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ABSTRACT		

Reconstruction	of	transcriptional	regulatory	networks	(TRNs)	is	a	powerful	approach	to	unravel	the	gene	

expression	 programs	 involved	 in	 healthy	 and	 disease	 states	 of	 a	 cell.	 However,	 these	 networks	 are	

usually	 reconstructed	 independent	of	 the	phenotypic	properties	of	 the	 samples	 and	 therefore	 cannot	

identify	regulatory	mechanisms	that	are	related	to	a	phenotypic	outcome	of	 interest.	In	this	study,	we	

developed	 a	 new	method	 called	 InPheRNo	 to	 identify	 ‘phenotype-relevant’	 transcriptional	 regulatory	

networks.	 This	 method	 is	 based	 on	 a	 probabilistic	 graphical	 model	 whose	 conditional	 probability	

distributions	model	the	simultaneous	effects	of	multiple	transcription	factors	(TFs)	on	their	target	genes	

as	 well	 as	 the	 statistical	 relationship	 between	 target	 gene	 expression	 and	 phenotype.	 Extensive	

comparison	of	InPheRNo	with	related	approaches	using	primary	tumor	samples	of	18	cancer	types	from	

The	Cancer	Genome	Atlas	revealed	that	InPheRNo	can	accurately	reconstruct	cancer	type-relevant	TRNs	

and	 identify	cancer	driver	TFs.	 In	addition,	 survival	analysis	 revealed	 that	 the	activity	 level	of	TFs	with	

many	target	genes	could	distinguish	patients	with	good	prognosis	from	those	with	poor	prognosis.		

	

INTRODUCTION					

Gene	expression	programs	are	responsible	for	many	biological	processes	in	a	cell	and	extensive	efforts	

have	 been	 devoted	 to	 elucidating	 these	 programs	 in	 healthy	 and	 disease	 states.	 Transcriptional	

regulatory	networks	(TRNs)	have	proven	to	be	a	useful	framework	for	describing	expression	programs.	A	

TRN	is	a	network	with	transcription	factors	(TFs)	and	genes	as	nodes	where	a	TF-gene	edge	represents	a	

regulatory	effect	of	 the	TF	on	the	gene.	TRNs	are	usually	constructed	 from	transcriptomic	data	across	

many	 conditions,	 alone	 or	 in	 combination	 with	 other	 data	 types.	 We	 are	 especially	 interested	 in	

methods	 for	 TRN	 reconstruction	 from	 expression	 data	 alone,	 due	 to	 their	 broad	 applicability.	 The	

majority	of	such	methods	are	agnostic	of	any	phenotypic	annotations	of	sampled	conditions	(e.g.,	case	

versus	control	 status	 in	disease	studies,	or	drug	sensitivity	of	cell	 lines	 in	pharmacogenomics	 studies),	

looking	only	to	capture	correlations	between	TF	and	gene	expression	values	in	those	conditions	[1-3].	As	

a	 result,	 many	 edges	 in	 the	 reconstructed	 networks	 may	 not	 be	 relevant	 to	 the	 phenotype	 being	

investigated	 by	 expression	 profiling.	 To	 take	 a	 simple	 example,	 consider	 the	 two	 scenarios	 of	 gene	

expression	 relationship	 between	 TF	 and	 gene	 shown	 in	 Figure	 1A	 and	 1B.	 In	 both	 cases,	 a	 linear	

relationship	is	evident	and	is	often	interpreted	as	evidence	for	a	TF-gene	edge	in	the	TRN.	However,	it	is	

also	apparent	that	the	TF-gene	relationship	is	potentially	informative	about	the	phenotypic	class	in	the	

example	of	Figure	1B	and	likely	to	be	irrelevant	to	the	phenotype	in	the	other	example	(Figure	1A).	We	

believe	 there	 is	 a	 clear	 need	 for	methods	 to	 reconstruct	 TRNs	 that	 are	more	 focused	 on	 phenotype-
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relevant	regulatory	interactions	(similar	to	Figure	1B)	and	can	help	explain	phenotypic	variations	such	as	

response	to	different	cytotoxic	treatments,	patient	survival,	cancer	subtypes,	etc.	

	

One	approach	 for	 including	phenotypic	 information	 in	 regulatory	network	 reconstruction	 is	 to	 restrict	

the	analysis	to	samples	representing	a	particular	biological	context	(e.g.	a	tissue	type	[4,	5]	or	a	cancer	

type	[6,	7]).	While	this	approach,	henceforth	called	‘context-restricted’	TRN	reconstruction,	may	identify	

important	regulatory	mechanisms	relevant	to	a	context,	it	does	not	solve	the	problem	mentioned	above	

–	to	reconstruct	TRNs	that	explain	the	variation	in	a	phenotypic	outcome.	‘Differential	network	analysis’	

is	another	approach	to	relate	TRNs	to	the	phenotypic	variation.	Here,	two	context-restricted	networks	

are	reconstructed	based	on	samples	from	each	of	two	phenotypic	classes,	e.g.,	case	versus	control,	and	

a	differential	network	is	formed	by	comparing	these	two	networks	[8-12].	In	focusing	on	the	differential	

topology	 of	 regulatory	 networks,	 such	 methods	 may	 fail	 to	 identify	 important	 phenotype-relevant	

regulatory	 edges.	 For	 example,	 Figure	 1B	 illustrates	 a	 TF-gene	 relationship	 that	 qualifies	 as	 being	

‘phenotype-relevant’	and	perturbations	that	abolish	it	might	affect	the	phenotype;	however,	such	pairs	

are	 discarded	 by	 the	 differential	 network	 analysis.	 In	 addition,	 these	 methods	 cannot	 be	 used	 with	

continuous-valued	phenotypes,	 and	become	 cumbersome	even	 for	 categorical	 phenotypes	with	more	

than	 two	 categories.	 A	 third	 class	 of	methods	 is	 that	 of	 ‘context-specific’	 network	 analysis,	 in	 which	

genes	associated	with	phenotype	variation	are	 identified,	 e.g.,	 by	differential	 expression	analysis,	 and	

then	a	network	is	constructed	by	relating	the	expression	of	these	genes	to	the	expression	of	TFs	[13-15].	

However,	one	major	disadvantage	of	this	approach	 is	that	the	phenotype-relevance	of	genes	 is	simply	

used	 as	 a	 filtering	 criterion	 based	 on	 arbitrary	 thresholds	 and	 its	 strength	 is	 ignored	 in	 TRN	

reconstruction.	 Finally,	 we	 note	 that	 several	 methods	 directly	 evaluate	 the	 association	 between	 the	

phenotypic	 variation	 and	 molecular	 characteristics,	 including	 but	 not	 limited	 to	 gene	 expression,	 to	

identify	genes,	TFs	or	miRNAs	that	can	explain	the	phenotypic	variation	[16-18].	These	methods,	while	

useful	for	understanding	the	molecular	mechanisms	of	phenotypic	differences,	do	not	directly	address	

the	 problem	 of	 reconstructing	 phenotype-relevant	 TRNs.	 In	 summary,	 TRNs	 are	 a	 highly	 useful	 and	

widely	popular	construct	for	characterizing	gene	expression	programs	underlying	phenotypes,	yet	there	

is	an	urgent	need	for	methods	that	incorporate	phenotypic	information	directly	into	TRN	reconstruction.	

	

We	 report	 here	 a	 new	 computational	 method	 called	 InPheRNo	 (Inference	 of	 Phenotype-relevant	

Regulatory	Networks)	to	reconstruct	TRNs	that	help	explain	the	variation	in	a	phenotype	of	interest.	 It	

models	the	simultaneous	effect	of	multiple	TFs	on	their	targets,	as	well	as	the	target	genes’	association		
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Figure	 1:	 The	 phenotype-relevant	 TRN	 concept	 and	 an	 overview	 of	 the	 InPheRNo	 framework.	 (A)	 The	 gene-TF	 expression	
correlation	 (across	 different	 samples)	 is	 independent	 of	 the	 phenotype	 variation.	 (B)	 The	 gene-TF	 expression	 correlation	 is	
phenotype-relevant.	(C)	The	inputs	and	outputs	to	InPheRNo	are	shown.	The	inputs	include	a	matrix	of	gene	expression	for	all	
genes	(including	TF	genes),	a	list	of	TFs	and	a	vector	containing	p-value	of	gene-phenotype	associations,	denoted	as	𝒑.	The	list	
of	 TFs	 is	 used	 to	divide	 the	expression	matrix	 into	a	matrix	𝑿	of	TF	expressions	and	a	matrix	𝒀	 of	 gene	expressions.	As	 the	
output	InPheRNo	provides	a	phenotype-relevant	TRN.	(D)	An	overview	of	the	InPheRNo	pipeline	is	shown.	First,	the	expression	
of	genes	and	TFs	are	used	in	an	Elastic	Net	algorithm	to	reduce	the	number	of	candidate	TFs	for	each	gene.	Then,	the	pseudo	p-
value	of	 association	between	TF	 𝑖	 and	gene	 𝑗	 (denoted	by	𝜋!,!)	 is	 estimated	using	an	OLS	 regression	model	 that	 relates	 the	
expression	of	gene	𝑗	to	the	expression	of	𝑚! 	candidate	TFs.	In	addition,	the	p-values	of	gene-phenotype	associations	(denoted	
by	𝑃!)	are	assumed	to	be	estimated	and	provided	through	𝒑	for	𝑛	genes.	These	sets	of	p-values	are	used	as	observed	variables	
in	 a	probabilistic	 graphical	model	 to	 learn	posterior	probabilities	 for	 the	 (TF,	 gene,	phenotype)	 triplets	 that	 a	 TF	 regulates	 a	
gene	to	affect	the	phenotype.	These	posterior	probabilities	are	used	to	form	the	phenotype-relevant	TRN.	
	

