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Abstract  
 
Environmental or genetic perturbations lead to gene expression changes. While most 

analyses of these changes emphasize the presence of qualitative differences on just a 

few genes, we now know that changes are widespread. This large-scale variation has 

been linked to the exclusive influence of a global transcriptional program determined by 

the new physiological state of the cell. However, given the sophistication of eukaryotic 

regulation, we expect to have a complex structure of deviations from the global 

program. Here, we examine the regulatory landscape that contributes to these 

deviations. Using data of Saccharomyces cerevisiae expression in different nutrient 

conditions, we first propose a five-component genome partition as a framework to 

understand expression variation. In this framework, we recognize invariant genes, 

whose regulation is dominated by the global program, specific genes, which 

substantially depart from it, and two additional classes that respond to intermediate 

regulatory schemes.  Whereas the invariant class shows a considerable absence of 

specific regulation, the rest is enriched by regulation at the level of transcription factors 

(TFs) and epigenetic modulators. We nevertheless find markedly different strategies in 

how these classes deviate. On the one hand, there are TFs that act in an exclusive 

way between partition constituents, and on the other, the action of chromatin modifiers 

is significantly diverse. The balance between regulatory strategies ultimately modulates 

the action of the general transcription machinery, and therefore limits the possibility of 

establishing a single program of expression change at a genomic scale.	
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Introduction	

A global program of regulation impacts the expression of most genes (Liang et al., 

1999, Dennis et al., 2004, Zaslaver et al., 2009, Scott et al., 2010). This program 

depends on the availability of individual components of the cellular expression 

machinery, e.g., free RNA polymerases, co-factors, ribosomes, etc., which affects the 

rates of transcription and/or translation and thus determines the overall state of the cell.	

 

The study of this program goes back to the research of the early school of bacterial 

physiologists who introduced the notion of steady state of cellular growth, in which 

growth rate acted as a valid proxy for cell physiology and consequently for the global 

program (Schaechter et al., 1958, Neidhardt and Magasanik, 1960, Maaløe, 1979). 

Indeed, these early studies documented that the macromolecular composition of cells 

is a function of the growth rate. With such experimental approach, the general question 

of how gene expression is influenced by physiology is addressed by studying how 

expression depended on growth rate.  

 

The research has been taken up in more recent work (Zaslaver et al., 2009, Scott et 

al., 2010, Klumpp and Hwa, 2014, Bosdriesz et al., 2015), emphasizing a framework of 

distribution of limited resources associated with gene expression, i.e., several cellular 

parameters manifest as resource trade-offs. Changes in expression as a function of 

growth rate can be understood by means of coarse genomic partitions that gain 

differential access to these resources according to separate functional categories; the 

minimal partition being that between ribosomal and metabolic genes (Zaslaver et al., 

2009, Scott et al., 2010, Hui et al., 2015). Likewise, a recent model proposed a broader 

picture of resource allocation in which only a small group of genes, specific genes, 

deviate from the global expression program that is constraint by the remaining 

resources not engaged in the activation of the specific response (Keren et al., 2014). 
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Understanding what precise control mechanisms decouple gene expression from such 

global transcriptional program is therefore of great interest. For instance, results in 

bacteria have demonstrated the prevalence of the global expression program, while 

they have lowered the importance of transcription factors (TFs) controlling the assumed 

deviations from it. TFs seem only to complement the action of the global regulation 

(Berthoumieux et al., 2014, Gerosa et al., 2014), in combination with a few metabolites 

(Kochanowski et al., 2017). Results in eukaryotes are however lacking (Keren et al., 

2014, Metzl-Raz et al., 2017), partly because one has to study a more complex basal 

regulatory machinery.	

 

In this work, we wanted to characterize which molecular elements of control influence 

the deviation from the global transcriptional program in eukaryotes. For this, we have 

outlined in detail the groups of genes that can a priori be more sensitive to the global 

program. We do this by introducing a partition of the yeast genome into five 

components, which incorporates previous models (Zaslaver et al., 2009, Scott et al., 

2010, Keren et al., 2014). In this framework, we are able to recognize invariant genes, 

whose regulation seems to be dominated by the global program, specific genes, which 

are those that seemingly deviate the most from it, and two classes of intermediate 

genes that would integrate both global and specific programs. We then study regulatory 

factors that act on the components of each element of the partition. We focus both on 

the influence of TFs and chromatin modifiers. Our results allow us to better appreciate 

the integration between the specific and global mechanisms controlling genome-wide 

expression in eukaryotes, as well as the genetic and epigenetic factors that contribute 

to this integration.  More broadly, our study emphasizes the limitations of implementing 

a unique genome-wide program of expression control.	
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Results	

A five-component partition captures large-scale changes of gene expression. We 

first examined the changes with growth rate in the promoter activity (PA) of a subset of 

~900 Saccharomyces cerevisiae genes in 10 growing conditions (Keren et al., 2014). 

