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Abstract  13	
 14	
Environmental or genetic perturbations lead to gene expression changes. While most 15	

analyses of these changes emphasize the presence of qualitative differences on just a 16	
few genes, we now know that changes are widespread. This large-scale variation has 17	

been linked to the exclusive influence of a global transcriptional program determined by 18	
the new physiological state of the cell. However, given the sophistication of eukaryotic 19	
regulation, we expect to have a complex structure of deviations from the global 20	
program. Here, we examine the regulatory landscape that contributes to these 21	

deviations. Using data of Saccharomyces cerevisiae expression in different nutrient 22	
conditions, we first propose a five-component genome partition as a framework to 23	

understand expression variation. In this framework, we recognize invariant genes, 24	
whose regulation is dominated by the global program, specific genes, which 25	
substantially depart from it, and two additional classes that respond to intermediate 26	
regulatory schemes.  Whereas the invariant class shows a considerable absence of 27	

specific regulation, the rest is enriched by regulation at the level of transcription factors 28	
(TFs) and epigenetic modulators. We nevertheless find markedly different strategies in 29	
how these classes deviate. On the one hand, there are TFs that act in an exclusive 30	

way between partition constituents, and on the other, the action of chromatin modifiers 31	
is significantly diverse. The balance between regulatory strategies ultimately modulates 32	
the action of the general transcription machinery and therefore limits the possibility of 33	

establishing a unifying program of expression change at a genomic scale.	34	

 35	

 36	

 37	

 38	
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Introduction	39	

A global program of regulation impacts the expression of most genes (Liang et al., 40	

1999, Dennis et al., 2004, Zaslaver et al., 2009, Scott et al., 2010). This program 41	

depends on the availability of individual components of the cellular expression 42	

machinery, e.g., free RNA polymerases, co-factors, ribosomes, etc., which affects the 43	

rates of transcription and/or translation and thus determines the overall state of the cell.	44	

 45	

The study of this program goes back to the research of the early school of bacterial 46	

physiologists who introduced the notion of steady state of cellular growth, in which 47	

growth rate acted as a valid proxy for cell physiology and consequently for the global 48	

program (Schaechter et al., 1958, Neidhardt and Magasanik, 1960, Maaløe, 1979). 49	

Indeed, these initial studies documented that the macromolecular composition of cells 50	

is a function of the growth rate. With such experimental approach, the general question 51	

of how physiology influences gene expression is confronted by studying how 52	

expression depended on the growth rate.  53	

 54	

More recent work resumed this research (Zaslaver et al., 2009, Scott et al., 2010, 55	

Klumpp and Hwa, 2014, Bosdriesz et al., 2015), emphasizing a framework of 56	

distribution of limited resources associated with gene expression, i.e., several cellular 57	

parameters manifest as resource trade-offs. Changes in expression as a function of 58	

growth rate can be understood by means of coarse genomic partitions that gain 59	

differential access to these resources according to separate functional categories; the 60	

minimal partition being that between ribosomal and metabolic genes (Zaslaver et al., 61	

2009, Scott et al., 2010, Hui et al., 2015). Likewise, a recent model proposed a broader 62	

picture of resource allocation in which only a small group of genes, specific genes, 63	

deviate from the global expression program that is constraint by the remaining 64	

resources not involved in the activation of the specific response (Keren et al., 2014). 65	
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Understanding what precise control mechanisms decouple gene expression from such 66	

global transcriptional program is therefore of great interest. For instance, results in 67	

bacteria have demonstrated the prevalence of the global expression program, while 68	

they have lowered the importance of transcription factors (TFs) controlling the assumed 69	

deviations from it. TFs seem only to complement the action of the global regulation 70	

(Berthoumieux et al., 2014, Gerosa et al., 2014), in combination with a few metabolites 71	

(Kochanowski et al., 2017). Results in eukaryotes are however lacking (Keren et al., 72	

2014, Metzl-Raz et al., 2017), partly because one has to study a more complex basal 73	

regulatory machinery.	74	

 75	

In this work, we wanted to characterize which molecular elements of control influence 76	

the deviation from the global transcriptional program in eukaryotes. For this, we have 77	

outlined in detail the groups of genes that can a priori be more sensitive to the global 78	

program. We do this by introducing a partition of the yeast genome into five 79	

components, which consolidates previous models (Zaslaver et al., 2009, Scott et al., 80	

2010, Keren et al., 2014). In this framework, we recognize invariant genes, whose 81	

regulation is dominated by the global program, specific genes, which are those that 82	

seemingly deviate the most from it, and two intermediate classes of genes that 83	

experience both global and specific regulation. We then study which regulatory factors 84	

act on the components of each element of the partition. We focus both on the influence 85	

of TFs and chromatin modifiers. Our results allow us to fully appreciate the integration 86	

between the specific and global mechanisms controlling genome-wide expression in 87	

eukaryotes, as well as the genetic and epigenetic factors that contribute to this 88	

integration.  More broadly, our study emphasizes the limitations of achieving a unique 89	

genome-wide program of expression control.	90	

 91	

 92	
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Results	93	

A five-component partition captures large-scale changes of gene expression. We 94	

first examined the changes with the growth rate in the promoter activity (PA) of a 95	

subset of ~900 Saccharomyces cerevisiae genes in 10 growing conditions (Keren et 96	

al., 2014). Studying absolute PA values Keren et al. presented a binary partition that 97	

helped explain these changes, recognizing a global proportional response in most 98	

genes and a specific one in a much smaller set. To focus on resource reallocation, we 99	

considered here instead fractional activities, i.e., the fraction of PA of each gene in a 100	

given nutrient condition [out of the summed activity of all genes in the dataset (Maaløe, 101	

