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ABSTRACT 

Large walls and other typical boundaries strongly influence neural activity related to 

navigation and the representations of spatial layouts. They are also major aids to reliable 

navigation behavior in young children and non-human animals. Is this because they are 

physical boundaries (barriers to movement), or because they present certain visual features, 

such as visually extended 3D surfaces? Here, these two factors were dissociated by using 

immersive virtual reality and real boundaries. Eighty adults recalled target locations in one of 

four environments: plywood, where a virtual wall coincided with a large piece of real 

plywood; pass through, where the virtual wall coincided with empty space and participants 

could pass through it; pass over, where the virtual wall was projected downward to be visible 

underneath a transparent floor; and cones, where the walls were replaced with traffic cones. 

One condition had features that were boundaries and looked like boundaries (plywood); two 

had features that were not boundaries but looked like boundaries (pass over/through); and 

one had features that were not boundaries and did not look like boundaries (cones). The 

precision and bias of responses changed only as a function of looking like a boundary. This 

suggests that variations in spatial coding are more closely linked to the visual properties of 

environmental layouts than to whether they contain physical boundaries (barriers to 

movement).   

 

Keywords: boundary; allocentric; spatial memory; navigation; virtual reality.  
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Boundaries in Spatial Cognition: Looking Like a Boundary is More Important than Being a 

Boundary 

Spatial memory and navigation are among the most important and widely-shared 

cognitive tasks performed by humans and other organisms. In the study of spatial cognition, 

there has been wide interest in differences that appear when presenting typical boundaries 

(e.g., walls) versus non-boundaries (also called landmarks, beacons, or signs) in the 

environment. These differences are evident in a wide variety of experimental measures and 

settings, including in learning (e.g. Austen & McGregor, 2014; Doeller & Burgess, 2008; 

Pearce, 2009), neural representations (Lever, Burton, Jeewajee, O’Keefe, & Burgess, 2009; 

Solstad, Boccara, Kropff, Moser, & Moser, 2008) and systematic biases (e.g. Batty, Spetch, 

& Parent, 2010; Kosslyn, Pick, & Fariello, 1974; Newcombe & Liben, 1982). These 

differences are not only reported in studies with adult humans, but also young children 

(Cheng, Huttenlocher, & Newcombe, 2013; Lee, 2017), chickens (Lee, Spelke, & 

Vallortigara, 2012), zebrafish (Lee, Ferrari, Vallortigara, & Sovrano, 2015), and rodents 

(Cheng, 1986). These findings lend insight into the mechanisms of spatial cognition; they 

suggest that boundaries in natural scenes play a crucial role in how we and other animals 

represent and navigate the world around us (Lee, 2017).  

Within this field, a central question remains unresolved. Why do the typical 

boundaries in natural scenes affect spatial cognition differently from the non-boundaries in 

natural scenes? Imagine a wall versus a traffic cone. Do the walls affect spatial cognition 

differently because they are boundaries (that physically block movement) or because they 

look like boundaries? In other words, is impeding navigation a relevant predictor or are these 

effects based solely on visual appearance?  
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Table 1. Key Definitions.  
Boundary or physical 
boundary 
(interchangeable) 

A solid item that effectively prevents easy navigation over an 
extended part of the ground plane. This could be a wall, a 
cliff, a fence, or similar. For a working definition of 
“extended”, we have used >2m in length. 

“is a boundary” The item in question meets the definition above. This is 
orthogonal to “looks like a boundary”. Being a boundary is a 
feature that could also be perceived through touch and 
proprioception in a completely dark environment. 

“looks like a boundary” The item in question shares important visual features with 
large walls, cliffs, fences, and so on. This set of features 
could include the visual appearance of vertical extension out 
of the ground plane, the visual appearance of horizontal 
extension along the ground plane, the total area visually 
presented, the ratio of its visually apparent height to width, 
the percent of time that an object stays within view as a 
person yaws through 360 degrees, the item’s visual stability, 
the item’s ability to block light moving through it, and so on. 
This is orthogonal to actually being a boundary (barrier to 
movement).   

Typical boundary Something that is a boundary and looks like a boundary – for 
example, a wall.  

Typical non-boundary Something that is not a boundary and does not look like a 
boundary – for example, a traffic cone.  

 
 

This has been a major point of debate for over 30 years. Some articles emphasize the 

role of a (physical) boundary as an obstacle to navigation, explicitly rejecting a theory based 

on how they look (Doeller & Burgess, 2008; Doeller, King, & Burgess, 2008). Some articles 

take the same position implicitly, only describing the differences in terms of how the items 

impact available navigation and not in terms of how they look (Cheng, 1986; Gallistel, 1990, 

2017; Hermer & Spelke, 1994). Some articles conclude that being a boundary is not 

important, but that visual differences can have a large impact, especially how visually salient 

the items in the environment are (Austen & McGregor, 2014; Buckley, Smith, & Haselgrove, 

2015; Kosaki, Austen, & McGregor, 2013; Mou & Zhou, 2013; Pearce, 2009) and whether 

they present a visually extended 3D surface (Lee, 2017; Lee, Shusterman, & Spelke, 2006; 

Lee & Spelke, 2010). The mechanisms underlying spatial cognition in natural environments 

cannot be understood fully until this is resolved.  
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We need to separate being a boundary, which means impeding navigation across an 

extended part of the ground plane, from looking like a boundary, which means sharing 

important visual features with large walls. From first principles of experimental design, it is 

clear that we need to be able to make two comparisons to resolve this question definitively. 

First, to see if being a (physical) boundary has a specific effect, we need two conditions that 

look exactly the same but differ in whether the scene contains boundaries. Second, to see if 

looking like a boundary has an effect, we need two conditions that impede navigation in the 

same way but differ in whether they look like a boundary.   

The gap in the current literature is that this first comparison is not available; there is 

no published test where the (physical) boundary and non-boundary look exactly the same. 

However, it has been established that looking like a boundary (e.g., visually presenting a 

vertically extended opaque surface) has reliable effects on spatial cognition, even when the 

presented items all impede movement in the exact same way (Gianni, De Zorzi, & Lee, 2018; 

Kosslyn et al., 1974; Newcombe & Liben, 1982). To be specific, adult participants tend to 

rank the distance between two targets as longer if a straight line between them crosses an 

opaque boundary, but not a transparent boundary of the exact same size and shape (Kosslyn 

et al., 1974; Newcombe & Liben, 1982). Further, young children can reorient to an opaque 

rectangular boundary but not a transparent rectangular boundary (Gianni et al., 2018). There 

are also patterns of brain activation that are selectively associated with images of boundaries, 

even when the participant is not given any opportunity to move or navigate (Park, Brady, 

Greene, & Oliva, 2011; see also Julian, Ryan & Epstein, 2016; Konkle & Oliva, 2012). This 

answers half of our central question, leaving open whether there is (a) only an effect of 

looking like a boundary or (b) both an effect of looking like a boundary and an effect of being 

a boundary.  
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Another previous study came to a closely-related conclusion (McNamara, 1986). This 

study included comparisons of spatial cognition in two environments with strings on the 

ground. In one condition, participants were allowed to move freely over the strings. In the 

other, they were instructed not to move over the strings. We would refer to this as a social 

boundary. No major difference was found between conditions; the pattern of results was 

similar in terms of recognition priming (if two objects were near each other or in the same 

region as each other during the study phase, presenting one during the test phase leads to 

faster recognition of the other on the next trial), direction judgements (which direction from 

one item to another), and distance estimation (Euclidian distance from one item to another). 

