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Abstract

In order to describe how humans represent meaning in the brain, one must be able to account for
not just concrete words but, critically, also abstract words which lack a physical referent. Hebbian
formalism and optimization are basic principles of brain function, and they provide an appealing
approach for modeling word meanings based on word co-occurrences. Here, we built a model of the
semantic space based on word statistics in a large text corpus, which was able to decode items from
brain signals. In themodel, word abstractness emerged from the statistical regularities of the language
environment. This salient property of the model co-varied, at 280–420 ms after word presentation,
with activity in the left-hemisphere frontal, anterior temporal and superior parietal cortex that have
been linked with processing of abstract words. In light of these results, we propose that the neural
encoding of word meanings is importantly grounded in language through statistical regularities.
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Introduction

Understanding abstract and concrete concepts is a fundamental as-
pect of human language that enables us to discuss matters ranging
from everyday objects to fantastic stories of fiction. A common
view is that word meanings are grounded in experiences with the
world [1–4]. For example, the word ‘tomato’ is linked with the look,
feel and taste of a tomato. This view of lexical semantics assert
that these types of physical associations form the building blocks
of how words are encoded in the brain. However, the grounding
framework fails to account for abstract words, which lack physical
referents and, in many cases an emotion or an internal state to which
the word meaning can be grounded. This issue can be overcome,
if word meanings can also be grounded in the experience of lan-
guage. In this conceptualization, representations of both concrete
and abstract words will mirror, not merely physical, but any regu-
larities in the environment. We address this question starting from
the framework of statistical self-organization of the semantic space
and aim to demonstrate that both concrete and abstract words can
be represented in the brain based on their statistical properties that
emerge directly from natural language.

Computational models of in the field of natural language process-
ing (NLP) have demonstrated that a distributed representation of
word meanings can be derived from the context in which the words
are used. The core idea of these models is to find an optimal decom-
position of semantics that can represent each unique concept without
excessive use of memory or processing effort. Statistical regularities
in the training data (typically a large text corpus) will drive the orga-
nization of the semantic space, wherein categorical structures, such
as that of abstract and concrete words, can emerge [5]. These mod-
els rely on the same general computational principles that underlie
brain function, namely Hebbian learning [6] and basic principles of

optimization [7, 8]. If we further assume that a large text corpus is
a fair estimate of the natural language environment that our brains
are immersed in, a statistical model of a text corpus could serve
as a reasonable approximation of the organizational principles of
word meanings also at the level of the brain. In this framework,
statistical regularities in the language environment are mirrored in
the semantic space of the brain, and neural representations of both
abstract and concrete words are thus formed by the same general
computational principles.
Systematic patterns in the language environment can give rise

to qualitative differences in the way concrete and abstract words
are represented or processed, even if those word types share the
same organizational principles. Behaviorally, concrete words elicit
faster reaction times than abstract words [9]. Patient data suggest
a double dissociation between abstract and concrete word types as
either one may be selectively impaired [10, 11]. Furthermore, nu-
merous neuroimaging studies have shown that processing of abstract
and concrete words activate brain areas differently [12]. Gener-
ally, processing of abstract words (nouns in particular) activates
classical language areas, such as the inferior frontal gyrus and the
middle/superior temporal gyrus, more strongly than processing of
concrete words. In contrast, concrete words seem to activate the pos-
terior cingulate, precuneus, fusiform gyrus, and parahippocampal
gyrus more strongly than abstract words (ibid). Electrophysiologi-
cal evidence reports stronger and longer-lasting neural response for
concrete than abstract words at around 400 ms after word onset [13,
14].

Here we will show that it is possible to explain cortical activation
to a wide selection of abstract and concrete words using a model
derived only from the statistical relationships among words in our
natural language, without summoning qualitative differences in the
acquisition of the words. A conceptually straightforward and com-
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Figure 1: Self-organizing map of the Statistical model. The map is modeled on the surface of a toroid (A), with a continuous network of the
nodes. For visualization, the toroid is “cut” and unfolded into a two-dimensional sheet (B). The size of the each word denotes the distance to
the node center (the larger the font, the closer to the node center the word lies) and the color the predefined class of the stimulus words. The
grouping of the words in a SOM should be interpreted based on the size of the clusters and the relationship between a particular grouping and
other groups. The exact position of a word on a SOM visualization is generally not informative.

putationally explicit model is used to describe emergent categorical
organization and the way in which the meaning of words can be
represented in the brain. We focus on the emergent properties that
arise through self-organization (self-organizing map [15], SOM) in
an artificial neural network model of the language environment [16],
and use magnetoencephalography (MEG) to examine whether this
structure is mirrored in brain activity during word reading.

Results
The Statistical model of word meanings was built by applying the
Word2vec algorithm to a large text corpus of the Finnish internet.
The algorithm was developed in the field of natural language pro-
cessing [16, 17], and it bases its notion of semantic similarity on the
principle that two words are similar if they occur within a similar
linguistic context, even if they never directly co-occur. Word2vec
will discover thematic relationships (bear – zoo), i.e., concepts that
either serve complementary roles or that co-occur in common situa-
tions, locations and/or times, but do not necessarily share perceptual
or functional characteristics [18, 19].
In order to assess the internal structure and emergent proper-

ties of the Statistical model, we visualized the relationships among
118 MEG stimulus words (59 abstract and 59 concrete nouns) us-
ing an unsupervised SOM [15, 20]. This method provides a two-
dimensional representation of the distances from each word to all
other words in the semantic model.
The SOM visualization of the corpus-derived Statistical model

(see Figure 1) revealed a clear division between abstract and concrete
words. The abstract words (e.g., freedom, ideology, democracy)
group together and are distinct from the concrete words (e.g., cas-
tle, tower, bridge). Notably, the words rated as medium abstract

(e.g., music, song, poem) indeed appear to be situated between the
concrete and highly abstract words in the Statistical model. The
map also shows that the organizational principle of the concrete
words does not strictly align with the six a priori defined taxonomic
categories. For example, the words in the Human character category
(e.g., police, prisoner) are interleaved with words classified as be-
longing to Building (e.g., prison) in a manner that seems to capture a
thematic association. Only the taxonomic categories Body parts and
Objects appeared as clearly distinct groups in the Statistical model.

To determine whether the information in the Statistical model is
mirrored in the brain activity during word reading, the activation
evoked by each word was measured with MEG from 20 volunteer
participants. The participants read the words, which were presented
one at the time in a random order and repeated 20 times each over
the course of the experiment. Evoked responses were formed by
averaging the neural response across the 20 presentations of each
stimulus word, for epochs starting −200 ms before word onset until
1000 ms after it.