Studying absolute PA values Keren et al. presented a binary partition that helped 

explain these changes, recognizing a global proportional response in most genes and a 

specific one in a much smaller set. To focus on resource reallocation, we considered 

here instead fractional activities, i.e., the fraction of PA of each gene in a given nutrient 

condition [out of the summed activity of all genes in the dataset (Maaløe, 1979, 

Zaslaver et al., 2009)], and quantified their change for each pair of conditions (from low 

to high growth rate).  

 

We interpreted these changes by delimiting a five-component partition of all genes 

(Methods). Figure 1A shows a descriptive case (glycerol to glucose growing 

conditions). Genes whose fractional PA remains approximately invariant (along the 

diagonal in Fig. 1A) constitute the first partition element. One can broadly introduce 

other four components: 1/positive genes (whose fractional PA moderately increases 

between conditions), 2/negative genes (fractional PA decreases to only a limited 

extent), 3/specifically activated genes (fractional PA becomes much larger), and 4/ 

specifically repressed genes (fractional PA becomes much smaller). Note that by 

reducing the partition to two components, specific and global, the stronger allocation of 

“expression resources” to specific genes in glycerol as compared to glucose becomes 

manifest (Fig. 1.B, white/grey pie charts). This leaves less resources to biosynthesis 

(reduction of the global component) affecting growth rate (Keren et al., 2014).  

 

Our analysis identifies a fine-grained structure within global genes (invariant, positive 

and negative genes), each class following a precise proportional response between 
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conditions (Fig.S1). Within this structure, we also observed how the resources taken by 

positive genes in a condition of high growth rate limit in turn those available for the 

expression of negative genes (Fig. 1B, brown/red/blue pie charts). The resource 

reallocation is also revealed by the (absolute) PA response to growth that exhibit this 

type of genes, PA that cannot be simply explained in terms of the associated changes 

in growth rate (Maaløe, 1979)	(Keren et al., 2014) (Fig. 1C). 

	

With respect to the type of genes that comprise each component, the invariant class is 

enriched by transcription regulation and ribosomal proteins; the latter being more 

extensively observed in the positive class. Indeed, positive genes are enriched by 

ribosomal genes (~65% of genes code for small or large subunits of the ribosome), 

while negative genes are enriched in ATP metabolic processes, e.g., oxidative 

phosphorylation or the TCA cycle. Lastly, activated and repressed genes indicated 

specific expression programs related to the particular carbon source, and the pathways 

of the central metabolism that facilitate the transition between fermentation or 

respiration routes (Table S1, Methods). 	

 

The five-component partition can be delineated on a genomic scale. To generalize 

the preceding analysis to a genome-wide scale we analysed a DNA microarray dataset 

of yeast cells exhibiting a range of growth rates for several limiting nutrients (Brauer et 

al., 2008). We first applied singular value decomposition (SVD) to the fractional gene 

expression quantified on each nutrient separately (Methods). Notably, the first and 

second SVD components (Fig. 2A) explain >90% of the variance in each condition. As 

a result, fractional expression of each gene can be approximated by the linear 

combination of these two components (Fig. 2B), which exhibited an analogous trend in 

all nutrients (Fig. S2). 
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Moreover, while the first component (𝑣") does not change with growth rate, we 

observed that the second component (𝑣#) exhibits a monotonic behaviour (Fig, 2A for 

glucose, and Fig. S2 for other nutrients). We can thus interpret the first element of the 

linear combination as the baseline fractional expression of the gene, and the second 

element as its monotonic behaviour with growth rate (Fig. 2B). This interpretation 

enables us to generalize the partition framework previously introduced with PA data.  

 

Therefore, a change in the loading of 𝑣" (ai) in two different nutrients implies that the 

corresponding gene is specific, as it changes between conditions, and global otherwise 

(Fig. 2C) (note that 𝑣" is quantitatively similar in all nutrients, Fig. S2). This supports 

the framework in (Keren et al., 2014) (Fig. 1B). Comparison of these gene loadings in 

the six nutrients revealed that they are fairly similar (minimal correlations found of 

~0.96), i.e., much of the gene response is global.  