Since the strings and instructions were not physically capable of impeding navigation, they 

were not boundaries under the current definition. It remains unknown if a (physical) 

boundary effect exists.    

The present study employed four conditions, between-subjects, in an immersive 

virtual reality setting (a simulation traversed by actual movement, not with a controller; 

Figure 1, Table 2) to fill this gap and to further test for a purely visual effect. The conditions 

varied both in terms of their virtual environment and in terms of the real space that this was 

projected onto. The first condition, plywood, presented items that are (physical) boundaries 

and also look like boundaries. These were large blue walls that visually presented an 

extended surface and were co-located with a large piece of real plywood. Participants touched 

the plywood to establish that it actually impeded movement. The first comparison condition, 

pass through, was visually identical, but participants established by touch that they could 

pass through the walls (i.e., there was no plywood). The items were not boundaries but did 

look like boundaries. The second comparison, pass over, used the exact same wall-like items 

but placed them under the translucent floor, coinciding with the ground plane at their top 

edge. This means that vision alone could confirm that the items in the environment were not 
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boundaries; an item cannot block movement if it is beneath the floor. To test for a purely 

visual effect, the fourth condition, cones, presented a set of virtual traffic cones that also were 

not boundaries and did not look like boundaries. Participants directly experienced which 

conditions contained boundaries and which did not by touching the walls in plywood and 

moving through/over them in the others. The task was to remember the position of three 

target locations and indicate these again after a change of viewpoint. To measure the extent to 

which spatial coding was similar or different across these environments, we looked for 

differences in patterns of recall error – specifically, the bias and precision of responses. 

 

Figure 1: Conditions. The experiment had four different conditions. Participants were 
immersed in one of three unique virtual reality environments. The plywood and pass through 
conditions used the same virtual environment, making them visually identical in every detail. 
For pass over, the walls were under the floor, but the walls themselves joined the floor at the 
same locations and otherwise looked identical. The cones condition replaced the walls with 

traffic cones. In terms of containing boundaries, only the walls in the plywood condition gave 
any resistance when participants attempted to pass through them. These conditions allow us 
to dissociate whether the presented items are boundaries (plywood contains boundaries, but 
pass through/over and cones do not) and whether the presented items look like boundaries 

(the cones in cones do not, but the walls in plywood and pass through/over do so). 
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Table 2. Reference for the key features of the different conditions.  

Condition Is a Boundary Looks Like a Boundary 
Plywood Yes Yes 
Pass Through No Yes 
Pass Over No Yes 
Cones No No 
 

Some previous studies have attempted to understand a special role for boundaries 

through an overshadowing paradigm (Doeller & Burgess, 2008), but this has failed to provide 

a consistent boundary versus non-boundary effect (Austen & McGregor, 2014; Buckley et al., 

2015; Kosaki et al., 2013; Mou & Zhou, 2013; Pearce, 2009). Further, any approach that only 

examines accuracy will fail to capture important effects on bias and precision (Huttenlocher, 

Hedges, & Duncan, 1991; Kosslyn et al., 1974; Newcombe & Liben, 1982). Our approach is 

to focus on the more basic phenomenon and examine how target locations are encoded and 

recalled in different environments. This makes the present study similar to the previous social 

boundary study (McNamara, 1986) and to previous studies with young children (Cheng et al., 

2013; Gouteux, Vauclair, & Thinus-Blanc, 2001; Lee, 2017; Lee et al., 2006; Lee, Winkler-

Rhoades, & Spelke, 2012). However, instead of expecting a categorical difference (young 

children can perform above chance in some environments, but not others), we expect 

different environments to cause graded differences in the bias and precision of responses. 

This is also why it is important to include the cones condition: a difference between plywood 

and cones can confirm that the task and analysis are sensitive to the difference between a 

typical boundary (plywood) and a typical non-boundary (cones). 

Based on previous work (Gianni et al., 2018; Kosslyn et al., 1974; Newcombe & 

Liben, 1982), we expected to find a difference in terms of cones versus pass through and pass 

over (i.e. a purely visual difference). The main hypothesis was a difference in performance 

between plywood versus pass through or pass over. This would suggest that there are both (a) 

effects of looking like a boundary and also (b) pure effects of being a (physical) boundary, 
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independent of visual appearance. The alternative hypothesis is that there will not be a 

difference between plywood versus pass through and pass over. This would suggest that there 

is only an effect of looking like a boundary. This would in turn indicate that the effects of 

typical boundaries in natural environments are driven by their typical visual aspects rather 

than directly by their physical limitations on navigable space.  

Method 

Summary  

Participants were given a spatial memory and navigation task in one of four 

conditions through the use of immersive virtual reality (Figures 1 and 2). Participants were 

shown three target locations (marked by small spaceships) and then ‘teleported’ to a new 

viewpoint within the arena and asked to either point to the spaceships (spatial memory) or 

walk over to their locations (navigation) in order. The conditions differed in how they looked 

and if they contained boundaries.  
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Figure 2: Task Design. (A) A photograph of a person participating in the experiment. (B) 
The red ‘robot hand’ that moved with the right hand of participants in the virtual world. 
Before data collection, participants used this to experience what items they could or could not 
move through. (C) The targets, in a line here to see easily. (D) An overhead diagram of the 
plywood, pass through, and pass over conditions. (E) An overhead diagram of the cones 
condition. In short, participants were asked to stand in the Encoding Area and watch the three 
targets appear in the target area and disappear in order. They were then ‘teleported’ (screen 
faded to black, ‘camera’ moved, screen came back up) to a point on the edge of the target 
area. Participants indicated where they remembered the three targets in order.  

