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Abstract 

Next-generation sequencing of marker genes such as 16S ribosomal RNA is widely used to 

survey microbial communities. The abundance distribution (AD) of Operational Taxonomic 

Units (OTUs) in a sample is typically summarized by alpha diversity metrics, e.g. richness 

and entropy, discarding information about the AD shape. In this work, we describe octave 

plots, histograms which visualize the shape of microbial ADs by binning on a logarithmic 

scale with base 2. Optionally, histogram bars are colored to indicate possible spurious 

OTUs due to sequence error and cross-talk. Octave plots enable assessment of (a) the shape 

and completeness of the distribution, (b) the effects of noise on measured diversity, (c) 

whether low-abundance OTUs should be discarded, (d) whether alpha diversity metrics 

and estimators are reliable, and (e) the additional sampling effort (i.e., read depth) 

required to obtain a complete census of the community. The utility of octave plots is 

illustrated in a re-analysis of a prostate cancer study showing that the reported core 

microbiome is most likely an artifact of experimental error. 
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Introduction 

Metagenomics by next-generation sequencing of marker genes such as 16S ribosomal RNA 

(rRNA) has revolutionized the study of microbial communities in environments ranging 

from the human body (Cho and Blaser, 2012; Pflughoeft and Versalovic, 2012) to oceans 

(Moran, 2015) and soils (Hartmann et al., 2014). Data analysis in such studies typically 

assigns reads to clusters of similar sequences called Operational Taxonomic Units (OTUs). 

Alpha diversity, i.e. diversity of a single sample or community, is often characterized by a 

number (metric) calculated from the set of OTU abundances. For example, richness is the 

number of OTUs, and Shannon entropy (Shannon, 1948) is a function of the OTU 

frequencies. More detailed views of abundance distributions (ADs) are provided by AD 

plots (Preston, 1948; Whittaker, 1965), which are routinely used to show species diversity 

in traditional biodiversity studies (Magurran, 2004) but are almost entirely absent from 

the metagenomics literature. 

  While experimental error can largely be neglected in traditional studies, metagenomic 

OTUs are often spurious due to sequence errors (Edgar, 2013; Huse et al., 2010) and cross-

talk (Carlsen et al., 2012; Edgar, 2017a), which can lead to grossly incorrect estimates of 

diversity (Edgar, 2017b). Biases favoring or disfavoring observations of some groups are 

recognized in traditional biodiversity (for example, larger species are easier to see), but are 

often considered to be inconsequential in communities of similar organisms (e.g., birds). In 

marker gene metagenomics, biases due to mismatches with PCR primers and variations in 

gene copy number are more severe, causing abundances of gene sequences in the reads to 

have low correlation with species abundances (Edgar, 2017c). 

 In both traditional and metagenomic studies, some groups (species or OTUs) may be 

missing because of insufficient observations; we will refer to this as incomplete 

enumeration to avoid over-use of the terms sample and sampling.  Reviewing an AD plot 

enables an assessment of the shape of an AD and whether it is complete or incomplete. This 

assessment is informed by comparison with shapes generated by mathematical models. 

Many such models have been proposed (Magurran, 2004), including the log-series (Fisher 

et al., 1943) and log-normal distribution (Preston, 1948). The log-normal model is based on 

a probability density function for abundances of all groups, including both observed and 
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unobserved. By contrast, Fisher's log-series is a formula which is designed to model a 

substantially incomplete enumeration, i.e. one where many groups are unobserved (Fisher 

et al., 1943). An incomplete enumeration of a log-normal AD increasingly resembles a log-

series as the number of observations decreases (Fig. 1). Log-normal is attractive 

empirically and theoretically because most observed macro-ecology ADs are consistent 

with an approximately log-normal community AD, and by the central limit theorem a 

community's AD will be log-normal if its abundances are determined by many independent 

random factors (May, 1975). In our view, the log-normal is a more general and therefore 

superior model because a log-series is not designed to model complete enumerations and 

is well-approximated by an incomplete log-normal, while log-normal can model both 

complete and incomplete enumerations and an incomplete log-normal cannot be well-

approximated by a log-series. 

 In this work, we introduce octave plots for visualizing abundance distributions of OTUs 

obtained by next-generating sequencing. Octave plots are modified versions of Preston 

plots with bin boundaries chosen to optimize preservation of the distribution shape and 

optional coloring to indicate possible spurious OTUs. 