An item-level decoding algorithm [21] was used to evaluate how
well the corpus-derived Statistical model serves as a model of brain-
level organization of word representations. This supervised machine-
learning model tries to find an optimal linear mapping between the
MEG data (204 sensors × 40 time bins) for each stimulus word
and the corresponding feature decomposition of the word from the
Statistical model [22]. The success of the machine-learning model is
evaluated using a leave-two-out cross-validation scheme, i.e., asking
the model to distinguish between two words that it had not previously
encountered (116 words used to train the model, 2 words left out
for testing, all permutations). The left-out words were successfully
discriminated in the majority of participants (15/20 participants),
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Figure 2: Item-level decoding accuracy. The box plot on the left shows
the quartiles and the variation in the group performance (percent of
successful decoding across all item-set permutations). On the right
are the individual scores of each participant. The accuracy scores
above 60 % were deemed statistically significantly above the chance
level based on a permutation test.

with a mean prediction accuracy across all participants at 63.6 %
(s.d. 7.5) and a top score of 77.8 % (Figure 2). The adjusted chance
level was determined statistically to be 60.1 % (p < 0.05). The algo-
rithm was thus able to find a mapping between the brain data and the
Statistical model, which implies that the information encoded in the
Statistical model is correlated with the information in the brain sig-
nal. A breakdown of the item pairs used in the evaluation showed no
between-category advantage compared to within-category compar-
isons, indicating that the decoding accuracywas not merely driven by
the categorical structure of the stimulus words (see Supplementary
Figure S1).
We proceeded to investigate when and where the information

expressed in the Statistical model is manifested in brain activation
by using representational similarity analysis [23] (RSA) between
the MEG data and the semantic decompositions provided by the
Statistical model (Figure 3A). The RSA aims to discover time bins
and cortical regions where the variation in the source estimate of the
MEG signal is similar to the variation in the model. To determine
associations that are consistent across the 20 participants, the signif-
icance of the RSA maps was evaluated using a cluster permutation
test [24].

Based on the SOM analysis, the dominant organizational principle
of the Statistical model is the abstractness-concreteness dimension.
Therefore, to guide the interpretation of the RSA between the MEG
data and the Statistical model (henceforth, Statistical model RSA),
we additionally calculated a complementary RSA between the MEG
data and a model used to quantify only the abstractness – concrete-
ness dimension based on independently collected questionnaire data
(see Methods; henceforth, Abstractness model RSA). The question-
naire data (Abstractness model) clearly dissociated between con-
crete, medium abstract and highly abstract words (see dissimilarity
matrices in Figure 3B). The spatio-temporal overlap between the
Statistical model RSA and Abstractness model RSA (Figure 3A) sug-
gests that neural activity in the highlighted cortical regions contains
information incorporated in both model types. A large portion of

this information is related to the abstractness dimension, as shown
by the high correlation between the Abstractness model and the
Statistical model (Mantel test with Spearman’s ρ = 0.3, p < 0.001;
5000 permutations used). However, the RSA cannot distinguish if
the strength of brain activity is larger at one end of the spectrum (e.g.,
whether abstract words elicit greater brain activation than concrete
or vice versa).
The earliest neural response that was significantly correlated

with the Statistical model was observed in the left precentral gyrus
(280 ms to 340 ms), with activation subsequently extending across
large parts of the frontal cortex, including the left inferior frontal
gyrus (320 ms to 420 ms) and medial superior frontal cortex (320 ms
to 360 ms). Activity patterns in the left temporal cortex were also
significantly correlated with the Statistical model; first in the middle
part of the superior temporal cortex (280 ms to 340 ms), followed by
the medial (300 ms to 240 ms; 380 ms to 420 ms) and lateral parts
(320 ms to 420 ms) of the anterior temporal lobe.

There was substantial overlap between the Statistical model RSA
and the Abstractness model RSA starting from the inferior precentral
gyrus (300 ms and superior middle temporal cortex. In a later time
window, the overlap between the two RSA analyses in frontal lobe
extended to the inferior, middle, superior andmedial regions (320 ms
to 400 ms). The Statistical model RSA additionally found correlation
in the left precuneus and superior parietal cortex (280 ms to 340 ms)
that partially overlapped with correlations in these areas found in
the Abstractness model RSA.
The only areas highlighted uniquely by the Statistical model

RSA throughout the timeline were found in the right frontal cortex
(280 ms to 340 ms). Activity in the left posterior temporal cortex and
temporo-parietal junction (280 ms to 380 ms) was only significantly
correlated with the Abstractness model.

Discussion
We showed that abstract and concrete words self-organize into dis-
tinct groups based on their occurrence in different sentential contexts.
Notably, this categorical organization principle emerges through
basic principles of association and optimization of the statistical
information present in the language environment. The alignment
of words rated as medium abstract between the concrete and ab-
stract words in the semantic space suggests the abstract-concrete
distinction is a continuum.
The statistical properties of word meanings derived though co-

occurrences in the text corpus were successfully used to decode the
identity of written words based on their MEG responses, thereby
showing that a statistical model of semantics can be used to explain
the organization of word meanings in the brain. The main correla-
tions between brain activity and the Statistical model were found in
the left precentral, frontal and anterior temporal cortex as well as in
superior and medial parietal areas. We interpret the findings in light
of the complementary model that expresses the level of abstractness,
focusing on the brain areas revealed by both the Statistical model
RSA and the Abstractness model RSA.
The overlap discovered between the Statistical model RSA and

Abstractness model RSA is in line with the common finding that
processing of abstract words (nouns in particular) activates classi-
cal language areas, such as the inferior frontal gyrus and the mid-
dle/superior temporal gyrus, more strongly than processing of con-
crete words (for a meta-analysis, see [12]). The left inferior frontal
gyrus in particular, has been highlighted as an especially informative
area in decoding the abstract/concrete word class [25]. In the present
study, overlap between the two RSA maps was observed both in the
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Figure 3: Comparison of the Statistical model and Abstractness model. (A) Representational similarity analysis (RSA) between the Statistical
model and the MEG data (red) on the left and between the Abstratcness model and the MEG data (purple) on the right. The overlap between
the two RSAs is plotted in yellow. The results show all regions and time windows with statistically significant findings. For visualization
purposes, the data was averaged over 50 ms time windows. (B) Dissimilarity matrices of the Statistical model and the Abstractness model.
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inferior/superior left frontal cortex (320 ms to 420 ms) and in the
superior temporal cortex (300 ms to 340 ms). In previous studies,
more activity for abstract and concrete words in these areas was
interpreted to reflect greater engagement of the verbal system for
processing of abstract concepts [12]. It is therefore not surprising
that the information processed in this classical language area mir-
rors both the statistically derived categorical structure and especially
the abstract-concrete dimension. The present RSA findings further
suggest that the adjacent superior and medial parts of the frontal
cortex are also able to capture the abstractness dimension of word
meanings.
The present RSA results also identified areas that in previous

studies have shown stronger activation to concrete than abstract
words [12] or displayed strong linkage to item-specific semantics
of concrete words [26], namely the posterior cingulate, precuneus,
fusiform gyrus, and parahippocampal gyrus. In previous studies,
increased activation for concrete words has often been interpreted in
terms of grounding conceptual information to the perceptual system,
particularly in the ventral or dorsal visual processing streams [12,
27]. The present findings show that the patterns of activation in
these areas is also correlated with the Statistical model derived from
corpus data.

