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ABSTRACT

In a few decades, gene therapy techniques and genetic knowledge may sufficiently advance to support prophylactic gene
therapy to prevent late-onset diseases (LODs).
Polygenic risk scores and risk allele distribution of diagnosed individuals change with LOD diagnosis age, which may complicate
statistical risk estimates. Population simulation naturally accounted for this effect. It quantified the correlation between aging
process, polygenic score and hazard ratio of LODs at all ages based on clinical incidence rate and familial heritability for eight
highly prevalent diseases.
Simulations confirmed that the hypothetical gene therapy would be very beneficial in delaying the onset age and lowering
lifetime risk of LODs. Longevity counterbalances the gains, with type 2 diabetes, stroke, and coronary artery disease regaining
the pre-treatment baseline with 10-15 years of longer life. Alzheimer’s disease proves most resistant, surpassing the baseline
lifetime risk within 5 years longevity improvement. Characteristics of cancers may bring longer lasting benefits.

Introduction
In the past two decades, the human genome has been successfully sequenced. Whole genome sequencing (WGS) and genome-
wide association studies (GWAS) of human and other organisms’ genomes have become an everyday occurrence1. The
knowledge of genetic variants, particularly single nucleotide polymorphisms (SNPs) that are associated with susceptibility to
diseases, has become deeper and more extensive.

The experimental gene therapy techniques aimed at diseases caused by a single defective gene or a single SNP—the
so-called Mendelian conditions—are being refined. The Mendelian conditions cause high mortality and morbidity, but each of
these conditions affects a tiny fraction of the population, however a large number of conditions is known; as of May 2018,
the OMIM Gene Map Statistics compendium2 lists over 6000 phenotypic genetic conditions caused by close to 4000 gene
mutations. Their frequency is limited by natural selection that efficiently removes large-effect detrimental mutations, resulting
in a reasonably low genetic load in each person, equivalent to five to eight highly detrimental recessive mutations3, 4. If these
were to combine and become homozygous, they could be harmful or lethal5–7. Many of these conditions are well-characterized.
In some cases, individualized genetic diagnoses are possible, where an SNP that needs to be edited can be specified precisely.
One could say that these conditions are a well-defined target waiting for the appropriate medical techniques to address it. Over
the last two decades, 287 monogenic disease clinical trials were conducted worldwide8. When the medical technology becomes
available, individuals treated will be effectively cured and will not have to worry about the specific and single cause of their
disease. For this reason, we do not analyze Mendelian conditions in this study.

We will focus on polygenic or complex late-onset diseases (LODs), which pose a more nuanced problem They do not
develop until later in life. There are thousands of estimated gene variants or SNPs of a typically small effect that, in combination,
constitute the polygenic LOD risk of each individual9, 10, see the graphical demonstration in this study on model genetic
architectures Supplementary Fig. 1. These diseases include old age diseases that eventually affect most individuals and are
exemplified by cardiovascular disease—particularly coronary artery disease (CAD)—cerebral stroke, type 2 diabetes (T2D),
senile dementia, Alzheimer’s disease (AD), cancer, and osteoarthritis.

What makes LODs different from infectious diseases or from Mendelian genetic conditions is difficulty with the concept of
cure. The diseases of aging are primarily a consequence of an organism’s decline over time, leading to increased susceptibility
to many LODs11–13. The combination of genetic liability, environmental factors, and the physiological decline of multiple
organ systems leads to individual disease presentations14. Detrimental gene variants are exacerbating factors15, compared to the
average distribution of common gene variants that define human conditions as they apply to polygenic LODs. The time of onset
for each individual is modulated by genotype and environment16. While some individuals will be diagnosed at a relatively
young age, others will not be diagnosed with a particular LOD during their lifetime17. A low polygenic risk score (PRS) for
rare individuals makes it unlikely they will become ill from some but not all LODs18. We all have a level of susceptibility to the
major polygenic LODs, and the difference between high-risk and low-risk individuals may lie in a slightly higher or lower than
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average fraction of detrimental SNPs.
It is important to note that many diseases, including Alzheimer’s disease (AD) and diabetes mellitus, also possess highly

detrimental mutations that singularly can cause high disease liability. Usually, they have a special medical diagnosis associated
with them. Diabetes mellitus caused by single defects in HLA-DQA1, HLA-DQB1, or HLA-DRB1 genes19 develops in early
childhood, affects a small percentage of overall diabetes mellitus sufferers, called type 1 diabetes to distinguish it from the
common type 2 diabetes. Similarly, with Alzheimer’s, the so-called early-onset AD (EOAD) is cased primarily by APP, PSEN1,
or PSEN2 gene mutations and affects a relatively small portion of the population, starting in their thirties and affecting a majority
of mutation carriers by age 6520. Macular degeneration21–23 is primarily caused by a small number of high-effect variants and
manifests at relatively old age. Unlike the previous two diseases, macular degeneration does not exhibit a significant incidence
in the form of a polygenic late-onset disease version with similar symptoms. Even though EOAD and macular degeneration
develop late in life, they belong to the Mendelian disease category and are not classified as polygenic LODs analyzed here.

The best cure is prevention, and the time may be nearing when prophylactic gene therapy will be attempted for the prevention
of complex polygenic diseases.