with	the	phenotype.	Its	rigorous	probabilistic	model	can	be	used	with	categorical	or	continuous-valued	

phenotypes,	 and	 also	 provides	 a	 confidence	 score	 for	 the	 identified	 TF-gene	 regulatory	 edges.	 We	

applied	InPheRNo	to	data	from	The	Cancer	Genome	Atlas	(TCGA)	pertaining	to	18	different	cancer	types,	

to	reconstruct	TRNs	that	differentiate	one	cancer	type	from	other	types	of	cancer.	We	also	compared	

them	to	tissue-specific	TRNs	reconstructed	by	analysis	of	expression	data	from	the	GTEx	project	[19],	in	

order	 to	make	 the	 former	more	 specific	 to	 the	 cancer	 type.	 The	 resulting	 cancer	 type-relevant	 TRNs	

identified	 regulatory	mechanisms	 involved	 in	 the	 development	 and	 progress	 of	 each	 cancer	 type	 and	

discerned	 previously	 known	 as	 well	 as	 novel	 cancer	 driver	 TFs	 that	 could	 be	 used	 as	 potential	 drug	

targets.	In	addition,	survival	analysis	revealed	that	a	gene	expression	signature	formed	using	these	TFs	

and	their	target	genes	can	accurately	distinguish	between	patients	with	poor	prognosis	and	those	with	

A)	 B)	

D)	

C)	

Gene	

TF1	 TF2	 TFm	…	

Es#mate	gene-TF	
and	gene-phenotype	

p-values	

Obtain	posterior	
probabili#es	for	each	
TF-gene-phenotype	

Form	the	phenotype-
relevant	TRN	using	

posterior	probabili#es	

Ti,j

⇡i,j

Pj
n

↵0

↵1j

↵0j

rj

�

mj

gene	expression	 phenotype	

ge
ne

	e
xp
re
ss
io
n	

TF
	e
xp
re
ss
io
n	

Use	Elas#cNet	to	find	
candidate	regulators	

of	each	gene		

phenotype	

Genen-1	 Genen	Gene2	Gene1	

TF1	 TF2	 TFm	…	

…	

Expression	Matrix	

Ge
ne

s	a
nd

	T
Fs
	

Samples	 Ge
ne

s	

gene-phenotype		
p-values		

TF	list	
SP1	
c-Myc	
NF-1	…

InPheRNo	

phenotype	

Genen-1	 Genen	Gene2	Gene1	

TF1	 TF2	 TFm	…	

…	

X	

Y	

p	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 10, 2018. ; https://doi.org/10.1101/389734doi: bioRxiv preprint 

https://doi.org/10.1101/389734
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

good	 prognosis	 for	 the	 majority	 of	 the	 cancer	 types.	 We	 demonstrated	 the	 improved	 accuracy	 of	

InPherNo-derived	networks	by	comparing	them	to	several	baseline	methods	with	respect	to	the	above	

tasks	of	driver	TF	discovery	and	survival	prediction.	As	transcriptomic	profiling	becomes	a	standard	tool	

in	the	study	of	phenotypic	variation	among	individuals	[20],	the	new	tool	presented	here	will	help	distil	

the	 associated	 high	 dimensional	 information	 into	 specific	 regulatory	 mechanisms	 underlying	 that	

variation.	

	

RESULTS	

A	new	probabilistic	method	for	phenotype-relevant	transcriptional	regulatory	network	reconstruction	

We	 developed	 a	 new	 computational	 method	 called	 InPheRNo	 to	 reconstruct	 phenotype-relevant	

transcriptional	 regulatory	 networks	 (TRNs).	 It	 analyzes	 gene	 expression	 profiles	 of	 a	 set	 of	 samples,	

along	 with	 associated	 phenotypic	 scores	 or	 labels	 of	 those	 samples,	 to	 report	 TF-gene	 regulatory	

relationships	 relevant	 to	 the	 phenotype.	 The	 method	 is	 outlined	 in	 Figures	 1C-1D,	 and	 explained	 in	

Methods.	We	 touch	upon	 its	main	 steps	here.	Given	 the	expression	of	genes	and	TFs	across	different	

samples,	 first	 a	 regression	model	 is	 used	 to	 predict	 each	 gene’s	 expression	 as	 a	weighted	 sum	 of	 TF	

expression	 values.	 This	 step	uses	 the	 Elastic	Net	 regression	model	 [21],	which	 automatically	 selects	 a	

small	number	of	 candidate	TFs	 regulating	each	gene.	Next,	an	ordinary	 least	 squares	 (OLS)	 regression	

model	is	used	obtain	a	pseudo	p-value	reflecting	the	importance	of	each	TF	to	that	gene.	Note	that	both	

of	the	previous	steps	use	multi-variable	regression	and	model	a	gene’s	expression	with	a	combination	of	

TFs	rather	than	one	TF	at	a	time.	Separately,	a	p-value	of	association	between	the	gene’s	expression	and	

the	 phenotype	 is	 obtained	 using	 a	 suitable	 statistical	 test.	 This	 step	 allows	 for	 different	 types	 of	

phenotypic	scores,	including	categorical	labels	with	two	or	more	values	as	well	as	numeric	scores,	to	be	

incorporated	into	the	method	since	the	gene-phenotype	relationship	only	needs	to	be	encapsulated	in	a	

p-value.	The	two	sets	of	p-values	from	the	above	steps	–	one	capturing	TF-gene	regulatory	relationships	

and	 the	 other	 gene-phenotype	 associations	 –	 are	 then	 used	 as	 observed	 variables	 in	 a	 probabilistic	

graphical	model	(PGM).	The	PGM	has	a	latent	binary	variable	for	each	TF-gene	pair,	indicating	whether	

the	TF	regulates	the	gene	so	as	to	affect	the	phenotype.	A	Markov	chain	Monte	Carlo	(MCMC)	algorithm	

is	 used	 to	 estimate	 posterior	 probabilities	 for	 these	 latent	 variables;	 these	 posterior	 probabilities	 are	

then	used	to	obtain	a	phenotype-relevant	TRN	(see	Methods	for	more	details).		

	

It	is	worth	mentioning	that	InPheRNo	considers	the	simultaneous	effect	of	multiple	TFs	on	each	gene	in	

several	steps:	first,	it	utilizes	a	multivariable	Elastic	Net	model	relating	the	expression	of	multiple	TFs	to	
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the	expression	of	the	target	gene	in	the	TF	selection	step.	Then	it	obtains	a	pseudo	p-value	for	each	TF-

gene	pair	using	a	multivariable	OLS	model,	which	includes	the	expression	of	all	selected	TFs.	Finally,	for	

each	 gene	 the	 PGM	models	 the	 relationship	 of	 observed	 data	 to	 the	 latent	 variables	 representing	 all	

selected	TFs	simultaneously.		

	

InPheRNo	identifies	cancer	type-relevant	TRNs	in	a	pan-cancer	study	

We	applied	InPheRNo	to	the	gene	expression	profiles	of	6,357	primary	tumor	samples	corresponding	to	

18	 different	 cancer	 types	 from	 TCGA,	 downloaded	 from	 the	 Genomic	 Data	 Commons	 [22],	 to	

reconstruct	 TRNs	 that	 differentiate	 one	 cancer	 type	 from	 all	 others.	 The	 name,	 abbreviation	 and	 the	

number	of	samples	of	each	cancer	type	used	in	this	study	are	provided	in	Table	1.	For	each	cancer	type,	

the	phenotype	of	a	sample	was	defined	as	a	binary	variable	 representing	whether	 the	sample	 is	 from	

the	cancer	of	interest	or	not.	The	cancer	type-relevant	TRNs	are	provided	in	Supplementary	File	S1	and	

the	extent	of	shared	regulatory	edges	between	each	pair	of	cancer	types	is	shown	in	Figure	2A.	By	and	

large,	 the	TRNs	are	noted	as	being	specific	 to	each	cancer	 type	 (average	 Jaccard	coefficient	of	 shared	

edges	 is	 0.12),	 though	 the	 pairs	 (ACC,	 PCPG),	 (LGG,	 GBM),	 (LUAD,	 LUSC)	 and	 (COAD,	 READ)	 exhibit	

relatively	 large	sharing	of	edges,	partly	due	 to	 their	 same	tissues	of	origin.	Also	noticeable	 is	 the	high	

degree	of	edge-sharing	among	STAD,	COAD,	READ	and	ESCA,	all	of	which	are	gastro-intestinal	cancers.		