Furthermore, the Statistical model RSA and Abstractness model
RSA both revealed semantic encoding in the lateral and medial parts
of the anterior temporal lobe at 320 ms to 420 ms (including ventro-
medial regions). The anterior temporal cortex is well-known for its
role in both semantic dementia [28] and associative semantics [29].
In light of the associative nature of the statistical semantic model,
the present results support the notion that this region is in some
manner also linked with processing of word meanings through their
associative properties to other words.

A prominent overlap between the Statistical model RSA and Ab-
stractnessmodel RSAwas additionally observed in the left precentral
cortex (300 ms to 340 ms). This region has previously been linked
to category-specific semantic activation related to body parts and
shape [30]. Here we show that the activity pattern in this region also
aligns with the abstract-concrete structure in the Statistical model.
Self-organization of the semantic space provides an account for

how differences along the abstract-concrete dimension can arise. As-
suming that the neural representations of word meanings arise from
similar computational principles as the ones that govern the Statisti-
cal model, words that co-occur in the environment will also share
some aspects of their neural representation. This could lead to cate-
gorical groupings and thus explain the categorical differences that
have been found in previous experimental and clinical studies [12].
Most of the cortical areas discovered in the RSA analyses align

with classical language areas, outside of the primary motor or sen-
sory areas. This suggests that the abstractness dimension is more
than a mere reflection of direct sensory-motor associations, put
forward by some advocates of the embodied cognition view [1,
2]. This finding would explain why previous attempts at decod-
ing abstract words based on sensory-motor attributes have been
unsuccessful [31] whereas even a crude nominal categorical classi-
fication of the abstractness dimension seems to work [25]. When
using a more detailed description of the semantic space, such as the
present corpus-derived Statistical model, we were able to decode
MEG signals of individually presented written words; the written
modality has previously proven to be challenging even in categorical
classification of concrete words [32].
The choice of semantic model used to describe the semantic

space matters. Despite the marked overlap between the Statistical

model RSA and the Abstractness model RSA, several areas were
uniquely highlighted by only one of the models. This suggests
that the Statistical model does not capture all aspects of the abstract-
concrete dimension (or these aspectsmay remain below the statistical
significance threshold). Similarly, while the Word2vec model is
a well-argued model of item-level semantics, alternative models
such as those based on behavioral feature descriptions may provide
complementary views to the semantic system.

The present study provides a computationally explicit framework
of how semantic representations can be expressed in the brain, in
the form of a statistical model that uses computational principles
known to exist in the brain. We were able to link specific cortical
areas to semantic representations but also to describe the type of
information that could be processed there and how it may have come
about. We show that a statistical model is sufficient to explain a
substantial part (i.e., enough to enable successful encoding) of the
semantic processing. This suggests that the experience of language
can be seen as equivalent to any other sensory, motor, emotional or
perceptual experience. Abstract words could, therefore, be grounded
in language itself, making second order grounding through, e.g.,
metaphors redundant.

Methods
Participants
MEG measurements were performed on 20 volunteers (mean age 21 years,
sd 3.6, range 18–34; 50 % identified themselves as females). All participants
were native Finnish speakers, had normal or corrected to normal vision, and
were scored as highly right-handed on the Edinburgh handedness question-
naire. The participants were all healthy, reported no diagnosed neurological
disorders or reading disabilities and were compensated financially for their
participation. Informed consent was obtained from all participants. In
addition, a total of 408 respondents filled behavioral questionnaires, created
either for stimulus evaluation or to collect the behavioral feature sets (see
more information below). All the respondents were volunteers who were
reimbursed for the effort with movie tickets. All respondents had Finnish
as their first language, their mean age was 27 years (sd 7, range 19–63) and
65 % identified themselves as females.

The study was approved by the Aalto University Research Ethics Com-
mittee in agreement with the Declaration of Helsinki.

Stimuli
The stimuli consisted of 118 nouns grouped into two main categories:
concrete (59 words) and abstract (59 words). The two main categories did
not differ significantly in lemma frequency [t(58) = −1.1, p = 0.28], based
on the prevalence in Finnish-language internet pages (corpus size 1.5 billion
words). All words were within the 90th percentile of the corpus distribution
and can thus be considered common, high frequent words. The length of
the stimulus words ranged from 3 to 10 letters and did not differ between
the abstract and concrete words [t(58) = −1.9, p = 0.065].

All stimulus words were assessed on a scale from 1 to 7 on the level of
concreteness, estimated age of acquisition (AoA), imageability, concrete-
ness, emotionality and valence, in a web-based behavioral questionnaire.
The assessment was done by thirteen naïve respondents that did not partake
in any other part of the present study. The concrete words were judged as
very concrete [mean rating: 6.5 (sd 0.5)]. The abstract category contained
30 highly-abstract words [mean concreteness: 2.0 (sd 0.9), mean imageabil-
ity: 2.3 (sd 1.0)] and 29 medium-abstract words [mean concreteness: 3.9 (sd
0.7); mean imageability: 4.1 (sd 0.8)]. Previous studies that highly imagin-
able word tend to be acquired earlier than words with low imageability [33].
Also in the present stimulus set the estimated AoA for concrete words [mean
rating 1.2 (sd 0.3)] was significantly lower [t(58) = −9.2, p < 0.001] as
compared to abstract words [mean rating 2.1 (sd 0.6)]. There was no differ-
ence in valence between the word categories [t(58) = 1.20, p = 9.23].

The concrete words were sub-grouped according to categories that have
been derived from specific impairments following brain damage [34–36],
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namely Animal (e.g., dog, bear), Body part (e.g., hand, foot), Building
(e.g., brigde, hospital), Human character (e.g., child, princess), Nature (e.g.,
island, fire), and Object (e.g., hammer, ball). Each category contained
10 items, with the exception of the Human character category that only
contained 9 items. The full list of the stimuli is reported in Supplementary
Table S1.