 

In contrast, the second component (𝑣#) provides a quantitative score (the second 

loading, bi) to classify genes as invariant, positive or negative, as before (Fig. 2C, 

Methods). Some genes have the same classification in two different nutrients, but this 

does not have to be necessarily the case. With the use of the second component we 

can also evaluate how the response to growth rate depends on the exact nutrient 

(Brauer et al., 2008). We found that nutrient condition particularly matters in the range 

of slow growth, and that some nutrients trigger a more similar response with growth 

than others (Gutteridge et al., 2010). Finally, the functional analysis of genes within 

each class agrees with PA data and previous reports (Table S2).  
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The partition composition presents different transcriptional regulation. TFs are 

the most direct elements that can deviate the expression of genes from the global 

transcription program. Before examining this effect, we asked how TFs themselves are 

framed in the previous partition. After assembling a transcriptional regulatory network 

with existing data (Methods), we observed that most constituent TFs (122 of a total of 

133 composing the network) exhibit similar basal fractional expression (ai loadings) 

across all pairwise condition changes, i.e., they are global genes. Within this set, 31% 

presents a dominant invariant response (bi~0 in >3 nutrients, of a total of 6), with five 

genes acting as invariant in all six conditions (rsc1, mbp1, pho2, rgr1, and swi6). Two 

of these (mbp1, swi6) are at the top of the network hierarchy (being involved in the 

mitotic cell cycle), and two are elements of relevant complexes that interact with RNA 

polymerase II (rsc1 of the RSC chromatin complex, and rgr1/med14 of the mediator 

complex); they can be considered as elements of a general transcriptional machinery, 

for which maintaining its concentration invariant across conditions could be essential. 

Moreover, 32% of global TFs are dominantly negative, and only 4% positive. Of note, 

some of the TFs whose expression decreases with growth (bi<0) are positive regulators 

of transcription in response to stress (e.g., bur6, gcn4, rpn4) what justifies their 

overexpression at low growth rates.	

 

To what extent is the regulation of target genes dependent on which component of the 

partition they belong to? We labelled target genes as global if they showed a global 

response (similar ai loadings) in >8 pairwise change of conditions (total of 15). Genes 

are considered specific otherwise. Global genes are less regulated on average than 

specific ones [by 3.09 TFs vs. 5.06 TFs, p = 1.20 10-4, two-sample Kolmogorov-

Smirnov (KS) test]. Within global genes, we described as invariant –following again the 

second loading score, bi – those which exhibit this pattern in >3 conditions. Global and 

invariant genes are less regulated on average than global and not invariant genes (by 

2.56 TFs vs. 3.3 TFs, p = 8.16 10-13, two-sample KS test). Finally, global and positive 
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genes are slightly more regulated than global and negative genes (by 3.33 TFs vs. 3. 

27 TFs, p = 0.0018, two-sample KS test). Overall, specific genes are subjected to more 

regulation (larger number of TFs) (Fig. 3A), while global and invariant genes are the 

ones that show the least.	

 

Specific TFs regulate genes belonging to each partition sector.  Although Fig. 3A 

shows how the structure of transcriptional interactions is reflected differentially in the 

components of the partition it does not assure us when these interactions are active, 

e.g., (Berthoumieux et al., 2014). For this we examined several features.  

 

We first inspected if target genes presenting a particular growth response are enriched 

by TFs showing the very same response, as similarity of the responses could imply that 

part of the regulatory structure is active. We thus computed –for each target gene– the 

fraction of its regulators that behave as negative, invariant, or positive 

(TFneg,TFinv,TFpos, respectively) with growth rate in a given condition. Figure 3B shows 

the mean of the fractions for target genes whose response is negative, invariant or 

positive. Negative TFs are more likely to be found acting on target genes that are also 

negative (higher mean TFneg on negative genes), while invariant (TFinv) and positive 

(TFpos) TFs regulate more often invariant and positive target genes, respectively (the 

latter signal is weaker and depends on the particular condition, Fig. S3). Thus, TFs that 

exhibit the same behaviour as their cognate target gene tend to appear, on average, 

dominant on its regulation; part of the regulatory structure seems then functional.  

 

To further test the active effect of TFs, we measured the correlation of the response to 

growth rate between any particular gene and all its cognate TFs (“regulatory 

coherence”, Methods). Specific genes showed stronger regulatory coherence than 

global ones (Fig. S4A), and remain coherent in more nutrient conditions (Fig. S4B), 

both results implying an active contribution of TFs to deviate gene expression from the 
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global program. Moreover, Fig. 3C shows those TFs whose action is particularly 

coherent per partition component (Methods). One can identify here two broad groups, 

which control global or specific genes [this is supported by earlier reports (Fazio et al., 

2008)].  In this way, within the regulatory network we find TFs that act more 

significantly on different types of genes. Notably, those that work on global genes are 

higher up in the network hierarchy (Methods).	We also noted that some these 

(significantly coherent) TFs are involved in chromatin remodelling (Cyc8, Ume6, Spt6, 

Msn4, Abf1, Msn2, Nhp6A, acting on global ones), or chromatin organization (Spt3, 

Spt2, Pho4, FKh2, Sin3, Spt20, Wtm2, Wtm1, Hif1, acting on specific genes). We 

examine epigenetic aspects next.	