	

Due	to	differences	in	tissues	of	origin	of	the	studied	cancer	types,	some	of	the	regulatory	mechanisms	

identified	 as	 differentiating	 one	 cancer	 from	 others	may	 reflect	 these	 tissue	 differences	 and	 not	 the	

cancers	 themselves.	 To	 address	 this	 and	 better	 characterize	 cancer	 type-specific	 mechanisms,	 we	

additionally	 applied	 InPheRNo	 to	 gene	expression	data	profiles	of	 4,388	normal	 tissue	 samples	 in	 the	

Genotype-Tissue	Expression	Project	(GTEx)	data	portal	[19],	corresponding	to	the	18	cancer	types	above	

(Supplementary	Table	S1	in	Supplementary	File	S2).	The	identified	tissue-relevant	TRNs	(Supplementary	

File	 S3)	 should	 enable	 us	 to	 distinguish	 between	 regulatory	 mechanisms	 in	 a	 normal	 tissue	 from	

regulatory	mechanisms	involved	in	a	cancer	originating	from	that	tissue,	a	direction	we	pursue	later.		

	

As	a	preliminary	assessment	of	 their	accuracy,	we	 sought	 to	determine	whether	 the	 identified	cancer	

type-relevant	TRN	edges	 are	enriched	 in	 independently	 identified	TF-gene	 relationships.	Although	 the	

TRNs	derived	above	are	meant	to	be	phenotype-relevant,	they	reflect	regulatory	relationships	and	are	

thus	 expected	 to	 be	 enriched	 in	 globally	 characterized	 regulatory	 edges,	 albeit	 to	 different	 degrees	

depending	on	the	specific	cancer.	We	therefore	used	global	TRNs	reconstructed	from	ChIP-seq	profiles	
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Table	1:	Name,	abbreviation	and	number	of	samples	for	each	cancer	type	used	in	this	study.	

Name	of	the	cancer	 Abbreviation	 Number	of	Samples	

Adrenocortical	carcinoma	 ACC	 79	

Brain	Lower	Grade	Glioma	 LGG	 511	

Breast	invasive	carcinoma	 BRCA	 1091	

Colon	adenocarcinoma	 COAD	 456	

Esophageal	carcinoma	 ESCA	 161	

Glioblastoma	multiforme	 GBM	 154	

Liver	hepatocellular	carcinoma	 LIHC	 371	

Lung	adenocarcinoma	 LUAD	 513	

Lung	squamous	cell	carcinoma	 LUSC	 501	

Ovarian	serous	cystadenocarcinoma	 OV	 374	

Pancreatic	adenocarcinoma	 PAAD	 177	

Pheochromocytoma	and	Paraganglioma	 PCPG	 178	

Prostate	adenocarcinoma	 PRAD	 495	

Rectum	adenocarcinoma	 READ	 166	

Skin	Cutaneous	Melanoma	 SKCM	 103	

Stomach	adenocarcinoma	 STAD	 375	

Testicular	Germ	Cell	Tumors	 TGCT	 150	

Thyroid	carcinoma	 THCA	 502	

	

of	166	TFs	and	matched	gene	expression	data	in	43	different	cell	lines	from	the	ENCODE	project,	using	

the	 TREG	 method	 [23]	 (see	 Methods	 for	 details).	 Figure	 2B	 and	 supplementary	 Figure	 S1	 (in	

Supplementary	File	S2)	 show	the	extent	 to	which	 the	cancer	 type-relevant	TRN	edges	 identified	using	

InPheRNo	 are	 enriched	 for	 global	 TRN	 edges.	 As	 expected,	 we	 observed	 significant	 enrichments	 for	

every	 cancer	 type,	 but	 to	 different	 degrees.	 Similarly,	 for	 all	 tissues	 expect	 one,	 tissue-relevant	

regulatory	edges	obtained	by	applying	InPheRNo	on	GTEx	data	are	enriched	in	global	regulatory	edges	

(Supplementary	Figure	S1	in	Supplementary	File	S2).		

	

We	 noted	 a	 significant	 correlation	 between	 different	 cancer	 types	 and	 their	 corresponding	 normal	

tissues	in	terms	of	their	enrichment	for	global	TRN	edges	(Spearman’s	rank	correlation	=	0.63,	p	=	4.8E-

3).	This	is	in	line	with	our	expectation	that	some	of	the	regulatory	mechanisms	identified	from	the	TCGA	

data	 reflect	 the	 differences	 in	 regulatory	 mechanisms	 of	 the	 tissues	 of	 origin.	 To	 correct	 for	 this	

confounding	 effect,	 for	 each	 cancer	 we	 removed	 all	 the	 edges	 that	 were	 also	 present	 in	 the	 TRN	

identified	 for	 its	 corresponding	normal	 tissue	 (Supplementary	File	 S4).	Depending	on	 the	cancer	 type,	

this	procedure	removed	7.0%	(for	READ)	to	10.3%	(for	LUSC)	of	the	identified	edges	(Supplementary		
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Figure	 2:	 Characteristics	 of	 the	 cancer-relevant	 regulatory	 edges	 identified	 using	 TCGA	 data	 on	 18	 cancer	 types.	 (A)	 The	
heatmap	 shows	 the	 ratio	 of	 the	 shared	 regulatory	 edges	 between	 a	 pair	 of	 cancers	 to	 the	 total	 number	 of	 edges.	 More	
precisely,	 for	 any	 two	 cancers	 Ci	 and	Cj,	 the	 value	 in	 cell	 (i,	 j)	 shows	 the	number	of	 shared	 regulatory	 edges	 divided	by	 the	
number	 of	 regulatory	 edges	 in	 Ci.	 (B)	 The	 overlap	 between	 InPheRNo-identified	 TRNs	 for	 different	 cancers	 and	 global	 TRNs	
identified	 by	 TREG.	 The	 bars	 represent	− log!"(𝑝)	 of	 enrichment	 (hypergeometric	 test),	 truncated	 at	 1E-16.	 The	 green	 line	
shows	the	threshold	alpha	=	0.05	and	the	symbol	*	 is	used	for	cases	 in	which	p	<	1E-16.	The	combined	p-value	 is	calculated	
using	Fisher’s	method.	
	

Figure	S2	in	Supplementary	File	S2).	The	analyses	reported	in	the	rest	of	the	manuscript	correspond	to	

these	tissue-corrected	results.	

	

InPheRNo	identifies	breast	cancer-relevant	‘driver’	transcription	factors		

It	 is	 challenging	 to	 assess	 the	 accuracy	 and	 cancer-relevance	 of	 predicted	 TF-gene	 relationships	 on	 a	

global	 scale.	 However,	 TFs	with	many	 target	 genes	 in	 our	 cancer-relevant	 TRNs	 are	 expected	 to	 play	

important	roles	in	cancer	origin	and	progression,	and	existing	databases	of	cancer	drivers	may	therefore	

help	us	evaluate	the	TRNs.	Accordingly,	we	examined	the	concordance	between	key	TFs	identified	in	the	

cancer	type-relevant	TRNs	above	and	known	driver	TFs	for	that	cancer	as	catalogued	in	the	DriverDBv2	

[24]	and	IntOGen	[25]	databases.	We	first	focused	on	breast	cancer	(BRCA)	given	the	relatively	extensive	

knowledge	of	driver	genes	 for	 it.	We	examined	 the	BRCA-relevant	TRN	 reconstructed	using	 InPheRNo	

(Figure	3A)	and	identified	15	TFs	with	most	targets	(Table	2)	in	this	network.	This	set	included	six	BRCA	

driver	 TFs	 (RUNX1,	 GATA3,	 MYB,	 FOXA1,	 ZBTB41,	 PRRX1)	 according	 to	 DriverDBv2	 [24]	 (p	 =	 1.2E-4,	

hypergeometric	 test)	and	four	according	to	 IntOGen	[25]	 (p	=	2.3E-4).	To	assess	 if	 the	 InPheRNo	TRNs	

exhibit	 an	 improved	ability	 to	 reveal	driver	 TFs,	we	 repeated	 the	above	evaluations	with	 results	 from	

five	alternative	approaches	(see	Methods	for	details	of	each	approach),	as	outlined	below.		

	

combined	p	<	1E-16	

alpha	=	0.05	

*	 *	 *	 *	 *	 *	 *	 *	

B)	A)	
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Figure	3:	Driver	TFs	in	cancer	type-relevant	TRNs	reconstructed	by	InPheRNo.	(A)	A	subnetwork	of	the	BRCA-relevant	TRN.	The	
depicted	subnetwork	consists	of	the	15	TFs	(red)	with	the	most	target	genes,	as	well	as	genes	(green)	that	are	regulated	by	at	
least	three	of	these	TFs.	Genes	or	TFs	with	a	blue	border	represent	BRCA	drivers	according	to	IntOGen	and	DriverDBv2.	(B-C)	
Cancer-specificity	of	 InPheRNo	 in	 identifying	driver	TFs	 (using	 IntOGen)	compared	to	the	context-restricted	network	analysis.	
For	each	cancer	type,	100	TFs	with	the	most	number	of	identified	target	genes	are	selected	and	are	compared	with	the	set	of	
driver	TFs	of	that	cancer	that	are	drivers	of	at	most	𝑛!	other	cancers.	Color	green	shows	the	total	number	of	cancer-specific	
driver	TFs	in	the	IntOGen	database,	color	blue	corresponds	to	number	of	cancer-specific	driver	TFs	identified	by	InPheRNo	and	
red	 represents	 driver	 TFs	 identified	 using	 context-restricted	 network	 analysis.	 Only	 cancers	 that	 had	more	 than	 one	 known	
cancer-specific	 driver	 TF	 are	 used	 for	 the	 analysis.	 The	 p-values	 are	 calculated	 using	 a	 hypergeometric	 test.	 (B)	 Results	
corresponding	to	𝑛! = 2.	(C)	Results	corresponding	to	𝑛! = 3.	
	