The computational techniques attempting to evaluate the effects of mutations or gene variants are being developed, though
their accuracy needs to improve dramatically to be applicable to personalized human genetic evaluation or treatment24. Similarly,
while there are extensive libraries of human SNPs, like dbSNP, HapMap, SNPedia and aggregating sites25, the information is
far from actionable as far as modifying multiple personal SNPs would be considered. Finding or being able to computationally
estimate a complete set of the low effect causal SNPs is the knowledge that may take decades to gain. For purposes of this
research, we assume that we know the “true” causal gene variants (see Chatterjee at al.26) distinct from GWAS SNPs that are in
a vast majority of representative SNPs located relatively near in the genome and indistinguishable in GWAS analysis from the
real causal variants due to a strong linkage disequilibrium.

Gene editing technologies also may be a few decades away from the time when they can be used as routinely and with same
low risk as applying an influenza vaccination, for modification of a large number of gene variants distributed over the human
genome. The newest gene editing technique is called CRISPR-Cas927. It supplemented and mostly replaced older technologies,
zinc-finger nucleases28 and TALEN29, though, for some applications, these older techniques continue to be more appropriate.
While the selectivity and on-target precision are improving, CRISPR is still most effective in gene knockdown operations.
For modification and repair, only a small fraction of CRISPR operations succeed, using homologous repair with a template
or a sister chromatid sequence. Successes announced by studies “Enhanced proofreading governs CRISPR-Cas9 targeting
accuracy”30, may be followed later by a discovery such as, “Repair of double-strand breaks induced by CRISPR-Cas9 leads to
large deletions and complex rearrangements”31. CRISPR is only 5 years old and is a rapidly developing technology with a
great promise.

A potential future technology, currently in early exploratory stages, could be synthetic genomics studied in Harvard Church
lab32, 33. These techniques could also help in the precise mapping of gene variant effects on disease phenotypes. If all the
approaches mentioned above ultimately fail to become reliable enough for all aspects of gene therapy, it is almost certain that a
new suitable technique will be invented.

Notwithstanding the systematic media splashes about designer babies, many questions on scientific knowledge, technical
expertise, and ethics will need to be settled before this level of prophylactic gene therapy will become possible. For the purposes
of this hypothetical treatise, we will assume that it is possible to precisely identify individual gene variants and their detrimental
or beneficial effects, and then use gene editing to modify a large number of detrimental variants. We apply this hypothetical
gene therapy model to see what would happen to LOD progression as the population ages. We are not considering additions of
artificially designed genomic sequences but rather, only corrections done to a typically low effect heterozygous in population
gene variants, a detrimental variant correction to a naturally occurring neutral state. For simplicity, our model operates on SNPs
though the same would apply with higher complexity of gene therapy to other gene variant types.

Many changes in lifestyle and medical care led to increased longevity over the last century, and this trend is projected to
continue; preventive gene therapies may also be one of the future factors. Therefore, we will model the age extension by a
duration long enough to make projections but not so long as to render the model results questionable.

To be concise, further in this study we use the terms gene therapy, therapy, and treatment interchangeably, with the
understanding that we are talking about hypothetical future preventative or prophylactic gene therapy. Similarly, it appears most
practical to have a person born with all cells treated, because all developmental stages are affected by the genome, which implies
the germline and likely heritable editing. Yet, we do not know what technological possibilities and ethical considerations the
future will bring; therefore, we assume that at birth (or age zero), the person’s genome appears with the modifications required
by this study.

Modeling takes advantage of the fact that often a complex process can be probabilistically analyzed with a judiciously
designed simulation, which is particularly applicable for population genetics analysis. The first models started a hundred
years ago with analytical estimates34, 35 and later with the advent of computers, through simulations. The phenomena behind
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aging and LOD progression are complex. For example, individuals with a high polygenic risk score may become ill late in
life or not at all during their lifespan, and vice versa for individuals with low genetic predispositions17, as can be seen in
Fig. 1b. Statistically, either scenario will happen with low likelihood, and clinically, physicians are likely to find specific or
probable causes, particularly in cases with a positive diagnosis. The real causes may be environmental, infectious, epigenetic,
pleiotropic36, stochastic and methodologically explained by a concept of penetrance37, et cetera. This is one of the reasons
for prediction difficulties using PRS on an individual basis, where the concomitant conditions and present physiological risk
factors are much better predictors. These clinical observations work on the basis of accumulated knowledge of physiology,
disease patterns, and co-morbidities that allow to eliminate a large degree of uncertainty inherent in purely genomic predictions.
A good example is the Framingham General Cardiovascular Risk Score38, which includes as major risk factors T2D, current
tobacco use, age, gender, cholesterol, systolic blood pressure, and hypertension. A clinical prediction in this setting is a part
of a diagnosis. With simulations operating on a large population, overall trends can be observed, generalized, and projected
beyond the initial input parameters. In this study, we also use a simulation approach to a complex problem, and when the model
is found that describes the baseline conditions well, we change the simulation input parameters moderately and evaluate the
resulting projections.

We review and analyze eight of the most common diseases: Alzheimer’s disease, type 2 diabetes, cerebral stroke, coronary
artery disease (CAD), and four of the most prevalent cancers: breast, prostate, colorectal, and lung. From the methodological
perspective, this current research is self-contained, yet, to avoid repeating a lengthy presentation, readers desiring to learn more
about analyzed LODs from heritability, relevant clinical details, and an incidence rate progression perspective are referred to18,
together with that study supplementary documents dedicated to these subjects. Here we are going to use the same genetic
architecture models and take advantage of the incidence rate functional approximations that we describe in Methods.

