the other hand, brain 
ROIs had a very large range of neighbourhood degree variances as can be seen by the red and blue 
ROIs in Fig 7. Notably, the ROIs in Table 3 were found to be outside one standard deviation of the 
mean within its tier except in Tier 4 where two clear clusters of large variance and expected variance 
were found. Two very clear observations could be made here. Firstly, tiers 1 and 4 (the least overall 
complex) showed strong hemispheric symmetry within these categorisations. Secondly, the ROIs 
in tiers 2 and 3 (the most overall complex) were almost entirely from the right hemisphere, indicating 
that right hemisphere ROIs are more diversely connected than left hemisphere ROIs. 

Figure 5. Analysis of hierarchical tiers contributing to the high hierarchical complexity in the human structural connectome, left, 
compared to their random configuration models, right, for 79 individuals. Given 𝑇 tiers, Tier 1 comprises the 100 𝑇⁄ % most highly 
connected nodes whereas the final tier is the 100 𝑇⁄ % of nodes with the smallest degrees. 
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Note. Each label is associated with an ROI in both left and right hemispheres. Those for which both are in the same tier are shown in 
the dark grey boxes while those for which only one hemisphere is present in the tier are written in either left or right light grey boxes 
beneath, as appropriate. An ROI is assigned to a tier if it occurs in that tier in more than two thirds of participants. 

Table 2. Classification of brain ROIs into hierarchical tiers. 

Tier Left and Right 
Left only Right only 

 Tier 1 

Thalamus, putamen, pallidum, precuneus, superior frontal 
gyrus, superior parietal gyrus 

- Superior temporal gyrus, 
insula 

 Tier 2 

Inferior temporal gyrus, lateral occipital cortex,  
postcentral gyrus, precentral gyrus 

Middle temporal gyrus, 
paracentral gyrus, insula 

Inferior parietal gyrus, 
cingulate gyrus isthmus, 

lateral orbitofrontal cortex 

 Tier 3 

Caudal middle frontal, cuneus, lingual gyrus,  
inferior frontal gyrus pars triangularis, pericalcarine cortex, 

posterior cingulate gyrus 
Amygdala, banks superior 

temporal sulcus, lateral 
orbitofrontal cortex, rostral 
anterior cingulate cortex, 

supramarginal gyrus, 
temporal pole 

Hippocampus, fusiform, 
paracentral gyrus, inferior 

frontal gyrus pars opercularis, 
inferior frontal gyrus pars 

orbitalis 

 Tier 4 

Accumbens, entorhinal cortex 
Parahippocampal gyrus, 
inferior frontal gyrus pars 