1979, Zaslaver et al., 2009)], and quantified their change for each pair of conditions 102	

(from low to high growth rate).  103	

 104	

We interpreted these changes by delimiting a five-component partition of all genes 105	

(Methods). Figure 1A shows a descriptive case (glycerol to glucose growing 106	

conditions). Genes whose fractional PA remains approximately invariant (diagonal in 107	

Fig. 1A) constitute the first partition element. One can broadly introduce other four 108	

components: 1/positive genes (whose fractional PA moderately increases between 109	

conditions), 2/negative genes (fractional PA decreases to only a limited extent), 110	

3/specifically activated genes (fractional PA becomes much larger), and 4/ specifically 111	

repressed genes (fractional PA becomes much smaller). Note that by reducing the 112	

partition to two components, specific and global, the stronger allocation of “expression 113	

resources” to specific genes in glycerol as compared to glucose becomes manifest 114	

(Fig. 1.B, white/grey pie charts). This leaves fewer resources to biosynthesis (reduction 115	

of the global component) affecting growth rate (Keren et al., 2014). 116	

 117	

Our analysis identifies a fine-grained structure within global genes (invariant, positive 118	

and negative genes), each class following a precise proportional response between 119	
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conditions (Fig.S1). Within this structure, we also observed how the resources taken by 120	

positive genes in a condition of high growth rate limit, in turn, those available for the 121	

expression of negative genes (Fig. 1B, brown/red/blue pie charts). The resource 122	

reallocation is also revealed by the (absolute) PA response to growth that exhibits this 123	

type of genes, PA that cannot be simply explained in terms of the associated changes 124	

in growth rate (Maaløe, 1979)	(Keren et al., 2014) (Fig. 1C). 125	

	126	

With respect to the type of genes that comprise each component, the invariant class is 127	

enriched by transcription regulation and ribosomal proteins; the latter being more 128	

extensively observed in the positive class. Indeed, positive genes are enriched by 129	

ribosomal genes (~65% of genes code for small or large subunits of the ribosome), 130	

while negative genes are enriched in ATP metabolic processes, e.g., oxidative 131	

phosphorylation or the TCA cycle. Lastly, activated and repressed genes indicated 132	

specific expression programs related to the particular carbon source, and the pathways 133	

of the central metabolism that facilitate the transition between fermentation or 134	

respiration routes (Table S1, Methods). 	135	

 136	

The five-component partition can be delineated on a genomic scale. To generalize 137	

the preceding analysis to a genome-wide scale we analyzed a DNA microarray dataset 138	

of yeast cells exhibiting a range of growth rates for several limiting nutrients (Brauer et 139	

al., 2008). We first applied singular value decomposition (SVD) to the fractional gene 140	

expression quantified on each nutrient separately (Methods). Notably, the first and 141	

second SVD components (Fig. 2A) explain >90% of the variance in each condition. As 142	

a result, fractional expression of each gene can be approximated by the linear 143	

combination of these two components (Fig. 2B), which exhibited an analogous trend in 144	

all nutrients (Fig. S2). 145	
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Moreover, while the first component (𝑣") does not change with growth rate, we 146	

observed that the second component (𝑣#) exhibits a monotonic behavior (Fig, 2A for 147	

glucose, and Fig. S2 for other nutrients). We can thus interpret the first element of the 148	

linear combination as the baseline fractional expression of the gene, and the second 149	

element as its monotonic behavior with growth rate (Fig. 2B). This interpretation 150	

enables us to generalize the partition framework previously introduced with PA data.  151	

 152	

Therefore, a change in the loading of 𝑣" (ai) in two different nutrients implies that the 153	

corresponding gene is specific, as it changes between conditions, and global otherwise 154	

(Fig. 2C) (note that 𝑣" is quantitatively similar in all nutrients, Fig. S2). This supports 155	

the framework in (Keren et al., 2014) (Fig. 1B). Comparison of these gene loadings in 156	

the six nutrients revealed that they are fairly similar (minimal correlations found of 157	

~0.96), i.e., much of the gene response is global.  158	

 159	

In contrast, the second component (𝑣#) provides a quantitative score (the second 160	

loading, bi) to classify genes as invariant, positive or negative, as before (Fig. 2C, 161	

Methods). Some genes have the same classification in two different nutrients, but this 162	

does not have to be necessarily the case. With the use of the second component, we 163	

can also evaluate how the response to growth rate depends on the exact nutrient 164	

