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Abstract 

Chromatin-immunoprecipitation followed by sequencing (ChIP-seq) is the method of choice for 

mapping genome-wide binding of chromatin-associated factors. However, broadly applicable 

methods for between-sample comparisons are lacking. Here, we introduce SNP-ChIP, a method 

that leverages small-scale intra-species polymorphisms, mainly SNPs, for quantitative spike-in 

normalization of ChIP-seq results. Sourcing spike-in material from the same species ensures 

antibody cross-reactivity and physiological coherence, thereby eliminating two central 

limitations of traditional spike-in approaches. We show that SNP-ChIP is robust to changes in 

sequencing depth and spike-in proportions, and reliably identifies changes in overall protein 

levels, irrespective of changes in binding distribution. Application of SNP-ChIP to test cases 

from budding yeast meiosis allowed discovery of novel regulators of the chromosomal protein 

Red1 and quantitative analysis of the DNA-damage associated histone modification 𝛾-H2AX. 

SNP-ChIP is fully compatible with the intra-species diversity of humans and most model 

organisms and thus offers a general method for normalizing ChIP-seq results.  
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Introduction 

Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) has emerged as the 

method of choice for mapping the genome-wide distribution of proteins and protein 

modifications and has led to important discoveries in both basic chromatin biology and disease 

states 1,2. A core result of ChIP-seq experiments is the generation of genome-wide target signal 

tracks, which are obtained from read pileups, typically normalized against a mock, non-

immunoprecipitated control sample (input sample). Signal tracks are used for identification of 

regions with elevated numbers of mapped reads (peaks) as well as other downstream analyses 3. 

However, because of the necessary internal normalization procedures, signal tracks can only be 

used for comparisons between samples if a method for inter-sample normalization is available 3. 

This is a crucial, often overlooked, caveat of ChIP-seq, as well as other genome-wide 

biochemical analysis methods relying on next-generation sequencing 4.  

 

For sparsely bound proteins, such as transcription factors, inter-sample normalization can often 

be achieved using statistical methods 2 or ChIP followed by real-time quantitative PCR (ChIP-

qPCR) 5. These methods, however, either assume constant global signal or a constant signal at 

selected genes as basis for normalization, which is difficult to verify, in particular for more 

broadly distributed factors. The solution to overcome this limitation is the addition of a “spike-

in” reference sample 2,6. The spike-in procedure consists of adding a constant amount of 

exogenous material to all tested samples, ideally prior to any critical steps in the experimental 

protocol. Provided that the spike-in material contains a target that is bound by the antibody as 

efficiently as the study target and that the resulting sequencing reads can be distinguished from 

the test sample, the number of spike-in reads should be the same across all tested samples. The 
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spike-in thus functions as an internal control against which to normalize the ChIP-seq results 6. 

Spike-ins are well established for RNA-seq analyses where use of RNA from a different species 

allows simple sequence-based distinction between test sample and spike-in 7. The additional 

requirement for cross-reactivity of the antibody in ChIP-seq experiments, however, effectively 

restricts the applicability of inter-species spike-ins to a limited set of highly conserved proteins 

8,9. 

 

Ways to broaden the applicability of ChIP spike-ins include either tagging proteins in the test 

and spike-in samples with a common epitope 10, or using a second, spike-in specific antibody 

against a natural 11 or a synthetic target 12. These strategies, however, come with their own 

specific drawbacks. The use of protein tagging adds the potential for prohibitive disruption of 

protein function and is incompatible with the analysis of protein modifications. The use of a 

second, spike-in specific antibody, on the other hand, requires labor-intensive technical 

validation of the compatibility of the second antibody and no longer controls for biases in the 

immunoprecipitation step between samples. 

