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Abstract  

 
Sucrose’s sweet intensity is one attribute contributing to the overconsumption of high-
energy palatable foods. However, it is not known how sucrose intensity is encoded and 
used to make perceptual decisions by neurons in taste-sensitive cortices. We trained rats 
in a sucrose intensity discrimination task and found that sucrose evoked a widespread 
response in neurons recorded in posterior-Insula (pIC), anterior-Insula (aIC), and 
Orbitofrontal cortex (OFC). Remarkably, only a few Intensity-selective neurons conveyed 
the most information about sucrose’s intensity, indicating that for sweetness the gustatory 
system used a compact and distributed code. Sucrose intensity was encoded in both 
firing-rates and spike-timing. The pIC, aIC, and OFC neurons tracked movement direction, 
with OFC neurons yielding the most robust response. aIC and OFC neurons encoded the 
subject’s choices, whereas all three regions tracked reward omission. Overall, these 
multimodal areas provide a neural representation of perceived sucrose intensity, and of 
task-related information underlying perceptual decision-making.  
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INTRODUCTION 

Chemical stimulation of taste receptor cells elicits signals that are transduced into neural 

representations of multiple attributes, such as taste quality, intensity (the strength or 

concentration of a stimulus), and palatability (hedonic value). These attributes form a 

single percept (Accolla et al., 2007; Breslin, 2013; Lemon, 2015) that informs the animal 

whether it is safe to ingest the food (Tapper and Halpern, 1968). Sucrose is the 

prototypical highly palatable tastant for sweet taste quality, and it provides a sensory cue 

predicting the presence of immediate energy sources. Although palatability and intensity 

usually change together, Wang et al. (2018) found this is not always the case and 

suggested that they are two distinct representations. In rodents, palatability is measured 

by an increase in positive oromotor responses (e.g., licking) elicited by increasing sucrose 

concentrations (Spector and Smith, 1984). In contrast, the intensity attribute cannot be 

directly measured by any licking response per se, as an animal must actively report the 

perceived concentration of sucrose, a process necessarily involving decision-making. 

Historically, the neural representation of sweet taste intensity has been characterized by 

firing rates (spike counts) that monotonically increase with sucrose concentration along 

the gustatory pathway from the periphery to primary (IC) and secondary (OFC) taste 

cortices (Rolls et al., 1990; Roussin et al., 2012; Scott et al., 1991; Thorpe et al., 1983; 

Villavicencio et al., 2018). However, those responses were obtained in either 

anesthetized animals (Barretto et al., 2015; Wu et al., 2015), during passive intraoral 

delivery of tastants (Maier and Katz, 2013; Scott et al., 1991), or in behavioral tasks where 

animals do not have to make any decision other than to lick (Rosen and Di Lorenzo, 2012; 

Stapleton et al., 2006; Villavicencio et al., 2018). Thus, the neural representation of the 
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perceived intensity of sucrose that the animal actively reports has not presently been 

studied. Likewise, how this representation is transformed into perceptual decision-

variables, such as choice, movement direction, and the presence or absence of reward 

remains to be elucidated. Here we trained rats in a sucrose intensity discrimination task 

and recorded electrophysiological responses in the posterior (pIC), anterior (aIC) insular 

cortices, and the orbitofrontal cortex (OFC), with the aim of elucidating how these cortices 

encode sucrose intensity and use this information to guide behavior.  