Methods 

Histogram binning 

By our definition, an octave plot is a histogram where the height of the kth bar (k = 0, 1…) is 

proportional to the number of OTUs with an abundance (r) in the range r=2k, 2k+1 … 2k+1-1. 

Note that two different numbers double from one bin to the next: (a) the minimum 

abundance, and (b) the range of abundances in the bin. Thus, on a logarithmic scale, bins 

are uniformly spaced and have the same width, which optimizes shape preservation with 

incomplete enumerations. Consider for example the effect of discarding a randomly-chosen 

half of the reads. To a first approximation, the abundance of every OTU will be halved and 

this has the effect of shifting all counts in the histogram, and hence all bars, one bin to the 

left. Discarding all but ½m of the reads is roughly equivalent to moving bars k≥m to the left 

by m bins, preserving their shape, while bars k<m are moved past the y axis and disappear. 

Our definition of the bin boundaries has previously been considered, e.g.  by (Gray et al.,  
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2006), but is almost never used in practice. Plots described by Preston (Preston, 1948), a 

popular textbook (Magurran, 2004), and a claimed improvement on Preston's method 

(Williamson and Gaston, 2005) all have bins with irregular sizes and spacing on a 

logarithmic scale. For example, Magurran's first and second bins both contain exactly two 

abundances (r=1 and r=2 in the first bin, r=3 and r=4 in the second bin) while subsequent 

bins double in size. The first two bins proposed by (Williamson and Gaston, 2005) both 

contain exactly one abundance (r=1 in the first bin, r=2 in the second) while the third bin 

contains three abundances (r=3…5). Irregular bins can cause misleading distortions of 

shape such as peaks which do not correspond to the mean of the underlying log-normal 

distribution (Fig. 2).  

 With 16S rRNA OTUs, binning mitigates the problem that read abundance correlates 

poorly with species abundance. The gene count observed in most species ranges from one 

to nine per genome with roughly uniform frequencies (Edgar, 2017c). If three is chosen as 

the canonical standard, the abundance correction factor for gene count therefore ranges 

from 1/3 to 3, but cannot be usefully predicted from OTU sequences due to the sparse 

coverage of currently available reference databases (Edgar, 2017c). From this perspective, 

it would be preferable to use a logarithm base >2 as this would be more likely to assign an 

OTU to its correct bin. However, ADs are compressed into fewer histogram bars when using 

base 3 or higher, which we found to give less recognizable shapes for distributions 

encountered in practice. We therefore chose to use base 2 by default. 

Spurious OTUs due to sequence error 

Reads with incorrect sequences can inflate diversity. For example, if the conventional 97% 

threshold is used, then a sequence with >3% errors will induce a spurious OTU. The correct 

sequence is likely to have much higher abundance because reads with many errors are 

rare. Thus, if a low-abundance OTU (L) has high sequence similarity with a high-abundance 

OTU (D), this suggests that L could be a spurious OTU for which D is the correct sequence. 

Let Ab(x) be the abundance of OTU x, and Pctid(x, y) be the sequence identity of OTUs x and 

y expressed as a percentage. If there is an OTU D such that Ab(D)/Ab(L) is large and 

Pctid (D, L) is high, then L is potentially spurious. We quantified this by classifying an OTU L 

as strongly noisy (i.e., there is strong evidence that L is spurious) if there is an OTU D such 
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that (Ab(D)/Ab(L) ≥ Wstrong and Pctid(D, L) ≥ Dstrong), and otherwise weakly noisy (i.e., weak 

evidence that L is spurious) if there is a D such that (Ab(D)/Ab(L) ≥ Wweak and Pctid (D, L) ≥ 

Dweak), where by default Wweak=32, Wstrong=256, Dweak=92% and Dstrong=95%. Optionally, an 

octave plot bar is colored to indicate the fraction of OTUs in its bin which are weakly noisy 

(orange) or strongly noisy (red). 