Corpus-derived Statistical model of semantics
The corpus-derived Statistical model was created using a continuous skip-
gramWord2vec-algorithm [16, 17] which looks for co-occurrences between
a particular word and the neighboring words (i.e., linguistic context) and
represents this information as a N-dimensional vector. The model was
trained on a corpus based on a large sample of internet sites in Finnish
(1.5 billion words) with negative sampling to approximate the conditional
log-likelihood of the model [37]. In the resulting vector space, words that
share a similar linguistic context are located close to each other. Here, the
vector length used was 300, and a context window of 10 words before and
after the stimulus word was used to capture the co-occurrences.

In order to ensure that the SOM visualization of the corpus-derived
Statistical model set on the 118 stimulus words reflects the general statistical
properties of the corpus data we trained an alternative version of the self-
organizing map on all the nouns in the corpus with a frequency > 50 but
excluded the 118 stimulus words. We then compared the internal structure
of this model to that of the 118-word Statistical model by comparing the
location of the projected stimulus words in the SOM structure (see details
of the SOM analysis below). The general abstract–concrete dichotomy was
also visible in the visualization based on the much larger vocabulary, but
the taxonomic class structure was less salient. The results of this control
analysis are depicted and described in further detail in the Supplementary
Information.

SOM analysis
We used a self-organizing map [15, 20] (SOM) to evaluate how the differ-
ent word categories are clustered in the Statistical model. A SOM is an
unsupervised artificial neural network, which produces a two dimensional
discretized representation of the data; here the respective semantic feature
sets. The topography for the SOM was a toroidal grid with 72 nodes (lin-
early initialized) that is best visualized as a two-dimensional rectangular
lattice (9× 8) where the nodes on opposite edges are connected. With these
parameters, the topographic error (0.02) and quantization error (2.2) were
small, meaning that the map adequately captures the continuity of the input
space with sufficient resolution.

Experimental design
During the MEG recording the stimulus words were presented in a black
mono spaced font (Courier New) on a grey background. Each word was
presented for 150 ms followed by a blank screen for 950 ms Between trials,
a fixation cross was presented for 1000 ms Each word was presented a total
of 20 times, over the course of two one-hour long MEG sessions that took
place on separate days. The sessions included breaks of a few minutes every
20 minutes. The order of the stimulus words was randomly determined for
each day, so that each stimulus was repeated 10 times each day but words
were never repeated back to back.

In order ensure the compliance of the participants, 10 % of the trials
were followed by a catch trial, during which the end part of a sentence was
presented on the screen and the subject was instructed to determine if the
preceding word would make sense as the first word of this sentence. For
example, the word ‘beauty’ might be followed by the phrase ‘. . . is in the
eyes of the beholder’ in which case the correct answer would be ‘yes’ as
the phrase ‘beauty is in the eyes of the beholder’ is a reasonable sentence.

MEG and MR measurements
MEG was measured using a whole-head Vectorview MEG device (Elekta
Oy, Helsinki, Finland) with 102 triplet sensor elements, each containing
two planar gradiometers and one magnetometer. The data was filtered at
0 Hz to 3 Hz sampled at 1000 Hz. Eye movements and blinks were recorded
using an electro-oculogram (EOG), configured as pairs of electrodes placed
vertically and horizontally around the eyes. The head position with respect
to the scanner was determined by four indicator coils placed on the forehead

and behind the ears. The head position was measured at the beginning of
each 20 minute segment of the recording session. The position of the coils,
as well as approx. 60 additional points along the surface of the head, were
determined in a coordinate system spanned by three anatomical landmarks
(the left and right preauricular points and the nasion) using a 3D Polhemus
digitizer (Polhemus, Colchester, VT). The MEG data was co-registered
to the anatomical MR images based on the anatomical landmarks and the
additional data points.

Anatomical MR images were scanned on a separate day using a 3T
MAGNETOM Skyra scanner (Siemens Healthcare, Erlangen, Germany), a
standard 20-channel head-neck coil and a T1-weightedMP-RAGE sequence.

MEG data analysis
The MEG data were preprocessed by aligning head positions from the dif-
ferent data segments and different days into one head position and removing
external noise sources using the spatiotemporal signal space separation
method [38] in the Elekta Maxfilter software package. Artefactual signals
due to eye blinks were suppressed using a PCA approach where 1–2 main
components of the average MEG response to blinks were removed from the
raw data.

Event-related epochs were extracted from the gradiometer data from
200 ms before to 1000 ms after each word onset and averaged across the
multiple presentations of the same item. The event-related responses were
baseline-corrected to the interval from -200 ms until the word onset and
low-pass filtered at 25 Hz. Any trials where the signal exceeded 3000 fT/cm
were removed (max. 1 trial per word).

Source-level estimates were computed using Minimum Norm Estimates
(MNE) [39–41] constrained to the cortical surface. The volume conduction
model was based on the individual structural MRIs using the Freesurfer
software package [42, 43] and modeled as a single-compartment bound-
ary element model with an icosahedron mesh of 2562 vertices in each
hemisphere for each participant.

In the inverse solution, currents tangential to the cortical surface were
favored by setting the loose orientation constraint parameter to 0.3, and
depth-weighting was used to reduce the bias towards superficial sources [44].
The source estimate regularization parameter lambda was set to 0.1. A
noise-covariance matrix based on the baseline period across all stimuli was
used for noise normalizing of the source estimates, resulting in dynamical
statistical parametric maps (dSPMs) [44]. Lastly, the individual source
estimates were morphed onto FreeSurfer’s average template brain.

Zero-shot decoding
In order to determine whether the Statistical model of the semantic space is
a good description of the neural responses during word reading, we used a
zero-shot decoding machine learning algorithm [21], which was evaluated
using a leave-two-out discrimination task.

The zero-shot algorithm was used to learn a linear mapping between the
sensor-level MEG evoked responses and the Statistical model. To reduce
the dimensionality of the input data, the MEG responses were downsampled
by creating 20-ms bins within the time window 0–800 ms relative to the
onset of the stimulus presentation, resulting in 40 bins. For each of the 118
stimulus words, the averaged signals for each bin at each of the 204 sensor
locations (only the gradiometers were used for decoding) were concatenated
into a single vector, yielding a (118 × 8160) input matrix. Ridge regression
was used to create a linear mapping between the input matrix and target
matrix, i.e., the Statistical model (118 × 300) [45]. The columns of both
the input and target matrices were z-transformed before being entered into
the linear regression.