 

The partition composition also reveals distinctive epigenetic regulation. To 

inspect the function of epigenetic control mechanisms, we first quantified the proportion 

of general transcription factors (GTFs) found within the set of TFs acting on a given 

gene (Fourel et al., 2002). GTFs (Rap1, Abf1, Reb1, Cbf1, and Mcm1) usually have 

little intrinsic regulatory activity and together with the presence of chromatin remodelers 

(in particular, RSC –Remodels Structure of Chromatin) control an alleged general 

machinery of expression. We observed that GTFs constitute a larger and significant 

fraction in the regulation of positive genes, while the opposite is observed for negative 

ones (Fig. 4A).	

 

GTFs are also connected to particularly fragile nucleosome promoter architectures (Xi 

et al., 2011), a connection recently examined (Kubik et al., 2015). Using this data, we 

computed the nucleosome landscape for the different gene classes (Methods). 

Promoters of positive genes are indeed enriched in fragile nucleosomes (Fig 4.B) while 

both negative and invariant genes typically lack these structures. This suggests that 

positive genes are more sensitive to deviate from the global program of expression 

(implemented by a general transcriptional machinery) by means of chromatin 
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modulation. Enrichment of other promoter features contribute to this model (Fig 3.C), 

like the absence of TATA boxes, the action of TFIID over SAGA [but this precise 

grouping has been recently revaluated (Baptista et al., 2017)], the presence of 

nucleosomal free regions closer to the transcriptional starting site (shNFRs) (partially 

associated to the previous score of fragile nucleosomes), and the dominant effect of 

trans variability (Fig. S5) (Choi and Kim, 2008).  

	

We examined additional chromatin modifiers using a previously assembled 

compendium (Steinfeld et al., 2007). Figure 5 shows the effects of mutating different 

types of trans-acting chromatin regulators on the genes constituting the partitions. Note 

here that growth rate reduction can be connected to many of these deletions, so we 

controlled for the possible contribution of cell cycle population shifts as described 

(Methods). This enables us to better identify expression changes due to regulation 

(O’Duibhir et al., 2014). With the exception of histone acetyltransferases (HATs) and 

TAF-related factors (TAFs), the effect of most chromatin modifiers is dominant in 

specific genes (Fig. 5A, Methods). Within global genes we found three main 

configurations (Fig. 5B): 1) Epigenetic regulators acting as part of a general machinery 

(HATs –including SAGA–, TAFs and methyltransferases) whose mutation causes a 

general decrease in expression, very particularly in invariant and positive classes. 

Indeed, work by (Baptista et al., 2017) and (Warfield et al., 2017) demonstrated that 

SAGA and TFIID are recruited to pol II promoters genome-wide and that each complex 

is generally required for pol II transcription, i.e., its mutation would lead to genome-wide 

decrease of gene expression. 2) Regulators (histones, and chromatin remodelers) 

acting in a dual manner: increasing the expression of negative genes (remodeler as 

repressor) or reducing their expression in positives (remodeler as activator). This 

underlines the enrichment of negative and positive classes by stress and ribosomal 

genes, respectively, which are largely regulated in opposite manner (Bajić and 

Poyatos, 2012); a dual role of remodelers as activators and repressors have been 
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previously reported (Sudarsanam et al., 2000, Holstege et al., 1998). And 3) regulators 

as broad repressors that represent regulation by gene silencing.  

 

 

Discussion 

Could one interpret genome-wide expression changes as deviations from a global 

program of transcriptional control? In this work, we aim to answer this question by 

capturing these deviations in a five-component partition of the yeast genome. The 

analysis of relative expression values is necessary here as it helps us to appreciate 

expression reallocation among partition constituents. Therefore, this integrates an 

earlier model (Keren et al., 2014) that reduced variation between conditions to a 

proportional response shared by most genes and induced by a global transcriptional 

program (with only a limited number of specifically expressed genes), while also 

discriminating three subclasses within such response. Invariant genes, that best follow 

the global program, and positive and negative genes, which were broadly defined in 

other studies as growth-related genes (Regenberg et al., 2006, Castrillo et al., 2007, 

Brauer et al., 2008). The biological significance of our framework is reinforced by its 

differential promoter and regulatory architecture ranging from a model of almost 

passive control to one exhibiting complex combinatorial regulation.  