 

Here, we show that these issues can largely be overcome by using spike-in material from the 

same species. This approach, which we name SNP-ChIP, enables reproducible semi-quantitative 

measurement of global protein levels and also works for protein modifications and fast evolving 

proteins. 
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Results 

Experimental rationale of SNP-ChIP 

The basic premise of SNP-ChIP is that cells from the same species can serve as spike-in material 

provided it harbors sufficient genetic diversity, primarily in the form of single-nucleotide 

polymorphisms (SNPs). The signal at each polymorphism provides an independent measure of 

test-sample/spike-in ratio that together allows calculation of a normalization factor and 

appropriate scaling of ChIP-seq results (Fig. 1a). If there is sufficient genetic diversity to allow a 

large fraction of sequencing reads to be assigned to the genomes of origin, SNP-ChIP 

additionally allows the generation of genome-wide target distribution profiles. Importantly, 

because SNP-ChIP uses the same species as the source of the spike-in material, it will work with 

virtually any target in the organism’s proteome, including post-translational modifications, 

provided a ChIP-grade antibody is available.  

 

SNP-ChIP of a rapidly evolving chromosomal protein 

To test the power of intra-species spike-ins, we focused on yeast meiotic recombination, which 

involves many broadly distributed chromosomal proteins and post-translational modifications. 

One typical example is the axial-element protein Red1, which plays important roles in meiotic 

recombination. Red1 is broadly bound along chromosomes 13-15 but, like other meiotic factors, its 

sequence has diverged even in closely related species 16. Furthermore, like many proteins, Red1 

cannot easily be tagged without disrupting protein function 15,17. These attributes mean Red1 is 

not amenable to standard spike-in approaches, making it a particularly suitable target for SNP-

ChIP. Moreover, mutations that change the overall levels and chromosomal distribution of Red1 

are available 15,18,19, providing benchmarks for evaluating the efficacy of SNP-ChIP. 
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SNP-ChIP of Red1 was performed using the SK1 genetic background 20 as test strain and a 

meiosis-optimized variant of the widely used S288c reference strain as spike-in 21,22. For both 

genetic backgrounds, high-quality end-to-end genome assemblies are available 23. These 

assemblies differ by about 76,000 single-nucleotide polymorphisms (SNPs), spaced at a median 

distance of 70 bp (Fig. S1), which constitutes enough variation to allow unambiguous 

assignment of a large proportion of sequencing reads. To perform SNP-ChIP, test cells (SK1) 

were mixed with a constant fraction of meiotic spike-in cells (S288c) before subjecting the 

mixtures to a standard ChIP-seq protocol. The generated reads were aligned to a hybrid genome 

built by concatenating genome assemblies of the test and spike-in genomes. Reads were aligned 

with perfect match conditions, excluding any reads aligning to more than one location. 

Consequently, any reads overlapping at least one SNP were assigned to a specific genome and 

genomic location, while reads not overlapping a polymorphism mapped to both genomes and 

were thus discarded.  

 

We initially investigated the ability of SNP-ChIP to detect changes in chromatin association 

resulting from reduced protein production. The red1ycs4S allele is caused by a mutation in the 

promoter of RED1 that leads to a reduction of Red1 levels to about 20-25% of wild type and a 

near complete loss of cytologically observable axial elements 19. Importantly, traditional ChIP-

seq analysis was unable to detect this change in protein abundance and produced 

indistinguishable Red1 profiles between wild type and red1ycs4S mutants 19. By contrast, when we 

applied SNP-ChIP to compare these two strains, the reduced Red1 binding levels were readily 

apparent (Fig. 1b). Calculation of a spike-in normalization factor based on the relative abundance 
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of total sample and spike-in reads yielded a Red1 level in the red1ycs4S mutant of 28.8 ± 5.1% 

(S.D.) of the wild type, closely matching the reported change in Red1 levels obtained from 

western analysis 19. This normalization factor allowed appropriate signal scaling of ChIP-seq 

profiles for the two conditions (Fig 1c).  