Upper bound on diversity 

Low-abundance read sequences, especially singletons, are enriched for errors which induce 

spurious OTUs and are therefore discarded by algorithms which aim to report accurate 

OTU sequences (Callahan et al., 2016; Edgar, 2013, 2017d). This strategy may 

underestimate the number of valid low-abundance OTUs, causing distortion of the reported 

AD. Pooling reads from all samples can mitigate this issue (Edgar, 2017d), for example by 

enabling detection of a singleton OTU in a given sample providing that it is present in 

sufficiently many other samples. However, some distortion may remain after pooling. An 

upper bound on the correct number of OTUs in each bin can be obtained by keeping all 

read sequences that pass a quality filter. The surplus of an octave plot bin is the increase in 

the number of OTUs when all read sequences are included, which gives an upper bound on 

the correct value. Optionally, the surplus is indicated by a gray segment at the top of an 

octave plot bar. 

Spurious abundances due to cross-talk 

Reads are often assigned to the wrong sample due to cross-talk, which can cause spurious 

abundances, i.e. counts which should be zero (Carlsen et al., 2012; Edgar, 2018). Optionally, 

an octave plot bar is colored to indicate the fraction of OTUs in its bin which have 

UNCROSS2 scores (Edgar, 2018) that are ≥0.1 (weak cross-talk, yellow) or ≥0.4 (strong 

cross-talk, pink). 

Simulation of log-normal and log-series 

We simulated a log-normal abundance distribution using a Gaussian probability density 

function (PDF) specified by parameters μ (mean) and σ (standard deviation). The size of 

the population was specified by S, the total number of species, including those not 

observed, or M, its total number of individuals. A simulated observed distribution was 
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obtained by specifying a number of observations (reads) (N). A log-series was simulated 

using a distribution defined by parameters α and x where the expected number of OTUs 

with observed abundance r is α xr/r. 

Representative studies 

To investigate representative OADs, we used reads of samples from the human vagina 

(Virtanen et al., 2017), a phytoplankton bloom (Parulekar et al., 2017) and soil (Carini et al., 

2017). We generated OTU tables using the current recommended UPARSE (Edgar, 2013) 

protocol (https://drive5.com/usearch/manual/uparse_pipeline.html, accessed 1st August 

2018), which discards singleton read sequences, i.e. sequences observed exactly once per 

dataset, and (2) the same protocol as (1) except that singletons reads are retained 

(UPARSE+1). Octave plots were created using the otutab_octave command in USEARCH 

(Edgar, 2010) version 11.0. 

Prostate cancer microbiome 

We used reads of the 16S rRNA V4 hypervariable region from the prostate cancer 

microbiome study reported in (Yow et al., 2017). A minimum OTU abundance threshold 

was determined by reviewing octave plots (see Results), which was implemented using the 

otutab_trim command in USEARCH (Edgar, 2010) version 11.0, and a putative core 

microbiome was identified using the otutab_core command. 

QIIME open-reference OTUs 

This recommended OTU protocol for QIIME (Caporaso et al., 2010) v1.9 is open-reference 

clustering (Rideout et al., 2014), which has been shown to generate large numbers of 

spurious OTUs on mock community tests (Edgar, 2017e). To investigate the ADs generated 

by open-reference clustering from in vivo datasets, we generated octave plots from OTUs 

generated by the QIIME v1.9 pick_open_reference_otus.py script after quality filtering by 

split_libraries_fastq.py.  

Mock community test 

For testing on an artificial (mock) community of known composition, we used 16S rRNA 

reads of the Staggered1 sample of (Bokulich et al., 2013), which contains 21 strains with 

designed abundances ranging over three orders of magnitude. 
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Results 

Simulated distributions 

Some representative simulations are shown in Fig. 1. Panel (a) shows a complete log-

normal distribution generated with parameters μ=4.6, σ=1.5, M=N=64k. Panels (b) and (c) 

show incomplete distributions obtained from the distribution in (a) with N (number of 

reads) 8k and 1k respectively. To a good approximation, the effect of reducing the number 

of reads is to move the histogram leftwards but otherwise preserve its shape. From (a) to 

(b) the shape is moved leftwards by log2(32k/8k)=2 bins, and from (b) to (c) it is moved by 

log2(8k/1k)=3 bins. In (b), the peak of the bell curve is still visible, but in (c) the peak has 

moved to bin 1 so that the histogram is monotonically decreasing. When the peak is at bin 1 

or has moved to the left of the y axis, a log-normal distribution resembles a Fisher log-

series, as illustrated by panel (d) which shows a log-series with parameters α=270, x=0.82. 