 

Participants  

Eighty undergraduates were recruited to participate. They were given either a credit 

hour towards a program where students volunteer in each other’s studies or £8. The study was 
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approved by the local Ethics committee and participants gave informed consent. Participants 

were excluded if they had abnormal vision and could not wear contact lenses. Twenty 

participants each were randomly assigned to the conditions (see below): plywood (10 female, 

mean age = 23.45 years); pass through (10 female, mean age = 22.30 years); pass over (10 

female, mean age = 26.2 years); and cones (10 female, mean age = 21.50 years). This sample 

size was chosen mainly because it is slightly larger than the number of participants in 

developmental studies that have found related effects (e.g. Lee & Spelke, 2011). The design 

also has the added advantage of a much higher number of trials per participant (48 here 

versus 4 in the cited article).  

Apparatus  

Participants wore an Oculus Rift headset (Consumer Version; Menlo Park, CA, USA). 

The headset was tracked continuously via small reflective markers by a Vicon Bonita motion 

tracking system (Oxford, UK). They were also given a motion-tracked ‘wand’ for indicating 

responses, made of PVC cylinders and a screwdriver handle (see Figure 2A), plus a small 

motion-tracked glove on their right hand. The virtual environment was programmed in 

WorldViz Vizard 5. With real-time updating of the participant’s and headset’s position from 

the motion capture markers, participants were able to freely traverse a space of about 5m x 

10m, with approximately 4m x 4m used during this study. 

Virtual environment. The virtual environment for the plywood, pass over, and pass 

through conditions featured three blue walls set at right angles (see Figure 1). They were 

adapted from a fire effect in WorldViz Vizard 5. They were formed of a continuous set of 

translucent hexagons that moved slowly and drifted randomly. This was done so that there 

would not be consistent local landmarks along the faces of the walls. To enable the plywood 

condition, the virtual wall to their left was rendered in the same place as a real 4ft x 8ft 

(approx. 1.2m x 2.4m) piece of plywood which had been mounted with steel brackets to form 
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a stable boundary. To enable the pass through condition, the virtual wall to their right 

corresponded to an empty space in the lab which participants could put their hand through 

without any resistance. For the pass over condition, the walls appeared below the translucent 

floor but could still clearly be seen. In the cones condition, there were instead three traffic 

cones (dimensions conforming to motorway regulation in the United Kingdom) placed where 

the centers of the walls were in the other conditions. The cones were 67.5 cm in height, 43 

cm across the base, and colored orange and white (see Figure 1).  

There was also a skybox rendered at an infinite distance with the appearance of outer 

space nebulae (i.e. a redundant method for participants to reorient themselves, but without 

providing distance information). The floor surface was made of a translucent sand texture 

(20% opacity). Participants also saw a virtual projection of their ‘wand’ and a model of a red 

‘robot hand’ where their right hand was (Figure 2B). The participants were asked to hold the 

wand in their left hand when they were not actively using it, but to use both hands to point as 

accurately as possible when indicating locations during the main task. The motion capture 

markers on the right hand were placed on the back side of the hand so that they did not 

interfere with this.  

Stimuli. On each trial, the stimulus was a set of three target locations on the floor to 

remember. This was shown by having three small coloured spaceships (Figure 2C) appear 

and disappear in sequence at different positions. The ships were red, blue, and grey on their 

outer hulls, with a grey center and six small white lights on their top sides. They appeared by 

first being shown as a flat disc and then stretching to their full vertical extent. Then they were 

removed by flattening again and then disappearing. Each was visible for 1s plus or minus the 

screen refresh time (1/90th of a second). Spaceship locations were randomly drawn from a 

uniform circular distribution with a radius of 1.25m around the center of the arena (Figure 

1D-E, “Target Area”), constrained only in that they could not overlap with each other. 
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Procedure  

Participants were not allowed to view the actual testing space before entering. They 

were fitted with the headset outside and then led in. Each of the three conditions had a pre-

testing procedure that drew their attention to the items in the environment at the start of each 

block. For the plywood condition, they walked to the plywood boundary and were asked to 

feel it with their hands. This was important for establishing that the environment contained a 

real (physical) boundary. To keep the situation reasonably naturistic, we did not ask 

participants to experience each wall separately. For the pass through condition, they walked 

over to a virtual wall projected into empty space and were instructed to try moving their hand 

through it. For the pass over condition, they were instructed to walk over the same virtual 

wall and see what the wall below looked like. For the cones condition, they were asked to 

move their hand through a cone.  

There were a total of four blocks of twelve trials. At the beginning of each trial, 

participants stood inside a small white circle. This location was the same on every trial 

(Figure 2D-E, “Encoding Area”). From this vantage point, all three walls and the targets 

could be viewed in the same rendered frame within the headset. When the program registered 

that the participant was inside the white circle and looking towards the target area, the stimuli 

were displayed.  

The next step was effectively a very short disorientation procedure, giving 

participants an unpredictable new viewpoint without any useful self-motion information. 

Participants were ‘teleported’ – the screen faded to black, the virtual camera moved, and then 

faded up from black – to a place around a 2.5m radius circle in the middle of the three walls 

(Fig. 2D-E, “Target Area”). The white circle was no longer visible. Their view also rotated; 

they were facing the center of the target area at encoding and were facing the center of the 

target area when the screen faded up from black. The rotation amounts were random but 
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within the constraint that each block had six rotations under 90 degrees and six rotations 

above 90 degrees (180 being the max possible), three to the left and three to the right. This 

was done to enlarge any potential differences between the plywood and other conditions, as 

typical boundaries have a particularly strong and reliable effect on reorientation in terms of 

both behaviour (e.g. Hermer & Spelke, 1994) and neural representations (Keinath, Julian, 

Epstein, & Muzzio, 2017). Crucially, participants did not have additional physical contact 

with the items after the teleport, creating a more naturalistic use of the boundaries after 

disorientation.   

Participants were asked indicate their response by either pointing with the wand or by 

walking to the target locations. This was done in four alternating blocks of twelve trials. The 

response modality for the first block was random. A small inverted cone was rendered on the 

floor to make it as clear as possible where each pointing or walking response would be 

recorded. In the pointing case, the inverted cone marked the point where a straight line from 

the wand intersects the floor. In the walking case, the inverted cone was 25cm in front of the 

center of their head. The inverted cone’s colour was matched to the target. This was repeated 

for all three targets, with the inverted cones remaining visible from previous responses. The 

responses were collected as quickly as participants made them (no additional delay was 

imposed by the experimenters). The targets then re-appeared and the participants were 

allowed to see the correct target locations. Participants then returned to the encoding area for 

the next trial. Breaks were given between blocks as needed. Testing typically took 45 to 60 

minutes.  

This procedure essentially results in 48 trials, each yielding fourteen figures: the 

placement of each target and each response along each axis of the ground plane, plus the 

block number and the rotation amount (the size of the angle formed by the encoding location, 
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the center of the target area, and the placement of the participant at the end of the ‘teleport’). 

This provides a strong basis for assessing both the bias and the precision for each participant.  