In	 the	 first	 baseline,	 we	 constructed	 a	 ‘context-restricted’	 TRN	 using	 only	 breast	 cancer	 samples,	

mimicking	similar	approaches	in	the	literature	[4-7].	We	modeled	each	gene’s	expression	in	terms	of	the	

expression	values	of	all	TFs,	via	multivariable	regression.	We	adopted	the	Elastic	Net	algorithm	for	this	

purpose,	exactly	as	in	the	first	step	of	InPheRNo,	obtaining	a	small	number	of	TFs	regulating	each	gene	

(see	Methods),	 and	 ranked	 TFs	 by	 the	 number	 of	 target	 genes.	 The	 top	 15	 TFs	 identified	 using	 this	
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approach	included	no	BRCA-driver	TF	according	to	either	of	the	two	databases.	In	the	second	baseline,	

we	used	 ‘differential	network	analysis’	 [9]	 to	 identify	edges	that	are	present	 in	the	TRN	reconstructed	

using	BRCA	samples	and	not	present	 in	 the	TRN	reconstructed	using	samples	of	other	cancers	pooled	

together	 (see	Methods).	 (TRN	reconstruction	relied	on	the	Elastic	Net	algorithm,	exactly	as	 in	the	first	

baseline.)	The	set	of	15	TFs	with	the	most	number	of	target	genes	using	this	approach	contained	only	

one	known	BRCA-driver	TF	according	to	DriverDBv2	and	none	according	to	IntOGen.	The	third	baseline	

was	a	‘context-specific’	TRN	[13-15]	reconstructed	by	relating	the	expression	of	differentially	expressed	

genes	to	the	expression	of	TFs	(see	Methods).	The	set	of	top	15	TFs	 identified	using	this	approach	did	

not	 include	any	BRCA-driver	TFs	according	to	any	of	the	two	databases.	The	fourth	method	compared	

involved	 identifying	TFs	whose	expression	had	the	most	significant	difference	between	samples	of	the	

breast	 cancer	 compared	 to	 samples	 of	 other	 cancers	 (Welch’s	 t-test).	 (That	 is,	 no	 TRN	 reconstruction	

was	performed.)	The	set	of	15	TFs	identified	using	this	approach	did	not	contain	any	driver	TFs	according	

to	IntOGen	or	DriverDBv2.	Finally,	in	the	fifth	baseline,	we	used	an	approach	based	on	Fisher’s	method	

to	combine	the	p-value	of	the	association	between	a	gene’s	expression	and	the	phenotype	with	the	p-

value	of	Pearson’s	correlation	between	expression	of	that	gene	and	the	expression	of	a	TF	(see	Methods	

for	details).	This	method,	which	can	be	considered	a	simplified	version	of	InPheRNo,	has	the	benefit	of	

reconstructing	 phenotype-relevant	 co-expression	 networks	 efficiently,	 but	 does	 not	 allow	 us	 to	

simultaneously	model	the	effect	of	multiple	TFs	on	each	gene.	In	spite	of	this	shortcoming,	this	method,	

henceforth	 called	 ‘simplified-InPheRNo’,	 outperformed	 all	 other	 methods	 except	 for	 InPheRNo	 in	

identifying	BRCA	driver	TFs:	 the	 list	of	15	TFs	with	 the	most	number	of	 target	genes	 included	4	driver	

genes	according	to	either	database.	The	top	TFs	identified	using	these	different	methods	are	provided	in	

Supplementary	Table	S2.	

	

We	noted	above	that	six	of	the	15	key	TFs	of	the	BRCA-specific	TRN	determined	by	InPheRNo	are	known	

driver	TFs.	We	mined	the	literature	and	found	strong	evidence	for	the	role	of	five	additional	TFs	(from	

the	 remaining	nine)	 in	BRCA;	 see	Table	2.	For	 instance,	ESR1	encodes	estrogen	receptor	alpha	and	 its	

role	 in	 the	 development,	 progress	 and	 drug	 resistance	 of	 breast	 cancer	 is	 well	 documented	 [26-28].	

CERS2	is	a	ceramide	synthase	and	suppresses	breast	tumor	cell	invasion	and	enhances	chemosensitivity	

of	 breast	 cancer	 cells	 [29,	 30].	 In	 addition,	 the	 low	 expression	 of	 this	 gene	 is	 associated	 with	 poor	

prognosis	in	breast	cancer	[30].	SLUG	is	a	TF	involved	in	epithelial	to	mesenchymal	transition	(EMT)	and	

is	known	to	promote	breast	cancer	progression	and	 invasion	[31-33].	We	recently	showed	that	this	TF	

(along	with	FOXA1,	another	TF	identified	by	InPheRNo,	Table	2)	is	a	biomarker	of	metastatic	subtypes	of	
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Table	2:	Top	15	TFs	identified	using	InPheRNo	and	the	evidence	for	their	role	in	Breast	Cancer.	The	TFs	are	ranked	based	on	the	

number	 of	 their	 cancer-relevant	 target	 genes.	 The	 second	 column	 shows	 the	 percent	 of	 the	 considered	 genes	 that	 each	 TF	

regulates.	

Transcription	

Factors	

Percent	of	

target	genes	
Evidence	

RUNX1	 6.7%	 Driver	(IntOGen,	DriverDBv2)	

ZNF552	 4.9%	 Modest	Literature	Support	

GATA3	 4.6%	 Driver	(IntOGen,	DriverDBv2)	

MYB	 4.4%	 Driver	(IntOGen,	DriverDBv2)	

CERS2	 4.3%	 Strong	Literature	Support	

FOXA1	 4.3%	 Driver	(IntOGen,	DriverDBv2)	

SLUG	 4.2%	 Strong	Literature	Support	

AFF3	 3.8%	 Modest	Literature	Support	

ZNF281	 3.7%	 Modest	Literature	Support	

ZBED2	 3.7%	 Not	found	

ZBTB41	 3.7%	 Driver	(DriverDBv2)	

PRRX1	 3.7%	 Driver	(DriverDBv2)	

TRPS1	 3.6%	 Strong	Literature	Support	

ESR1	 3.5%	 Strong	Literature	Support	

PPARA	 3.4%	 Strong	Literature	Support	

	

	

breast	cancer	[34].	TRPS1	is	a	transcription	repressor	of	GATA-regulated	genes,	which	promotes	EMT	in	

breast	cancer	and	its	expression	is	associated	with	clinical	outcome	in	this	cancer	[35,	36].	The	activation	

of	 PPARA	 has	 been	 shown	 to	 promote	 proliferation	 in	 human	 breast	 cancer	 and	 its	 genetic	

polymorphism	has	been	linked	to	an	increase	in	the	odds	of	postmenopausal	breast	cancer	[37,	38].	In	

addition	 to	 the	 above	 five,	 three	 other	 TFs	 among	 the	 top	 15	 identified	 by	 InPheRNo	 have	 modest	

literature	support	 for	a	role	 in	BRCA	development:	AFF3	 is	a	nuclear	transcriptional	activator,	which	 is	

abnormally	expressed	in	some	cases	of	breast	cancer	and	has	been	suggested	as	a	proto-oncogene	[39,	

40].	ZNF281	is	a	transcriptional	repressor	involved	in	EMT	that	is	upregulated	in	colon	and	breast	cancer	

and	has	been	suggested	to	promote	these	cancers	[41,	42].	In	addition,	ZNF552	has	been	suggested	as	a	

regulator	of	genetic	risk	of	breast	cancer	and	its	regulons	have	shown	to	be	enriched	in	genes	associated	

with	 risk	 loci	 identified	 using	 a	 combination	 of	 GWAS	 and	 eQTL	 analysis	 [43].	 Taken	 together,	 these	

results	 suggest	 that	 InPheRNo	can	accurately	 identify	 regulatory	mechanisms	 (in	 this	 case,	major	 TFs)	

involved	in	breast	cancer.		
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Driver	transcription	factors	identified	by	InPheRNo	are	specific	to	respective	cancer	types	

We	next	asked	 if	 the	key	TFs	 (those	with	most	target	genes)	 in	 InPheRNo-derived	TRNs	are	specific	 to	

their	 respective	 cancer	 types,	 as	 this	 is	 an	 important	 criterion	 for	 phenotype-relevant	 TRN	

reconstruction.	We	obtained	a	list	of	driver	TFs	for	each	cancer	from	IntOGen,	and	retained	only	those	

known	drivers	 that	were	not	 annotated	 as	 drivers	 for	more	 than	𝑛! =	2	other	 cancer	 types.	We	 then	

compared	these	cancer	type-specific	drivers	to	the	top	100	(out	of	1544)	TFs	identified	for	that	cancer	

using	InPheRNo	(Supplementary	Table	S2).	Of	the	seven	cancers	types	that	had	more	than	one	known	

driver	 TF	 specific	 to	 them,	 three	 cancers	 (BRCA,	 OV,	 and	 SKCM)	 showed	 a	 significant	 (alpha	 =	 0.05)	

enrichment	 between	 InPheRNo-identified	 TFs	 and	 known	 cancer	 type-specific	 drivers,	with	 an	 overall	

combined	p-value	(Fisher’s	method)	of	p	=	2.5E-4	(Figure	3B).	However,	repeating	the	above	procedure	

with	 key	 TFs	 identified	 by	 context-restricted	 network	 analysis,	 differential	 network	 analysis,	 context-

specific	 network	 analysis,	 or	 based	 on	 differential	 expression	 did	 not	 yield	 significant	 enrichment	 for	

cancer	 type-specific	 drivers	 in	 any	 of	 these	 seven	 cases	 (Figure	 3B	 and	 Supplementary	 Figure	 S3	 in	

Supplementary	File	S2).	Key	TFs	of	TRNs	determined	by	simplified-InPheRNo	were	significantly	enriched	

for	known	drivers	in	two	cases	(Supplementary	Figure	S3	in	Supplementary	File	S2).	