(Brauer et al., 2008). We found that nutrient condition particularly matters in the range 165	

of slow growth and that some nutrients trigger a more similar response to growth than 166	

others (Gutteridge et al., 2010). Finally, the functional analysis of genes within each 167	

class agrees with PA data and previous reports (Table S2).  168	

	169	

The partition composition presents different transcriptional regulation. TFs are 170	

the most direct elements that can deviate from the global transcription program the 171	

expression of genes. Before examining this effect, we asked how TFs themselves are 172	
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framed in the previous partition. After assembling a transcriptional regulatory network 173	

with existing data (Methods), we observed that most constituent TFs (122 of a total of 174	

133 composing the network) exhibit similar basal fractional expression (ai loadings) 175	

across all pairwise condition changes, i.e., they are global genes. Within this set, 31% 176	

presents a dominant invariant response (bi~0 in >3 nutrients, of a total of 6), with five 177	

genes acting as invariant in all six conditions (rsc1, mbp1, pho2, rgr1, and swi6). Two 178	

of these (mbp1, swi6) are at the top of the network hierarchy (being involved in the 179	

mitotic cell cycle), and two are elements of relevant complexes that interact with RNA 180	

polymerase II (rsc1 of the RSC chromatin complex, and rgr1/med14 of the mediator 181	

complex); they can be considered as elements of a general transcriptional machinery, 182	

for which maintaining its concentration invariant across conditions could be essential. 183	

Moreover, 32% of global TFs are dominantly negative, and only 4% positive. Of note, 184	

some of the TFs whose expression decreases with growth (bi<0) are positive regulators 185	

of transcription in response to stress (e.g., bur6, gcn4, rpn4) what justifies their 186	

overexpression at low growth rates.	187	

 188	

To what extent is the regulation of target genes dependent on which component of the 189	

partition they belong to? We labeled target genes as global if they showed a global 190	

response (similar ai loadings) in >8 pairwise change of conditions (total of 15). Genes 191	

are considered specific otherwise. Global genes are less regulated on average than 192	

specific ones [by 3.09 TFs vs. 5.06 TFs, p = 1.20 10-4, two-sample Kolmogorov-193	

Smirnov (KS) test]. Within global genes, we described as invariant –following again the 194	

second loading score, bi – those which exhibit this pattern in >3 conditions. Global and 195	

invariant genes are less regulated on average than global and not invariant genes (by 196	

2.56 TFs vs. 3.3 TFs, p = 8.16 10-13, two-sample KS test). Finally, global and positive 197	

genes are slightly more regulated than global and negative genes (by 3.33 TFs vs. 3. 198	

27 TFs, p = 0.0018, two-sample KS test). Overall, specific genes are subjected to more 199	
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regulation (larger number of TFs) (Fig. 3A), while global and invariant genes are the 200	

ones that show the least.	201	

 202	

Specific TFs regulate genes belonging to each partition sector.  Although Fig. 3A 203	

shows how the structure of transcriptional interactions is reflected differentially in the 204	

components of the partition it does not assure us when these interactions are active, 205	

e.g., (Berthoumieux et al., 2014). For this, we examined several features.  206	

 207	

We first inspected if target genes presenting a particular growth response are enriched 208	

by TFs showing the very same response, as the similarity of the responses could imply 209	

that part of the regulatory structure is active. We thus computed –for each target gene– 210	

the fraction of its regulators that behave as negative, invariant, or positive (TFneg, TFinv, 211	

TFpos, respectively) with growth rate in a given condition. Figure 3B shows the mean of 212	

the fractions for target genes whose response is negative, invariant or positive. 213	

Negative TFs are more likely to be found acting on target genes that are also negative 214	

(higher mean TFneg on negative genes), while invariant (TFinv) and positive (TFpos) TFs 215	

regulate more often invariant and positive target genes, respectively (the latter signal is 216	

weaker and depends on the particular condition, Fig. S3). Thus, TFs that exhibit the 217	

same behavior as their cognate target gene tend to appear, on average, dominant on 218	

its regulation; part of the regulatory structure seems then functional.  219	

 220	

To further test the active effect of TFs, we measured the correlation of the response to 221	

growth rate between any particular gene and all its cognate TFs (“regulatory 222	

coherence”, Methods). Specific genes showed stronger regulatory coherence than 223	

global ones (Fig. S4A), and remain coherent in more nutrient conditions (Fig. S4B), 224	

both results implying an active contribution of TFs to deviate gene expression from the 225	

global program. Moreover, Fig. 3C shows those TFs whose action is particularly 226	

coherent per partition component (Methods). One can identify here two broad groups, 227	
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which control global or specific genes [this is supported by earlier reports (Fazio et al., 228	

2008)].  In this way, within the regulatory network, we find TFs that act more 229	

significantly on different types of genes. Notably, those that work on global genes are 230	

higher up in the network hierarchy (Methods).	We also noted that some these 231	

(significantly coherent) TFs are involved in chromatin remodeling (Cyc8, Ume6, Spt6, 232	

Msn4, Abf1, Msn2, Nhp6A, acting on global ones), or chromatin organization (Spt3, 233	