orbitalis 

Rostral anterior cingulate 
cortex, temporal pole 

Figure 6. Cortical (left) and subcortical (right) mapping of hierarchical tiers. Grey denotes areas that did not appear in any tier in 
more than two thirds of participants. Putamen is opaque to enable visualisation of the pallidum. 
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We then looked more closely at tier connectivity profiles of notable ROIs to substantiate possible 
biological reasons for their structural configurations. Average fractions of neighbourhoods within 
each tier were computed for the symmetric findings in Tiers 1 and 4— superior frontal gyrus, 
superior parietal gyrus, accumbens and entorhinal cortex— alongside ROIs with particularly high 
variance—cingulate gyrus isthmus right, lateral orbitofrontal cortex right, hippocampus right, rostral 
anterior cingulate cortex left, fusiform gyrus right—and low variance—brain stem, caudal middle 
frontal gyrus right—shown in Fig 8. Table 6 in the supplementary material shows the effect sizes 
between the observed and expected distributions of neighbourhoods amongst tiers of these ROIs. 
With few exceptions, the observed distributions were significantly different from the expected 
distributions. The brain stem showed the largest representation from Tier 1 nodes (Cohen’s 𝑑	 =
	1.74) whereas the left and right entorhinal cortices were the only ROIs studied which had under-
representations of Tier 1 nodes (non-significant 𝑑	 = 	−0.32 for left and significant 𝑑	 = 	−0.66 for 
right). The greatest representation of Tier 2 nodes occurred in the superior parietal gyrus (𝑑	 = 	1.49 
for left and 𝑑	 = 	1.44 for right) whereas only the left rostral anterior cingulate cortex and right 
entorhinal cortex showed significant under-representations ( 𝑑	 = 	−0.71  and 𝑑	 = 	−0.67 , 
respectively). The only over-representations of Tier 3 nodes occurred in the left and right entorhinal 
cortex (𝑑	 = 	0.62 and 𝑑	 = 	0.43, respectively), whereas the greatest under-representations were 
found in the brain stem (𝑑	 = 	−1.78), right fusiform gyrus (𝑑	 = 	−1.64) and right hippocampus (𝑑	 =
	−1.58). Finally, the only significant over-representations of Tier 4 nodes occurred in the left rostral 
anterior cingulate (𝑑	 = 	0.97) and right entorhinal cortex (𝑑	 = 	0.67), whereas greatest under-
representations were found in the brain stem (𝑑	 = 	−1.90), right caudal middle frontal gyrus (𝑑	 =
	−1.89) and both left and right superior parietal gyrus (𝑑	 = 	−1.83 and 𝑑	 = 	−1.80, respectively). 
 
 
 
 
 
 
 
 
 

Figure 7. Average neighbourhood degree variance over participants for individual ROIs— relative to values obtained for 
configuration models— plotted as intensities on a cortical map. 
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Note. Bold ROIs indicate hemispherically symmetric findings while ROIs in italics indicate right hemisphere.  
 
 
 
 
 
 
 
 
 
 

Table 3. ROIs with neighbourhood degree variance outwith one standard deviation of the 
tier mean 

 Tier 1 

Above mean: superior frontal gyrus left, superior frontal 
gyrus right, insula right  
Below mean: superior parietal gyrus left, superior parietal 
gyrus right,  

 Tier 2 
Above mean: cingulate gyrus isthmus right, lateral orbitofrontal 
cortex right, rostral middle frontal gyrus right 
Below mean: inferior parietal gyrus right, postcentral gyrus 
right 

 Tier 3 

Above mean: hippocampus right, rostral anterior cingulate 
cortex left, fusiform gyrus right, posterior cingulate gyrus right 
Below mean: brain stem, banks superior temporal sulcus right, 
caudal middle frontal gyrus right, inferior frontal gyrus pars 
opercularis right, inferior frontal gyrus pars orbitalis right 

 Tier 4 

High: accumbens left, accumbens right, inferior frontal gyrus 
pars orbitalis left, temporal pole right 

Low: entorhinal cortex left, entorhinal cortex right, 
parahippocampal gyrus left 

Figure 8. Fraction of neighbouring nodes from tiers in selected ROIs. Dashed lines indicate the fractions of nodes in each Tier, 
representing the expected fractions; L/R- Left/Right; SF- Superior Frontal gyrus; SP - Superior Parietal gyrus; CGI- Cingulate 
Gyrus Isthmus; LOF- Lateral OrbitoFrontal gyrus; B Stem- Brain Stem; Hippo- Hippocampus; RAC- Rostral Anterior Cingulate 
cortex; CMF- Caudal Middle Frontal; Fusi- Fusiform; Acc- Accumbens; ER- Entorhinal cortex. 
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Discussion 
 
We confirm the hypothesis that human brain structural connectomes created from structural and 
diffusion MRI data are more hierarchically complex than random null network models. It is 
interesting to note that randomising edges in networks with identical degree distributions to those 
obtained from brain MRI data — thus fixing degree variance— provides networks with a 
dramatically decreased hierarchical complexity. This indicates that the dissimilarity of connections 
made by network nodes with the same centrality cannot be explained by greater variability of 
network degrees present and shows a prominent presence in the brain structure of dissimilarity 
between the nodes residing at the same hierarchical level. This suggests that the organisational 
complexity in the human brain is more heterogeneous than that produced at random and that 
heterogeneity in the connectivity patterns of hierarchically equivalent nodes could itself yet prove a 
single coherent explanation for the complexity of brain structure. 
 