	

Similar	observations	were	made	when	using	a	slightly	relaxed	definition	of	a	cancer	type-specific	driver	

TF:	as	a	known	driver	of	one	cancer	type	that	is	not	a	known	driver	for	more	than	𝑛! =	3	other	cancer	

types	(Figure	3C,	Supplementary	Figure	S4	in	Supplementary	File	S2).	For	the	12	cancer	types	where	two	

or	more	such	cancer	 type-specific	drivers	are	known,	 InPheRNo-identified	key	TFs	showed	the	highest	

enrichment	for	those	drivers	(combined	p	=	6.2E-5)	compared	to	simplified-InPheRNo	(p	=	6.6E-4),	top	

differentially	expressed	TFs	(p	=	0.62),	differential	network	analysis	(p	=	0.64),	context-restricted	analysis	

(p	=0.92),	and	context-specific	analysis	(p=0.99).	While	the	above	analyses	were	performed	using	driver	

TF	 annotations	 from	 IntOGen,	 similar	 analysis	 using	 driver	 genes	 in	 DriverDBv2	 also	 confirmed	 the	

conclusion	 that	 InPheRNo	has	a	high	 specificity	 in	 identifying	 regulatory	mechanisms	 involved	 in	each	

cancer,	 especially	 when	 compared	 to	 alternative	 approaches	 (Supplementary	 Figures	 S5-S7	 in	

Supplementary	File	S2).	We	believe	this	arises	from	the	explicit	and	quantitative	incorporation	of	cancer	

type-specificity	of	target	genes	into	its	statistical	model.			

	

Gene	expression	signatures	based	on	InPheRNo	TRNs	are	predictive	of	patient	survival	

Gene	expression	signature	analysis	is	a	widely	used	approach	in	analyzing	and	subtyping	cancer	samples,	

with	 great	 potential	 for	 improving	 prognosis	 and	 treatment	 [44,	 45].	 We	 hypothesized	 that	 since	
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InPheRNo	 identifies	 cancer	 type-relevant	 regulatory	 mechanisms,	 the	 resulting	 TRNs	 can	 be	 used	 to	

form	 gene	 expression	 signatures	 that	 are	more	 predictive	 of	 patient	 survival	 than	 signatures	 formed	

using	 differential	 expression	 analysis,	 one	 of	 the	 most	 widely	 used	 approaches	 for	 forming	 gene	

expression	signatures	[45].	It	has	been	previously	suggested	that	the	activity	of	a	TF	is	better	reflected	in	

the	activity	of	its	targets	than	its	own	expression	[16].	Therefore,	we	formed	a	gene	expression	signature	

for	 each	 TF	 reflecting	 the	 expression	 of	 the	 TF	 as	 well	 as	 the	 activity	 levels	 of	 its	 targets	 in	 the	

InPherRNo-derived	TRN,	while	 taking	 into	consideration	 the	strength	and	mode	of	 regulation	 for	each	

gene	(see	Methods	for	details).	For	each	cancer	type,	we	then	used	signatures	of	the	five	key	TFs	with	

the	largest	number	of	target	genes	in	the	corresponding	TRN,	and	clustered	patient	tumor	samples	into	

two	groups	 (hierarchical	 clustering)	based	on	 the	 resulting	 signatures.	We	used	Kaplan-Meier	 survival	

analysis	to	determine	whether	these	two	clusters	show	distinct	survival	behavior,	limiting	our	analysis	to	

cancers	with	more	than	150	samples	and	ten	incidents	of	death.	Out	of	the	thirteen	cancers	satisfying	

these	conditions,	the	expression	signatures	classified	samples	into	clusters	of	distinct	survival	(log-rank	

test,	 alpha	 =	 0.05)	 for	 seven	 cancers	 (Figure	 4A),	 with	 a	 combined	 p-value	 of	 p	 =	 1.0E-9	 (Fisher’s	

method).		

	

We	 repeated	 the	 above	 survival	 analysis	 using	 gene	 expression	 signatures	 created	 from	 TRNs	

reconstructed	by	context-restricted	analysis,	differential	network	analysis,	context-specific	analysis	and	

simplified-InPheRNo,	which	resulted	in	one	to	at	most	four	significant	cases	(Figure	4A,	Supplementary	

Table	S3).	Similarly,	clustering	based	on	top	five	most	significantly	differentially	expressed	genes	or	TFs	

resulted	in	four	and	two	significant	cases,	respectively.	The	results	did	not	 improve	when	we	used	the	

same	 number	 of	 differentially	 expressed	 genes	 as	 was	 used	 in	 forming	 InPheRNo’s	 gene	 signature,	

yielding	only	four	significant	cases.	These	results	show	that	taking	into	account	the	phenotype-relevant	

regulatory	mechanisms	 identified	by	 InPheRNo	 in	developing	 gene	expression	 signatures	 can	 improve	

the	performance	of	gene	signature	analysis	and	prediction	of	survival.			

	

Given	the	observation	that	the	gene	expression	signature	formed	using	the	InPheRNo-identified	TRN	for	

Lower	 Grade	 Glioma	 (LGG)	 can	 accurately	 predict	 patients’	 prognosis	 (Figure	 4B),	 we	 sought	 to	

determine	the	functional	characteristics	of	these	genes.	To	this	end,	we	performed	gene	ontology	(GO)	

enrichment	analysis	using	KnowEnG	analytical	platform	[46]	 for	each	of	 the	 five	TFs	and	their	 targets,	

one	TF	at	a	time.	Overall,	49	GO	terms	with	size	larger	or	equal	to	ten	were	enriched	(Fisher’s	exact	test,	

Benjamini-Hochberg	corrected	false	discovery	rate	p*	<	0.05)	for	these	gene	sets	(Figure	5	and	Table	S4).	
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Figure	4:	 Survival	analysis	 for	 samples	of	different	cancers	clustered	using	different	approaches.	 (A)	The	heatmap	shows	 the	
performance	of	different	approaches	used	for	clustering	of	samples.	Samples	of	each	cancer	are	clustered	into	two	groups	and	
each	cell	 in	the	heatmap	represents	− log!"(𝑝)	 (obtained	using	a	log-rank	test)	of	the	significance	of	the	difference	between	
survival	probabilities	of	the	two	clusters.	For	clarity,	cases	in	which	the	p-value	was	larger	than	0.05	are	shown	as	white.	(B-C)	
Kaplan-Meier	 analysis	 for	 two	 clusters	 obtained	 by	 the	 gene	 expression	 signature	 formed	 by	 the	 top	 5	 TFs	 and	 their	 target	
genes,	as	identified	by	InPheRNo	for	LGG	(B)	and	THCA	(C)	cancer	types.		
	

	

Out	of	these	GO	terms,	21	were	related	to	the	nervous	system,	neurotransmission,	and	neurogenesis.	

On	the	other	hand,	12	terms	were	related	to	cell	junction,	which	plays	an	important	role	in	the	invasion-

metastasis	cascade	in	various	cancers	including	gliomas	[47,	48].	These	results	support	our	expectation	

that	 both	 regulatory	 mechanisms	 specific	 to	 nervous	 system	 as	 well	 as	 more	 general	 cancer-related	

mechanisms	are	involved	in	the	development	and	progress	of	LGG.	
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Figure	 5:	 Functional	 annotation	 of	 top	 5	 TFs	 and	 their	 targets	 identified	 using	 InPheRNo	 for	 LGG.	 The	 heatmap	 shows	 the	
Benjamini-Hochberg	corrected	GO	enrichment	false	discovery	rates	(FDR).	For	clarity,	cases	 in	which	the	FDR	was	 larger	than	
0.05	are	shown	as	white.	The	GO	terms	are	sorted	based	on	the	smallest	FDR	in	any	of	the	five	gene	sets.	
	

DISCUSSION	

Transcriptional	 regulatory	 networks	 (TRNs)	 provide	 an	 important	 and	 popular	 framework	 for	 better	

understanding	 a	 cell’s	 regulatory	 mechanisms	 in	 response	 to	 or	 leading	 to	 phenotypic	 conditions.	