Similar to18, we use the additive logistic model of genetic architecture, where the polygenic risk is a combination of
the sum of individual effects odds ratio logarithms and environmental effects. To avoid confusion, we have to clarify that
Chatterjee et al.26, for example, call this model multiplicative when odds ratios (ORs) of effect sizes are multiplied and additive
when logarithms are added. This is different from a model where the probabilities of independent effects are summed in the
combined risk assessment, as, for example, viewed in sufficient component cause models in epidemiology39. A quote from
Chatterjee et al. is relevant for this research: “For case-control studies, if it can be assumed that environmental risk factors are
independent of the SNPs in the underlying population, then case-only and related methods can be used to increase the power of
tests for gene-environment interactions. To date, post-GWAS epidemiological studies of gene-environment interactions have
generally reported multiplicative joint associations between low-penetrant SNPs and environmental risk factors, with only a few
exceptions.”26

We set the goal to quantify the effects of hypothetical future gene therapy specifically in the case of LODs in an aging
population. It was determined18 that the average polygenic score of unaffected individuals diminishes with age while the risk of
the disease increases with age, as reflected in rising incidence rates. This indicates that the environmental effects and aging
make an increasing contribution to LOD incidence with age progression, which is particularly prominent in AD, T2D, and
cardiovascular diseases. These are diseases that can arise in most individuals because they represent the natural modes of
failure for the human body due to the particular details of its complex design. They are failures of operation that may start at
molecular, cellular, or organ levels and affect vital subsystems such as metabolism, circulation, and cognition. The failure does
not happen immediately prior to the diagnosis age. For example, AD deterioration begins decades before symptoms become
noticeable40, which is similar for cardiovascular disease41, 42 and cancers43.

While all the factors involved in an LOD causality and age of onset are complex, and vary between individuals, our premise
is that statistically a PRS value will correspond to a risk of succumbing to an LOD at each year of age, and that—given
each LOD clinical incidence rate statistics and heritability from familial studies—it is possible to find for each year of age a
correlation coefficient mapping PRS to this hazard ratio. With a model in which individual risk remains proportionate to PRS,
we determine what we call the aging coefficient, correlating PRS to the age-related hazard ratio. This coefficient allows us to
exactly reproduce the LOD’s incidence rate for all analyzed LODs. Changing the individual PRS distribution and applying
these aging coefficients can be used to simulate the prophylactic gene therapy aimed at LOD prevention, and to quantify the
populational change in the LOD’s incidence and lifetime risk.

We considered a number of scenarios of prophylactic gene therapy. In the most extreme scenario, we could make thousands
of edits for AD, and hundreds for most of the rest of the LODs, reversing all variants constituting individual PRSs to a neutral
state; this would show a resulting zero disease risk and zero incidence. We are not confident the model would be realistic with
so drastic an intervention, and many less extreme scenarios are possible.

We decided on two natural scenarios, further explained in Methods:
Scenario 1 is where all individuals at risk undergo a preventive treatment, making their risk equal to a baseline average of

the population. This way, the number of edits, while still large, is of limited magnitude. This approach also corresponds to the
current established medical practice of primarily treating individuals at risk.
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Scenario 2 can be considered a scenario in which every individual PRS is decreased fourfold, generally producing a more
extensive effect than scenario 1. Scenario 2 could also be considered a consequence of a situation in which only part of a
population at risk is treated but, over a number of generations, the average PRS drops due to the average risk allele frequency
gradually becoming lower in the population.

To conclude this Introduction, it may appear that the scenarios we review could be simply calculated numerically. Among
the reasons for this rigorous simulational approach is the finding18 that the risk allele distribution and the polygenic risk of
individuals diagnosed with an LOD diminishes with age. This PRS change is most prominent for highest heritability and
prevalence LODs. Genetic statistical calculations do not account for this effect, particularly when quantifying health outcomes
of a hypothetical genetic therapy, which changes the population PRSs, is concerned. Applying the novel approach, we quantify
the correlation between environment/aging process, polygenic score and hazard ratio of selected LODs at all ages based
on clinical incidence rate and familial heritability, and apply the resulting aging coefficient to simulated populations in two
scenarios of hypothetical future gene therapy. Hence these results.
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(a) Aging coefficients, log10 scale. This is the parameter that reflects LOD liability increases with age based on the clinical
incidence rate and model genetic architecture PRS.
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(b) Polygenic scores of individuals diagnosed with an LOD as a function of age. Scatter plots show the distributions of
polygenic scores for cases diagnosed as age progresses. PRS β = log(OddsRatio).

Fig. 1. Aging coefficients applied to reproduce the LOD incidence distribution by age based on individual PRS
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Results
We use the clinical incidence rate pattern to map the hazard ratio from the PRS of individuals diagnosed with an LOD at each
year of age for eight LODs: Alzheimer’s disease, type 2 diabetes, cerebral stroke, coronary artery disease, and four late-onset
cancers: breast, prostate, colorectal, and lung.

The core of the simulation is the iterative discovery and application of the aging coefficient Eq. 1 depicted in Fig. 1a,
mapping individual PRSs to the hazard ratio specific to each LOD on a yearly basis. The aging coefficient incorporates
combined aging and environmental effects, and the rising pattern indicates the increasing magnitude of these effects with age.
It is interesting to note how the magnitude of aging coefficient changes with age for the diseases we analyze. AD shows the
largest magnitude of change, and is characterized by steep exponential incidence rate increase continuing to very old age. T2D,
CAD, and, stroke show a comparatively smaller progression, and cancers show a relatively small magnitude increase, with lung
cancer showing the least change. Applying the aging coefficient back to the simulated population, Fig. 1b shows the simulation
result of the PRS distribution for diagnosed individuals by age. It matches the results of18, where a simulation using a simpler
direct algorithm that was more appropriate for that research was performed. A more precise indication of the model accuracy is
shown in Fig. 4.