Spt2, Pho4, FKh2, Sin3, Spt20, Wtm2, Wtm1, Hif1, acting on specific genes). We 234	

examine epigenetic aspects next.	235	

 236	

The partition composition also reveals distinctive epigenetic regulation. To 237	

inspect the function of epigenetic control mechanisms, we first quantified the proportion 238	

of general transcription factors (GTFs) found within the set of TFs acting on a given 239	

gene (Fourel et al., 2002). GTFs (Rap1, Abf1, Reb1, Cbf1, and Mcm1) usually have 240	

little intrinsic regulatory activity and together with the presence of chromatin remodelers 241	

(in particular, RSC –Remodels Structure of Chromatin) control an alleged general 242	

machinery of expression. We observed that GTFs constitute a larger and significant 243	

fraction in the regulation of positive genes, while the opposite is observed for negative 244	

ones (Fig. 4A).	245	

 246	

GTFs are also connected to particularly fragile nucleosome promoter architectures (Xi 247	

et al., 2011), a connection recently examined (Kubik et al., 2015). Using this data, we 248	

computed the nucleosome landscape for the different gene classes (Methods). 249	

Promoters of positive genes are indeed enriched in fragile nucleosomes (Fig 4.B) while 250	

both negative and invariant genes typically lack these structures. This suggests that 251	

positive genes are more sensitive to deviate from the global program of expression 252	

(implemented by a general transcriptional machinery) by means of chromatin 253	

modulation. Enrichment of other promoter features contribute to this model (Fig 3.C), 254	

like the absence of TATA boxes, the action of TFIID over SAGA [but this precise 255	
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grouping has been recently revaluated (Baptista et al., 2017)], the presence of 256	

nucleosomal free regions closer to the transcriptional starting site (shNFRs) (partially 257	

associated to the previous score of fragile nucleosomes), and the dominant effect of 258	

trans variability (Fig. S5) (Choi and Kim, 2008).  259	

	260	

We examined additional chromatin modifiers using a previously assembled 261	

compendium (Steinfeld et al., 2007)	(Methods). Figure 5 shows the effects of mutating 262	

different types of trans-acting chromatin regulators on the genes constituting the 263	

partitions. Note here that growth rate reduction can be connected to many of these 264	

deletions, so we controlled for the possible contribution of cell cycle population shifts as 265	

described (Methods). This enables us to better identify expression changes due to 266	

regulation (O’Duibhir et al., 2014). With the exception of histone acetyltransferases 267	

(HATs) and TATA-binding protein related factors (TAFs), the effect of most chromatin 268	

modifiers is dominant in specific genes (Fig. 5A, Methods). Within global genes we 269	

found three main configurations (Fig. 5B): 1) Epigenetic regulators acting as part of a 270	

general machinery (HATs –including SAGA–, TAFs and methyltransferases) whose 271	

mutation causes a general decrease in expression, very particularly in invariant and 272	

positive classes. Indeed, work by (Baptista et al., 2017) and (Warfield et al., 2017) 273	

demonstrated that SAGA and TFIID are recruited to pol II promoters genome-wide and 274	

that each complex is generally required for pol II transcription, i.e., its mutation would 275	

lead to a genome-wide decrease of gene expression. 2) Regulators (histones, and 276	

chromatin remodelers) acting in a dual manner: increasing the expression of negative 277	

genes (remodeler as a repressor) or reducing their expression in positives (remodeler 278	

as an activator). This underlines the enrichment of negative and positive classes by 279	

stress and ribosomal genes, respectively, which are largely regulated in opposite 280	

manner (Bajić and Poyatos, 2012); a dual role of remodelers as activators and 281	

repressors have been previously reported (Sudarsanam et al., 2000, Holstege et al., 282	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 25, 2018. ; https://doi.org/10.1101/390419doi: bioRxiv preprint 

https://doi.org/10.1101/390419


	
11	

1998). And 3) regulators as broad repressors that represent regulation by gene 283	

silencing.  284	

 285	

Discussion 286	

Could one interpret genome-wide expression changes as deviations from a global 287	

program of transcriptional control? In this work, we propose to answer this question by 288	

capturing these deviations in a five-component partition of the yeast genome. The 289	

analysis of relative expression values is necessary here as it helps us to appreciate 290	

expression reallocation among partition constituents. Therefore, this integrates an 291	

earlier model (Keren et al., 2014) that reduced variation between conditions to a 292	

proportional response shared by most genes and induced by a global transcriptional 293	

program (with only a limited number of specifically expressed genes), while also 294	

discriminating three subclasses within such response. Invariant genes, that best follow 295	

the global program, and positive and negative genes, which were broadly defined in 296	

other studies as growth-related genes (Regenberg et al., 2006, Castrillo et al., 2007, 297	