 

More explicitly, invariant genes are those subjected to less regulation by TFs, 

regulation that increases among the rest of global classes, and between these and the 

specific ones. Specific genes also show a stronger regulatory coherence than global 

genes (similarity of expression response to that of the TFs acting on them). In addition, 

among TFs whose action is particularly coherent we identify two groups that almost 

exclusively regulate global or specific genes: the action of the TF network is somehow 

segregated. Beyond TF regulation, we can discriminate two broad promoter 
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architectures. Those that are TATA enriched and shNFR/TFIID depleted (global 

negative and specific genes), and those that are TATA depleted and shNFR/TFIID 

enriched (global invariant and positive genes). Notably, these features are similarly 

observed in metazoans promoters (Lenhard et al., 2012) (Type I promoters, genes 

expressed in a tissue-specific manner, and Type II promoters, ubiquitously expressed 

genes, respectively). 

 

That (global) positive genes are moderately controlled by TFs (like negative) but 

depleted in TATA box (unlike negative) could suggest certain expression features (e.g., 

high level of transcription, Fig. S6) and alternative modes of regulation. Indeed, positive 

genes are enriched in fragile nucleosomes, which highlights the regulatory role of 

nucleosomal stability.  This is supported by the particular action of GTFs on these 

genes [as GTFs fine-tune nucleosomal stability (Xi et al., 2011, Kubik et al., 2015)]. In 

addition, we find the expression of global genes being adjusted in distinctive manner by 

epigenetic modifiers, with three main configurations: 1/ HATs, TAFs and 

methyltransferases working as general activators of invariant and positive genes, 2/ 

Histone and chromatin remodelers working in a dual manner; repressors of negative 

genes and activators of positive ones, and 3/ Gene silencing elements acting as 

general repressors of negative genes. 

 

The five-component partition in a broader context. 

Some of the previous features discussed in our framework of the five-component 

partition match those observations related to environmental stress response genes 

(ESR) (Gasch et al., 2000), so it is interesting to examine how this set fits into our 

partition. ESR genes included two complementary subsets, which are enriched in our 

global negative and repressed genes (induced ESR genes), or global positive genes 

(repressed ESR genes, Methods). This confirms the suggestion of previous studies 

that stress response genes were not responding directly to stress but rather to the 
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associated decrease in growth rate. More generally, two models to coordinate gene 

expression to the available nutrients can be imagined: a feed-forward regulation by 

signalling pathways that predict growth rate in a certain environmental condition, or a 

feedback mechanism, which senses growth rate, or other related internal cell variable, 

and then modifies expression (Levy and Barkai, 2009). In this context, a passive 

resource allocation model could explain that the global program is responding always 

to the environment, although indirectly (as it can only use those resources that were 

not consumed in the mounting of the specific response). This validates, for instance, 

that ribosomal genes follow the feed-forward model (Levy et al., 2007). The fine-

grained structure of the global class (invariant/positive/negative) could nevertheless 

monitor growth rate, at least partially, with the feedback being mediated by epigenetic 

mechanisms (see below). 

 

If, as suggested by (Hansen and O’Shea, 2015), TFs can mostly transmit qualitative 

(presence/absence of a particular nutrient) rather than quantitative (amount of nutrient) 

information, how can we then explain the monotonic variation of fractional expression 

with nutrient dilution in the chemostat of the genes in the negative and positive partition 

components? One way is that metabolism, which is highly sensitive to the limiting 

nutrient (Boer et al., 2010) acts as regulator of the epigenetic factors discussed above. 

Indeed, several metabolites (e.g., GlcNAc, NAD+, acetyl-CoA, alpha KG, ATP) are 

known to regulate transcription through interactions with enzymes involved in 

epigenetic modifications (Lu and Thompson, 2012). For example, acetyl-CoA induces 

cell growth and proliferation by promoting the acetylation of histones at growth genes 

(Cai et al., 2011) (histone acetylation affects rather similarly specific and global genes, 

Fig. 5A,  what supports its potential role as a widespread mechanism).	Another 

explanation is that the monotonic variation observed is the result of cell population 

shifts with growth rate, instead of changes in single-cell resource allocations. Note that 

these shifts cannot be attributed to the fact that slow growing cells enlarged their G1 
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cell cycle phase as neither (Brauer et al. 2008) nor us observed a bias in 

positive/negative genes with any particular phase of cell cycled genes. 	

 

In this work we have studied changes in fractional expression but not in mRNA 

abundances. It is known that the global program dictates that the faster a population of 

cells growths, the higher the promoter activity (rate of RNA synthesis) (Keren et al., 

2014) or total mRNA abundance (rate of RNA synthesis and degradation) 

(Athanasiadou et al., 2016). We expect most (if not all) gene products to follow this 

(absolute) global program, with potential additional layers of regulation (which are 

nutrient and gene dependent) that increment or decrement mRNA levels. The invariant 

group best describes the absolute global program, while positive genes are slightly 

above and negative genes slightly bellow this program (but all of them incrementing 

mRNA levels or promoter activities) (e.g., Fig. 1C). On the other hand, it would be 

interesting to quantify the degree to which single cells can present a distribution of 

resources that is separated from the model here discussed (Gasch et al., 2017), as 

well as to understand the mechanisms that lead to such divergence.	

