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Abstract 

Motivation: DNA methylation plays an important role in regulating gene expression. There has been growing interest in 

investigating the roles that genetic variants play in changing the methylation levels (i.e., methylation quantitative trait loci or 

meQTLs), how methylation regulates the imprinting of gene expression (i.e., allele-specific methylation or ASM), and the 

differentially methylated regions (DMRs) among different cell types. However, none of the current simulation tools can generate 

whole-genome bisulphite sequencing (WGBS) data while modeling meQTLs, ASM, and DMRs. 

Results: We developed pWGBSSimla, a profile-based WGBS data simulator, which simulates WGBS data for 29 cell types based 

on real data. meQTLs and ASM are modeled based on the block structures of methylation status at CpGs, and DMRs are simulated 

based on observations of methylation rates in real data. 

Availability: pWGBSSimla is available at http://omicssimla.sourceforge.io. 
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Introduction 

DNA methylation plays an important role in cellular development and 

disease. Methylation quantitative trait loci (meQTLs), which are genetic 

variants (e.g., SNPs) affecting methylation levels, are associated with 

changes in chromatin and gene expression and with disease risk 

(Banovich, et al., 2014). Moreover, allele-specific methylation (ASM), 

which paternal and maternal alleles have different probabilities of being 

methylated, can regulate imprinting of gene expression. Furthermore, 

differentially methylated regions (DMRs), where differences in the 

methylation levels are observed across various cell and tissue types, are 

involved in tissue- or cell-specific gene expression. 

The current simulators for whole-genome bisulphite sequencing 

(WGBS) data, such as DNemulator (Frith, et al., 2012) and WGBSSuite 

(Rackham, et al., 2015), focus on simulating the methylation levels of 

CpGs, and meQTLs, ASM, and DMRs are not modeled. Here, we 

developed a profile-based WGBS data simulator (pWGBSSimla), which 

simulates WGBS data based on the profiles for 29 human cell types, such 

as blood CD4 and brain cells. Based on the observations that methylated 

and unmethylated CpGs are clustered in the human genome (Su, et al., 

2013), methylated blocks (MBs), unmethylated blocks (UBs), and fuzzily 

methylated blocks (FBs) were defined in the profiles. By integrating the 

DNA sequence simulator SeqSIMLA2 (Chung, et al., 2015) with 

pWGBSSimla, SNP and WGBS data are both simulated for 

unrelated/related cases and controls, and the meQTLs affecting CpGs in 

MBs, UBs, or FBs are modeled. Moreover, because an FB may result 

from a local ASM (Shoemaker, et al., 2010), correlated ASM levels are 

simulated in the same FB. Finally, DMRs are generated by simulating the 

same methylation region for different cell types.  

 

Methods 

Profile generation 

We used the 41 WGBS datasets for 29 human cell types (Ziller, et al., 

2013) for the profile generation. Several QC steps were performed for the 

methylation calls. CpGs remained across all 41 samples after QC were 

used. For each cell type, the methylation rate for each CpG and the 

distances between adjacent CpGs were calculated. Then the hotspot 

extension algorithm (Su, et al., 2013) was used to identify MBs, UBs, and 

FBs. Finally, the read depths were classified for each block type. More 

details about the profile generation can be found in the Supplementary 

Materials. 

Simulation of WGBS data 

Given a user-specified genomic region and cell type, CpGs and the 

distances between them were first generated based on the profiles. The 

read depth of a CpG in an MB, UB, or FB in a sample was then randomly 

sampled from the read depths of the corresponding block type in the 

profile. Finally, the methylated read count of CpG i in a sample is 

simulated based on a Binomial distribution with parameters (ni, pi), where 

ni is the read depth and pi is the methylation rate of CpG i from the profile. 

Simulation of meQTLs, ASMs, and DMRs 

It was observed that a meQTL can affect the methylation levels at 

multiple CpGs in a local region up to 3 kb (Banovich, et al., 2014). 