Brauer et al., 2008). The biological significance of our framework is reinforced by its 298	

differential promoter and regulatory architecture ranging from a model of almost 299	

passive control to one exhibiting complex combinatorial regulation.  300	

 301	

More explicitly, invariant genes are those subjected to less regulation by TFs, 302	

regulation that increases among the rest of global classes, and between these and the 303	

specific ones. Specific genes also show a stronger regulatory coherence than global 304	

genes (similarity of expression response to that of the TFs acting on them). In addition, 305	

among TFs whose action is particularly coherent, we identify two groups that almost 306	

exclusively regulate global or specific genes: the action of the TF network is somehow 307	

segregated. Beyond TF regulation, we can discriminate between two broad promoter 308	

architectures. Those that are TATA enriched and shNFR/TFIID depleted (global 309	
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negative and specific genes), and those that are TATA depleted and shNFR/TFIID 310	

enriched (global invariant and positive genes). Notably, these features are similarly 311	

observed in metazoans promoters (Lenhard et al., 2012) (Type I promoters, genes 312	

expressed in a tissue-specific manner, and Type II promoters, ubiquitously expressed 313	

genes, respectively). 314	

 315	

That (global) positive genes are moderately controlled by TFs (like negative) but 316	

depleted in TATA box (unlike negative) could suggest certain expression features (e.g., 317	

high level of transcription, Fig. S6) and alternative modes of regulation. Indeed, positive 318	

genes are enriched in fragile nucleosomes, which highlights the regulatory role of 319	

nucleosomal stability.  This is supported by the particular action of GTFs on these 320	

genes [as GTFs fine-tune nucleosomal stability (Xi et al., 2011, Kubik et al., 2015)]. In 321	

addition, we find the expression of global genes being adjusted in distinctive manner by 322	

epigenetic modifiers, with three main configurations: 1/ HATs, TAFs and 323	

methyltransferases working as general activators of invariant and positive genes, 2/ 324	

histone and chromatin remodelers working in a dual manner; repressors of negative 325	

genes and activators of positive ones, and 3/ gene silencing elements acting as 326	

general repressors of negative genes. 327	

 328	

The five-component partition in a broader context. 329	

Some of the previous features discussed in our framework of the five-component 330	

partition match those observations related to environmental stress response genes 331	

(ESR) (Gasch et al., 2000), so it is interesting to examine how this set fits into our 332	

partition. ESR genes included two complementary subsets, which are enriched in our 333	

global negative and repressed genes (induced ESR genes), or global positive genes 334	

(repressed ESR genes, Methods). This confirms the suggestion of previous studies 335	

that stress response genes were not responding directly to stress but rather to the 336	

associated decrease in growth rate. More generally, two models to coordinate gene 337	
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expression to the available nutrients can be imagined: a feed-forward regulation by 338	

signaling pathways that predict growth rate in a certain environmental condition, or a 339	

feedback mechanism, which senses growth rate, or other related internal cell variable, 340	

and then modifies expression (Levy and Barkai, 2009). In this context, a passive 341	

resource allocation model could explain that the global program is responding always 342	

to the environment, although indirectly (as it can only use those resources that were 343	

not consumed in the mounting of the specific response). This validates, for instance, 344	

that ribosomal genes follow the feed-forward model (Levy et al., 2007). The fine-345	

grained structure of the global class (invariant/positive/negative) could nevertheless 346	

monitor growth rate, at least partially, with the feedback being mediated by epigenetic 347	

mechanisms (see below). 348	

 349	

If, as suggested by (Hansen and O’Shea, 2015), TFs can mostly transmit qualitative 350	

(presence/absence of a particular nutrient) rather than quantitative (amount of nutrient) 351	

information, how can we then explain the monotonic variation of fractional expression 352	

with nutrient dilution in the chemostat of the genes in the negative and positive partition 353	

components? One way is that metabolism, which is highly sensitive to the limiting 354	

nutrient (Boer et al., 2010) acts as a regulator of the epigenetic factors discussed 355	

above. Indeed, several metabolites (e.g., GlcNAc, NAD+, acetyl-CoA, alpha KG, ATP) 356	

are known to regulate transcription through interactions with enzymes involved in 357	

epigenetic modifications (Lu and Thompson, 2012). For example, acetyl-CoA induces 358	

cell growth and proliferation by promoting the acetylation of histones at growth genes 359	

(Cai et al., 2011) (histone acetylation affects rather similarly specific and global genes, 360	

Fig. 5A,  what supports its potential role as a widespread mechanism).	Another 361	

explanation is that the monotonic variation observed is the result of cell population 362	

shifts with growth rate, instead of changes in single-cell resource allocations. Note that 363	

these shifts cannot be attributed to the fact that slow-growing cells enlarged their G1 364	
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cell cycle phase as neither (Brauer et al. 2008) nor us observed a bias in 365	

positive/negative genes with any particular phase of cell cycled genes. 	366	

 367	

In this work we have studied changes in fractional expression but not in mRNA 368	

abundances. It is known that the global program dictates that the faster a population of 369	

cells growths, the higher the promoter activity (rate of RNA synthesis) (Keren et al., 370	

2014) or total mRNA abundance (rate of RNA synthesis and degradation) 371	

(Athanasiadou et al., 2016). We expect most (if not all) gene products to follow this 372	