However,	TRN	reconstruction	methods	today	do	not	incorporate	phenotypic	information	adequately	or	

at	all.	As	such,	the	reconstructed	networks	may	be	limited	in	pinpointing	regulatory	mechanisms	most	

related	 to	 a	 phenotype	 under	 investigation,	 and	 often	 necessitate	 a	 follow-up	 step	 that	 filters	 for	

phenotype-relevance.	For	example,	a	recent	study	of	gene	expression	changes	underlying	Huntington’s	

6	
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disease	(HD)	 [49]	reconstructed	a	TRN	specific	 to	the	mouse	striatum	and	then	short-listed	TFs	whose	

predicted	targets	were	enriched	in	genes	differentially	expressed	in	HD	mouse	models.	In	another	study,	

gene	expression	profiles	of	TFs	and	putative	target	genes	were	used	to	reconstruct	a	context-restricted	

TRN	for	breast	cancer	(using	only	breast	cancer	samples),	and	then	a	 list	of	breast	cancer-relevant	TFs	

(called	 ‘risk-TFs’)	whose	regulons	were	enriched	 in	risk-loci	were	short-listed	[43].	 In	this	study,	GWAS	

and	eQTL	analyses	were	used	to	define	risk	loci	and	relate	them	to	the	regulon	of	each	TF.	Such	previous	

attempts	 to	 augment	 TRN	 reconstruction	with	phenotypic	 data	motivated	us	 to	develop	 a	 systematic	

approach	to	incorporate	information	about	the	phenotype	directly	into	TRN	reconstruction.		

	

In	this	study,	we	developed	InPheRNo	to	reconstruct	phenotype-relevant	TRNs	and	utilized	it	to	identify	

regulatory	 interactions	 that	 differentiate	 one	 cancer	 type	 from	 others	 while	 correcting	 for	 the	

confounding	effect	of	tissues	of	origin.	InPheRNo	is	based	on	a	carefully	designed	PGM,	which	is	key	to	

combining	 TF-gene	 expression	 correlations	with	 gene-phenotype	 associations.	 The	method	 is	 broadly	

applicable	since	it	 learns	regulatory	relationships	from	expression	data	alone	and	does	not	impose	any	

restriction	on	the	type	of	phenotype	under	investigation	–	the	phenotype	may	be	binary,	categorical	or	

even	continuous-valued,	and	any	appropriate	statistical	method	for	testing	its	association	with	a	gene’s	

expression	 may	 be	 used	 in	 InPheRNo.	 Unlike	 several	 other	 methods	 that	 rely	 on	 the	 regulatory	

relationship	of	one	TF-gene	pair	at	a	time,	InPheRNo	considers	the	effect	of	multiple	TFs	on	each	gene	in	

the	 reconstruction	 procedure,	 at	 the	 time	 of	 selecting	 candidate	 TFs	 as	 well	 as	 in	 training	 the	 PGM.	

Finally,	 using	posterior	probabilities	obtained	 from	 the	PGM,	 InPheRNo	provides	 a	 score	 representing	

the	confidence	 for	 the	 identified	phenotype-relevant	 regulatory	edges.	Our	extensive	analyses	using	a	

pan-cancer	 dataset	 from	 TCGA	 showed	 the	 advantages	 of	 this	 novel	 framework	 compared	 to	 other	

related	 (yet	 different)	 approaches.	 Our	 results	 showed	 that	 the	 TFs	 with	 many	 cancer	 type-relevant	

targets	 are	 potential	 cancer	 driver	 TFs	 and	 may	 suggest	 novel	 drug	 targets	 or	 provide	 new	 insights	

regarding	 the	 development	 and	 progress	 of	 cancer.	Our	 results	 also	 suggest	 a	 powerful	 approach	 for	

subtyping	 of	 cancer	 patients	 using	 gene	 expression	 signatures:	while	most	 approaches	 developed	 for	

this	 task	 do	 not	 take	 into	 account	 the	 regulatory	 interactions	 among	 genes,	 our	 survival	 analysis	

suggests	 that	 cancer-type	 relevant	 TRNs	 can	 improve	 the	 predicting	 power	 of	 gene	 expression	

signatures.		

	

In	spite	of	the	success	of	the	InPheRNo-based	gene	signatures	in	differentiating	between	patients	with	

poor	and	good	prognosis	for	the	majority	of	cancer	types,	in	some	cases,	e.g.,	BRCA,	this	method	did	not	
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result	in	groups	with	significantly	different	survival	probability,	despite	the	existence	of	BRCA-driver	TFs	

in	the	signature.	This	lack	of	success	may	partially	be	due	to	the	fact	that	we	clustered	samples	of	each	

cancer	type	into	two	clusters,	while	these	cancer	types	may	include	more	than	two	subtypes,	as	is	the	

case	in	BRCA	[50].	However,	since	in	most	cancer	types	a	definite	number	for	the	cancer	subtypes	is	not	

yet	established,	we	preferred	to	keep	the	number	of	clusters	equal	to	two.	A	more	in-depth	analysis	of	

subtype	discovery	and	survival	analysis	using	InPheRNo-derived	TRNs	is	left	for	future	work.			

	

Another	 future	 direction	 for	 improving	 InPheRNo	 is	 to	 simultaneously	 include	 additional	 types	 of	

regulatory	 evidence,	 especially	 those	 representing	 ‘cis’	mechanisms	 such	 as	 TF	motifs	 and	 chromatin	

state	changes,	in	the	TRN	reconstruction	procedure.	This	is	an	important	direction,	especially	since	many	

efforts	 are	 under	 way	 to	 generate	 large	 datasets	 containing	 matching	 transcriptomic,	 genomic,	

epigenomic	and	phenotypic	profiles	of	many	patients.	One	way	to	achieve	this	goal	might	be	to	include	

different	regulatory	evidence	as	new	observed	variables	in	the	PGM	used	in	InPheRNo.	However,	further	

investigations	are	necessary	to	model	the	corresponding	PGM.		

	

METHODS	

Inference	of	Phenotype-relevant	Regulatory	Networks	(InPheRNo)	

InPheRNo	(Figures	1C-1D)	is	a	new	computational	method	for	reconstructing	phenotype-relevant	TRNs.	

At	its	core,	InPheRNo	utilizes	a	carefully	designed	PGM	to	systematically	combine	the	information	on	the	

significance	 of	 gene-phenotype	 associations	 with	 the	 information	 on	 the	 significance	 of	 gene-TF	

associations	 to	 obtain	 a	 phenotype-relevant	 TRN.	 In	 addition,	 InPheRNo	 takes	 into	 account	 the	

simultaneous	effect	of	multiple	TFs	on	each	gene.		

	

As	input,	InPheRNo	accepts	a	matrix	of	gene	and	TF	expression	data	(gene	and	TFs	x	samples),	a	list	of	

TFs	and	a	vector 𝒑	that	records	the	p-value	of	association	between	the	expression	of	each	gene	and	the	

phenotypic	variation	across	samples	(obtained	using	a	suitable	statistical	test	depending	on	the	type	of	

phenotype),	as	depicted	 in	Figure	1C.	We	assume	that	the	expression	matrix	 is	properly	normalized	 in	

advance	(described	below).	Using	the	list	of	TFs,	the	gene	expression	matrix	is	divided	into	a	matrix	𝑿	of	

TF	expression	data	(TFs	x	samples)	and	a	matrix	𝒀	of	gene	expression	data	(genes	x	samples).		

	

In	 order	 to	 obtain	 a	 measure	 of	 significance	 for	 the	 association	 between	 each	 gene-TF	 pair,	 while	

considering	the	influence	of	other	TFs	on	the	gene	of	interest,	we	used	a	two-step	procedure.	First,	we	
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used	Elastic	Net,	a	 linear	multivariable	regression	algorithm	that	 imposes	sparsity	using	regularization,	

to	 identify	 a	 small	 set	 of	𝑚! 	 candidate	 TFs	 for	 each	 gene	 𝑗 (𝑗 = 1, 2,⋯ , 𝑛).	 In	 this	 model,	 the	 TF	

expression	matrix	𝑿	 is	 the	 feature	matrix	 and	 the	 expression	profile	𝒚! 	of	 each	 gene	 is	 the	 response	

vector.	The	value	of	𝑚! 	is	determined	by	the	Elastic	Net’s	hyperparameters,	but	the	user	may	select	an	

upper	bound	𝑚max	on	this	value	to	reduce	the	running	time	and	impose	the	prior	knowledge	that	only	a	

few	 TFs	 typically	 regulate	 each	 gene.	 (We	 used	𝑚max = 15	 for	 our	 analyses.)	 Note	 that	 the	 idea	 of	

imposing	an	upper	limit	on	the	number	of	regulators	of	a	gene	has	been	previously	used	in	the	literature	

[51-53].	

	

Next,	for	each	gene	𝑗	we	formed	a	matrix	𝑿! 	representing	the	expression	of	the	𝑚! 	selected	TFs	across	

different	 samples.	Then,	we	used	𝑿! 	 as	 the	 feature	matrix	 in	a	multivariable	OLS	 regression	model	 to	

relate	 the	expression	of	 the	 identified	TFs	 to	 the	expression	of	 the	gene	𝒚! 	 (the	response	vector)	and	

calculated	 a	 pseudo	 p-value	𝜋!,! 	 (using	 a	 two-sided	 t-test),	 reflecting	 the	 conditional	 effect	 of	 the	 TF	

𝑖 (𝑖 = 1, 2,⋯ ,𝑚!)	 on	 gene	 𝑗.	 Using	 the	OLS	 regression	model	 is	 a	 necessary	 step,	 since	 currently	 no	

statistical	method	exists	 to	directly	calculate	 the	p-value	of	 feature-response	associations	 in	an	Elastic	

Net	model.	It	is	important	to	note	that	𝜋!,! 	is	only	a	‘true’	p-value	for	the	second	step	of	this	procedure,	

but	does	not	satisfy	all	the	characteristics	of	a	p-value	for	the	two-step	procedure	(see	Supplementary	

File	S2	for	simulation	results).	More	precisely,	under	the	Null	hypothesis	that	TF	𝑖	is	not	associated	with	

gene	𝑗,	 the	distribution	of	𝜋!,! 	 is	not	uniform	(a	characteristic	of	a	 true	p-value),	but	 instead	 is	biased	

towards	small	values	(see	Supplementary	Figures	S10-S12	in	Supplementary	File	S2).	The	reason	for	this	

bias	is	that	in	the	first	step,	Elastic	Net	selects	TFs	whose	expression	are	associated	with	the	expression	

of	 gene	 𝑗	 and	 the	 second	 step	 is	 thus	 likely	 to	 assign	 a	 small	 p-value	 to	 them.	 This	 is	 an	 important	

consideration,	since	it	affects	how	we	model	the	conditional	distributions	of	𝜋!,!s	in	the	PGM	described	

below.	