Results 

Two trials were lost to technical errors, resulting in 11,514 usable responses along 

two axes. Before the main analysis of both bias and precision, we examined the raw errors 

(absolute distance along the ground between target and response) across conditions to provide 

context. The raw errors were 62 cm on average with a standard deviation of 46 cm and a 

skewness of 1.58 (median 49 cm). An ANOVA on average raw error was used to examine 

two factors: being a (physical) boundary and looking like a boundary. This is one contrast for 

plywood versus the other conditions and another contrast for cones versus the other 

conditions (Table 2). Neither the effect of being a boundary nor the effect of looking like a 

boundary was statistically significant (Figure 3, Table 3). Further, all four 95% confidence 

intervals overlap. This was not due to a floor effect. We examined the targets and responses 

along the x-axis (left-right in figures), calculating an unstandardized beta coefficient for each 

participant. The average coefficient was significantly above zero, t(79) = 31.28, p < .001, 

mean of 0.75 m/m. On the y-axis (up-down in figures), the same effect was seen, t(79) = 

33.97, p < .001, mean of 0.73 m/m. The next analysis involved parsing the raw errors into 

bias and precision.     
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Table 3. ANOVA Results.  
Source DV SS d.f. F p η

2 η
2 Upper Bound* 

Is Bound. Raw Error 0.02 1 0.62 0.435 0.008 0.054 
Looks like Raw Error 0.01 1 0.24 0.625 0.003 0.067 
Error Raw Error 2.12 77     
Total Raw Error 2.15 79     
        
Is Bound. Bias X (Bx) 0.02 1 0.28 0.598 0.004 0.068 
Looks like Bias X (Bx) <0.01 1 0.01 0.940 <0.001 0.048 
Error Bias X (Bx) 5.27 77     
Total Bias X (Bx) 5.30 79     
        
Is Bound. Bias Y (By) 0.02 1 0.06 0.812 0.001 0.034 
Looks like Bias Y (By) 11.09 1 29.26 <.001 0.268 0.414 
Error Bias Y (By) 29.19 77     
Total Bias Y (By) 41.33 79     
        
Is Bound. Bias Weight (WB) 0.03 1 0.92 0.340 0.010 0.052 
Looks like Bias Weight (WB) 0.26 1 9.50 0.003 0.104 0.255 
Error Bias Weight (WB) 2.13 77     
Total Bias Weight (WB) 2.52 79     
        
Is Bound. Resid. Error <0.01 1 <0.01 0.991 <0.001 0.042 
Looks like Resid. Error 0.02 1 1.09 0.300 0.014 0.098 
Error Resid. Error 1.23 77     
Total Resid. Error 1.25 79     

*Estimated by taking the 95th percentile of a bootstrap procedure, where every condition was 
resampled with replacement 10,000 times and η2 was calculated. Significant effects in bold.  

 

 

Figure 3: Raw Error by Condition. Raw Error was not significantly different for the different 
conditions. There was no significant effect of either looking like a boundary (middle two 

versus far right) or being a boundary (middle two versus far left). Error bars are 95% 
confidence intervals on the mean of the average error for each participant. All four 

confidence intervals overlap. For example, an average error of 0.60m is within the interval 
for all four conditions.  
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We estimated the bias (mean signed error) within several small local areas of the 

arena, separated by condition, to make flow field charts of the biases (Figure 4). Visual 

inspection suggests that the bias fields are very similar for the three conditions containing 

walls that look like boundaries, but that the bias field is not the same for cones. The bias field 

in cones converges near the center of the target area, but the bias fields converge further 

towards the back wall in the other conditions.    

 

Figure 4: Biases by Condition. The blue lines are the walls and the orange circles are the 
traffic cones. The red dashed line is the edge of the target area. For each arrow, responses 

nearest its base had a bias (mean signed error) as indicated by the direction and magnitude of 
the arrow.  

 

To formally test for differences in bias across conditions, we calculated the bias for 

each participant. The method assumes that a single point, the bias point, attracts responses 

towards itself with a certain weight. This is like a simple model of gravity attracting small 

Biases: Plywood Biases: Pass Through

Biases: Pass Over Biases: Cones
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objects into a gravitational well. To be more specific, we fit three parameters: the bias point’s 

x value (Bx), the bias point’s y value (By), and the weight given to the bias point (WB). To 

give an example of the relevant calculations, if we present a target at (1, 1) and place the bias 

point at (0, 0) with a weight of 20%, then we would most expect a response at (0.8, 0.8) since 

that is 20% of the way towards (0, 0) from (1, 1). Fitting this involved minimizing the 

squared distance between the observed responses and the expected responses after displacing 

the targets towards the bias point. This is captured by the equation 

∑ ������� �����	 
 ����
�

� ������ ����	 
 ���
�

�

���    (1) 

where n is the number of trials, WT is the weight given to the target, WB is the weight given 

to the bias point, Tx is the target on the x-axis, Ty is the target on the y-axis, Rx is the 

response on the x-axis, and Ry is the response on the y-axis, with WT + WB = 1, 0 < WT < 1, 0 

< WB < 1, -2 < Bx < 2, and -2 < By < 2. The minimum of Equation 1 was found, fitting the 

three parameters Bx, By, WB (x- and y-positions of the bias point and weight given to the 

bias). This further allowed us to calculate the residual error as a fourth outcome, which 

captures the parsed precision. To continue using the example, if we observed a response at 

(0.7, 0.8), that would be a residual error of 0.1, since we most expected the response to 

appear at (0.8, 0.8) after the bias adjustment. Residual error was calculated for all trials and 

then averaged within each participant. We also checked the correlation of the responses along 

the two axes, which was only r(11,512) = 0.016, confirming that it is appropriate to treat the 

two axes as independent.    

The four parameters obtained by fitting (Bx, By, and WB related to the bias; the 

residual error, a measure of precision) were compared across conditions. Each was submitted 

to an ANOVA as above. There were no significant effects of being a boundary on any of the 

four parameters. 95% bootstrapping intervals on η2 reached 0.068 at the highest. In contrast, 

looking like a boundary had significant effects on the bias’s y-axis placement (By) and the 
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bias’s weight (WB; Figure 5, Table 3). These effects were driven by the cones condition 

having a higher bias weight and placing the bias at a lower point on the y-axis (down in 

figures; see Figure 4). In summary, the pattern of responses was somewhat different for cones 

than the other conditions, biasing responses to a different place in the space and giving that 

bias some additional weight. This formally confirms that the differences in Figure 4 are 

statistically significant. However, we found no evidence that behaviour was different in 

plywood versus pass through or pass over – see also the 95% confidence intervals in Figure 

5. This does not provide any evidence for an effect of looking like a boundary.   

 