Moreover, it has been shown that the ASM at adjacent CpGs can be 

highly correlated (Shoemaker, et al., 2010). Therefore, given a user-

specified meQTL at a SNP, an MB, UB, or FB is randomly sampled to 
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be influenced by the meQTL. The methylated read counts for CpGs 

located in up to 3 kb of the block are simulated based on the same 

genotype-specific methylation probabilities, which are pi, pi(1+fi), and 

pi(1+2fi) for genotypes AA, Aa, and aa, respectively, where A is the 

reference allele at meQTL i. The simulation of SNP genotypes is 

described in the next section. More details for determining fi can be found 

in the Supplementary Materials. Furthermore, given the proportion of 

ASM specified by the user, the FBs are randomly sampled to have ASM. 

The methylated read counts for paternal and maternal alleles are 

determined by pi  rfather and pi  rmother, respectively, where rfather and 

rmother are the ratios of the father- and mother-specific methylation rates, 

respectively, relative to pi. Note that p for CpGs in the same block is 

determined using a multivariate beta distribution to model the correlation 

of ASM. More details can be found in the Supplementary Materials. 

Finally, because the profiles for 29 different cell and tissue types are 

compiled, it is straightforward to generate DMRs by simulating the same 

genomic region using profiles for two or more cell/tissue types. 

Simulation of methylation difference in cases and controls 

The SeqSIMLA2 algorithm is first used to simulate SNP genotypes in 

affected and unaffected individuals. A brief review of SeqSIMLA2 is 

provided in the Supplementary Materials. Some of the SNPs are specified 

as meQTLs by the user. Given a user-specified proportion of methylation 

difference for a block type (dt, where t is MB, UB or FB), blocks with 

type t are randomly sampled, so the total number of CpG sites in the 

sampled blocks is approximately dt  total CpG sites, similar to the 

algorithm in WGBSSuite. The methylation probability for CpG i is 

( )ip   in half of the sampled blocks and is ( )ip   in the other half 

of the sampled blocks for affected individuals, where θ is the difference 

in the methylation rate between the cases and controls. 

Results 

Figure 1 shows the percentages of CpGs in MBs, UBs, and FBs and the 

distributions of block sizes (i.e., numbers of CpGs in blocks) for the liver 

cell. Consistent with previous observations (Su, et al., 2013), most of the 

sites (>97%) are in MBs and UBs. There are small intersections of CpGs 

between the block types. The UBs have the largest median of sizes (88), 

followed by MBs (80) and FBs (17). Figure 2A shows the methylation 

rates at a meQTL. As expected, differences in the methylation rates both 

between the genotypes and between affected and unaffected individuals 

were observed. Figure 2B shows pairwise correlations of methylation 

levels in an ASM region. As seen in the Figure, a local “methylation LD 

block”, as previously observed (Shoemaker, et al., 2010), can be 

simulated. Figure 2C shows the difference in the mean methylation levels 

between the liver and colon cells in a DMR (the OCT4 locus) that was 

previously reported (Ziller, et al., 2013). Similar to their observations, 

there is a small difference in the mean methylation levels in CpG islands 

and CTCF-binding sites, but larger differences are observed in promoters 

and within genes. The results for other cell types for Figure 1 and more 

details for the simulations for Figure 2 are provided in the Supplementary 

Materials. In conclusion, our results demonstrate that pWGBSSimla 

simulates WGBS data while properly modeling meQTLs, ASM, and 

DMRs. 
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Fig. 1. (A) The percentages of CpGs covered by UBs, MBs, and FBs. (B) 
Violin plot for the distribution of block size for each block type. 

Fig. 2. (A) Distributions of methylation rates at a meQTL. (B) Pairwise 
correlations of methylation levels in an ASM region. (C) Difference in 
methylation levels between the liver and colon tissues at the OCT4 locus 
(chr6: 31,119,000 - 31,140,000). 
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