	

The	 two	 sets	 of	 p-values	 –	 one	 capturing	 TF-gene	 regulatory	 relationships	 (denoted	 as	𝜋!,!)	 and	 the	

other	 gene-phenotype	 associations	 (denoted	 as 𝑃! 	 and	 provided	 in	 vector	𝒑)	 –	 are	 used	 as	 observed	

variables	in	a	PGM	(Supplementary	Figure	S8	in	Supplementary	File	S2)	that	has	binary	latent	variables	

𝑇!,! 	 reflecting	 the	 role	 that	 each	 putative	 TF-gene	 interaction	 plays	 in	 phenotype	 variation.	 More	

precisely,	𝑇!,! = 1	implies	that	TF	𝑖	regulates	gene	𝑗	so	as	to	affect	the	phenotype,	and	𝑇!,! = 0	indicates	

its	 logical	 complement.	 We	 modeled	 the	 prior	 distribution	 of	 this	 random	 variable	 as	
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𝑇!,!  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝛾 .	The	posterior	probabilities	of	𝑇!,!s	obtained	from	this	PGM	can	be	used	to	form	the	

phenotype-relevant	TRN	(as	described	below).		

	

As	 depicted	 in	 Figure	 1D	 and	 Supplementary	 Figure	 S8	 (in	 Supplementary	 File	 S2),	 InPheRNo	 uses	 a	

causal	 directed	 acyclic	 graph	 (DAG)	 to	 model	 the	 relationship	 between	 the	 latent	 variables	 and	 the	

observed	 variables.	 The	 topology	 of	 this	 DAG	 represents	 the	 idea	 that	 the	 value	 of	𝑇!,! 	 has	 a	 causal	

effect	on	the	distributions	of	observed	variables	𝑃!s	and	𝜋!,!.	Since	each	𝑃! 	represents	a	‘true’	p-value,	it	

follows	a	uniform	distribution	under	the	Null	hypothesis	that	‘expression	of	gene	𝑗	is	not	associated	with	

the	phenotypic	variation’,	which	is	the	scenario	where	gene	j	does	not	mediate	the	influence	of	any	of	

its	 putative	 regulators	 on	 the	 phenotype.	 In	 other	 words,	 if	 𝑇!,! = 𝑇!,! = ⋯ = 𝑇!!,! = 0,	 then	 𝑃! ∼

𝑈𝑛𝑖𝑓 0, 1 .	On	the	other	hand,	if	any	of	the	𝑇!,!s	is	equal	to	1,	the	definition	of	𝑇!,! 	implies	that	gene	𝑗	is	

associated	with	the	phenotype	(the	alternative	hypothesis).	Following	the	approach	in	Hanson	et	al.	[54]	

who	 successfully	 used	 a	Beta	distribution	 to	model	 the	distribution	of	 p-values	when	 they	 are	biased	

towards	 small	 values,	we	 used	 a	𝐵𝑒𝑡𝑎(𝛼,𝛽)	 distribution	 to	model	 the	 distribution	 of	 these	 variables	

under	the	alternative	hypothesis.	By	fixing	𝛽 = 1	and	limiting	the	value	of	𝛼	in	the	range	0 < 𝛼 ≤ 1,	we	

can	obtain	 a	wide	 range	of	 distributions	with	different	 degrees	of	 bias	 towards	 small	 values	with	 the	

smallest	bias	when	𝛼 = 1	 (equivalent	 to	a	uniform	distribution)	and	an	 increasing	degree	of	bias	as	𝛼	

approaches	0	(see	Supplementary	Figure	S9	in	Supplementary	File	S2).	Thus,	the	conditional	distribution	

of	𝑃! 	given	the	value	of	its	parent	nodes	in	the	DAG	can	be	modeled	as	

𝑃! ∼
𝑈𝑛𝑖𝑓(0, 1) if   𝑇!,! = 𝑇!,! = ⋯ = 𝑇!!,! = 0 
𝐵𝑒𝑡𝑎(𝛼 = 𝛼′,𝛽 = 1) otherwise

	

where	𝛼!, 0 < 𝛼′ ≤ 1,	 is	 a	 parameter	 controlling	 the	 degree	 of	 bias	 of	 the	 Beta	 distribution	 towards	

small	values.	In	our	analyses,	we	estimated	𝛼′	by	fitting	a	mixture	of	a	uniform	and	a	Beta	distribution	to	

the	 histogram	 of	 𝑃!s	 for	 all	 genes,	 prior	 to	 training	 the	 PGM.	 Note	 that	 modeling	 the	 conditional	

distribution	 of	 each	 𝑃! 	 with	 respect	 to	 𝑇!,!s	 is	 yet	 another	 technique	 that	 we	 used	 to	 capture	 the	

influence	 of	 multiple	 TFs	 on	 the	 value	 of	 observed	 variables,	 and	 hence	 on	 the	 phenotype-relevant	

regulation	of	the	genes.		

	

As	 mentioned	 earlier	 the	 pseudo	 p-values	 𝜋!,!s	 obtained	 using	 the	 two-step	 procedure	 are	 biased	

towards	small	values	even	when	TF 𝑖	is	not	a	regulator	of	gene	𝑗.	As	a	result,	similar	to	the	case	with	𝑃!s,	

we	 can	 use	 two	 distributions 𝐵𝑒𝑡𝑎(𝛼 = 𝛼!! ,𝛽 = 1)	 and	 𝐵𝑒𝑡𝑎(𝛼 = 𝛼!! ,𝛽 = 1)	 to	 model	 the	

distribution	of	𝜋!,!s	when	TF 𝑖	regulates	gene	𝑗	and	when	it	does	not,	respectively.	However,	in	order	to	
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differentiate	 between	 the	 aforementioned	 scenarios,	 we	 need	 to	 impose	 a	 restriction	 on	 the	

parameters	 of	 these	 two	distributions	 relative	 to	 each	 other.	We	hypothesized	 that	 the	 bias	 towards	

small	values	is	larger	when	TF 𝑖	is	a	regulator	of	gene	𝑗	compared	to	when	it	is	not.	Intuitively,	this	can	

be	 justified	 as	 follows:	 assuming	 a	 linear	 relationship	 between	 the	 expression	 of	 a	 gene	 and	 its	

regulators,	the	two	main	reasons	for	existence	of	false	positive	candidate	TFs	identified	using	Elastic	Net	

are	the	high	dimensionality	of	the	data	(more	features	compared	to	samples),	existence	of	noise	in	the	

data	and	a	 lack	of	prior	knowledge	on	the	number	of	regulators	of	each	gene.	As	a	result,	even	when	

some	 false	 positives	 are	 identified	 using	 Elastic	Net,	most	 of	 the	 variance	 of	 the	 gene’s	 expression	 is	

expected	to	be	explained	using	the	expression	of	the	true	positive	TFs.	As	a	result,	the	expression	of	the	

true	positive	TFs	will	have	a	more	significant	association	with	the	gene’s	expression	in	an	OLS	model.	We	

used	 extensive	 simulation	 analysis	 under	 different	 setups	 and	 confirmed	 the	 intuition	 above	

(Supplementary	Table	S5	and	Supplementary	Figures	S10-S12	in	Supplementary	File	S2).	As	a	result,	we	

modeled	 the	 prior	 distribution	 of	 these	 unknown	 parameters	 according	 to	 𝛼!!  ~ 𝑈𝑛𝑖𝑓(0.5, 1)	 and	

𝛼!!  ~ 𝑈𝑛𝑖𝑓(0, 0.5),	 to	 ensure	 that	𝛼!! > 𝛼!! 	 and	 a	more	 significant	 bias	 towards	 small	 values	 exists	

when	TF	𝑖	is	a	regulator	of	gene	𝑗	(see	Supplementary	Figure	S8).	To	model	the	conditional	distribution	

of	𝜋!,! 	 given	 its	parents,	we	note	 that	one	 implication	of	𝑇!,! = 1	 is	 that	TF 𝑖	 regulates	gene	𝑗.	On	 the	

other	hand,	 if	𝑇!,! = 0,	 either	TF 𝑖	 does	not	 regulate	gene	 𝑗	 or	TF 𝑖	 regulates	gene	 𝑗	 but	gene	 𝑗	 is	not	

associated	with	the	phenotype.	Consequently,	we	used	the	following	model	

𝜋!,! ∼
𝐵𝑒𝑡𝑎(𝛼 = 𝛼!! ,𝛽 = 1) if   𝑇!,! = 1
𝑟!  𝐵𝑒𝑡𝑎 𝛼 = 𝛼!! ,𝛽 = 1 + 1 − 𝑟!  𝐵𝑒𝑡𝑎(𝛼 = 𝛼!! ,𝛽 = 1) if   𝑇!,! = 0,

	

where	𝑟! 	 is	 an	unknown	mixing	parameter	 representing	 the	probability	 that	 TF 𝑖	 regulates	 gene	 𝑗	 but	

gene	𝑗	 is	not	associated	with	the	phenotype.	We	assigned	a	prior	distribution	of	𝑟!  ~ 𝑈𝑛𝑖𝑓(0,1)	to	this	

parameter	(reflecting	lack	of	prior	knowledge).	