Knowing the hazard ratio for any given PRS at any given age is exactly what the simulation needs for modeling gene
therapy and lifespan increase. We applied the aging coefficient in two simulation scenarios described in Methods:

Scenario 1: Prophylactically treating above-average risk individuals to match polygenic risk averages for the baseline
population
The simulated prophylactic gene therapy corrected the population with above-average risk to the average PRS. Fig. 2a shows
the number of gene variants that would need correction under the common low effect genotype model. Alzheimer’s disease,
the analyzed LOD with the highest heritability, would require over 120 edits for the highest risk individuals and lung cancer
over 20. The number is lower for the majority of the treated population, below 22 edits for half of the treated population for
AD and less than three edits for lung cancer, see summary Table 1. As expected, the incidence rate after gene therapy drops
significantly at younger ages for all LODs, which results in a greatly decreased lifetime risk for all analyzed LODs.

For the four LODs other than cancers, there is a spike in the incidence rate at a very old age, exceeding the baseline
incidence rate, Fig. 2b. The AD incidence rate displayed a steep spike around age 95 and merged with the baseline rate pattern
soon after. This can be explained by the continuing exponential incidence rate pattern44.

T2D, CAD, and stroke also displayed significant, respectively later spikes above the baseline, which asymptotically lead
toward the baseline incidence rate line from above with age progression.

This can be explained by the hazard ratio represented by the aging coefficient A(t) increasing to a point when a large
fraction of the population with similar PRSs are likely to be diagnosed with these LODs. All cancer incidence rates remained
consistently below the baseline through the maximum analysis age of 120 years. It is notable that the three most prevalent
cancers show the highest proportionate improvement, which can be explained by a combination of relatively high heritability
and relatively lower incidence rate.

Lung cancer showed the least improvement. This is due to the lowest reported heritability, which leads to the fewest
required edits for the treated population under our scenario, see Table 1.

With the hypothetical future advances in the medicine, including these prophylactic gene therapy procedures, the average
life expectancy is expected to increase. We model each disease without accounting for increased mortality caused by a LOD,
which may be limiting the diagnoses of other diseases. This simplification works because we track the diagnosis of the disease,
and taken independently, the count assumes there is a decrease in mortality from all causes. In Fig. 2d we consider an average
lifespan increase by 5 and 10 years. We find that AD lifetime risk regains the baseline level within 5 years and almost doubles
above the baseline with a 10-year life extension; see Table 1. T2D, stroke, CAD, and lung cancer all slightly exceed or match
the baseline with 10 years longer lifespan, with incidence onset curve noticeably delayed. The most prevalent cancers—breast,
prostate and colorectal—also show a significant improvement of population lifetime risk, which remains significantly lower
than the baseline with 10 years longer lifespan.

Fig. 2e provides an additional view from the perspective of lifetime risk density, described as the incidence rate relative to
the initial population count adjusted for mortality; see Eq. 8. The plot shows how the incidence peak shifts toward older ages
with increased longevity.

Supplementary information Supplementary Fig. 2 and Supplementary Fig. 3 show the modeled progression of the incidence
rate and lifetime risk with only the increased lifespan, without gene therapy, the summary of which is presented in Table 1.

Scenario 2: Simulating all individual PRSs, lowered by an OR of 0.25 (fourfold OR decrease)
A 0.25 OR multiplier was applied to all individual PRSs, and the simulation ran from age zero to 120 years of age, Fig. 3a.
In this scenario, the incidence rate stays below the baseline for all LODs analyzed throughout the lifespan. Lifetime risk is
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after gene therapy
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(c) Lifetime risk decrease
after gene therapy
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(e) Lifetime risk density
Eq. 8 and lifespan increase

Fig. 2. Gene therapy Scenario 1: Treating all above average risk individuals
Population values and results with the incidence rate, lifetime risk, and lifetime risk with lifespan extension. See Supplementary Fig. 5, Supplementary Fig. 6,
and Supplementary Fig. 7 for enlarged views.
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(b) Lifetime risk density Eq. 8 with changes in lifespan increases of 5, 10, and 15 years

Fig. 3. Scenario 2: All individuals in a population have gene therapy corrected, on average, for 15 SNPs (corresponding to an
OR of 0.25). Supplementary Fig. 4 shows the standard incidence rate plot.

also lower for all LODs and shows about a decade delay in the incidence rate curve for T2D, stroke, and CAD and even more
significant improvement for cancers. AD again benefits the least.

As in the previous scenario, the AD lifetime risk exceeds the baseline within 5 years of the increased lifespan. It took 15
years of longer life for T2D, stroke, and CAD to get close to or slightly exceed the baseline lifetime risk. All cancers stayed
far below the baseline lifetime risk even with 15 years longer life. The increase in the fraction of older individual diagnoses,
leading to this lifetime risk increase with increased lifespan in Scenario 2, is presented in Fig. 3b.

Discussion
The aging coefficient was used to facilitate a hypothetical Scenario 1, where all individuals with an above average PRS were
subjected to prophylactic gene therapy by setting their PRS to the average of the baseline population. The simulated aging of the
population showed that, as expected, for all modeled LODs, the incidence rate at younger onset ages diminished significantly;
see Table 1.