 

In summary, although one could argue that cellular physiology can indeed determine a 

global transcriptional program of gene expression control, our work highlights that this 

program is mediated by the integration of genetic and epigenetic modes of regulation, 

what limits the prospect of “simplifying” our understanding of genome-wide expression 

change. 
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Materials and Methods	

Promoter activity (PA) data. (Keren et al., 2014) measured the activities of ~900 S. 

cerevisiae promoters in 10 different growing conditions using a library of fluorescent 

reporters. For each strain in every growth condition, promoter activity was obtained as 

the YFP production rate per OD per second in the window of maximal growth. 	

Genome partition based on PA data. Fractional promoter activity (fPA) for each 

growth condition and ratios of fPAs for each pair of conditions (with increasing growth 

rate) were calculated. We then computed the absolute distance of these ratios to ratio 

1 (i.e., same fPA in both conditions), and defined as invariant genes the top 350 genes 

(distance closest to 0) and as activated (repressed) the bottom 50 with ratio >0 (< 0). 

The rest of genes with ratio >0 (<0), and both fPAs > 10-4, were designated as global 

positive (negative). We used the “typical” class of a gene (the most frequently occurring 

category that a gene presents in all pairwise growth rate changes) to select the 

examples of Fig. 1C, and to characterize the partition in functional terms (Table S1).	

Microarray data. (Brauer et al., 2008) grew yeast cultures in chemostats under  

different continuous culture conditions (six different limiting nutrients each at six dilution 

rates) and measured mRNA abundance with two-colour microarrays. Since the original 

reference channel for all samples corresponded to a particular glucose condition, which 

mixes the response of different nutrients, we reanalysed the data without this reference 

by considering the red processed signal as independent channel (’t Hoen, 2004), and 

normalizing by the corresponding sum for each case (to obtain a fractional score). 

SVDs were computed on this processed data. 	

Genome partition based on microarray data. Global genes are those whose 

difference on the loadings of the 1st component (ai’s) between two conditions is less, or 

equal, than three standard deviations of all gene differences (in absolute values). 

Genes are otherwise considered specific (activated or repressed if the difference of ai’s 

is positive or negative, respectively). Moreover, absolute values of the loadings of the 
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2nd component (bi’s) were sorted to define those with smallest values (top 2500) as 

invariant genes, with the rest being positive or negative (determined by the sign of bi).	

To define the partition, we classify as global those genes that act as global in >8 

pairwise conditions (out of 15). Global genes acting as invariant in > 3 conditions (recall 

that the total number is 6) are labelled as invariant. Global and not invariant genes 

appearing more times as positive than as negative (in all 6 conditions) are categorized 

as positive, and likewise for negative. Specific genes which appear more times as 

positive than as negative (again in all 6 conditions) are categorized as activated, and 

analogously for repressed. 	

Regulatory network. We obtained regulatory data from 

http://yeastmine.yeastgenome.org. No microarray data is considered for the TF info; 

only data from different manuscripts using chromatin immunoprecipitation, chromatin 

immunoprecipitation-chip, chromatin immunoprecipitation-seq, combinatorial evidence, 

and computational combinatorial evidence for a total of 20,673 interactions with 133 

TFs involved (Brauer et al., 2008). We also calculated the hierarchical organization of 

the network (Jothi et al., 2009). Bas1, Mbp1, Med6, Spt7 and Swi6 appear at the top of 

the hierarchy. 

Fragile nucleosome data. Nucleosome occupancy and position have been measured 

by analysis of MNase-digested chromatin. Recent work noted that certain nucleosomes 

were extremely sensitive to this digestion, and thus obtained a quantitative score of 

nucleosome fragility that we used for our analysis, Table S6 in (Kubik et al., 2015).	

Chromatin compendium. This set includes 170 gene expression profiles for 

chromatin-regulation related mutations (expressed in log2 ratios) taken from 26 different 

publications (Steinfeld et al., 2007). It covers more than 60 potential interacting 

chromatin modifiers such as histone acetyltransferases (HATs; the NuA4, HAT1 and 

SAGA complexes), histone deacetylases (HDACs; the RPD3, HDA1 and SET3 

complexes), histone methyltransferases (the COMPASS complex), ATP-dependent 

chromatin remodelers (the SWI/SNF, SWR1, INO80, ISWI and RSC complexes), and 
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other chromatin-affecting genes and cofactors such as Spt10, Sir proteins and the 

TATA-binding protein (TBP). We normalized each dataset to unit variance (Choi and 

Kim, 2008). For Fig. 5A, we took absolute values to estimate the strength of the 

chromatin regulator effect.	