Figure 5: Average Fitted Values by Condition. There was a significant effect only on the bias 
point’s weight (WB) and placement along the y-axis (By). This was driven by differences 

between the cones condition (far right) and pass through/over (middle two). In other words, it 
is due to looking like a boundary but not due to being a (physical) boundary. Looking just at 

the three conditions with wall-like items, the 95% confidence intervals all overlap within 
each of the four outcomes. For example, a 20% bias weight is within the confidence intervals 
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for plywood, pass through, and pass over. 
*** p < .001; ** p < .01 

 
An alternative model-based version of this analysis was also performed, detailed in 

Appendix A. This analysis used Deviance Information Criterion (DIC), which can select 

simpler models over more complex ones on the basis of predicting future data accurately 

(Spiegelhalter, Best, Carlin, & van der Linde, 2002). In that analysis, a model with no 

difference between plywood, pass through, and pass over was preferred over one that 

includes a difference between plywood versus pass over and pass through. In other words, we 

did not just fail to find an effect of being a (physical) boundary, but found a positive reason to 

leave an effect of being a boundary out of the model.  

A few additional results are not particularly useful for deciding among our hypotheses 

but still show that the task is a sensible measure of spatial cognition (Figure 6). For these, we 

worked with the raw error (the absolute distance between target and response; not the residual 

error as above). For each participant, an unstandardized beta coefficient was calculated with 

absolute rotation as the predictor variable and raw error as the outcome. The average beta 

value was significantly above zero, t(79) = 11.65, p < .001, mean of .0016 meters per degree. 

In other words, being displaced further led to higher error. This is in line with well-

established advantages for spatial recall from similar versus different viewpoints (e.g. King, 

Burgess, Hartley, Vargha-Khadem, & O’Keefe, 2002). Average raw error was also lower for 

walking to the target than pointing to it, t(79) = 3.55, p < .001, Cohen’s d = 0.40, perhaps 

because moving gives access to additional viewpoints of the space. Average raw error also 

varied by block number, F(3, 319) = 6.66, p < .001, eta squared η2 = .06. This appears to just 

be an ordinary learning effect, with lower average error in later blocks. 
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Figure 6: Additional Effects on Raw Error (without bias correction). Average raw error 
decreased as participants practiced the task. Walking to the targets was slightly easier than 
pointing to them, perhaps due to exposure to additional viewpoints. As expected, a smaller 
absolute rotation (i.e. a shorter displacement and smaller change in viewpoint) tended to 

result in lower raw error. All three main effects presented here are statistically significant at p 
< .001. While these effects do not specifically decide among our hypotheses, they do suggest 

that the task was functioning normally as a spatial cognition task.  
 

Discussion 

Participants were given a typical spatial cognition task, indicating where a 

remembered target was from a new viewpoint. The design dissociated whether the 

environments contained physical boundaries and whether the environments had items that 

looked like boundaries (Figure 1; Table 1 and 2). We found zero significant effects of being a 

boundary across the five different analyses performed. The highest 95% confidence interval 

on η2 suggested that being a boundary could only explain up to 6.8% of the variance. 

However, we found two significant effects of looking like a boundary, which shifted the bias 

in the environment and gave the bias more weight. DIC results (in Appendix A) agree, 

suggesting that the best model excludes an effect of being a boundary. As a whole, this 

suggests that an item’s appearance is largely driving the observed effects when typical 

boundaries and non-boundaries lead to different patterns of responses in a spatial cognition 

task. When we compared experimental conditions that were visually identical, but where one 

condition contained an item that was a physical boundary and the other condition did not, 

confidence intervals were small and no effects were significant.  
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It might also be valuable to view this set of results from another perspective. In the 

usual design for an experiment on this topic, we would compare typical boundaries versus 

typical landmarks in terms of a spatial cognition measure. We included that comparison in a 

subset of the conditions used here. The plywood condition contained typical boundaries and 

the cones condition contained typical landmarks. When comparing those two conditions, we 

observed a clear difference in the outcome measure. This is in line with a variety of similar 

previous results (Doeller & Burgess, 2008; Keinath et al., 2017; Lee, 2017). In addition, we 

also added two control conditions (pass over/through). These conditions did not contain 

boundaries, like cones, but did have items that looked like boundaries, like plywood. 

Resulting behaviour was much more similar to plywood than cones. This emphasizes the 

importance of looking like a boundary over being a boundary. This also converges with a 

previous report on social boundaries, which were not found to affect spatial cognition 

differently than visually-identical non-boundaries (McNamara, 1986).  

We no longer have to rely entirely on evidence from experiments with visual 

confounds to make conclusions about the effects of boundaries. We can now create and 

evaluate theory on the basis of observing what happens when two conditions are physically 

different but visually identical. The results fit a theory that focuses on the presence of visually 

extended 3D surfaces (Lee, 2017; Lee & Spelke, 2011), a visual aspect of looking like a 

boundary. Under this theory, all three conditions with walls visually presented a visually 

extended 3D surface, so it is expected that spatial coding would be the same. The cones lack 

such a surface, so it is expected that coding would differ from the other conditions.   

A rational or Bayesian account of spatial cognition (Twyman, Holden, & Newcombe, 

2018; Xu, Regier, & Newcombe, 2017) can also explain some critical features of the data. 

Biases in the cones condition shifted more towards the center of the target area. Responses 

near the center remove the possibility of making the largest possible errors (it is not possible 
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to make an error larger than the radius of the target area). The traffic cones are likely to be 

more difficult to use for spatial encoding, and thus memory noise might be very high (Mou & 

Zhou, 2013), leading rationally to the bias towards the center to compensate. However, it is 

much less clear what rational purpose the bias towards the back wall would serve in the other 

conditions.  

A domain-general account using learning theory could also explain the present data 

(Pearce, 2009). Under this kind of account, the three conditions with walls all provide the 

same visual features to associate a target with. No effect of different wall types is expected. 

In contrast, the cones provide fewer points through the space for association and might be 

less visually salient (Kosaki et al., 2013). Therefore, an effect of walls versus cones is 

expected.  

These results are much more difficult to accommodate under a theory that places 

special focus on (physical) boundaries, disregarding how they look (Doeller & Burgess, 

2008; Gallistel, 2017). Doeller and Burgess (2008) defined a boundary as an obstacle that 

subtends a large horizontal angle at the animal. They varied one of the visual confounds in 

their study (tripling the height of the landmarks in one condition), which did not affect the 

pattern of results. Gallistel (2017) defined a boundary as an object with an impact on what is 

navigable, without reference to visual features. Both concluded a special role for boundaries. 

Under these theories, we would expect the plywood boundaries here to be selectively 

involved in the formation of a ‘cognitive map’ in the hippocampus (Doeller et al., 2008), 

leading to large effects on how (or even if) locations are encoded (Gallistel, 2017). Instead, it 

fits the current data better to posit that both boundaries and non-boundaries alike have access 

to this system when they are visually identical.  