 

These three cortical areas are multimodal and chemosensitive and are involved in disgust 

(pIC), tastant identification (aIC), and subjective value and reward (OFC) (Frank et al., 

2013; Gardner and Fontanini, 2014; Jezzini et al., 2013; Jones et al., 2006; Katz et al., 

2001; Kusumoto-Yoshida et al., 2015; Maffei et al., 2012; Maier and Katz, 2013; 

Verhagen et al., 2004). In rodents, the pIC has been shown to be involved in taste, disgust, 

expectancy, and aversive motivated behaviors (Bermúdez-Rattoni, 2004; Chen et al., 

2011; Fletcher et al., 2017; Gardner and Fontanini, 2014; Gutierrez et al., 2010; 

Kusumoto-Yoshida et al., 2015; Wang et al., 2018). In contrast, the aIC is involved in 

appetitive behaviors, and besides having neurons that respond selectively to sweet taste 

(Chen et al., 2011), it also has neurons encoding reward probability and reward omission 

(Jo and Jung, 2016). Even though both pIC and aIC have roles in taste and decision-

making, their contribution to sucrose intensity guided behavior remains unexplored.  

 

It is well known that OFC is involved in reward and subjective value (Conen and Padoa-

Schioppa, 2015; Jo and Jung, 2016; Kennerley and Wallis, 2009; Roesch et al., 2006), 
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and it is a critical brain region for encoding decision-variables such as choice, movement 

direction, and reward omission (Feierstein et al., 2006; Hirokawa et al., 2017; MacDonald 

et al., 2009; Nogueira et al., 2017). However, it is not known whether OFC neurons 

encode decision-variables guided by sucrose intensity. Equally unknown is how these 

variables are encoded along the posterior-anterior axis of the Insula.  

 

To address these questions, we designed a novel sweet intensity discrimination task in 

which, to obtain a water reward, rats had to make a rightward or leftward movement based 

on the perceived intensity of sucrose (Cue), while single-unit recordings in the pIC (1348), 

or aIC (1169), or OFC (1010) were performed. We found that stimulation with sucrose 

evoked a widespread response in these three cortical regions, indicating a distributed 

detection of taste/somatosensory information. 82% of the evoked responses showed no 

selectivity to sucrose intensity, whereas 18% could be labeled as sucrose intensity-

selective. These selective neurons conveyed the most information about sucrose intensity. 

Analyses of the sucrose-evoked responses revealed that, in addition to firing rates, the 

spike timing of neurons contains additional information about sucrose’s intensity. Several 

differences and similarities were identified between the evoked pIC, aIC, and OFC 

responses. Overall, the three recorded areas similarly decoded sucrose concentration 

and equally tracked the outcome (reward delivery or omission). A major difference among 

them was that the OFC neurons carry information about behavioral choice and movement 

direction, earlier and with higher quality than neurons in the Insula. In summary, these 

data show that the perceived intensity of sucrose is fully reconstructed from the firing rate 

and spike timing of a small population of neurons in the pIC, aIC, and OFC. 
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Results  

Behavior 

Twenty-eight rats were trained in a one-drop sucrose intensity discrimination task. The 

trial structure is depicted in Figure 1A. Briefly, trained rats initiate a trial by first visiting the 

central port (Return). Licking at the central spout triggers the delivery of either 10 µL of 3 

(Low) or 18 (High) wt% sucrose (referred to as Cue-D; Stimulus). If a rat chooses correctly 

(by moving to one of the two lateral ports; Response), three drops of water are delivered 

as a reward (Outcome). Error trials were unrewarded. Subjects achieved the learning 

criterion (≥ 80 % correct) in about 25 sessions (Fig. 1B), and the implantation of an 

electrode array in one of the three cortical areas did not impair task performance (paired 

t-test before vs. after surgery; t(27) = 0.95; p = 0.35; Fig. 1B). Once the animals learned 

the discrimination task, they were tested in a variant named generalization session (Fig. 

1C). In these sessions that consisted of 20% of the trials, rats were required to classify 0, 

3, 4.75, 7.5, 11.75, or 18 wt% sucrose as either “Low” or “High” (referred as Cue-G). In 

these trials, no reward was delivered (Reward omission) to avoid imposing an arbitrary 

Low/High threshold that could bias the behavioral report of the perceived sweetness 

intensity. In Cue-G trials the percentage of “High” responses increased with increasing 

sucrose concentration (Fig. 1D), thus showing that the animals used sucrose intensity as 

a cue to solve the task (since its quality is unchanged (Pfaffmann et al., 1979)). Surgery 

did not impair perceptual judgments based on sucrose intensity (see Before vs. After 

surgery; Fig. 1D).  
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Other behavioral measurements, related to palatability (Perez et al., 2013; Spector et al., 

1998), revealed that the latency to stop licking after High Cue-D delivery (18% sucrose) 

was longer (0.74 ± 0.02 s) than for the Low Cue-D (3% sucrose; 0.58 ± 0.01 s; p<0.0001). 