 

SNP-ChIP was further validated by applying it to a Red1 dosage series, which consists of 

different combinations of RED1 alleles (RED1, red1ycs4S, red1Δ) yielding a stepwise decrease in 

Red1 levels (Fig. 1d) 19. SNP-ChIP measurements of Red1 chromatin association in this series 

again closely matched previously published protein levels (Fig. 1d). In fact, SNP-ChIP 

measurements appeared more accurate than quantitative western analysis, which failed to resolve 

the expected reduction in protein levels between RED1/red1ycs4S and RED1/red1Δ cells 19. Taken 

together, these data show that SNP-ChIP accurately measures reductions in global Red1 binding 

over a wide range of target protein levels.  

 

SNP-ChIP is robust to variation in sequencing depth and fraction of spike-in cells 

We used several approaches to probe the technical robustness of SNP-ChIP. High-throughput 

sequencing technologies produce variable numbers of reads per sample, depending on factors 

like sequencing instrument and sample mutiplexing. To model the effect of lower sequencing 

depth on the reproducibility of SNP-ChIP analysis, we subsampled the reads of the 

immunoprecipitated and input samples from wild type and red1ycs4S test conditions to different 

depths (ranging from 1 to 10 million reads). Plotting subsample size against number of aligned 

reads showed a perfectly linear correlation for all samples (Fig. 2a), indicating that a wide range 

of sequencing depths will yield robust quantitative information by SNP-ChIP. We computed the 
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spike-in normalization factor using all 10,000 possible combinations of read subsamples (10 read 

subsamples for each of four sequenced samples) and found a very tight distribution of results 

(0.2848 ± 0.0015, S.D.; Fig. 2b). This establishes that sequencing depth does not need to be 

balanced between immunoprecipitated and input samples, or between different conditions, to 

produce accurate proportions of reads mapping to the test and the spike-in genomes. 

 

Another condition that may affect the results of SNP-ChIP is the amount of spike-in material 

added to the samples. Spike-in normalization methods assume a linear relationship between the 

amount of spike-in material and the resulting proportion of spike-in reads in the 

immunoprecipitated sample. This condition is essential for the results to be independent from the 

amount of spike-in material. To verify this assumption, we prepared samples with spike-in cell 

proportions ranging from 5 to 30 percent. As test samples we used wild type and a strain with a 

single red1-pG162A promoter mutation that phenocopies the red1ycs4S allele 19. As shown in Fig. 

2c, the proportion of spike-in reads in the input samples (reflecting the amount of spike-in 

material added to the test sample) correlates linearly with the resulting proportion of spike-in 

reads in the immunoprecipitated sample, for both the wild type and the red1-pG162A sample. 

Moreover, the red1-pG162A sample yielded a very similar normalization factor to the red1ycs4S 

allele, further supporting the robustness of the method. Low spike-in cell percentages (5 and 

10%) resulted in somewhat increased estimates of the normalization factor (Fig. 2d), however, 

likely due to increased noise. These results suggest that spike-in material proportions of 15% and 

higher are appropriate for SNP-ChIP. All other experiments shown here used a spike-in 

proportion of 20%. 
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Finally, we investigated the impact of the calculation method to compute the spike-in 

normalization factor. The SNP-ChIP normalization factor calculated in the examples shown so 

far relies on total read counts aligned to the test and the spike-in genomes (see Methods section). 

An alternative method is to compute the scalar mean value of the aligned read pileup score. We 

tested the utility of this alternative by calculating the pileup score at (1) all genomic positions, 

(2) at SNP positions only, or (3) at SNP positions falling within called signal peaks. The last 

approach will effectively exclude regions expected to hold only background signal, along with 

any false negative regions. We found very similar values and high concordance between all four 

methods in all cases (Fig. S2a), although read pileups consistently produce slightly lower values 

than the read count method (Fig. S2b). Overall, however, the difference is relatively small and 

we believe the read count-based method, which is computationally much simpler, represents an 

appropriate approximation, at least for broadly distributed proteins.  