While this helps identify the mechanism by which typical boundaries have special 

effects, it does not diminish how important these special effects can be in everyday life. In the 
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last ten years, many articles have explored the neural mechanisms that rely heavily on typical 

boundaries to organize the way they represent space (Batty et al., 2010; Doeller et al., 2008; 

Ferrara & Park, 2016; Julian, Ryan, Hamilton, & Epstein, 2016; Keinath et al., 2017; Lee et 

al., 2018; Lescroart & Gallant, 2018; Lever et al., 2009). These patterns of coding and their 

special relation to typical boundaries are crucial to a full understanding of how humans and 

other mammals process the space around themselves.  

Potential Limitations 

At first, ‘teleporting’ participants between encoding and recall may seem like a 

weakness of the present study, as this may damage their sense that the (physical) boundaries 

were real boundaries. However, participants did not view the testing room and did not 

attempt to touch the boundaries again. This means that they did not have any reason to 

believe the boundaries were not still real. For this to be an issue, disorientation itself would 

have to make participants think that nearby objects will have changed in terms of their ability 

to block navigation. Further, a disorientation procedure actually prompts the particular use of 

typical boundaries in recovering orientation and hippocampal coding (Cheng et al., 2013; 

Hermer & Spelke, 1994; Keinath et al., 2017; Lee, 2017). In addition, the lack of such a 

procedure would allow the task to be solved through dead reckoning without attending to any 

objects in the environment (McNaughton, Chen, & Markus, 1991). Taken together, this 

means that a ‘teleporting’ procedure is the most appropriate way to examine any potential 

effects of being a boundary.  

Beyond the specific choice to virtually ‘teleport’ participants, there might also be 

more general concerns regarding the use of immersive virtual reality. This can be a weakness 

in some designs, but not the present study. The fidelity of immersive virtual reality 

simulations for studying spatial cognition has undergone extensive examination, far more 

than most Psychology methods, often uncovering systematic linear underestimation of 
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egocentric distances (Renner, Velichkovsky, & Helmert, 2013). However, this effect is 

generally attenuated greatly, if not eliminated, by a “walking intervention” (i.e. short 

experience moving through the space via walking), which our participants had. It is also a 

much smaller concern for modern head-mounted displays (Kelly, Cherep, & Siegel, 2017) 

like the one used here. Several complex spatial effects have been shown to be the same in 

immersive virtual reality and real stimuli (Kelly, Avraamides, & Loomis, 2007; Kelly & 

McNamara, 2008; Negen, Heywood-Everett, Roome, & Nardini, 2018; Negen & Nardini, 

2015; Williams, Narasimham, Westerman, Rieser, & Bodenheimer, 2007). In terms of 

boundaries specifically in immersive virtual reality, participants go to great effort to avoid 

striking things that look like boundaries even when participants know the items are not 

boundaries (Fink, Foo, & Warren, 2007), with their paths in novel virtual reality 

environments being very closely predicted (R2 > .95) by parameters gathered in dissimilar 

real environments. More troubling issues may be present when using desktop virtual reality 

instead of immersive virtual reality, yet even that approach captures individual differences 

that are also seen in the same participants in real environments (Richardson, Montello, & 

Hegarty, 1999). Perhaps even more to the point for the present study, the crucial difference 

between the plywood vs. the pass through and pass over conditions was not delivered through 

VR at all – it was a real difference between the subject’s real hand touching a piece of real 

plywood or not.  

Future Work 

A large-scale study where several different visual item parameters are manipulated 

systematically might be an invaluable resource in clarifying the precise visual mechanisms 

that were studied here. For example, one might hypothesize that vertical extent is the reason 

why behaviour differed between cones and pass through, but this might make take several 

forms. There might be a strong discontinuity in the effects due to vertical extent (items may 
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change semantically from a ‘line’ to a ‘kerb’). There might be a smooth function. The precise 

effects of different visual parameters could and should be characterized to gain a full model 

of how spatial memory is affected by different environments.  

Conclusion 

Experiencing that an item is a (physical) boundary, independent of how much it looks 

like a typical boundary, does not directly affect adult participants’ coding of the locations 

around it. In contrast, non-boundaries that vary in how they look can lead to substantial 

differences in the pattern of responses. This is the clearest evidence to date that the typical 

boundaries in natural scenes have their particular effects on spatial cognition because of 

visual aspects such as horizontal extent, the presence of a visually extended 3D surface, or 

large-scale structure – not because they limit navigation.  
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Appendix A 

This appendix narrates and then details a DIC version of the main analysis. We 

modelled these data in a way where each person has a specific point that their responses are 

biased towards by a certain strength, corrupted by random memory noise. Based on Figure 6, 

the model also features a term for the rotation amount and the block number to influence 

precision. We can then use Deviance Information Criterion (Spiegelhalter et al., 2002) to 

assess how different nominal groupings of the different conditions affects the predictive value 

of the model (i.e. to test for/against differences between conditions). For example, DIC 

should improve when we collapse the pass over and pass through conditions if their relevant 

parameters are actually quite similar, since it means that more data can be used to predict 

future participants in either condition. In contrast, DIC should worsen if they are actually 

dissimilar, since it would then be more accurate to just use each condition’s separate data to 

predict future participants.  

Model Analyses 

The description of our formal model-based analysis proceeds in four stages. First, we 

describe the model (a typical model of Bayesian reasoning with a prior and likelihood using 

bivariate normal distributions and additive precision) in a way that is designed to help the 

reader gain an intuition of how it functions. Second, we state the main result. Third, we look 

at the posterior distributions of the model to see what is driving the main result. Fourth, full 

formal details are provided. 

Model description. After a target is shown (Figure A1, left panel) and removed, its 

memory trace degrades during the ‘teleportation’. By the time recall is occurring, the memory 

trace (Figure A1, middle panel) is a draw from a bivariate Gaussian with the target as the 

mean. In addition to the trace, there is a prior distribution that the participant is using. With 
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their relative precisions used as weights, the prior’s center and the memory trace are averaged 

to determine the response (Figure A1, right panel).  

 

Figure A1. An example trial of how the model works. The memory trace of the target in the 
left panel degrades over the ‘teleport’ to the place in the middle panel. The participant then 

takes a weighted average of their memory (green dot) and their subjective prior (black dot) to 
determine the response (orange dot) in the right panel.   