The incidence rate curve remains below the base incidence for all ages in the case of cancers. The four highly prevalent
LODs display a spike in the incidence rate significantly above the baseline with maximums at about 95 years of age for AD
and T2D and about 110 years of age for stroke and CAD. These are the ages when a small fraction of the population is still
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Table 1. Lifetime risk: baseline, Scenario 1, and Scenario 2 of prophylactic gene therapy

Highly prevalent LODs Cancers
AD T2D Stroke CAD Breast Prostate Colorectal Lung

Literature and clinical data:
Heritability 0.795 0.69 0.55 0.41 0.57 0.40 0.31 0.10
Literature max yearly incidence rate > 20% 2.5% 4.4% 3.6% <0.5% <0.8% <0.6% <0.6%
Lifetime risk, baseline + longer life:
+5 years life expectancy 160% 112% 128% 127% 115% 123% 127% 128%
+10 years life expectancy 228% 123% 156% 155% 130% 147% 156% 156%
Lifetime risk, Scenario 1 vs baseline:
Edited, unchanged life expectancy 50% 66% 57% 45% 45% 21% 32% 72%
Edited, +5 years life expectancy 112% 84% 82% 69% 53% 29% 43% 92%
Edited, +10 years life expectancy 189% 101% 112% 100% 62% 38% 55% 114%
Lifetime risk, Scenario 2 vs baseline:
Edited, unchanged life expectancy 70% 67% 44% 50% 30% 41% 31% 27%
Edited, +5 years life expectancy 124% 77% 61% 69% 36% 52% 40% 34%
Edited, +10 years life expectancy 191% 88% 81% 89% 41% 65% 51% 43%
Edited, +15 years life expectancy 260% 98% 101% 112% 47% 77% 62% 52%

For our in-depth literature review and analysis of these LODs’ incidence and other disease characteristics, see Supplementary Information
in18. The baseline is considered 100% in lifetime risk comparisons; 160% after 5-year lifespan expansion for AD means lifetime risk (LR)
increased 1.6 times, and 50% after gene therapy means 0.5 times the LR, comparing with the baseline value.

alive for the first two LODs, and practically the whole population is dead for the second two LODs. As a result, with mortality
remaining constant, the lifetime risk—the chance of a person being diagnosed but not necessarily dying from an LOS—drops
significantly, Table 1.

Modeling an increased lifespan due to all causes, we find that AD lifetime risk regains the level of baseline incidence within
5 years and almost doubles above the baseline with a 10-year life extension; see Table 1. T2D, stroke, CAD, and lung cancer
also slightly exceed the baseline.

It is important to note that while the incidence rate and lifetime risk may increase with longer lives for the above-mentioned
diseases, from the population perspective, the onset age is delayed by years and even decades.

The most prevalent cancers—breast, prostate and colorectal—showed a very significant decrease in lifetime risk, even when
lifespan increased. Lung cancer requires the least edits to make the at-risk half of the population achieve the baseline average
PRS in Scenario 1, but this is because low heritability implies a low genetic variance, which is reflected in the lower number
of gene variants in the higher than average risk population. This naturally results in a lower initial effect compared to other
reviewed cancers, and lung cancer regains the baseline lifetime risk with a 10-year increase in average lifespan in this scenario.

We modeled life extension in the baseline scenario, without the prophylactic gene therapy, and it highlights the old wisdom
that aging itself is the predominant risk factor for most late-onset diseases and conditions. It is a known fact that in Japan, the
lifetime risk of AD is higher than in many other countries45, and the average lifespan in Japan is also higher. Table 1 results
confirm once more that, if mortality from all causes is lower, AD is the fastest LOD to increase in late age prevalence. Most
LODs follow the exponential incidence rate increase pattern in initial onset decades18, yet AD continues exponentially past age
9544, 46. Unless a dramatic discovery is made for AD prevention, statistically, this LOD is one of the most persistent modes of
human organism failure at old age that most of us are at risk of succumbing to if we live long enough. Similarly, Framingham
General Cardiovascular Risk Score includes age as one of the major risk factors for stroke and CAD38, and our modeling
concurs.

T2D is characterized by an early initial onset age, and while the prevalence of T2D is high, by the age of 80 the incidence
rate is essentially constant at 2.5% in the clinical dataset we used47. As a result, the incremental lifetime risk is relatively lower
in 5 and 10-year lifespan extensions, starting from an already high level. On the other hand, in the case of prophylactic gene
therapy, the population health effect would also be lasting. Even though we analyze each LOD independently, T2D is one of the
diseases that causes the most co-morbidities and accelerating incidences of cardiovascular and other diseases sometimes by
decades47. It is worth noting that the preventative treatment of T2D could mean health improvement or presentation delay for a
range of LODs, independently or in addition to treating their specific gene variants.

Scenario 2, decreasing LOD odds ratio for each individual fourfold, could be viewed as a model with more intensive
gene editing. It corresponds to between 10 and 15 edits, explained in Methods, equal for all modeled LODs. This scenario

8/21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 17, 2018. ; https://doi.org/10.1101/390773doi: bioRxiv preprint 

https://doi.org/10.1101/390773
http://creativecommons.org/licenses/by-nc-nd/4.0/


can also be viewed as cumulative over a number of generations’ ongoing lower scale gene therapy, where the average PRS
drops due to the risk allele frequency gradually falling. Apparently, the lower heritability LODs like lung cancer benefit from
this scenario more equitably, comparing with the Scenario 1 treatment. The noticeable result for the LODs with the lower
cumulative incidence or prevalence is the longest lasting effect. We analyzed some of the most prevalent LODs, and there is a
large number of LODs with a much lower prevalence that would similarly benefit. Based on familial studies, it may be not
outside the range of possibility to find a sufficient number of genomic variants to achieve fourfold odds ratio reductions.