Regulatory coherence. We identified the set of TFs regulating each gene, and 

quantified the Pearson’s correlation coefficient between the expression vector (as 

function of growth rate) of each TF within the set and the target gene to then take the 

mean. This is the (mean) regulatory coherence in a given nutrient condition. 

Randomizing expression vectors for each gene, 1000 times, we obtained a score of 

significance for each gene’s regulatory coherence. With this, we identified a list of 

genes displaying significant regulatory coherence. Identification of TFs acting more 

significantly on each partition component is computed by first measuring how often it 

acts on significantly coherent genes, within the five-component partition grouping, and 

then estimating a null value by randomization of the partition classes.  

Removal of the slow growth signature.  We took the full data in (Kemmeren et al., 

2014) to obtain the slow growth profile and remove the slow growth signature in the 

epigenetic data following (O’Duibhir et al., 2014). In brief, the slow growth profile is 

obtained as the first-mode approximation of the data after SVD decomposition. To 

compare with the epigenetic compendium data, we chose the column of this 

approximation with the largest norm as the slow growth signature. The correlation with 

the slow growth signature is removed by transforming the epigenetic data in Gram-

Schmidt fashion by subtracting from their projection onto the basis vector given by the 

normalized slow growth profile. 

ESR genes. There are 281 stress-induced and 585 stress-repressed genes –as 

defined in (Gasch et al., 2000)– within the set of genes delineating the five-component 

partition. A subset of global negative genes and specific repressed genes corresponds 

to stress-induced (232 out of 2053, and 10 out of 70, respectively), while a subset of 

global positive genes corresponds to stress-repressed (485 out of 1914). Note that 
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most of the features discussed in the main text associated to the five-component 

partition remain when controlling for ESR genes. 
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Figures 
Fig. 1 

	
Figure 1. Partition of gene expression in five sectors. A) Fractional promoter activity 
(fPA) between two example conditions. Promoters can be classified into five categories 
(inset) depending on how their fPA changes (yellow dots indicate those with very low 
activity in both conditions). B) Repressed and activated promoters constitute the specific 
response, whose fPA is greater the lower the growth rate (at the cost of the promoters 
changing in a global manner). Global promoters are constituted by one invariant type and 
two other subclasses whose fPA depends on the growing condition. Note how the portion 
of expression, within global genes, of positive genes increases with growth rate, while it 
decreases for negative ones (colours as in A). C) Absolute promoter activity (PA) response 
of a typical invariant, positive and negative gene that corresponds to the mrs11, rps6A and 
atp5, respectively (conditions sorted by increasing growth rate). A null model of the 
dependence of PA with growth rate is given by the ratio of growth rates (empty circles). 
Gene categories within the global group clearly separate from the null (see main text).	
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Fig. 2 

	
	

Figure 2. Genome-wide partition of gene expression in five sectors based on SVD. A) 
SVD components 𝑣" and 𝑣#	describe baseline fractional expression and dependence with 
growth, respectively, and together explain most of the expression variance. B) The 
fractional expression of every gene 𝑔& as a function of growth rate can be approximated by 
a linear combination of these two components, with loadings ai and bi. We show two 
examples (purple circles denote the expression vector, while the black dots correspond to 
the two-component approximation; lines added to help visualization) with the same 
baseline (dashed line; same ai) but whose expression increases (bi>0) or decreases (bi<0) 
with growth. Data in A) and B) corresponds to growth in limiting glucose conditions. C)  A 
given gene can be considered specific or global when its baseline fractional expression 
(bars) changes (left) or does not change (right) with different nutrients (different or 
comparable ai, respectively). Beyond the baseline value on each condition, expression can 
increase, decrease or remain constant with growth-rate (µ) change. We thus compare ai‘s 
between pairwise conditions (total of 15) to define a gene as specific or global, whereas the 
second loadings bi‘s on each condition (total of 6) enable us to determine if the gene is 
positive, invariant or negative. 
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Fig. 3 

	
Figure 3. Genes within each partition sector show differential transcriptional 
regulation. A) Mean number of regulators acting on genes as a function of their response 
to growth (blue dots; dashed line to help visualization). Grey shading denotes the average 
null values +/- 2 standard deviations obtained by randomization.  B) Mean ratio of fraction 
of TFs of a given class with respect to growth (e.g., TFneg denotes TFs which are negative 
genes) for each group of target genes (also for a given class; here we do not distinguish 
between global and specific). Histogram obtained in glucose conditions, see also Fig. S5 
for other nutrients (** p < 0.001, *´ p < 0.01, * p < 0.05, two-sided KS test). C) Regulators 
that act dominantly in genes showing a significant regulatory coherence. Colour denotes z-
score with respect to a null obtained by randomization (positive values denoting 
enrichment). Properties of some regulators are also included (arrows). See main text for 
details. 
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Fig. 4 