Shapes observed in practice 

We found that ADs of UPARSE OTUs from in vivo datasets could be divided into four 

categories which we denote C, T, J and A, with representative examples shown in Fig. 3. C 

("complete") resembles a bell curve which we interpret as implying that the true 

distribution is well-modeled by a complete log-normal. T ("truncated") resembles a 

truncated bell curve where a roughly symmetrical peak is visible; we interpret this as an 

incompletely enumerated log-normal. J is a decreasing distribution which lacks a peak, 

resembling the letter "J" rotated 90o clockwise or a hockey stick. An AD of type J, which in 

our experience is the most common type, can be well-modeled by a log-series or a 

truncated log-normal. ADs of type A ("anomalous") have irregular shapes. One possible 

biological explanation for an AD of type A is that the sample contains multiple independent 

niches or communities with minimal interaction. 

Putative prostate cancer core microbiome 

We use the suffix "k" to indicate multiples of 210 = 1,024 and label a histogram bar by its 

minimum abundance, so e.g. bar 16 shows the number of OTUs with abundances in the 

range 16 … 31. The octave plot for a representative sample from (Yow et al., 2017) is 

shown in Fig. 4, which we interpret as follows. Bars 128 through 4k exhibit a bell curve 
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shape consistent with an approximately log-normal interacting ecosystem. One very high-

abundance OTU (75,902 reads = 61% of the sample) is an outlier which was identified by 

SINTAX (Edgar, 2016) as Escherichia/Shigella with bootstrap confidence 0.94. As shown by 

the coloring in Fig. 4, most OTUs in bins 1 through 64 (i.e., abundances 1 … 127) were 

identified as potentially spurious due to sequence error or cross-talk. We therefore chose 

100 reads per sample as the minimum abundance required to confidently identify an OTU 

as present, which is substantially higher than the UPARSE defaults (minimum two reads 

per dataset and one read per sample). We believe that a high rate of spurious low-

abundance OTUs is plausible for this dataset due to low biomass and deep sequencing 

(125k reads/sample after rarefaction). This analysis underscores that default parameters 

for an analysis pipeline may be sub-optimal for any given dataset. Using UPARSE+1, which 

maximizes sensitivity by retaining singleton read sequences at the possible expense of 

reporting an increased number of spurious OTUs, we found that Escherichia/Shigella was 

the only OTU with ≥100 reads in at least 95% of samples. Two other OTUs were present in 

all samples and an additional three OTUs were present in 95% of samples. The maximum 

abundances of these five OTUs ranges from 44 to 11,975 while the minimum non-zero 

abundance is one in all cases, which is consistent with cross-talk. The presence of these five 

OTUs therefore cannot be reliably established in samples where their abundances are low. 

Thus, six is an upper bound on the number of OTUs found in at least 95% of samples, of 

which five are likely to be false positives (i.e., in fact are present in <95% of samples). In 

conclusion, the data does not adequately support the claim made by (Yow et al., 2017) that 

18 OTUs are present in at least 95% of samples.  

Octave plots of open-reference OTUs 

Fig. 5 shows octave plots for OTUs generated by QIIME open-reference clustering for 

comparison with plots made with UPARSE OTUs from the same reads (Fig. 3). While the 

UPARSE histograms have distinctly different shapes (types C, T, J and A), the open-

reference histograms have similar shapes (all type J). This is almost certainly explained by 

spurious open-reference OTUs which are increasingly prevalent at lower abundances and 

proliferate rapidly with increasing numbers of reads, causing an underlying true 

distribution of any shape to be overlaid by a larger J-shaped histogram containing the 
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spurious OTUs (Fig. 6). The spurious overlay increases indefinitely as more reads are 

added, corresponding to a rarefaction curve which converges on a constant upwards 

gradient (the rate of spurious OTU generation) rather than a horizontal asymptote, as seen 

on the mock community tests in (Edgar, 2017b). 