The resulting mapping was evaluated by attempting to match two previ-
ously unseen segments of MEG data with two unseen stimulus words. To
do this, the zero-shot approach employs two steps. First, the algorithm uses
the learned mapping between the MEG- data and the individual features to
translate the two MEG segments into two predicted feature vectors. The
identity of the two unseen stimulus words is then determined by comparing
the cosine distance between the predicted vectors and the original Statistical
model vectors for these items [22]. This binary discrimination task is carried
out for all possible pairs of two stimulus words, using the remaining 116
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words for training. For each participant, we report the mean accuracy across
all word pairs, which ranges between 50 % (algorithm fails to distinguish
between words) and 100 % (successful discrimination between all stimulus
words).

To test whether the obtained accuracy scores were significantly higher
than chance level, the zero-shot classification procedure was repeated 1000
times on randomly permuted data. Random data was produced by choosing
the data of one subject at random and randomizing the assignment between
the word labels and the MEG data segments. As p-value, we report the
percentage of accuracy scores for the random permutations that equaled or
exceeded the accuracy score obtained on real data.

RSA analysis
Representational similarity analysis (RSA) [23] was performed between
the source localized MEG data and Statistical model. For the Statistical
model, a single word-to-word dissimilarity matrix (DSM) was created by
computing the Pearson correlation r across the feature vectors for each
possible word pair, and using (1 − r) as the dissimilarity score. The values
along the diagonal (the dissimilarity between a word and itself) were set to
zero.

The MEG data underwent the same downsampling and z-transformation
procedure used for the zero-shot learning. Then, for each subject, time
bin and source-level vertex, a word-to-word DSM was formed using a
searchlight approach: the signal at all vertices within a 3 cm radius of the
vertex under consideration were assembled into a vector. These vectors were
then compared for all possible combinations of two words using Pearson
correlation, with (1 − r) as dissimilarity score.

The RSA maps for each subject and each feature set were obtained
by comparing the MEG-based DSMs with the feature-set DSMs using
Spearman rank correlation. Finally, the RSA maps were analyzed across
subjects using a cluster permutation test [24] with a cluster threshold of
p = 0.01 and the significance threshold for the permuted randomly shuffled
data distribution set to p = 0.05. The number of permutations used to
create the random distribution of the data was 5000. Any clusters with a
corresponding cluster-t-value that was lower than 95 % of the randomly
obtained cluster-t-values were pruned from the RSA maps. The remaining
clusters were deemed significant (p ≤ 0.05).

To aid the interpretation of the main RSA, an additional RSA was cal-
culated between the MEG data and a separate model quantifying only the
abstract – concrete dimension (Abstractness model; see below). This addi-
tional RSA was computed in the same manner as the main RSA between the
MEG data and the Statistical model, with the exception that the Euclidean
distance was used as the distance metric in the word-to-word DSM of the
one-dimensional Abstractness model.

Abstractness model
In the RSA analysis, the main results were interpreted in light of a comple-
mentary RSA between the MEG data and an Abstractness model capturing
the abstract–concrete dimension of the stimulus words (Abstractness model
RSA). The Abstractness model was derived from a behavioral web-based
questionnaire answered by 10 naïve respondents (that did not take part of
the stimulus assessment questionnaire). Each respondent judged the 118
stimulus words with respect to six different taxonomic categories (Animal,
Body part, Building, Human character, Nature, Object) and abstractness
on a scale from 1–7 (1 = does not belong to this category, 7 = a typical
example to this category). From this data set, we extracted the abstractness
scale to be used as an Abstractness model.

Data and code availability
The text corpus containing 1.5 billion Finnish words used to derive the
statistical model cannot be publicly distributed due to the Finnish copyright
law limitations. It is available upon request for research purposed, for contact
information see http://bionlp.utu.fi/finnish-internet-parsebank.html.
The word2vec models used in this study (derived from the abovementioned
corpus), together with the custom code used in the study can be accessed
from https://version.aalto.fi/gitlab/BrainDecode/zeroshotdecoding.
The stimulus words are publicly available and listed in the supplementary
information. TheMEG andMRI data are available upon reasonable requests

from the authors; the data is not publicly available as it contains information
that could compromise the participant privacy and consent.

Acknowledgements
We would like to express our gratitude to Jenna Kanerva and Filip Ginter at
the University of Turku for development of the Finnish language Word2vec
model as well as to Enrico Glerean and Gus Sudre for sharing code used
in the study. This research was funded by the Academy of Finland (grant
#287474 to A.H., #286070 to S. L. K., #310988 to MvV, and #255349,
#256459 and #283071 to R.S.), the Aalto Brain Center (MvV and T.L-K.)
as well as the Sigrid Jusélius Foundation (R.S.). Computational resources
were provided by the Aalto Science-IT project and the CSC - IT center for
science Ltd..

References
[1] J. R. Binder, L. L. Conant, C. J. Humphries, L. Fernandino, S. B.

Simons, M. Aguilar, and R. H. Desai. “Toward a brain-based com-
ponential semantic representation.” In: Cognitive Neuropsychology
(2016), pp. 1–45. doi: 10.1080/02643294.2016.1147426.

[2] M. Kiefer and F. Pulvermüller. “Conceptual representations in mind
and brain: theoretical developments, current evidence and future
directions.” In: Cortex 48.7 (2012), pp. 805–25. doi: 10.1016/j.
cortex.2011.04.006.

[3] A. Martin. “The representation of object concepts in the brain.” In:
Annu. Rev. Psychol. 58 (2007), pp. 25–45. doi: 10.1146/annurev.
psych.57.102904.190143.

[4] G. Vigliocco and D. P. Vinson. “Semantic Representation.” In: The
Oxford handbook of psycholinguistics, ed. by M. G. Gaskell. Oxford
University Press, 2009, pp. 195–217.

[5] G. Hollis and C. Westbury. “The principals of meaning: Extracting
semantic dimensions from co-occurrence models of semantics.” In:
Psychon. Bull. Rev. 23.6 (2016), pp. 1744–1756. doi: 10.3758/
s13423-016-1053-2.

[6] Donald O. Hebb. The organization of behavior. New York: Wiley,
1949.

[7] K. Friston. “The history of the future of the Bayesian brain.” In:
Neuroimage 62.2 (2012), pp. 1230–3. doi: 10.1016/j.neuroimage.
2011.10.004.

[8] George Zipf. Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology. Addison-Wesley Press, 1949.

[9] Carlton T. James. “The role of semantic information in lexical de-
cisions.” In: J. Exp. Psychol. Hum. Percept. Perform. 1.2 (1975),
p. 130.

[10] Jamie Reilly, Jonathan E. Peelle, and Murray Grossman. “A uni-
tary semantics account of reverse concreteness effects in semantic
dementia.” In: Brain. Lang. 103.1 (2007), pp. 86–87.