 

Binding profiles obtained directly from SNP-ChIP experiments 

The primary utility of SNP-ChIP is the generation of a normalization factor that allows scaling of 

profiles obtained by traditional ChIP-seq experiments run under the same conditions (Fig. 1c). 

Given the broad distribution of SNPs across the two analyzed genomes, we explored the 

possibility that SNP-ChIP could also directly yield informative binding profiles, even though this 

application is clearly limited by the available SNP density. Comparing a sample sequenced with 

spike-in to data obtained using a replicate, non-spiked sample 15 shows that signal tracks of 

spiked samples closely mirror those of the non-spiked control, although some signal gaps can be 

seen in the spiked sample (Fig. S3a), in particular at higher resolution (indicated by the red 

arrow). Thus, as expected, the use of same-species spike-in causes some loss of information. 
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This issue appears negligible for broad peaks, as called peaks show a very close agreement (Fig. 

S3b). Narrow peaks show more disagreement, with only about one third of the called peaks 

overlapping between the two samples. These data indicate that SNP-ChIP can also provide direct 

information about protein distribution, in particular for larger-scale binding patterns. 

 

Global Red1 levels are reduced in cohesin and hop1∆ mutants 

We sought to apply SNP-ChIP to investigate mutant situations that cause a broad protein 

redistribution. Redistribution is a challenge for traditional quantification methods, such as ChIP-

qPCR, because identifying regions that remain unbound is non-trivial. In the absence of 

conserved cohesin subunit Rec8, Red1 distribution along the genome changes dramatically, 

displaying large regions of depletion alternating with dense clusters of binding 15,18. Whether 

overall binding levels of Red1 change in rec8∆ mutants, however, remains unclear. We 

employed SNP-ChIP to address this question and found a pronounced decrease of overall Red1 

binding levels (Fig. 3a). Direct comparison of Red1 occupancy along two example chromosomes 

illustrates both the dramatic redistribution and the overall decrease in Red1 binding compared to 

wild type (Fig. 3b). Thus, Rec8-cohesin is essential for the full chromosomal enrichment of 

Red1. 

 

Hop1 is another important protein of the yeast axial element 24 that physically interacts with 

Red1 17. Axial-element proteins are recruited in higher amounts to small chromosomes, but in the 

absence of Hop1, Red1 binding becomes less dependent on chromosome size 15. Previous work 

using in silico scaling (NCIS) 25, suggested that this reduction resulted from a selective increase 

in Red1 recruitment to large chromosomes 15. NCIS, however, requires the definition of genomic 
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regions that are unbound, which is difficult to ascertain with broadly distributed chromosomal 

proteins like Red1. Therefore, we reinvestigated this question by performing SNP-ChIP of Red1 

in a hop1Δ mutant. SNP-ChIP reproduced the previously found weakening of chromosome-size 

bias. However, the spike-in normalization factor showed an overall decrease of Red1 recruitment 

to 71.9 ± 4.2% of the wild type Red1 amount (Fig. 3c, d). This decrease is particularly strong on 

small chromosomes (Fig. 3e). We note that mild loss of Red1 binding does not generally result in 

a loss of chromosome-size bias, because deletion of the histone methyltransferases Set1 and 

Dot1 causes similar ~ 20% reductions of overall Red1 recruitment levels but does not affect the 

distribution of Red1 binding among chromosomes (Fig. S4). These data suggest that loss of 

Hop1 leads to a generalized reduction of Red1 signal across all chromosomes that particularly 

affects the three smallest chromosomes. 