Discussion 

Extrapolating to unseen diversity 

With shape C, a complete bell curve is seen, implying that most or all of the diversity has 

been enumerated. With shape T, a peak is apparent, implying that more than half the total 

richness has been enumerated (assuming an approximately symmetrical distribution). The 

downslope to the left of the peak indicates the shape of the low-abundance tail, and it is 

then reasonable to extrapolate to unseen OTUs, for example by fitting log-normal 

parameters (Bulmer, 1974). The Chao1 (Chao, 1984) non-parametric estimator is also 

reasonable providing that the numbers of singleton and doublet OTUs required by its 

formula can be accurately measured, but this is usually not possible in practice because 

low-abundance OTUs, especially singletons, are often spurious. With shape J, extrapolation 

is not supportable because distributions with a wide range of different forms and 

parameters can be fitted to the observed abundances, as illustrated by panels (c) and (d) of 

Fig. 1 which have similar shapes but are generated by log-normal and log-series 

respectively. Even if the distribution is assumed to be log-normal, it is not clear whether 

the peak is in bin 1 or in an unseen bin to the left of the y axis. With anomalous shapes, it is 

self-evident that extrapolation based on general principles, e.g. fitting to log-normal or 

calculating Chao1, is not supported by the data. 

Meaningful alpha diversity metrics 

With an incomplete enumeration, the value of an alpha diversity metric calculated from 

observed OTUs may be substantially different from its true value, i.e. the value that would 

be obtained from a complete, unbiased, and error-free set of abundances. In practice, most 

enumerations appear to be incomplete, and the effects of errors and biases are difficult to 

determine. These issues are particularly acute with richness which may be arbitrarily 
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under- or over-estimated due to OTUs that are missing (because of incomplete 

enumeration, failure to amplify due to primer mismatches, and discarding of low-

abundance reads and/or low-abundance OTUs by the analysis pipeline) and OTUs that are 

spurious (due to unfiltered experimental errors such as bad sequences, chimeras, cross-

talk, and contaminants). To a first approximation, it is reasonable to assume that 

experimental errors occur with comparable rates in samples which have been sequenced 

by the same protocol. If enumerations are complete, then given this assumption it is valid 

to compare observed richness between samples because the excess or deficit due to 

experimental error is approximately constant. However, regardless of errors, when 

enumerations are incomplete, a change in observed richness could be due to a change in 

AD shape and therefore does not necessarily imply a change in true richness. With the 

Chao1 estimator, issues with richness are compounded by the difficulties in accurately 

estimating the abundances of singleton and doublet OTUs. Evenness metrics such as 

Simpson's index (Simpson, 1949) are suspect because they are sensitive to the presence of 

a dominant OTU which may have exaggerated abundance, e.g. due to high gene copy count. 

Changes in observed richness and/or shape are reflected by changes in Shannon entropy 

(Shannon, 1948), which down-weights OTUs with low frequencies and is therefore less 

sensitive to excesses or deficits at low abundances where experimental error is most likely 

to cause problems. Entropy is therefore our preferred metric. Numerical values of entropy 

and changes in entropy are opaque (i.e., have no immediate biological interpretation), but 

we regard this as an advantage because metrics which have more transparent 

interpretations in traditional biodiversity studies, such as richness or Simpson's index, can 

be misleading when applied to metagenomic data. A statistically significant change in 

entropy implies a biologically significant change in diversity, which can be interpreted by 

reviewing AD shapes, e.g. in octave plots. 

Estimating read depth required to capture all OTUs 

If, and only if, it is possible to extrapolate to unseen diversity, then it is also possible to 

estimate the number of reads required to obtain a complete enumeration, i.e. to capture all 

OTUs. With shape C, there is no evidence that additional reads are required. With T, the 

number of reads can be estimated from an octave plot by assuming that the distribution is 
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symmetrical and determining the number of bins (m) that would appear to the left of the y 

axis (Fig. 7). The number of reads required to capture m additional bins is 2m N where N is 

the number of reads used to generate the plot. With shapes J and A, there is insufficient 

data to make a reliable estimate. 

Visualization enables new insights into microbial diversity 

The term "octaves" for bins that double in size was introduced by Preston by analogy with 

musical notes which double in frequency in each successive octave (middle C is 262Hz, C' is 

524Hz, C'' is 1048Hz and so on). The key modifications (pun intended) in our octave plots 

are the bin boundaries, which are critically important for maintaining the shape of an 

incompletely enumerated distribution, and coloring to indicate likely spurious OTUs.