A question is often asked about the correct lifetime risk values for a particular LOD, and there may be a correct value in a
particular moment in time for a specific locale. This number is subject to change with population lifestyle and environment
changes, medical procedures, and particularly, increases in the average lifespan. A decade later, the value may change for
a hypothetical locale, and this value may be different compared to other locales in the world, both now and in the future.
Our modeling shows how lower disease risk and increased lifespan act as opposing forces in this equilibrium. Treating the
population at risk would improve health, and the lifetime risk would regain ground within 10-15 years of increased lifespan
for the most prevalent LODs, with the relative incidence rate becoming statistically higher for the very old individuals. The
outcome of this magnitude of gene therapy is comparable with improvements in health span that can be achieved by lifestyle
improvements for T2D, stroke, and CAD - the highly environmentally influenced LODs18.

In conclusion, if intensive gene therapy becomes possible, it could dramatically delay the average onset of the LODs
analyzed here and improve individuals’ lifetime risk. It would be difficult to prevent Alzheimer’s disease if lifespan also
increased. We can only hope that a pharmaceutical intervention targeting a causal metabolic pathway, immune or inflammatory
response may be more effective for AD; however, the number of the past false hope announcements is too numerous to cite.

Based on heritability and incidence rate combinations, this kind of gene therapy may bring significant and longer lasting
benefits for cancer prevention, even with a similar or smaller number of edited gene variants than for other diseases we modeled.

Methods

Foundations
The research goal for this paper is to build a genetic model based on clinical data of eight highly prevalent LODs. To do this,
we need to map the PRSs to individual hazard ratios on a yearly basis:

Ru(t)∼ A(t)Gu, (1)

where Ru(age) is the hazard ratio of uth unaffected individual, and t is the age in years. PRS Gu remains constant for each
individual, and the multiplier A(t) drives the age-related increase in an LOD risk. A(t) we call the aging coefficient and it
will primarily depend on the incidence rate and the remaining unaffected individual’s PRS. This means that, as discussed in
the Introduction, we are following a proportionate—also known as a multiplicative—model of genetic architecture, just like
in18; see also26. The simulation needs to find the A(t) for each year of LOD progression resulting in decrease of unaffected
individual count N due to being diagnosed as a function of their PRS: N(t +1) = N(t)(1− I(t)), where the yearly incidence
rate I(t) is the fraction of individuals diagnosed with a disease out of all the individuals as yet unaffected at the start of the year.
Here we also will need to probabilistically simulate the individuals diagnosed each year of age based on their hazard ratio, in
this approach as a product of changing A(t) and changing distribution of Gu, as will be discussed in simulation design.

We reuse the yearly incidence rate logistic and exponential regression for the functional approximation of the LODs we
analyze based on the available clinical incidence statistics from18, and as also appropriate here, we use the logistic approximation
for all LODs except breast cancer for which the exponential followed by linear regression is more accurate. The most important
consideration, is that the age-related change in the allele frequency distribution for the unaffected population is a function
of initial heritability and the cumulative incidence. The third variable, the population mortality from the US Social Security
“Actuarial Life Table”48, in conjunction with the above two determinants, produces the lifetime risk pattern characteristic for
each of the LODs in Fig. 2c.

We used the genetic architecture proposed by49 in order to generate the number of alleles to achieve a required heritability.
Out of six genetic architectures in49, the common low effect size genetic architecture model is most suitable for the LODs we
analyze. All simulation runs were also performed using a more extreme rare allele medium effect size model, Scenario B in
Table 2, and the results for lifetime risk were essentially identical to Scenario A—the common allele low effect size genetic
architecture model—presented in reports and analysis here. We don’t present separate figures for scenario B, the corresponding
data is available in Supporting Information.

We calculated an individual polygenic risk score as a sum of all alleles’ effect sizes, which is by definition a log(OR) (odds
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Table 2. Genetic architecture scenarios.

Scenario MAF range OR range MAF values Allele ORs values
A. Common low 0.073 - 0.499 1.05 - 1.15 0.073 0.18 0.286 0.393 0.5 1.05 1.075 1.1 1.125 1.15
B. Rare medium 0.0146 - 0.0998 1.28 - 2.01 0.0146 0.036 0.0572 0.0785 0.0998 1.28 1.463 1.645 1.828 2.01

To build the genetic architecture, minor allele frequencies (MAFs) and ORs are distributed in equal proportion using the values in the table.
The blocks are repeated to achieve the required heritability. Common low stands for common allele low effect size architecture, rare medium
for rare allele medium effect size architecture.

ratio logarithm) for each allele,49:

β = log(OR) = ∑
k

aklog(ORk), (2)

where ak is the number of risk alleles (0, 1, or 2), and ORk is the OR of additional liability presented by the k-th allele. In
our publication figures, for brevity, we also use the notation β for PRS, β = log(OR). Variance of the allele distribution is
determined by:

var = 2∑ pk(1− pk)(log(ORk))
2, (3)

where pk is the frequency of the k-th genotype49.
The contribution of genetic variance to the risk of the disease is heritability:

h2 =
var(g)

var(g)+π2/3
, (4)

where π2/3 is the variance of the standard logistic distribution50. We use heritabilities of the LODs we analyze, as summarized
in Table 1.