[11] E. K. Warrington. “The selective impairment of semantic mem-
ory.” In: Q J Exp Psychol 27.4 (1975), pp. 635–57. doi: 10.1080/
14640747508400525.

[12] J. Wang, J. A. Conder, D. N. Blitzer, and S. V. Shinkareva. “Neural
representation of abstract and concrete concepts: a meta-analysis
of neuroimaging studies.” In: Hum. Brain Mapp. 31.10 (2010),
pp. 1459–68. doi: 10.1002/hbm.20950.

[13] Phillip J. Holcomb, John Kounios, Jane E. Anderson, and W. Caro-
line West. “Dual-coding, context-availability, and concreteness ef-
fects in sentence comprehension: An electrophysiological investiga-
tion.” In: J. Exp. Psychol. Learn. Mem. Cogn. 25.3 (1999), pp. 721–
742.

[14] Hsu-Wen Huang, Chia-Lin Lee, and Kara D. Federmeier. “Imagine
that! ERPs provide evidence for distinct hemispheric contributions
to the processing of concrete and abstract concepts.” In: Neuroimage
49.1 (2010), pp. 1116–1123.

page 7 of 11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2018. ; https://doi.org/10.1101/391052doi: bioRxiv preprint 

http://bionlp.utu.fi/finnish-internet-parsebank.html
https://version.aalto.fi/gitlab/BrainDecode/zeroshotdecoding
http://dx.doi.org/10.1080/02643294.2016.1147426
http://dx.doi.org/10.1016/j.cortex.2011.04.006
http://dx.doi.org/10.1016/j.cortex.2011.04.006
http://dx.doi.org/10.1146/annurev.psych.57.102904.190143
http://dx.doi.org/10.1146/annurev.psych.57.102904.190143
http://dx.doi.org/10.3758/s13423-016-1053-2
http://dx.doi.org/10.3758/s13423-016-1053-2
http://dx.doi.org/10.1016/j.neuroimage.2011.10.004
http://dx.doi.org/10.1016/j.neuroimage.2011.10.004
http://dx.doi.org/10.1080/14640747508400525
http://dx.doi.org/10.1080/14640747508400525
http://dx.doi.org/10.1002/hbm.20950
https://doi.org/10.1101/391052
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] Teuvo Kohonen. “Self-organized formation of topologically correct
feature maps.” In: Biol. Cybern. 43.1 (1982), pp. 59–69.

[16] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. “Linguistic
regularities in continuous space word representations.” In: Human
Language Technologies. Proceedings of the 2013 conference of
the North American chapter of the association for computational
linguistics. 2013, pp. 746–751.

[17] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Effi-
cient estimation of word representations in vector space.” In: arXiv
preprint arXiv:1301.3781 (2013).

[18] Simon De Deyne, Steven Verheyen, and Gert Storms. “Structure
and organization of the mental lexicon: A network approach derived
from syntactic dependency relations and word associations.” In:
Towards a theoretical framework for analyzing complex linguistic
networks. Springer, 2016, pp. 47–79.

[19] Emilie L. Lin and Gregory L. Murphy. “Thematic relations in adults’
concepts.” In: J. Exp. Psychol. Gen. 130.1 (2001), p. 3.

[20] Timo Honkela, Ville Pulkki, and Teuvo Kohonen. “Contextual rela-
tions of words in Grimm tales analyzed by self-organizing map.” In:
Proceedings of the International Conference on Artificial Neural
Networks (ICANN-95). Vol. 2. EC2 et Cie Paris, 1995, pp. 3–7.

[21] Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, and Tom
M. Mitchell. “Zero-shot learning with semantic output codes.” In:
Advances in neural information processing systems. 2009, pp. 1410–
1418.

[22] G. Sudre, D. Pomerleau, M. Palatucci, L. Wehbe, A. Fyshe, R.
Salmelin, and T. Mitchell. “Tracking neural coding of perceptual and
semantic features of concrete nouns.” In: Neuroimage 62.1 (2012),
pp. 451–63. doi: 10.1016/j.neuroimage.2012.04.048.

[23] Nikolaus Kriegeskorte, Marieke Mur, and Peter A. Bandettini. “Rep-
resentational similarity analysis-connecting the branches of systems
neuroscience.” In: Front. Syst. Neurosci. 2 (2008), p. 4.

[24] E. Maris and R. Oostenveld. “Nonparametric statistical testing
of EEG- and MEG-data.” In: J. Neurosci. Methods 164.1 (2007),
pp. 177–90. doi: 10.1016/j.jneumeth.2007.03.024.

[25] Jing Wang, Laura B. Baucom, and Svetlana V. Shinkareva. “Decod-
ing abstract and concrete concept representations based on singlein-
validtrial fMRI data.” In: Hum. Brain Mapp. 34.5 (2013), pp. 1133–
1147.

[26] A. Clarke and L. K. Tyler. “Object-Specific Semantic Coding in
Human Perirhinal Cortex.” English. In: J. Neurosci. 34.14 (2014),
pp. 4766–4775. doi: 10.1523/Jneurosci.2828-13.2014.

[27] Jeffrey R. Binder, Chris F. Westbury, Kristen A. McKiernan, Ed-
ward T. Possing, and David A. Medler. “Distinct brain systems for
processing concrete and abstract concepts.” In: J. Cogn. Neurosci.
17.6 (2005), pp. 905–917.

[28] K. Patterson, P. J. Nestor, and T. T. Rogers. “Where do you know
what you know? The representation of semantic knowledge in the
human brain.” English. In: Nat. Rev. Neurosci. 8.12 (2007), pp. 976–
987. doi: 10.1038/nrn2277.

[29] C. J. Price. “A review and synthesis of the first 20 years of PET and
fMRI studies of heard speech, spoken language and reading.” In:
Neuroimage 62.2 (2012), pp. 816–47. doi: 10.1016/j.neuroimage.
2012.04.062.

[30] F. Pulvermuller, F. Kherif, O. Hauk, B. Mohr, and I. Nimmo-Smith.
“Distributed cell assemblies for general lexical and category-specific
semantic processing as revealed by fMRI cluster analysis.” In: Hum.
Brain Mapp. 30.12 (2009), pp. 3837–50. doi: 10.1002/hbm.20811.

[31] Leonardo Fernandino, Colin J. Humphries, Mark S. Seidenberg,
William L. Gross, Lisa L. Conant, and Jeffrey R. Binder. “Predicting
brain activation patterns associated with individual lexical concepts
based on five sensory-motor attributes.” In: Neuropsychologia 76
(2015), pp. 17–26.