This model therefore has four parameters per participant: the prior’s center on the x-

axis (Prior X), the prior’s center on the z-axis (“forwards” for the participant standing in the 

encoding circle; Prior Z), the precision of the memory traces (Memory Tau), and the 

precision of the prior distribution (Prior Tau). The bias they show is determined by the 

prior’s center (where they show a bias towards) and by the prior precision (how strong that 

bias is). Their memory precision is generally the precision of interest, controlled directly by 

Memory Tau, but the overall precision of their responses is additively determined by the 

memory precision and the prior precision.  

It is worth noting that the mathematical mechanics involved in this model can be re-

framed equally as a bias existing towards a certain point with a certain strength, trading off 

against their memory and their confidence in that memory. It could also possibly be framed 

as over- or under-representation of equal portions of the space. We do not have the data to 

verify the extensive predictions that come along with assuming fully optimal Bayesian 

reasoning.  
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The rest of the model then assumes that individuals, with their four individual-level 

parameters, are drawn from a condition-level distribution with two parameters per individual-

level parameter: one for the mean value within the condition (Prior X Mean, Prior Z Mean, 

Memory Tau Mean, Prior Tau Mean), and another for the spread (Prior X Tau, Prior Z Tau) 

or the shape/spread of the Gamma distribution that they are drawn from (Memory Tau Alpha, 

and Prior Tau Alpha). The posterior fitting process flows in both directions, with the 

condition-level distributions responding to individual-level parameters and vice versa.  

We also created a version to look for interaction effects. In this version, each 

participant has a separate Prior X and Prior Z parameter for walking and pointing, but they 

are correlated in a bivariate normal. The Memory Tau and Prior Tau parameters are replaced 

by their logarithms, which are given the same treatment: separate but correlated across 

modalities.  

Main result. The main result is that the Deviance Information Criterion (DIC; see 

Table A1) is best when grouping the conditions with walls together into one nominal 

condition with the same group-level parameters and keeping the cones condition separate, 

while also keeping the pointing and walking trials together within conditions (second row to 

the bottom, highlighted). This is the best DIC by a margin of 30 (49 below baseline model, 

whereas the next best is 19 below). For calibration, imagine two models with the same 

number of effective parameters. If one fits the data 150 times worse on average, that one will 

have a mean deviance and thus DIC that is higher by 10. DIC also has an explicit penalty for 

model complexity in units of deviance. The selected model has the lowest (best) DIC for a 

combination of both reasons, having the best average fit (by 11) and the second-smallest 

complexity penalty (smallest was the model with no effect of condition whatsoever).  
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Table A1. DIC Results. 
Condition Groupings Interpretation Mean  

Deviance 
pv DIC 

1 = Plywood, 
2 = Pass Through, 
3 = Pass Over, 
4 = Cones 

(Full Effects Baseline) 
Every condition 
difference matters 

28,051 427 28,478 
(+/-0) 

1 = {Plywood, Pass 
Through, Pass Over, 
Cones} 

(Null Effects) No 
condition difference 
matters 

28,133 391 28,523 
(+45) 

1 = Plywood, 
2 = {Pass Through, Pass 
Over}, 
3 = Cones 

Both boundary status and 
visual covariates matter 

28,052 422 28,474 
(-4) 

1 = Plywood, 
2 = {Pass Through, Pass 
Over, Cones} 

Boundary status matters, 
but not visual covariates 

28,044 415 28,459 
(-19) 

1 = {Plywood, Pass 
Through, Pass Over} 
2 = Cones 

Visual covariates matter, 
but not boundary status 

28,033 396 28,429 
(-49) 

1 = {Plywood, Pass 
Through, Pass Over, 
Cones} but with separate 
correlated parameters for 
walking and pointing 

Separation of parameters 
by response modality 
(potential interaction 
effects)* 

32,189 3,147,591 
 

3,179,779 
(+3x106) 

*Note: for brevity, other groupings are omitted for the interaction effects, but they were all 
worse by margins are that functionally infinite (mean deviance up by >6,000, total DIC up by 
millions).  

This favors an interpretation that visual covariates matter, but not true boundary 

status. More formally, it suggests that the best way to predict future data is to use all the 

recorded participants from the plywood, pass over and pass through conditions together to 

predict the performance of a new participant in any of those three conditions, but to only use 

the recorded cones data to predict the performance of a new participant in the cones 

condition. Note that this is the version where walking and pointing are kept together; all 

models that separated these suffered an enormous complexity penalty for nearly doubling the 

number of nominal parameters, but did not gain anything notable in terms of mean deviance.  

Posterior distributions. What is driving the differences in DIC? An examination of 

the posterior distributions (Figure A2, cones in purple) using the full effects baseline model 

shows three places where the cones condition diverges from the rest to a notable degree: the 
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average center of the inferred prior on the z axis is lower for the cones condition than the 

other conditions, the mean precision of the inferred prior is higher, and the mean precision of 

their memory is lower. In other words, on average, the biases they showed were pulled 

towards a different place (nearer the encoding point), and pulled there stronger, plus they had 

lower precision (more noise) in their memory of locations in the task.  

 

Figure A2. Posterior distributions for the four different conditions over the eight condition-
level parameters. The differences in the cones (purple) condition explain how that condition 
differed and why DIC was lowest when grouping the others together. All units are in meters.  

To make the bias difference easier to visualize, we also plot a 95% credible region 

around the mean prior point for each condition in Figure A3. Compare with the descriptive 

Figure 4 above to see that these fits are sensible. This is interesting because the cones fit is 

both quantitatively and qualitatively different. Since it is near the center of the actual area 
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where the targets appear, it might reflect a default strategy of pointing near the center to 

minimize error when memory is not trustworthy.  

 

Figure A3. Visualization of the different prior centers on average over participants in each 
condition. Each ellipse represents a 95% credible region.  

In contrast to the cones, the plywood condition is not clearly separated from the other 

two conditions with walls on any condition-level parameter. It is perhaps closest to showing a 

difference with the pass through and pass over conditions in terms of the Prior Z Tau 

parameter, which is somewhat awkward to interpret even if we ignore the overall DIC results; 

it would mean that participants in that condition were more consistent in where they placed 

the center of the prior on the z axis (but not the x axis, and arriving at the same mean 

placement).  

For completeness, we also report that the mean posterior Rotation Beta was -.006 

(95% Credible Interval: -.0064 to -.0056), suggesting that a trial where participants were 

rotated to the far side had 2.94 times the precision (about 58% of the standard deviation) of 

trials where they did not rotate at all. The effects of the blocks, in order, were 0 (fixed), 0.22 

(0.16 to 0.28), 0.40 (0.34 to 0.46), and 0.38 (0.33 to 0.44). For reference, a value of 0.40 

translates to 49% more precision (82% of the standard deviation).  

Formal details  

This section gives a full formal description of the model that was applied to the data.  
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The model has 4 global parameters, 8 condition-level parameters per condition, and 4 

individual-level parameters per participant.  