	

We	used	a	Markov	chain	Monte	Carlo	(MCMC)	method	using	the	PyMC	python	module	[55]	to	infer	the	

unknown	parameters	and	learn	empirical	posterior	probabilities	for	𝑇!,!s.	Since	some	of	the	solutions	of	

the	MCMC	may	 converge	 to	 local	 optima,	 to	 alleviate	 their	 effect	 we	 ran	 the	MCMC	 procedure	 100	

times	with	different	random	initializations	and	obtained	an	average	posterior	probability	 for	each	𝑇!,!.	

These	average	values	were	then	minmax	normalized	and	an	appropriate	threshold	was	used	to	identify	

phenotype-relevant	 regulatory	 edges	 (we	 used	 a	 threshold	 of	 0.5).	 Since	 several	 parameters	 can	 be	

configured	by	the	user,	for	the	default	values	which	were	used	in	the	pan-cancer	analysis	as	well	as	the	

method	used	for	hyperparameter	selection	see	Supplementary	Methods	(in	Supplementary	File	S2).		
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Software	availability	

Implementations	of	InPheRNo	and	simplified-InPheRNo	in	python,	with	appropriate	documentation,	are	

available	 at:	 https://github.com/KnowEnG/InPheRNo	 and	 https://github.com/KnowEnG/Simplified-

InPheRNo,	respectively.	

	

Data	collection	and	normalization	

We	downloaded	a	list	of	1544	human	TFs	from	AnimalTFDB	[56].	Gene	(including	TF)	expression	profiles	

of	6,357	cancer	patients	corresponding	to	18	different	cancer	types	in	TCGA	were	downloaded	from	the	

Genomic	 Data	 Commons	 [22].	 Similarly,	 the	 gene	 expression	 profiles	 of	 4,388	 normal	 tissue	 samples	

corresponding	 to	 these	 18	 cancer	 types	 (version	 V6p)	 were	 downloaded	 from	 the	 GTEx	 data	 portal	

(www.gtexportal.org).	 To	 normalize	 the	 FPKM	 (TCGA)	 and	 RPKM	 (GTEx)	 values	we	 used	 an	 approach	

similar	to	the	guideline	described	in	the	GTEx	data	portal	for	analyzing	gene	expression	corresponding	to	

version	V6p.	The	expression	profile	of	each	sample	was	normalized	 in	two	ways:	 for	 the	analyses	that	

involved	 expression	 of	 all	 samples	 (across	 different	 cancer	 or	 tissue	 types),	 a	 pan-cancer	 (pan-tissue)	

normalization	was	performed,	while	for	the	analyses	that	required	samples	of	one	cancer	(tissue)	type,	a	

cancer	 (tissue)	–specific	normalization	was	performed	 (see	Supplementary	Methods	 in	Supplementary	

File	S2).		

	

For	the	comparison	of	the	reconstructed	networks	using	InPheRNo	with	a	global	(cancer-agnostic)	TRN,	

we	downloaded	“ENCODE	TREG	binding	profiles”	from	http://eh3.uc.edu/treg	which	include	the	binding	

probabilities	assigned	to	each	(TF,	gene)	by	TREG	for	43	different	cell	lines.	We	then	selected	edges	with	

probability	larger	than	0.5	and	formed	their	union	over	all	cell	lines	to	obtain	a	global	TRN.		

	

We	 obtained	 from	 IntOGen	 (www.intogen.org)	 a	 list	 of	 driver	 TFs	 that	 are	 identified	 based	 on	

mutations,	 gene	 fusions	 and	 copy	 number	 alterations.	We	 then	 combined	 the	 driver	 lists	 for	 each	 of	

these	three	data	types	into	one	list	for	each	cancer.	We	also	obtained	a	list	of	cancer	driver	genes	from	

http://driverdb.tms.cmu.edu.tw/driverdbv2,	selecting	driver	genes	that	were	 identified	by	at	 least	two	

different	methods.	

	

Alternative	baseline	approaches	for	network	reconstruction	

We	 used	 several	 alternative	 approaches	 to	 TRN	 reconstruction	 as	 comparators	 for	 InPheRNo.	 The	

context-restricted	 network	 reconstruction	 generally	 refers	 to	 an	 approach	 in	 which	 a	 network	
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reconstruction	 algorithm	 is	 applied	 to	 samples	 of	 a	 context	 of	 interest,	 excluding	 the	 samples	

corresponding	to	other	contexts.	Since	any	TRN	reconstruction	algorithm	based	on	gene	expression	data	

can	be	used	in	this	framework	we	used	Elastic	Net	[57-59],	which	we	have	also	used	as	the	first	step	of	

InPheRNo,	to	ensure	a	fair	comparison	between	InPheRNo	and	context-restricted	network	analysis.	To	

obtain	 a	 context-restricted	 network	 for	 each	 cancer	 type,	 we	 used	 the	 expression	 profile	 of	 a	 gene	

across	samples	of	that	cancer	type	as	the	response	vector	and	the	expression	of	the	TFs	as	the	feature	

vectors	to	identify	TFs	with	nonzero	coefficients	for	each	gene.	Details	of	choosing	the	hyperparameters	

of	the	Elastic	Net	using	cross-validation	are	provided	in	the	Supplementary	Methods	(in	Supplementary	

File	S2).		

	

In	 the	 differential	 network	 analysis,	 we	 used	 the	 context-restricted	 analysis	 described	 above	 to	

reconstruct	 two	 networks	 for	 each	 cancer	 type:	 one	 using	 samples	 of	 that	 cancer	 and	 another	 using	

samples	of	all	other	17	cancers.	Then	we	constructed	a	differential	network	by	identifying	edges	that	are	

present	in	the	former	network	but	not	in	the	latter.	In	the	context-specific	approach,	we	first	identified	

top	1500	genes	that	were	differentially	expressed	between	one	cancer	type	compared	to	other	types	of	

cancer	 (Bonferroni-corrected	 p	 <	 1E-20).	 Then,	we	 used	 Elastic	 Net	 to	 relate	 the	 expression	 of	 these	

genes	to	the	expression	of	TFs.		

	

In	 simplified-InPheRNo,	we	used	Pearson’s	correlation	 to	obtain	p-values	of	TF-gene	correlation	and	a	

two-sided	t-test	to	obtain	the	p-values	of	gene-phenotype	associations	differentiating	one	cancer	type	

from	other	 types	of	 cancer.	Next,	 for	 each	 (gene,	 TF,	 phenotype)	 triplet,	we	used	 Fisher’s	method	 to	

combine	the	two	p-values.	Then	for	each	cancer	type,	edges	with	smallest	p-values	were	selected	such	

that	 the	 number	 of	 edges	 in	 the	 reconstructed	 network	 would	 be	 equal	 to	 the	 number	 of	 edges	

identified	by	 InPheRNo	(for	a	 fair	comparison).	We	performed	this	analysis	 for	each	cancer	 type	using	

TCGA	data	and	each	tissue	type	using	GTEx	data	and	used	the	same	approach	 in	 InPheRNo	to	remove	

the	confounding	effect	of	tissues	of	origin.	

	

To	 ensure	 the	 fairness	 of	 comparisons,	 in	 all	 except	 for	 context-specific	 analysis,	 we	 focused	 on	 the	

same	 subset	 of	 genes	 that	 were	 utilized	 in	 analyzing	 InPheRNo.	 For	 context-specific	 TRNs,	 we	 used	

differential	expression	analysis	to	identify	putative	target	genes,	since	this	is	part	of	the	method	itself.		
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Forming	gene	expression	signatures	using	reconstructed	networks	for	survival	analysis	

We	defined	the	gene	expression	signature	of	a	TF	in	each	cancer	type	as	a	weighted	linear	combination	

(𝒙 +  𝑤!𝒚!! )	of	the	expression	profile	of	the	TF	(denoted	by	𝒙)	and	its	targets	(denoted	by	𝒚!)	across	

different	samples	of	that	cancer	type.	To	consider	the	strength	and	mode	of	regulation	for	each	gene,	

we	used	the	Pearson’s	correlation	coefficient	between	the	expression	profile	of	the	TF	and	each	target	

gene	as	the	weights	(𝑤!s)	in	this	linear	combination.	This	signature	reflects	the	expression	of	the	TF	as	

well	as	the	activity	level	of	its	targets,	while	considering	the	mode	and	strength	of	regulation.	For	each	

TRN	 reconstruction	 method,	 agglomerative	 clustering	 (with	 average	 linkage)	 was	 applied	 to	 the	

signatures	of	5	expressed	TFs	with	the	most	identified	targets	to	cluster	samples	into	two	distinct	groups	

for	survival	analysis.	We	used	cosine	similarity	with	this	clustering	method	since	it	has	been	shown	to	be	

one	of	the	best	options	for	clustering	of	cancer	samples	using	gene	expression	data	[60].	
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