 
 

Figure 4. Genes within each partition sector show differential epigenetic regulation. 
A) Mean fraction of global transcriptional regulators (Rap1, Reb1, Cbf1 and Mcm1) within 
the full set of regulators acting on each gene. Grey shading denotes the average null 
values +/- 2 standard deviations obtained by randomization. Dashed lines to help 
visualization.  B) Mean nucleosomal fragility. Shading/lines as before. C) Enrichment of 
nucleosomal free regions (shNFR, blue), presence of TATA boxes (pink), or action of TFIID 
global factor (green) as function of response class (measured as z-score with respect to a 
null by randomization; dashed line indicates z-score = +/- 2). 	

 
 
Fig. 5 

 
 

Figure 5. Chromatin modifiers act differentially on genes within each partition. A) The 
chromatin regulatory effect quantifies change in gene expression (absolute value) due to 
mutations in chromatin modifiers. Most modifiers show a significant effect on specific genes 
as compared to a null (obtained by randomization; grey shading indicates non-significant 
values, and dashed lines denote z-scores of +/-2). B) Mutations in chromatin modifiers 
reveal their diverse regulatory role when acting on negative, invariant, or positive genes. 
We observed three main categories: 1/ modifiers acting as activators (mutation decreases 
significantly the expression of invariant/positive genes), 2/ dual activator/repressor 
(mutation decreasing/increasing significantly expression of positive/invariant or negative 
genes, respectively), and 3/ repressors (mutation increasing significantly expression of 
negative genes). Significance and shading as before (note that a significant increase or 
decrease in expression correspond to positive or negative z-scores, respectively). Different 
type of modifiers corresponds to filled/empty circles of different size, whose colour denote 
the precise target gene class considered. 
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Supplementary Information 

	
Figure S1. Scaling factors between pairs of conditions. A single proportionality 
(scaling) factor describes the change of promoter activity for different subsets of promoters 
according to the five-component partition. The three classes within the global promoters 
(invariant, negative, positive) clearly show different scaling. Shown also a null that 
correspond to the ratio of growth rates between conditions. 
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Figure S2. SVD components. First and second SVD components exhibited an analogous 
trend in all conditions what underlines a core response. As a result, expression of each 
gene can be approximated by the linear combination of these two components on each 
nutrient. 
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Figure S3. Association between class of TF and class of cognate target gene for all 
nutrients. Fraction of TF class (negative/invariant/positive) acting on target genes divided 
also with respect to growth response (negative/invariant/positive; global and specific genes 
were included that we denoted as allneg, etc.).  Mean values of each grouping are shown 
in bars, while the orange curves show the distribution of each class of TF on each 
condition.	

	
	
	

	
 

Figure S4. Regulatory coherence and five-component partition. A) Percentage of 
genes within each class that exhibit a significant regulatory coherence with respect to a null 
in which classes were assigned randomly (1000 randomizations; significance implies z-
scores > 2). Note that invariant genes show minimal coherence. B) Distribution of genes 
exhibiting significant regulatory coherence in 1 to 6 different nutrient conditions. Specific 
genes show more cases of genes significantly coherent in more different conditions, while 
invariant genes showed the opposite. 
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Figure S5. Cis and trans variability with respect to the five-component partition. A 
cross between a standard laboratory yeast strain and a wild isolate allowed the 
computation of cis and trans effects on transcriptional variance (Choi and Kim, 2008). For 
each partition, we quantified the mean of these measures and showed the associated z-
score with respect to a null by randomization; dashed line indicates z-score = +/- 2. Positive 
genes show dominant effects associated to trans variability (trv and civ denote trans and 
cis variability, respectively). 

	

	
	
Figure S6. Expression abundance and noise with respect to the five-component 
partition. Mean expression and protein abundance (A) and protein noise (B) with respect 
to the five-component partition as compared to a null in which classes were assigned 
randomly (10000 randomizations; y-axis is plotting the associated z-score, shading 
correspond to z-score values within a range of -/+ 2; SD/YEPD denote poor/rich growing 
conditions). Global and positive genes showed high expression and low noise, a signal that 
was associated to the presence of fragile nucleosomes in the promoter and the action of 
general transcription factors [both enriched in global positive genes, see main text and 
(Bajić and Poyatos, 2012) for details on data].	
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