Implicit in our simulation is a Cox proportionate risk model51, where the hazard ratio for an individual, in one-year
increments t in our case, is represented as:

λu(t) = λ0(t)e∑
n
i bixi , (5)

where bi are the coefficients of risk or impact of the ith hazard cause, and the xi are the covariates of presence or absence of the
ith hazard for individual u, measured as 0 or 1. The occurrence or absence of a polygenic or GWAS case is the sum of risk
alleles β , λu(t) is the hazard ratio of an individual in year t, and λ0(t) is a baseline hazard multiplier common to all individuals.
Chances for an individual not to be diagnosed with an LOD by age T is:

∏
t<T

(1−λ (t)), (6)

which is an important statement of probability, as to remain healthy to age T is the product of probabilities of the same for each
preceding year.

The values of polygenic scores for each individual in the simulated population are based on ORs built using the logit
model49. For low prevalence within an age cohort, which is equivalent to the incidence rate for that time interval, and when
the OR is close to 1, OR values are practically identical to hazard ratios. For example52 does so in the case of breast cancer,
considering breast cancer as a low-incidence LOD. While it is very likely the case for most cancers, the high incidence and
high heritability values, particularly for AD and T2D, justify a more proactive approach in view of high average polygenic risk
of cases at earlier ages for these diseases, and even higher risk outliers due to significant variance as a source of the high initial
heritability18. We similarly use an adjustment formula, converting the OR to relative risk, subject to the known incidence, as
in53:

Hu =
Gu

1+ I(t)·(Gu −1)
, (7)

where Hu is an estimated hazard ratio for a polygenic score Gu of the uth unaffected individual. This formula is widely used in
clinical practice and research as a good estimate conversion, and we apply it to all Gus in the simulation run. For verification,
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we also collect all simulation results without this adjustment. We find that, indeed, the results vary slightly in declining order
of significance for AD, T2D, CAD, and stroke, and are practically identical for cancers with and without the adjustment.
Qualitatively, the results would lead to the same conclusions.

We introduce a parameter that is useful in depicting LOD lifetime risk contributions at yearly age increments, the lifetime
risk density, D(t). It can be calculated as the incidence rate at age t relative to the initial population count, adjusted for mortality:

D(t) =
I(t)S(t)

N(0)
, (8)

where I(t) is the yearly incidence, S(t) is the survivor rate from actuarial tables48, and N(0) is the initial population count. It is
particularly handy for comparing the age distribution changes of LODs when modeling increased lifespan. Integrating the area
under the curve, or summing up in our implementation, exactly corresponds to an LOD lifetime risk L(t):

L(t) = ∑
t

D(t), (9)

see in Fig. 2e, Fig. 3b, Supplementary Fig. 3, and Supplementary Fig. 7.

Simulation design
The initialization, generation of population individuals, and genetic architecture are done identically to those of18 and are
similar to many population genetics simulations. Additionally, the yearly incidence approximation and the individual PRSs are
done similarly.

The discovery of the aging coefficient is done using an iterative simulation process. The simulation operates in two stages:
aging coefficient discovery and analysis of gene therapy with optionally changing life expectancy.

Aging coefficient A(t) discovery
The aging coefficient discovery proceeds iteratively through the modeled population individuals and years of age, starting at
age zero.

This occurs by taking a first estimate run, starting with an initial value, and then running a set of 250 simulation loops
over the population base of 25 million and aggregating the results (these settings are configurable, and these values allow a
good balance between parallelization, accuracy, and discovery time on the computer system used). A large number of runs
is particularly important at younger ages with low incidence rates and high variability in a number of diagnosed individuals
between runs. The simulation uses an adaptive algorithm to achieve convergence on the value A(t) within a target precision
of 0.2% or better for most of the lifespan. To avoid or uncover any discovery bias, we repeat the determination for the
same age, starting alternatively 10% up or down from the previously determined value, running 10 cycles of discovery like
above (configurable), averaging the final result, and recording the standard deviation. This process continues through the
predetermined life expectancy range for which we chose 120 years of age, close to the current utmost limit of the human
lifespan. As seen in Fig. 2e, the population mortality makes it very insignificant for the final result whether the approximation
accuracy becomes lower after 100 years of age, even with the modeled lifespan increase by 15 years. The resulting “roundtrip”
accuracy is within two percent of the A(t) magnitude at the initial onset ages, where the incidence rate is below 1·10−5. This
accuracy would be sufficient for the entire simulation and has an infinitesimal effect on overall accuracy because of the low
cumulative incidence at ages with a low lifetime risk density, Eq. 8 and Eq. 9. The accuracy rapidly improves to the target
better than a 0.2% range for most ages at higher incidence rates. Only in the case of AD, where incidence grows exponentially
to very late age, the remaining unaffected population becomes small near 120 years of age, and accuracy decreases to close to
1%, a minuscule deviation with particularly low lifetime risk density at this age.

Gene therapy with changing life expectancy analysis
The analysis stage is run with a large population of one billion to achieve high precision statistics. Here we apply the discovered
values of A(t) to the PRS of this large population. Fig. 4 shows the resulting accuracy for eight LODs, starting near 2% for
colorectal and lung cancers, below 1% for the remaining LODs, and staying below 0.2% for most of the LODs’ onset range.
This validation shows that the combined discovery and analysis reproduce the input LOD incidence rate with the desired
precision.

The prophylactic gene therapy experiment assumes that we can effectively edit a large number of SNPs. This study is not
making any pleiotropic consideration54, 55. Just as a short remark, the high-risk individual PRS is caused by a large number of
variants; see Supplementary Fig. 1. There is a relatively small difference in the absolute number of detrimental alleles between
the population average and the high-risk individuals. Arguably, for personalized prophylactic treatment, there will be an option
to choose a small fraction of variants without pleiotropy or even agonistic to other LODs pleiotropy from a large set of SNPs.
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Fig. 4. Simulation aging coefficient discovery accuracy in reproducing the input incidence rate approximation.