A similar trend was observed for generalization cues (i.e., Cue-G trials), in that rats 

exhibited a longer time to stop licking in trials where sucrose intensities were ≥ to 4.75 % 

relative to Low Cue-D (One-way ANOVA: F(7,1360) = 17.10; p < 0.0001; Dunnett post-hoc; 

Fig. 1E). Furthermore, we analyzed the relationship between licking and task 

performance and found that rats lick more rhythmically and similarly for both cues in 

sessions where their performance was better. This is reflected by a positive correlation 

between Low and High licking PSTHs and task performance (r = 0.17, p < 0.003; see 

Figure 1-figure supplement 1). Thus, rats did not solve the task by licking differently for 

both cues.   

 

In the Return epoch, rightward movements (left to center port direction) were faster than 

leftward (right to center port) movements (Fig. 1F). In contrast, during the Response 

epoch, leftward or rightward movements were not significantly different (Fig. 1G), and 

therefore these movements were independent of the sucrose concentration. Interestingly, 

rats moved faster in the Response than in the Return period, perhaps a result of the water 

reward (compare Figs. 1F vs.1G). Finally, in the Outcome epoch, rats rapidly detected 

when the reward was omitted (Cue-G trials and Cue-D error trials). That is, they spent 

more time licking when water was delivered than when it was omitted (Fig. 1H; see 

Supplementary file 1 for statistics). In sum, by using only a 10 µL drop of sensory 
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stimulation, rats can make accurate perceptual decisions based on the perceived 

concentration of sucrose.  

 

Electrophysiology 

A total of 1348, 1169, and 1010 single-units were recorded from pIC, aIC, and OFC, 

respectively (see Figure 3–figure supplement 1A). Of these neuronal responses 480, 403, 

and 337, respectively were recorded in generalization sessions (Figs. 4, 5, and 7) and the 

rest in discrimination sessions (with only cue-D trials). Recordings were performed 

unilaterally in the left hemisphere. Schematics and location of the recording sites are seen 

in Figure 1–figure supplement 2.  

 

Modulation profiles of Cue-D discrimination trials 

The temporal activation pattern of the neural responses in pIC, aIC, and OFC was 

classified as a function of the evoked response (Cue-evoked or Non-evoked), modulation 

profile (Phasic, Tonic, or Coherent; see Table 1), and selectivity (either Non-selective or 

Intensity-selective; see Table 2). Most recorded neurons exhibited a statistically 

significant evoked response 90.6% (1221/1348), 97.4% (1139/1169), and 92.8% 

(937/1010) for the pIC, aIC, and OFC, respectively. The remaining neurons, named Non-

evoked, were 9.4% (127/1348), 2.6% (30/1169), and 7.2% (73/1010), respectively. Cue-

evoked responses were then further classified according to five characteristic modulation 

profiles: Phasic, Tonic-Inactive (Inact), Tonic-Active (Act), Lick-coherent Inactive (Coh-

Inact), and Active (Coh-Act) (Table 1).  
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Given that rats could use a drop of sucrose to make accurate perceptual decisions based 

on its intensity (Fig. 1), we explored the neural correlates of these decisions in the pIC, 

aIC, and OFC. Figure 2 depicts the raster plots and corresponding peri-stimulus time 

histograms (PSTHs) of representative examples of Intensity-selective Cue-D evoked 

responses recorded in each of the three cortical regions. Examples of Non-selective Cue-