 

𝛾-H2AX levels do not change in Red1 dosage strain series 

To test if SNP-ChIP also allows quantitative analyses of protein modifications, we targeted 

phosphorylation of histone H2A on serine 129 (γ-H2AX). This modification is rapidly induced 

following the formation of DNA double-strand breaks (DSBs) 26. In mitotic yeast, the γ-H2AX 

modification spreads about 50 kb on either side of a DSB 27,28. In addition, constitutive γ-H2AX 

is found near telomeres throughout the cell cycle 29. To analyze the distribution and DSB 

dependence of γ-H2AX in meiosis, we performed SNP-ChIP in a wild type strain, as well as the 

Red1 dosage series, which shows a mild (up to 30%) reduction in DSB levels19, and a spo11-

Y135F mutant, encoding a catalytically dead Spo11 protein that does not form meiotic DSBs 

30,31. 
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Measuring γ-H2AX levels in meiosis revealed no difference between the wild type and any of 

strains with reduced Red1 levels, irrespective of calculation method (Fig. 4a, b). The uniform 

signal along chromosomes is consistent with the spreading of the γ-H2AX mark from all yeast 

DSB hotspots, which are distributed throughout the whole genome, and likely explains why a 

mild reduction in DSB levels does not lead to a noticeable drop in global γ-H2AX signal. The 

spo11-Y135F control, on the other hand, displayed only about 25% of the wild type γ-H2AX 

levels. Signal was markedly enriched next to telomeres, with the interstitial regions only showing 

weak signals likely associated with gene expression 32. These data show that the constitutive 

telomere-associated γ-H2AX signal is also maintained in meiotic prophase. Moreover, scaling of 

signal tracks indicates that telomere-adjacent γ-H2AX signal remains largely unchanged in the 

spo11-Y135F mutant, consistent with the fact that meiotic DSB formation is nearly undetectable 

in these regions 33. Together, these data show that SNP-ChIP allows quantitative comparisons 

between ChIP-seq experiments regardless of the antigen and thus provides a versatile and tag-

free method for measuring global chromatin associations. 
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Conclusion 

Our data show that small-scale intra-species genetic polymorphisms can be leveraged for 

quantitative spike-in normalization of ChIP-seq results. Sourcing spike-in material from the same 

species largely preserves antibody cross-reactivity and thus will work with virtually any target in 

an organism’s proteome without the need for epitope tagging. It also ensures complete 

physiological coherence between the test and the spike-in cells, thereby avoiding biases at 

experimental steps such as chromatin fixation or cell lysis.  

 

The primary output of SNP-ChIP is a normalization factor that can be used to appropriately scale 

ChIP-seq profiles. Because the normalization factor relies on combined measurements of 

thousands of SNPs it is highly robust to variations in sequencing depth or changes in protein 

distribution between samples. In multiplexed libraries, SNP-ChIP can therefore be performed 

with relatively low sequencing coverage alongside traditional ChIP-seq experiments to yield the 

necessary scaling information. 

 

SNP-ChIP can also provide substantial positional information, although this application is 

necessarily limited by the availability of high-confidence SNPs. Our experiments using yeast 

strains with ~0.7% sequence divergence and 100-nt long reads showed that the method generated 

sufficient resolution to recover genomic regions of Red1 enrichment. Moreover, preliminary 

experiments indicate that using longer reads further minimizes gaps (data not shown). Thus, 

SNP-ChIP can provide high-quality pilot information for subsequent ChIP-seq analyses at higher 

read depth.   
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The reliance on thousands of SNPs also means that SNP-ChIP will be particularly powerful for 

the quantitative analysis of broadly distributed proteins and chromatin marks. Applying SNP-

ChIP to proteins that interact with chromatin in more specific, highly localized positions (e.g. 

transcription factors), will likely result in a disproportionate number of SNPs exhibiting 

background signal that will affect the calculation of the normalization factor. Indeed, preliminary 

experiments testing the budding yeast transcription factor Gal4 suggested that SNP-ChIP is not 

ready to handle such targets (data not shown). While SNP-ChIP generated reliable signal track 

data, the normalization factor computation method does not work as-is and will require further 

development. We note, however, that sparsely binding proteins are inherently more tractable 

targets for ChIP-qPCR, thus reducing the need for a spike-in method. 