[32] I. Simanova, P. Hagoort, R. Oostenveld, and M. A. van Gerven.
“Modality-independent decoding of semantic information from the
human brain.” In: Cereb. Cortex 24.2 (2014), pp. 426–34. doi: 10.
1093/cercor/bhs324.

[33] H. Stadthagen-Gonzalez and C. J. Davis. “The Bristol norms for age
of acquisition, imageability, and familiarity.” In: Behav Res Methods
38.4 (2006), pp. 598–605.

[34] Elizabeth K. Warrington and Tim Shallice. “Category specific se-
mantic impairments.” In: Brain 107.3 (1984), pp. 829–853.

[35] Alfonso Caramazza and Jennifer R. Shelton. “Domain-specific
knowledge systems in the brain: The animate-inanimate distinction.”
In: J. Cogn. Neurosci. 10.1 (1998), pp. 1–34.

[36] Giuseppe Sartori, Michele Miozzo, and Remo Job. “Category-
specific naming impairments? Yes.” In: The Quarterly Journal of
Experimental Psychology Section A 46.3 (1993), pp. 489–504.

[37] Jenna Kanerva, Juhani Luotolahti, Veronika Laippala, and Filip
Ginter. “Syntactic N-gram collection from a large-scale corpus of
internet Finnish.” In: Frontiers in Artificial Intelligence and Applica-
tions. Vol. 268. IOS Press, 2014, pp. 184–191. isbn: 1-61499-442-0.
doi: 10.3233/978-1-61499-442-8-184.

[38] S. Taulu and J. Simola. “Spatiotemporal signal space separation
method for rejecting nearby interference in MEG measurements.”
In: Phys. Med. Biol. 51.7 (2006), pp. 1759–68. doi: 10.1088/0031-
9155/51/7/008.

[39] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier,
C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen, and M.
Hamalainen. “MEG and EEG data analysis with MNE-Python.” In:
Front. Neurosci. 7 (2013), p. 267. doi: 10.3389/fnins.2013.00267.

[40] A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier,
C. Brodbeck, L. Parkkonen, and M. S. Hamalainen. “MNE software
for processing MEG and EEG data.” In: Neuroimage 86 (2014),
pp. 446–60. doi: 10.1016/j.neuroimage.2013.10.027.

[41] M. S. Hämäläinen and R. J. Ilmoniemi. “Interpreting magnetic fields
of the brain: minimum norm estimates.” In:Med. Biol. Eng. Comput.
32.1 (1994), pp. 35–42.

[42] A.M. Dale, B. Fischl, andM. I. Sereno. “Cortical surface-based anal-
ysis. I. Segmentation and surface reconstruction.” In: Neuroimage
9.2 (1999), pp. 179–94. doi: 10.1006/nimg.1998.0395.

[43] B. Fischl, A. Liu, and A. M. Dale. “Automated manifold surgery:
constructing geometrically accurate and topologically correct mod-
els of the human cerebral cortex.” In: IEEE Trans. Med. Imaging.
20.1 (2001), pp. 70–80. doi: 10.1109/42.906426.

[44] Anders M. Dale, Arthur K. Liu, Bruce R. Fischl, Randy L. Buckner,
John W. Belliveau, Jeffrey D. Lewine, and Eric Halgren. “Dynamic
statistical parametric mapping: combining fMRI and MEG for high-
resolution imaging of cortical activity.” In: Neuron 26.1 (2000),
pp. 55–67.

[45] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, and Vincent Dubourg. “Scikit-learn: Ma-
chine learning in Python.” In: Journal of machine learning research
12.Oct (2011), pp. 2825–2830.

page 8 of 11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 13, 2018. ; https://doi.org/10.1101/391052doi: bioRxiv preprint 

http://dx.doi.org/10.1016/j.neuroimage.2012.04.048
http://dx.doi.org/10.1016/j.jneumeth.2007.03.024
http://dx.doi.org/10.1523/Jneurosci.2828-13.2014
http://dx.doi.org/10.1038/nrn2277
http://dx.doi.org/10.1016/j.neuroimage.2012.04.062
http://dx.doi.org/10.1016/j.neuroimage.2012.04.062
http://dx.doi.org/10.1002/hbm.20811
http://dx.doi.org/10.1093/cercor/bhs324
http://dx.doi.org/10.1093/cercor/bhs324
http://dx.doi.org/10.3233/978-1-61499-442-8-184
http://dx.doi.org/10.1088/0031-9155/51/7/008
http://dx.doi.org/10.1088/0031-9155/51/7/008
http://dx.doi.org/10.3389/fnins.2013.00267
http://dx.doi.org/10.1016/j.neuroimage.2013.10.027
http://dx.doi.org/10.1006/nimg.1998.0395
http://dx.doi.org/10.1109/42.906426
https://doi.org/10.1101/391052
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information
Breakdown of decoding prediction
In order to understand if any underlying systematics in the stimulus selection was driving the performance of the zero-shot decoding
model, we looked at the pairwise comparisons in the leave-two-out cross validation scheme. Figure S1 shows the performance of each
combination of item-pairs averaged across all participants. As no clear categorical pattern emerges, we conclude that the prediction
accuracy is not driven by a specific category of the stimulus words.

dog
horse
duck

eagle
cat
lion

mouse
bear
wolf

sheep
back
hand

eye
foot
ear

mouth
toe

finger
nose

lips
church

road
factory
castle
bridge
prison
tower
library

museum
temple

king
soldier
police

prisoner
priest

teacher
doctor
judge
child
wind
river

island
sea

park
mountain

rock
wave
cloud
nest
book

ball
saw
ring

scissors
drill

spoon
shovel
comb

car
morning

army
bacteria
oxygen

price
expression

evening
infection
internet

team
friction

size
song

game
attachment

nature
marking

hunt
music

 play_(theater)
pressure

weight
speech

eruption
poem

background
art piece

proof
gene

ideology
timing

estimate
benefit
history

age
phenomenon

inflation
beauty

fate
experience

logic
reputation

merit
meaning
change
amount

youth
problem
freedom

money
democracy
investment

will
magic
break
power

knowledge
dominance

sense 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Building
Highly AbstractBody part Object

NatureAnimal
Human charac.