(absolute) global program, with potential additional layers of regulation (which are 373	

nutrient and gene dependent) that increment or decrement mRNA levels. The invariant 374	

group best describes the absolute global program, while positive genes are slightly 375	

above and negative genes slightly below this program (but all of them incrementing 376	

mRNA levels or promoter activities) (e.g., Fig. 1C). On the other hand, it would be 377	

interesting to quantify the degree to which single cells can present a distribution of 378	

resources that is separated from the model here discussed (Gasch et al., 2017), as 379	

well as to understand the mechanisms that lead to such divergence.	380	

 381	

In summary, although one could argue that cellular physiology can indeed determine a 382	

global transcriptional program of gene expression control, our work highlights that this 383	

program is mediated by the integration of genetic and epigenetic modes of regulation, 384	

what limits the prospect of “simplifying” our understanding of genome-wide expression 385	

change. 386	

 387	

Materials and Methods	388	

Promoter activity (PA) data. (Keren et al., 2014) measured the activities of ~900 S. 389	

cerevisiae promoters in 10 different growing conditions using a library of fluorescent 390	
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reporters. For each strain in every growth condition, promoter activity was obtained as 391	

the YFP production rate per OD per second in the window of maximal growth. 	392	

Genome partition based on PA data. Fractional promoter activity (fPA) for each 393	

growth condition and ratios of fPAs for each pair of conditions (with increasing growth 394	

rate) were calculated. We then computed the absolute distance of these ratios to ratio 395	

1 (i.e., same fPA in both conditions), and defined as invariant genes the top 350 genes 396	

(distance closest to 0) and as activated (repressed) the bottom 50 with ratio >0 (< 0). 397	

The rest of genes with ratio >0 (<0), and both fPAs > 10-4, were designated as global 398	

positive (negative). We used the “typical” class of a gene (the most frequently occurring 399	

category that a gene presents in all pairwise growth rate changes) to select the 400	

examples of Fig. 1C, and to characterize the partition in functional terms (Table S1).	401	

Microarray data. (Brauer et al., 2008) grew yeast cultures in chemostats under 402	

different continuous culture conditions (six different limiting nutrients each at six dilution 403	

rates) and measured mRNA abundance with two-color microarrays. Since the original 404	

reference channel for all samples corresponded to a particular glucose condition, which 405	

mixes the response of different nutrients, we reanalyzed the data without this reference 406	

by considering the red processed signal as independent channel (’t Hoen, 2004), and 407	

normalizing by the corresponding sum for each case (to obtain a fractional score). 408	

SVDs were computed on this processed data. 	409	

Genome partition based on microarray data. Global genes are those whose 410	

difference on the loadings of the 1st component (ai’s) between two conditions is less, or 411	

equal, than three standard deviations of all gene differences (in absolute values). 412	

Genes are otherwise considered specific (activated or repressed if the difference of ai’s 413	

is positive or negative, respectively). Moreover, absolute values of the loadings of the 414	

2nd component (bi’s) were sorted to define those with smallest values (top 2500) as 415	

invariant genes, with the rest being positive or negative (determined by the sign of bi).	416	

To define the partition, we classify as global those genes that act as global in >8 417	

pairwise conditions (out of 15). Global genes acting as invariant in > 3 conditions (recall 418	
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that the total number is 6) are labeled as invariant. Global and not invariant genes 419	

appearing more times as positive than as negative (in all 6 conditions) are categorized 420	

as positive, and likewise for negative. Specific genes which appear more times as 421	

positive than as negative (again in all 6 conditions) are categorized as activated, and 422	

analogously for repressed. 	423	

Regulatory network. We obtained regulatory data from 424	

http://yeastmine.yeastgenome.org. No microarray data is considered for the TF info; 425	

only data from different manuscripts using chromatin immunoprecipitation, chromatin 426	

immunoprecipitation-chip, chromatin immunoprecipitation-seq, combinatorial evidence, 427	

and computational combinatorial evidence for a total of 20,673 interactions with 133 428	

TFs involved (Brauer et al., 2008). We also calculated the hierarchical organization of 429	

the network (Jothi et al., 2009). Bas1, Mbp1, Med6, Spt7, and Swi6 appear at the top of 430	

the hierarchy. 431	

Fragile nucleosome data. Nucleosome occupancy and position have been measured 432	

by analysis of MNase-digested chromatin. Recent work noted that certain nucleosomes 433	

were extremely sensitive to this digestion, and thus obtained a quantitative score of 434	

nucleosome fragility that we used for our analysis, Table S6 in (Kubik et al., 2015).	435	

Chromatin compendium. This set includes 170 gene expression profiles for 436	

chromatin-regulation related mutations (expressed in log2 ratios) taken from 26 different 437	

publications (Steinfeld et al., 2007). It covers more than 60 potential interacting 438	

chromatin modifiers such as histone acetyltransferases (HATs; the NuA4, HAT1 and 439	

SAGA complexes), histone deacetylases (HDACs; the RPD3, HDA1 and SET3 440	

complexes), histone methyltransferases (the COMPASS complex), ATP-dependent 441	

chromatin remodelers (the SWI/SNF, SWR1, INO80, ISWI and RSC complexes), and 442	

other chromatin-affecting genes and cofactors such as Spt10, Sir proteins and the 443	

TATA-binding protein (TBP). We normalized each dataset to unit variance (Choi and 444	