Indeed, EEG functional connectivity was found to be more complex than a variety of ordered 
systems as well as Erdos-Renyi random networks. However, hierarchical complexity depends on 
degree distributions and it had yet to be shown whether or not brain networks were more 
hierarchically complex than random networks with the same degree distributions as brain networks. 
The data presented here is thus the strongest evidence yet to support the hierarchical complexity 
paradigm as the key to distinguishing real-world complexity from the more predictable patterns of 
ordered and random systems. To test this theory further, it would be of significant interest to 
implement similar analyses on other brain signals/imaging such as in a cortical stimulation study, 
and in other modalities such as magnetoencephalography and functional MRI. 
  
From a neuroanatomical perspective, the tiers from the 4-tier categorisation exhibited a degree of 
anatomical plausibility. Tier 1 (highest degree but lowest contribution to hierarchical complexity) 
comprised lateral frontal, parietal and lateral temporal regions along with selective subcortical 
structures. This corresponds well with the current (macro)neurobiological account of intelligence 
differences (the Parieto-Frontal Integration or P-FIT theory30–32) and resembles previous work which 
identifies hub nodes of the human brain connectome16. Tier 2, on the other hand, consists mainly 
of occipital and sensorimotor cortex involved in lower order sensory processing. Interestingly,  Tier 
3 is then comprised of mainly heteromodal integrative regions which may represent a transitional 
stage in information processing between higher order cognitive (Tier 1) and lower order sensory 
processing (Tier 3)33. Functional categorisation of  Tier 4 ROIs is less clear-cut, but the nucleus 
accumbens, entorhinal cortex and anterior cingulate are all ostensible components of the 
hippocampal-diencephalic-cingulate network involved in memory and emotion34. 
 
Crucially, our analyses suggest that hierarchical complexity is not driven by hub nodes (Tier 1), but 
rather by nodes particularly in Tier 3 (mainly heteromodal integrative regions) and to a lesser but 
still significant extent in Tier 2 (more basic sensorimotor and visual-semantic areas). Given that Tier 
3 consists of ROIs involved in collecting/integrating information from both ends of the processing 
spectrum (higher order cognitive and more basic sensory), the great diversity of cross-tier 
connectivity patterns revealed by its large hierarchical complexity stands to reason. Indeed, it 
suggests a rich diversity of roles played by these integrative regions, necessitating connections 
across all tiers. The fact that hub nodes (Tier 1) are not found to be substantial contributors to the 
hierarchical complexity of human structural connectomes indicates that hub nodes may take on a 
disproportionate amount of focus in brain network studies35. These findings raise interesting 
prospects to see how such diversity (or lack thereof) of cross-tier connectivity patterns are affected 
in pathology and disease. Particularly appropriate would be to apply these methods to diseases 
known to affect different steps of multimodal functional integration (cognition, sensorimotor, or the 
integration of these processes). It is important to keep in mind, however that not all participants 
have exactly the same tier structure, thus any generalisation of these results should be made with 
due caution. 
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From neighbourhood variance analyses, it is interesting to note the high diversity found within right 
hemisphere ROIs, indicating asymmetric differences. It is also important to remember that all 
subjects were right-handed. Functional inter-hemispheric differences and differential hemisphere 
specialisation are well known. Whilst the left hemisphere has been found to be dominant for speech, 
the right hemisphere is known to play a major role in many non-verbal cognitive functions, and 
particularly in the perception of spatial relations36. Sex-related inter-hemispheric differences have 
also been reported37,38 although a large study presented the idea of a “brain mosaic” of features, 
some more common in females compared with males and vice versa, after analysing MRI, 
personality traits, attitudes, interests, and behavioural data from more than 5,500 individuals38. In 
our own experience, for example, hippocampal shape deformations in relation to cognitive 
functioning exhibit also a high degree of asymmetry39. Hierarchical complexity may well provide a 
link to understand the mechanisms and targeting behind such asymmetric properties. 
 