 

SNP-ChIP is fully compatible with the intra-species genetic diversity of humans and most model 

organisms 34 and should be applicable to any experimental system for which a reliable collection 

of high-quality SNPs is available. In preliminary in silico experiments testing decreasing 

numbers of SNPs, the method generated stable normalization factors with as low as 0.01% 

sequence divergence (equivalent to about 1,200 SNPs in the yeast genome; data not shown). 

Thus, we expect that SNP-ChIP will allow semi-quantitative mapping of a wide range of 

chromatin binding factors and modifications that have so far stood beyond the reach of 

quantitative ChIP-seq methods. 
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Methods 

Strains and meiotic time courses 

All strains used are listed in Table S1. The test-sample strains were of the SK1 background. The 

spike-in material used a meiosis-optimized S288c strain that carries three SK1-derived SNPs, 

which improve sporulation efficiency and meiotic synchrony of S288c 22. To further improve 

synchrony of the spike-in strain, auxotropic markers were restored using plasmid insertions or 

PCR-based allele transfer. To induce meiosis, cells were pregrown in YPD for 24 hours at room 

temperature, followed by inoculation in BYTA media at O.D.600=0.3 and growth for 16.5 hours 

at 30°C 35. Cells were washed twice with water and inoculated at O.D.600=1.9 in 0.3% potassium 

acetate (pH 7.0) to induce meiotic entry. Synchronous entry was confirmed by taking hourly 

samples for flow cytometry analysis of DNA content.  

 

SNP-ChIP sample preparation 

Samples were collected at 3 hours for SK1 strains or at 6 hours for the slower sporulating S288c 

spike-in sample. Cells were fixed in 1% formaldehyde for 30 minutes at room temperature and 

quenched by addition of glycine to a final concentration of 125 mM. For the experiments shown 

here, we fixed the spike-in cells in advance as a batch and kept frozen aliquots at -80°C. 

However, spike-in cells can also be prepared simultaneously with the sample cells. The number 

of cells in each sample was determined by counting on a hemocytometer. Unless indicated 

otherwise, cells from the test sample (SK1) were mixed with cells from the spike-in sample 

(S288c) at a ratio of 80:20 before cell lysis and ChIP. 
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Chromatin immunoprecipitation (ChIP) and Illumina sequencing 

ChIP was performed as described previously 36. Samples were immunoprecipitated with 2 µl 

anti-Red1 serum (Lot#16440, kind gift of N. Hollingsworth) or 2 µl anti-phospho-H2A-S129 

antibody (Abcam #ab15083) per sample. Library preparation was performed as described 15. 

Library quality was confirmed by Qubit HS assay and 2200 Tape Station. 100-bp single-end 

sequencing was performed on an Illumina NextSeq 500 instrument.  

Read alignment 

The generated reads were aligned to a hybrid genome built by concatenating high-quality 

genome assemblies of the test and spike-in reference genomes (SK1 and S288c) 23. Reads were 

aligned with perfect match conditions and excluding any reads aligning to more than one 

location. Normalization of read density was completed as described 36. Where indicated, peaks of 

enrichment were called using MACS-2.1.0. Plots show an average of two replicates. To evaluate 

coverage relative to standard ChIP-seq profiles, we compared SNP-ChIP results to published 

datasets GSE69232 15 and GSE87060 19. 

Calculation of the spike-in normalization factor 

Let Cendo and Cspike be the count of all reads aligned to the endogenous and the spike-in genomes, 

respectively, in a given sequenced sample. Quotient Q is defined as the ratio between the read 

counts: 

Q = Cspike  / Cendo 

The non-immunoprecipitated, input sample’s Q value (QInput) provides a measure of the 

percentage of the sample that is comprised of spike-in cells in the respective test condition. This 

consists of the experimental percentage of spike-in material actually added to the sample, 
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corrected for any technical variation or imprecision. The ChIP sample’s Q value (QChIP) depends 

on the amount of target protein present in that experimental condition. A normalization factor Nf 

can thus be obtained for each condition as the ratio between the two Q values: 

Nf = QInput / QChIP 

To obtain spike-in-normalized conditions, each condition is multiplied by the respective 

normalization factor value Nf. The extent to which QChIP differs from QInput in each experimental 

condition is determined by the amount of target protein and how much that differs from the 

amount of target protein in the spike-in. Since the latter is constant across all tested conditions, 

the result of the normalization is a semi-quantitative measure of the target protein amounts, 

yielding normalized conditions that can be compared directly to each other. 