Kim, 2008). For Fig. 5A, we took absolute values to estimate the strength of the 445	

chromatin regulator effect.	446	
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Regulatory coherence. We identified the set of TFs regulating each gene and 447	

quantified the Pearson’s correlation coefficient between the expression vector (as a 448	

function of growth rate) of each TF within the set and the target gene to then take the 449	

mean. This is the (mean) regulatory coherence in a given nutrient condition. 450	

Randomizing expression vectors for each gene, 1000 times, we obtained a score of 451	

significance for each gene’s regulatory coherence. With this, we identified a list of 452	

genes displaying significant regulatory coherence. Identification of TFs acting more 453	

significantly on each partition component is computed by first measuring how often it 454	

acts on significantly coherent genes, within the five-component partition grouping, and 455	

then estimating a null value by randomization of the partition classes.  456	

Removal of the slow growth signature.  We took the full data in (Kemmeren et al., 457	

2014) to obtain the slow growth profile and remove the slow growth signature in the 458	

epigenetic data following (O’Duibhir et al., 2014). In brief, the slow growth profile is 459	

obtained as the first-mode approximation of the data after SVD decomposition. To 460	

compare with the epigenetic compendium data, we chose the column of this 461	

approximation with the largest norm as the slow growth signature. The correlation with 462	

the slow growth signature is removed by transforming the epigenetic data in Gram-463	

Schmidt fashion by subtracting from their projection onto the basis vector, given by the 464	

normalized slow growth profile. 465	

ESR genes. There are 281 stress-induced and 585 stress-repressed genes –as 466	

defined in (Gasch et al., 2000)– within the set of genes delineating the five-component 467	

partition. A subset of global negative genes and specific repressed genes corresponds 468	

to stress-induced (232 out of 2053, and 10 out of 70, respectively), while a subset of 469	

global positive genes corresponds to stress-repressed (485 out of 1914). Note that 470	

most of the features discussed in the main text associated with the five-component 471	

partition remain when controlling for ESR genes. 472	

 473	

 474	
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Figures	629	
Fig. 1 630	

	631	
Figure 1. Partition of gene expression in five sectors. A) Fractional promoter activity 632	
(fPA) between two example conditions. Promoters can be classified into five categories 633	
(inset) depending on how their fPA changes (yellow dots indicate those with very low 634	
activity in both conditions). B) Repressed and activated promoters constitute the specific 635	
response, whose fPA is greater the lower the growth rate (at the cost of the promoters 636	
changing in a global manner). Global promoters are constituted by one invariant type and 637	
two other subclasses whose fPA depends on the growing condition. Note how the portion 638	
of expression, within global genes, of positive genes increases with growth rate, while it 639	
decreases for negative ones (colors as in A). C) Absolute promoter activity (PA) response 640	
of a typical invariant, positive and negative gene that corresponds to the mrs11, rps6A and 641	
atp5, respectively (conditions sorted by increasing growth rate). A null model of the 642	
dependence of PA with growth rate is given by the ratio of growth rates (empty circles). 643	
Gene categories within the global group clearly separate from the null (see main text).	644	
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Fig. 2 647	

	648	
	649	

Figure 2. Genome-wide partition of gene expression in five sectors based on SVD. A) 650	
SVD components 𝑣" and 𝑣#	describe baseline fractional expression and dependence with 651	
growth, respectively, and together explain most of the expression variance. B) The 652	
fractional expression of every gene 𝑔& as a function of growth rate can be approximated by 653	
a linear combination of these two components, with loadings ai and bi. We show two 654	
examples (purple circles denote the expression vector, while the black dots correspond to 655	
the two-component approximation; lines added to help visualization) with the same 656	
baseline (dashed line; same ai) but whose expression increases (bi>0) or decreases (bi<0) 657	
with growth. Data in A) and B) corresponds to growth in limiting glucose conditions. C)  A 658	
given gene can be considered specific or global when its baseline fractional expression 659	
(bars) changes (left) or does not change (right) with different nutrients (different or 660	
comparable ai, respectively). Beyond the baseline value on each condition, expression can 661	
increase, decrease or remain constant with growth-rate (µ) change. We thus compare ai‘s 662	
between pairwise conditions (total of 15) to define a gene as specific or global, whereas the 663	
second loadings bi‘s on each condition (total of 6) enable us to determine if the gene is 664	
positive, invariant or negative. 665	
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Fig. 3 669	

	670	
Figure 3. Genes within each partition sector show differential transcriptional 671	
regulation. A) Mean number of regulators acting on genes as a function of their response 672	
to growth (blue dots; dashed line to help visualization). Grey shading denotes the average 673	
null values +/- 2 standard deviations obtained by randomization.  B) Mean ratio of the 674	
fraction of TFs of a given class with respect to growth (e.g., TFneg denotes TFs which are 675	
negative genes) for each group of target genes (also for a given class; here we do not 676	
distinguish between global and specific). Histogram obtained in glucose conditions, see 677	
also Fig. S5 for other nutrients (** p < 0.001, *´ p < 0.01, * p < 0.05, two-sided KS test). C) 678	
Regulators that act dominantly in genes showing a significant regulatory coherence. Colour 679	
denotes z-score with respect to a null obtained by randomization (positive values denoting 680	
enrichment). Properties of some regulators are also included (arrows). See main text for 681	
details. 682	
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Fig. 4 683	