We found that certain ROIs were well integrated across the hierarchy, whereas other ROIs were 
more selective and connected to a more limited hierarchical range. For example, the low 
neighbourhood degree variance of the brain stem was found to be caused by a large under-
representation of Tier 4 and 3 (lowest degree) nodes and a large over-representation of Tier 1 hub 
nodes, Fig 8C. The brain stem itself being a Tier 3 node tells us that it communicates ‘upwards’, 
i.e. more exclusively to those ROIs in higher tiers (cognition and sensory processing). The same 
was true for the caudal middle frontal gyrus of the right hemisphere. On the other hand, the high 
variance associated with the rostral anterior cingulate cortex of the left hemisphere was caused by 
over-representations of the top and bottom tiers, which, from our descriptions of tiers, agrees with 
the understanding of its integrative role in cognition and emotion and the known heterogeneity of 
structural connectivity in this portion of the cingulate gyrus41,42. The entorhinal cortex displayed 
neighbourhood degree variance similar to those of the configuration models and, indeed, the tiers 
were all fairly well represented for the entorhinal cortex, indicating this region was very well 
integrated throughout the brain. Particularly, this ROI being the only highlighted region which had 
over-representations of Tier 3 nodes indicates a key role in cognitive and sensory integration which 
lines up with the knowledge that superficial layers of the entorhinal cortex receive both multimodal 
and unimodal sensory inputs while also projecting to widespread cortical and subcortical loci43. 
Also, the large representations of Tier 2 nodes in the superior parietal gyrus aligns with its known 
predominant function in sensorimotor stumuli44. 
 
Hierarchical complexity can also help deepen our understanding of other topological findings in the 
connectomes. For example it provides an explanation for the un-assortative nature of brain 
structural connectomes45, (see Figure 3(c)). The degree of nodes in a given node’s neighbourhood 
do not maintain a self-similarity to the degree of the given node, because nodes take up a wide 
array of different neighbourhood connectivity patterns encompassing the heterogeneity of degrees 
in the whole network. Including results of the high values of	𝛾—propensity of neighbouring nodes 
to share other neighbours— indicates that i) nodes which are connected together tend to connect 
to the same other nodes (high 𝛾), ii) these nodes do not have similar degrees, (𝑟 ≈ 0) and iii) nodes 
of the same degree do not have similar distributions of neighbouring degrees (high 𝑅). All of these 
aspects are somehow integrated into the brain connectivity structure to create this rich and diverse 
topology. 
 
It is also interesting to note a striking overlap in segregation between the human structural 
connectome and RGGs (see Figure 3(d)). The strength of this overlap, together with the lack of 
hierarchical structure present in RGGs, suggests that geometric sensibilities of node clustering is 
extended also to integrative connections, where two connections spanning the connectome within 
a geometrical locality tend to span to the same nodes in the other locality. This agrees with the 
homophily principle described in a recent connectome simulation study9. Note that the results here 
significantly differ from another study where segregation in RGGs was found to be larger than the 
connectome7, although it must be noted that the network size (𝑛	 = 	998) was much larger and 
density (𝑃	 = 	2.7%) more sparse than the current study and the space used to develop the models 
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was rectangular rather than cubic as adopted here. It should also be noted that sparsity is not a 
desirable feature for analyzing hierarchical complex networks11. 
 