We used the aging coefficient in two scenarios:
Scenario 1: Prophylactically treating above average risk individuals to match the polygenic risk average for the baseline

population. Fig. 2a shows the average number of alleles that need editing for individuals at risk from population distribution, so
their risk becomes equal to the baseline population mean at age zero. In these figures, we display the population frequency
between 1·10−4 on the low and high ends of the graph, without any rare outliers. The simulation then proceeds through the
complete age range with this treated population, collecting and analyzing the resulting population statistics.

Scenario 2: Simulating all individuals’ PRS lowered by an odds ratio 0.25 (fourfold). This scenario requires an edit of
15 SNPs in common allele low effect size scenario. With average OR=1.1, it is simply calculated as: 1.115 ≈ 4. Choosing to
edit only maximum effect size SNPs with OR=1.15 would require approximately 10 edits: 1.1510 ≈ 4. While scenario 1 treats
current individuals at risk, scenario 2 may be viewed as a simulation of the effect of treating individuals at risk for a number
of generations, where the number of risk alleles in the whole population becomes lower as a result of previous generations
undergoing inheritable prophylactic treatment.

To model the lifespan increase, rather than making assumptions about the pattern of the lifespan increase age distribution,
we assume that the mortality of all causes will be reduced proportionally. We shift all mortality rates from the US Social
Security “Actuarial Life Table”48 by 5, 10, and 15 years. This is valid because we are not concerned by early age disease
analysis, focusing exclusively on LODs, with onset starting decades after birth.

Data sources, programming and equipment
We used population mortality numbers from the 2014 US Social Security “Actuarial Life Table”48, which provides yearly death
probability and survivor numbers up to 119 years of age for both men and women.

Disease incidence data from the following sources were used extensively for our analysis and using the materials referenced
in the Supplementary Information to18: Alzheimer’s disease44, 46, 56, 57, type 2 diabetes47, coronary artery disease and cerebral
stroke58, and cancers59, 60.

To run simulations, we used an Intel Xeon Gold 6154 CPU-based 36-core computer system with 288GB of RAM. The
simulation is written in C++, and the code can be found in Supplementary Files.

The final simulation data, additional plots and elucidation, source code, and the executables are available in Supporting
Information. Intel Parallel Studio XE was used for multi-threading support and Boost C++ library for faster statistical functions;
the executable can be built and function without these two libraries, with a corresponding execution slowdown.

Statistical analysis
The core model parameter, the aging coefficient, is validated to fit within a two sigma band for 2% accuracy at low incidence
values and within 0.2% for the majority of the LOD incidence range. The same precision values are achieved for the analysis
stage of the simulation. This precision makes impractical the use of error bars in graphical displays.
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1 Supplementary Files
Source code, executable, scripts and configurations. This zip file contains the executable simulation, the source code and the
project, R scripts and corresponding batch files for producing functional approximations of clinical incidence, and simulation
results.
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Fig. 5. Supplementary Fig. 1
Population distribution of detrimental variants for common low-effect-size genetic architecture. Based on initial heri-
tability, the individuals in a population carry relatively high detrimental count of low effect alleles, resulting in the combined
LOD PRS. The higher the heritability, the higher the total number of detrimental LODs and the higher PRS is produced by a
relatively smaller difference between the population mean and high or low-risk individuals.
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Fig. 6. Supplementary Fig. 2
Projected LOD lifetime risk increase if lifespan increased by 5 and 10 years. Baseline without gene therapy. This is the
baseline scenario without gene therapy or other health improvements for the plotted LOD. This represents the case where
lifespan increases due to other causes than the plotted LOD. Mortality patterned from US Social Security “Actuarial Life
Table”48
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Projected LOD incidence rate relative to the number of individuals at birth if the lifespan increased by 5 and 10 years.
Baseline without gene therapy. This is also the incidence rate density: The area under the curve is equal to the lifetime risk
for each scenario, accounting for mortality48. This is the baseline scenario without gene therapy or other health improvements
for the plotted LOD. This represents the case where lifespan increases due to other causes than the plotted LOD.
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Fig. 8. Supplementary Fig. 4
Scenario 2: Gene therapy corrected on average 15 SNPs, corresponding to an odds ratio change of 0.25 for all individ-
uals in a population.
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increase 5 and 10 year scenarios

Fig. 9. Supplementary Fig. 5
Scenario 1: Enlarged view of gene therapy results with the incidence rate, lifetime risk, and lifetime risk with lifespan
extension for prevalent LODs.
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(d) Lifetime risk improvement
from baseline and lifespan
increase 5 and 10 year scenarios

Fig. 10. Supplementary Fig. 6
Scenario 1: Enlarged view of gene therapy results with the incidence rate, lifetime risk, and lifetime risk with lifespan
extension for cancers.
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Fig. 11. Supplementary Fig. 7
Scenario 1: Enlarged view of incidence rate relative to the number of individuals at birth. Baseline, gene edited with 0,
5 and 10-year lifespan extension. This plot has a meaning of incidence rate density, where the area under the curve is equal to
the lifetime risk for each scenario, accounting for mortality. For comparison, see these LODs projections of lifespan increase as
a baseline without gene therapy in Supplementary Fig. 2 and Supplementary Fig. 3.
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