• Rotation_Beta (global) controls how much rotating a participant (i.e. how far away the 

recall viewpoint was from the encoding viewpoint) affects the precision of their 

memory. It was given a prior of a normal distribution with mean 0 and precision 0.01.  

• Block_Beta[2-4] (global) control how much a trial existing in blocks 2-4 affects the 

precision of memory. They were given priors of normal distributions with mean 0 and 

precision 0.01. A trial in block 1 has this set to 0, which does not affect precision, as a 

way of identifying the model.  

• Prior_X_Mean (condition) is the center of the condition-level distribution of the priors’ 

x-axis values. It was given a normal prior with mean 0 and precision 0.01.  

• Prior_X_Tau (condition) is the precision of the condition-level distribution of the 

priors’ x-axis values. It was given an exponential prior with rate of 0.01. 

• Prior_Z_Mean and Prior_Z_Tau (condition) are the same as the X-axis parameters 

above, except on the Z axis.  

• Memory_Tau_Alpha (condition) controls the shape of the gamma distribution from 

which individual memory precisions are drawn for participants in that condition. It was 

given an exponential prior with a rate of 0.01.  

• Memory_Tau_Beta (condition) controls the rate of the gamma distribution from which 

individual memory precisions are drawn for participants in that condition. It also has a 

prior distribution of an exponential with rate of 0.01.  

• Prior_Tau_Alpha and Prior_Tau_Beta (condition) are the same as just above but for the 

precision of the prior for that participant in that condition.  
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• Prior_X and Prior_Z (individual) together encode the center point of each participant’s 

inferred prior. Prior_X is drawn from Normal(Prior_X_Mean, Prior_X_Tau -1/2) and the 

same form for the Prior_Z.  

• Memory_Tau and Prior_Tau (individual) together encode the precision of the 

participant’s memory for a trial with 90 degree absolute rotation in block 1, and the 

precision of the inferred prior. Memory_tau is drawn from a gamma distribution with 

shape Memory_Tau_Alpha and rate Memory_Tau_Beta, and the same form for 

Prior_Tau.  

For a given pair of target and response, we then assume that a response is drawn from 

a bivariate normal with calculated (non-stochastic) parameters for the means and standard 

deviation, assuming the covariances to be zero and the standard deviation to be the same in 

both axes.  

The standard deviation is the total precision to the power of negative one half. The 

total precision has two additive components. The first is the prior precision. The second is the 

memory precision, which is Memory_Tau for that participant times 

exp(Rotation_Beta*abs(90-Rotation)) times exp(Block_Beta[Block]).  

The mean is a weighted average between the target’s location and the prior’s center. 

The weight for the target’s location is calculated by dividing the memory precision by the 

total precision. The weight for the prior’s center is calculated by dividing the prior precision 

by the total precision. This is done in both axes.  

This model purposefully makes several omissions that we can now explain. There is 

no explicit correlation between responses within the same trial. This was driven empirically, 

as Pearson’s r values between the (response-target) values were relatively low within the 

same trial, between -0.05 and 0.25. We also saw that the model’s assumption structure 
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provide certain kinds of similarity between responses on the same trial anyway, such as a 

common total precision, as they all share the same parameters.   

The model also omits different effects of block or rotation by condition. This was 

done for two reasons. First, because we wanted to have a model where the response 

modalities were separated into different conditions. Having these effects vary by condition 

would then become much less stable, as participants only completed two block numbers in 

each response modality. Second, we did not have any a priori reason to think they would vary 

by condition.  

 The interaction model replaced Memory_Tau and Prior_Tau with the logarithms, 

then made each participant-level parameter subject to a bivariate normal distribution 

separated by response modality. The priors were a conjugate normal-wishart model: means of 

zero for the means, precisions of .01 for the means, zero correlation in the priors over means, 

and a wishart distribution with a rank of 2 and an identity matrix for omega.  

Below is the precise WinBUGS Code used for the main model: 

model{ 

for (i in 1:nConditions){ 

    CenterXMean[i] ~ dnorm(0,.01) 

    CenterXTau[i] ~ dexp(.01) 

    CenterZMean[i] ~ dnorm(0,.01) 

    CenterZTau[i] ~ dexp(.01) 

    TauAlpha[i] ~ dexp(.01) 

    TauBeta[i] ~ dexp(.01)  

    TauMean[i] <- TauAlpha[i] / TauBeta[i] 

    PriorTauAlpha[i] ~ dexp(.01) 

    PriorTauBeta[i] ~ dexp(.01) 

    PriorTauMean[i] <- PriorTauAlpha[i] / PriorTauBeta[i] 

} 

TauBlockEffect1 <- 0 

TauBlockEffect2 ~ dnorm(0,.01) 

TauBlockEffect3 ~ dnorm(0,.01) 

TauBlockEffect4 ~ dnorm(0,.01) 

TauBlockEffect[1] <- TauBlockEffect1 

TauBlockEffect[2] <- TauBlockEffect2 

TauBlockEffect[3] <- TauBlockEffect3 

TauBlockEffect[4] <- TauBlockEffect4 

TauRotationEffect ~ dnorm(0,.01) 
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for (i in 1:80){ 

    CenterX[i] ~  dnorm(CenterXMean[ConditionByParticipant[i]],   

CenterXTau[ConditionByParticipant[i]]) 

    CenterZ[i] ~  dnorm(CenterZMean[ConditionByParticipant[i]],   

CenterZTau[ConditionByParticipant[i]]) 

    Tau[i] ~      dgamma(TauAlpha[ConditionByParticipant[i]],     

TauBeta[ConditionByParticipant[i]]) 

    PriorTau[i] ~ 

dgamma(PriorTauAlpha[ConditionByParticipant[i]],PriorTauBeta[ConditionByP

articipant[i]]) 

} 

  

for (i in 1:N){ 

    TauTrialPerception[i] <- Tau[Participant[i]] * exp(TauBlockEffect[Block[i]]) * 

exp(TauRotationEffect * Rotation[i]) 

    Weight[i,1] <- TauTrialPerception[i]    / (TauTrialPerception[i] + 

PriorTau[Participant[i]]) 

    Weight[i,2] <- PriorTau[Participant[i]] / (TauTrialPerception[i] + 

PriorTau[Participant[i]]) 

    muX[i] <- Weight[i,1] * XTar[i] + Weight[i,2] * CenterX[Participant[i]] 

    muZ[i] <- Weight[i,1] * ZTar[i] + Weight[i,2] * CenterZ[Participant[i]] 

    TauTrial[i] <- TauTrialPerception[i]+PriorTau[Participant[i]] 

    XRes[i] ~ dnorm(muX[i],TauTrial[i]) 

    ZRes[i] ~ dnorm(muZ[i],TauTrial[i]) 

} 

  

} 
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