 

Data availability and codes 

Data sets have been deposited in NCBI's Gene Expression Omnibus and are accessible through 

GEO Series accession number GSE115092. Code used for data analysis and producing figures is 

available on Github (https://github.com/hochwagenlab/SNP-ChIP). 
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Figure legends 

 Figure 1. SNP-ChIP adds the ability to measure semi-quantitative amounts of target protein to 

traditional ChIP-seq. (a) Main steps of SNP-ChIP exemplified for two hypothetical conditions. 

(b) Target protein Red1 levels produced by SNP-ChIP (equivalent to the wild type-normalized 

spike-in normalization factor), compared to previously published levels measured by western 

blot (mean +/- S.E.M.) 19. Points represent individual replicate values and bars represent average 

value. (c) Fragment pileup produced using MACS2 with SPMR sequencing depth normalization 

(fragment pileup per million reads) of an example chromosome and chromosome region before 

(top panel) and after (bottom panel) spike-in normalization. (d) Target protein Red1 levels for 

Red1 dosage strain series compared to previously published levels measured by western blot 

(mean +/- S.E.M.) 19, as in (b). 

 

Figure 2. SNP-ChIP is robust to variation in both sequencing depth and amount of spike-in cells. 

(a) Number of aligned reads in SNP-ChIP as a function of total size of raw read sample. 

Systematic raw read subsamples of size 1 to 10 million were obtained for each sample and 

mapped to the hybrid SK1-S288c genome. (b) Distribution of spike-in normalization factors 

computed using all 10'000 possible combinations of read subsamples in (a). The inset is a zoom-

in on a narrow window of the x axis where all values are located. (c) Proportion of reads aligning 

to the spike-in genome in the input sample versus the immunoprecipitated sample (ChIP) for 

wild type and red1-pG162A strains. Note: In contrast to red1ycs4S, which contains an introgressed 

region with dozens of SNP surrounding the RED1 locus, the red1-pG162A mutant only carries 

the causative promoter mutation.  (d) Resulting wild type-normalized spike-in normalization 
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factor (equivalent to Red1 amount) in the red1-pG162A strain after performing SNP-ChIP with 

percentages of added spike-in cells ranging from 5 to 30%. 

 

Figure 3. SNP-ChIP analysis in mutants with large-scale target redistribution. (a) Target protein 

Red1 levels in rec8∆ mutant relative to wild type produced by SNP-ChIP. Points represent 

individual replicate values and bars represent average value. (b) Spike-in-normalized fragment 

pileups in wild type and rec8∆ mutant strains produced using MACS2 with SPMR sequencing 

depth normalization (fragment pileup per million reads) plotted on two example chromosomes. 

(C) Red1 levels in hop1∆ mutant relative to wild type produced by SNP-ChIP (as in a). (d) 

Spike-in-normalized fragment pileups in wild type and hop1∆ mutant strains (as in b). (e) Spike-

in-normalized average Red1 signal on individual chromosomes in hop1∆ mutant. 

 

Figure 4. SNP-ChIP analysis of a protein modification. (a) γ-H2AX levels for the Red1 dosage 

strain series relative to wild type produced by SNP-ChIP. (b) Fragment pileup produced using 

MACS2 with SPMR sequencing depth normalization (fragment pileup per million reads) on an 

example chromosome after spike-in normalization. 
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