Medium Abstract

do
g

ho
rs

e
du

ck
ea

gl
e

ca
t

lio
n

m
ou

se
be

ar
w

ol
f

sh
ee

p
ba

ck
ha

nd
ey

e
fo

ot
ea

r
m

ou
th

to
e

fin
ge

r
no

se
lip

s
ch

ur
ch

ro
ad

fa
ct

or
y

ca
st

le
br

id
ge

pr
is

on
to

w
er

lib
ra

ry
m

us
eu

m
te

m
pl

e
ki

ng
so

ld
ie

r
po

lic
e

pr
is

on
er

pr
ie

st
te

ac
he

r
do

ct
or

ju
dg

e
ch

ild
w

in
d

riv
er

is
la

nd
se

a
pa

rk
m

ou
nt

ai
n

ro
ck

w
av

e
cl

ou
d

ne
st

bo
ok

ba
ll

sa
w

rin
g

sc
is

so
rs

dr
ill

sp
oo

n
sh

ov
el

co
m

b
ca

r
m

or
ni

ng
ar

m
y

ba
ct

er
ia

ox
yg

en
pr

ic
e

ex
pr

es
si

on
ev

en
in

g
in

fe
ct

io
n

in
te

rn
et

te
am

fri
ct

io
n

si
ze

so
ng

ga
m

e
at

ta
ch

m
en

t
na

tu
re

m
ar

ki
ng

hu
nt

m
us

ic

pr
es

su
re

w
ei

gh
t

sp
ee

ch
er

up
tio

n
po

em
ba

ck
gr

ou
nd

ar
t p

ie
ce

pr
oo

f
ge

ne
id

eo
lo

gy
tim

in
g

es
tim

at
e

be
ne

fit
hi

st
or

y
ag

e
ph

en
om

en
on

in
fla

tio
n

be
au

ty
fa

te
ex

pe
rie

nc
e

lo
gi

c
re

pu
ta

tio
n

m
er

it
m

ea
ni

ng
ch

an
ge

am
ou

nt
yo

ut
h

pr
ob

le
m

fre
ed

om
m

on
ey

de
m

oc
ra

cy
in

ve
st

m
en

t
w

ill
m

ag
ic

br
ea

k
po

w
er

kn
ow

le
dg

e
do

m
in

an
ce

se
ns

e

Correct

False

pl
ay

_(
th

ea
te

r)

Figure S1: Prediction accuracy for each stimulus-item pair, averaged across participants.
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SOM control analysis
In order to ensure that the SOM visualization of the corpus-derived Statistical model set (on 118 words) reflects the general statistical
properties of the corpus data, and is not dependent on the particular set of stimulus words used here, we trained a supplementary SOM on
a Corpus-wide statistical model. This model included all words with a frequency > 50 (N=319523 words), but omitted the 118 stimulus
words used in the MEG study. The SOM was trained using the same parameters as the main Statistical model SOM, i.e., on toroidal grid
with 72 nodes. For the Corpus-wide statistical model SOM the topographic error was 0.08 and the quantization error 2.8. The map was
evaluated by visualizing the location of the stimulus word in the model.

Similarly to the main Statistical model SOM (see Figure 1 in the main article) the abstract and concrete words largely formed distinct
groups also in the Corpus-wide statistical model SOM (Figure S2). Especially words classified as ‘Body part’ were clearly distinct from
the other word categories. Two nodes in the center of the map contained words from several taxonomic categories and included both
abstract and concrete words. These nodes seemed to be based on thematic relationships between the words.
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Figure S2: Visualization of the stimulus words in a SOM trained on a Corpus-wide statistical model. The size of the each word denotes the
distance to the node center (the larger the font, the closer to the node center the word lies) and the color the predefined category class of the
stimulus words
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STIMULUS TRANSLATION CATEGORY

koira dog Animal
hevonen horse Animal
ankka duck Animal
kotka eagle Animal
kissa cat Animal
leijona lion Animal
hiiri mouse Animal
karhu bear Animal
susi wolf Animal
lammas sheep Animal
selkä back Body part
käsi hand Body part
silmä eye Body part
jalka foot Body part
korva ear Body part
suu mouth Body part
varvas toe Body part
sormi finger Body part
nenä nose Body part
huulet lips Body part
kirkko church Building
tie road Building
tehdas factory Building
linna castle Building
silta bridge Building
vankila prison Building
torni tower Building
kirjasto library Building
museo museum Building
temppeli temple Building
kuningas king Human character
sotilas soldier Human character
poliisi police Human character
vanki prisoner Human character
pappi priest Human character
opettaja teacher Human character
lääkäri doctor Human character
tuomari judge Human character
lapsi child Human character
tuli wind Nature
joki river Nature
saari island Nature
meri sea Nature
puisto park Nature
vuori mountain Nature
kallio rock Nature
aalto wave Nature
pilvi cloud Nature
pesä nest Nature
kirja book Object
pallo ball Object
saha saw Object
sormus ring Object
sakset scissors Object
pora drill Object
lusikka spoon Object
lapio shovel Object
kampa comb Object
auto car Object

STIMULUS TRANSLATION CATEGORY

aamu morning Medium Abstract
armeija army Medium Abstract
bakteeri bacteria Medium Abstract
happi oxygen Medium Abstract
hinta price Medium Abstract
ilme expression Medium Abstract
ilta evening Medium Abstract
infektio infection Medium Abstract
internet internet Medium Abstract
joukkue team Medium Abstract
kitka friction Medium Abstract
koko size Medium Abstract
laulu song Medium Abstract
leikki game Medium Abstract
liite attachment Medium Abstract
luonto nature Medium Abstract
merkintä marking Medium Abstract
metsästys hunt Medium Abstract
musiikki music Medium Abstract
näytelmä play (theater) Medium Abstract
paine pressure Medium Abstract
paino weight Medium Abstract
puhe speech Medium Abstract
purkaus eruption Medium Abstract
runo poem Medium Abstract
tausta background Medium Abstract
teos artwork Medium Abstract
todiste proof Medium Abstract
geeni gene Medium Abstract
aate ideology Highly Abstract
ajoitus timing Highly Abstract
arvio estimate Highly Abstract
etu benefit Highly Abstract
historia history Highly Abstract
ikä age Highly Abstract
ilmiö phenomenon Highly Abstract
inflaatio inflation Highly Abstract
kauneus beauty Highly Abstract
kohtalo fate Highly Abstract
kokemus experience Highly Abstract
logiikka logic Highly Abstract
maine reputation Highly Abstract
meriitti merit Highly Abstract
merkitys meaning Highly Abstract
muutos change Highly Abstract
määrä amount Highly Abstract
nuoruus youth Highly Abstract
ongelma problem Highly Abstract
vapaus freedom Highly Abstract
raha money Highly Abstract
demokratia democracy Highly Abstract
sijoitus investment Highly Abstract
tahto will Highly Abstract
taika magic Highly Abstract
tauko break Highly Abstract
teho power Highly Abstract
tieto knowledge Highly Abstract
valta dominance Highly Abstract
järki sense Highly Abstract

Table S1: Supplementary Table 1. Full list of stimuli
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