 684	
 685	

Figure 4. Genes within each partition sector show differential epigenetic regulation. 686	
A) Mean fraction of global transcriptional regulators (Rap1, Reb1, Cbf1 and Mcm1) within 687	
the full set of regulators acting on each gene. Grey shading denotes the average null 688	
values +/- 2 standard deviations obtained by randomization. Dashed lines to help 689	
visualization.  B) Mean nucleosomal fragility. Shading/lines as before. C) Enrichment of 690	
nucleosomal free regions (shNFR, blue), presence of TATA boxes (purple), or action of 691	
TFIID global factor (green) as function of response class (measured as z-score with respect 692	
to a null by randomization; dashed line indicates z-score = +/- 2). 	693	

 694	
 695	

Fig. 5 696	

 697	
 698	

Figure 5. Chromatin modifiers act differentially on genes within each partition. A) The 699	
chromatin regulatory effect quantifies change in gene expression (absolute value) due to 700	
mutations in chromatin modifiers. Most modifiers show a significant effect on specific genes 701	
as compared to a null (obtained by randomization; grey shading indicates non-significant 702	
values, and dashed lines denote z-scores of +/-2). B) Mutations in chromatin modifiers 703	
reveal their diverse regulatory role when acting on negative, invariant, or positive genes. 704	
We observed three main categories: 1/ modifiers acting as activators (mutation decreases 705	
significantly the expression of invariant/positive genes), 2/ dual activator/repressor 706	
(mutation decreasing/increasing significantly expression of positive/invariant or negative 707	
genes, respectively), and 3/ repressors (mutation increasing significantly expression of 708	
negative genes). Significance and shading as before (note that a significant increase or 709	
decrease in expression correspond to positive or negative z-scores, respectively). Different 710	
type of modifiers corresponds to filled/empty circles of different size, whose colour denotes 711	
the precise target gene class considered. TAF: TATA-binding protein related factors; HATs: 712	
histone acetyltransferases; HDACs: histone deacetylases. 713	
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Supplementary Information 714	

	715	
Figure S1. Scaling factors between pairs of conditions. A single proportionality 716	
(scaling) factor describes the change of promoter activity for different subsets of promoters 717	
according to the five-component partition. The three classes within the global promoters 718	
(invariant, negative, positive) clearly show different scaling. Shown also a null that 719	
corresponds to the ratio of growth rates between conditions. 720	

 721	
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	722	
Figure S2. SVD components. First and second SVD components exhibited an analogous 723	
trend in all conditions what underlines a core response. As a result, expression of each 724	
gene can be approximated by the linear combination of these two components on each 725	
nutrient. 726	

	727	
	728	
	729	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 25, 2018. ; https://doi.org/10.1101/390419doi: bioRxiv preprint 

https://doi.org/10.1101/390419


	
27	

	730	
Figure S3. Association between class of TF and class of cognate target gene for all 731	
nutrients. Fraction of TF class (negative/invariant/positive) acting on target genes divided 732	
also with respect to growth response (negative/invariant/positive; global and specific genes 733	
were included that we denoted as allneg, etc.).  Mean values of each grouping are shown 734	
in bars, while the orange curves show the distribution of each class of TF on each 735	
condition.	736	

	737	
	738	
	739	

	740	
 741	

Figure S4. Regulatory coherence and five-component partition. A) Percentage of 742	
genes within each class that exhibit a significant regulatory coherence with respect to a null 743	
in which classes were assigned randomly (1000 randomizations; significance implies z-744	
scores > 2). Note that invariant genes show minimal coherence. B) Distribution of genes 745	
exhibiting significant regulatory coherence in 1 to 6 different nutrient conditions. Specific 746	
genes show more cases of genes significantly coherent in more different conditions, while 747	
invariant genes showed the opposite. 748	
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	749	

	750	
Figure S5. Cis and trans variability with respect to the five-component partition. A 751	
cross between a standard laboratory yeast strain and a wild isolate allowed the 752	
computation of cis and trans effects on transcriptional variance (Choi and Kim, 2008). For 753	
each partition, we quantified the mean of these measures and showed the associated z-754	
score with respect to a null by randomization; dashed line indicates z-score = +/- 2. Positive 755	
genes show dominant effects associated with trans variability (trv and civ denote trans and 756	
cis variability, respectively). 757	

	758	

	759	
	760	
Figure S6. Expression abundance and noise with respect to the five-component 761	
partition. Mean expression and protein abundance (A) and protein noise (B) with respect 762	
to the five-component partition as compared to a null in which classes were assigned 763	
randomly (10000 randomizations; y-axis is plotting the associated z-score, shading 764	
corresponds to z-score values within a range of -/+ 2; SD/YEPD denote poor/rich growing 765	
conditions). Global and positive genes showed high expression and low noise, a signal that 766	
was associated to the presence of fragile nucleosomes in the promoter and the action of 767	
general transcription factors [both enriched in global positive genes, see main text and 768	
(Bajić and Poyatos, 2012) for details on data].	769	
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