 Octave plots enable new insights into microbial abundance distributions, facilitating 

assessment of alpha diversity to suggest hypotheses and distinguish biologically 

meaningful inferences from artifacts of experimental error.  
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Figures 

 

 

Fig. 1. Simulated log-normal (blue) and Fisher log-series (brown) distributions. Panel (a) 

shows a complete enumeration of a log-normal distribution generated with parameters μ=4.6, 

σ=1.5, G=Gobs=32k. Panels (b) and (c) show incomplete distributions obtained from the distribution 

in (a) by taking subsets of the observations (reads) of sizes Gobs=8k and 1k respectively. Panel (d) is 

a log-series with parameters α=270, x=0.82. Note that (c) and (d) are similar, illustrating that a log-

series resembles an incomplete log-normal where the peak is not apparent. 
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Fig 2. Shape distortions arising from different binning methods. All histograms in the figure 

were generated from the same simulated log-normal abundance distribution. The histograms in a 

given row are generated from an identical incomplete enumeration of this distribution. From top to 

bottom, the enumerations contain 8k, 4k, 2k and 512 reads, respectively. Binning rules are: Octave 

(this paper), Williamson (Williamson and Gaston, 2005), Magurran (Magurran, 2004) and Preston 

(Preston, 1948). Shape distortions are circled in red. Octave binning is the only method that 

preserves the shape without misleading distortions. Bins are labeled 1, 2 ... 9 in order of increasing 

abundance. 
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Fig. 3. Examples of distributions observed in practice. Octave plots generated from 

UPARSE OTUs. (a) Vagina sample ERR2012596 from (Virtanen et al., 2017), (b) 

phytoplankton bloom sample SRR5105381 from (Parulekar et al., 2017), (c) soil sample 

SRR3178919 from (Carini et al., 2017) and (d) vagina sample ERR2012636 from (Virtanen 

et al., 2017). These distributions are classified as C (complete), T (truncated), J (hockey 

stick or J-shaped), and A (anomalous), respectively. 
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Fig. 4. Octave plot of a representative prostate cancer tissue sample. This plot was generated 

from UPARSE OTUs of reads for sample 70148_M from (Yow et al., 2017). We interpret bins 1 to 64 

as predominantly spurious and bins 128 through 4k as approximately log-normal. The log-normal 

shape appears to be robust because there is no evidence of spurious OTUs due to noise or cross-

talk, and there is no excess when singletons are included (gray bars). The highly abundant 

Escherichia/Shigella OTU is indicated by E; this OTU is found in all samples. We found no core 

microbiome in the log-normal range, as explained in the main text. Note that this plot covers a 

range of abundances of five orders of magnitude. The putatively spurious bins 1 through 64 contain 

30 of the 59 OTUs, but only 254 of the 125,000 reads (0.2%). 
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Fig. 5. Octave plots of QIIME v1.9 open-reference OTUs for the same samples as Fig. 3. With 

open-reference OTUs, reported diversity is much greater and all distributions are J-shaped. This is 

almost certainly due to spurious OTUs, which are increasingly prevalent at low abundances. 
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Fig 6. Octave plots for a mock community sample. These plots were generated from (a) QIIME 

v1.9 open-reference OTUs and (b) UPARSE OTUs from reads of the Staggered1 sample, which 

contains 21 strains. The first bin of the open-reference plot is empty because OTUs with exactly one 

read per dataset are discarded by open-reference clustering, and only one sample was included in 

the analysis. Both plots contain similar numbers of reads (1,750,658 for open-reference, 1,753,266 

for UPARSE from a total of 1,857,075 reads in the FASTQ file), which UPARSE assigns to 18 OTUs 

compared to 3,507 OTUs for open-reference. With UPARSE, the singleton excess is seven additional 

OTUs (gray bars). With singletons included, the open-reference bin 1 contains 12,692 OTUs, making 

a total of 16,199 (not shown). These results show that the open-reference distributions seen in Fig. 

5 can be explained by a large J shape due to spurious OTUs overlaid onto smaller true distributions. 

The UPARSE distribution is type A (anomalous), reflecting that the sample is not a natural 

interacting ecosystem. The UPARSE plot correctly indicates that the full diversity has been sampled 

because the first five bins are empty when singleton read sequences are excluded, while the open-

reference plot misleadingly indicates that the true richness is much greater than the 3,507 reported 

OTUs. 
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Fig. 7. Estimating the number of additional reads required to capture all OTUs. The rectangle 

is an octave plot with truncated (T) shape. Assuming a symmetrical distribution, the tail on the right 

(orange) will be the same as the unseen tail to the left of the y axis (gray), giving an estimate of 6 

unseen bins. This implies that a factor of 26 = 64× more reads are required. 
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