This is particularly interesting in the context of pathology. It is not yet clear which measure (or 
measures) can explain functional outcomes from pathological features (i.e. lesions, mineral 
accumulations, tissue loss, etc.), an understanding of which is required to help solve what has been 
termed the clinico-radiological paradox46. Evidence shows that there are specific white matter 
pathways that have greater impact on clinical and functional outcome regardless of the lesion size47 
whilst other tracts offer routes for functional reorganisation48–50. Future studies applying the 
hierarchical complexity measure to health and disease may help to uncover subtler but still 
significant differences in brain network topology that will add to our understanding of this topic. For 
example, we generally expect that brain degradation (whether from ageing or disease) will display 
structural connectivity patterns more similar to the edge-randomised networks. The supplementary 
results showing that hierarchical complexity is independent of age and sex and is not highly 
correlated with other indices, indicate that hierarchical complexity is a unique factor of topology 
which may be maintained in the face of other topological variables. We conjecture that this thus 
underlines structural characteristics of fundamental importance for the emergence of complex 
integrated brain function. In the future we aim to test this hypothesis by looking for associations of 
hierarchical complexity with intelligence and pathology. 
 
The evidence here adds to previous results of hierarchical complexity found in EEG functional 
connectivity10,11, revealing a topological agreement in complexity between structure and function—
both being more hierarchically complex than a variety of pertinent models. Future studies on the 
relationship between structural and functional MRI with respect to this complexity paradigm will 
help to better understand how function relates to structure and whether the structural complexity 
found here supports complex functional principles. Additionally, the aggregated tissue of individual 
ROIs here are abstracted as network nodes, however it would be of high relevance to look at 
whether hierarchical complexity is a self-similar property of brain networks by considering different 
scales of brain networks51. 
 
One limitation of the study is that we have not shown invariance of connectome hierarchical 
complexity to the choice of parcellation scheme. Different atlases and methods for producing 
connections do exist, but the resulting networks have been found to broadly share topological 
characteristics (e.g. small-world and degree distributions), even if the exact values of indices 
between different schemes are statistically different52. In addition, we previously demonstrated that 
different sizes of EEG functional networks share the characteristic of hierarchical complexity10, 
suggesting that results may not significantly differ when using other parcellation schemes in 
structural MRI, notwithstanding general effects of parcellation granularity on tractography results53. 
Another possible limitation is that the data were collected at 1.5 rather than 3T (or above). Higher 
field strengths have the potential to provide better tractography and parcellation information due to 
increased signal to noise ratio. However, higher field strength also has a greater potential for 
artefacts and does not necessarily result in better diagnostic accuracy54. Furthermore, consistency 
has been found in connectivity profiles across field strength55. Additionally, 1.5T scanning is still 
widely used in both clinical and large prospective cohort studies40,56–58. 
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Conclusion 
 
The adult human structural connectome was found to be hierarchically complex with highly 
heterogeneous connectivity patterns occurring across hierarchically equivalent nodes. This was 
established in comparison to three very different random models—Erdös-Rényi random graphs, 
RGGs and edge-randomised connectomes. Hierarchical complexity was shown to divide the 
different models into a coherent range of topology with the human structural connectome at the 
top, while other standard topological concepts of segregation, assortativity and heterogeneity failed 
to adequately separate the models. These data suggest that diversity of connectivity patterns of 
hierarchically equivalent nodes could itself provide a cohesive rule for generative processes of brain 
structure. Moreover, this may explain the difficulty in establishing accurate generative models which 
account for all aspects of brain connectome topology using more predictable patterns. Hierarchical 
complexity was most apparent in Tier 2 and 3 nodes, constituting brain regions involved in 
sensorimotor, attentional and linguistic-semantic function, whereas tiers 1 (hub nodes related to 
general intelligence) and 4 contributed much less to the complexity. Tiers 1 to 3 mapped to the 
different steps of the proposed functional connectivity framework for the integration of cognitive 
and sensory processing. From this, the most hierarchically complex tier contained the ROIs involved 
in the integration of cognitive and sensory inputs. These results were supported by specific 
neighbourhood analyses by tiers which found structural configurations of neighbourhoods which 
aligned function of specific ROIs with this integrative processing framework. This study provides a 
platform from which to explore hierarchical complexity of the human structural connectome in 
cognition, health and disease. 
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