D responses are shown in Figure 2–figure supplement 1. Action potentials are depicted 

as black ticks and were aligned to Cue-D delivery (time = 0 s). Trials were sorted as a 

function of Low (3% -green) and High (18 wt% -red). The left column shows three different 

neurons that exhibited selective phasic responses to 3 wt% sucrose in the pIC, aIC, and 

OFC, respectively. Examples of the Tonic-Inactive (second column) revealed a selective 

inhibition for 3 wt% sucrose (Low-preferred). After Cue-D delivery, the Tonic-Active 

neurons exhibited a sustained increase in firing rate (third column; the upper and lower 

panels depict a Low-preferred neuron, whereas the middle panel a High-preferred 

response). The last two columns on the right-hand side display examples of neurons that 

fired synchronously with licking (named Lick-coherent) and, after Cue-D delivery, 

exhibited either a decrease (Coh-Inact) or an increase (Coh-Act) in their firing rate.  

 

Intensity-selective neurons were recorded in all three cortical regions and for all five 

classes of evoked responses, although with different proportions (see Figure 3–figure 

supplement 1A and Table 2; ; see Supplementary file 2 for statistics). In general, pIC and 

aIC Intensity-selective neurons exhibited more similar responses between them than 

those found in the OFC (see Table 2). The only exception was that the aIC contained 

more Intensity-selective neurons with Tonic-Active and Coh-Act responses than the pIC. 
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In contrast, the OFC had more Intensity-selective neurons exhibiting Tonic-Inactive and 

Active responses (Table 2). Overall, the percentage of Intensity-selective neurons were 

14.8%, 17.9%, and 18.5%, in the pIC, aIC, and OFC, respectively (see Table 2; Total, 

Inten-Sel). These data show that Intensity-selective neurons are found along the 

posterior-anterior taste neuroaxis. 

 

To determine, in fine-grain detail, the differences in licking and its impact upon neuronal 

responses, in Figure 2, we also depicted the corresponding PSTHs of licking behavior 

and the times where the lick rate was significantly different between Low and High cues 

(see dashed lines). We found that 45.1% of all Intensity-selective neurons have a “best-

window” (interval with maximal discrimination between concentrations) with no 

differences in licking (see Fig. 2 grey-line above the PSTHs). The remaining 54.9% of 

neurons have a lick rate difference inside the best-window, but most frequently they only 

covered a small fraction of the window (Figure 2-figure supplement 2). Specifically, the 

overlap of the lick rate differences covered 31.4% of the entire best-window (Figure 2-

figure supplement 2). Thus, we conclude that is unlikely that most sucrose intensity 

representation can be attributed to differences in licking behavior.  

 

Figure 3A shows the color-coded population PSTH of the responses of all Intensity-

selective neurons in each brain region, sorted as a function of the modulation profile and 

preferred concentration. What is clear in the figure is that diverse temporal patterns are 

evoked in response to the delivery of the Cue-D (time = 0 s). The evoked responses can 

be transient, sustained, or oscillatory, with either increasing or decreasing firing rates.  
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In the Stimulus epoch, the population responses revealed that the pIC and aIC were more 

excited, whereas the OFC was inhibited (Figure 3–figure supplement 1B), suggesting an 

opposite interaction between the Insula and OFC during licking behavior. In agreement 

with the idea that in a default brain-network state, these two brain regions function out of 

phase (Gutierrez-Barragan et al., 2018).  In line with previous studies (de Araujo et al., 

2006; Gutierrez et al., 2010), we found among these taste cortices that the pIC (60.3%) 

and aIC (59.5%) had a higher proportion of (either increasing or decreasing) lick-induced 

oscillatory responses than the OFC (27.6%).  Likewise, we found that the coherence 

values of the OFC (0.24 ± 0.005) were significantly lower relative to pIC (0.26 ± 0.003) 

and aIC (0.26 ± 0.003) (F(2, 1672) = 3.77; p = 0.02) (Figure 3-figure supplement 3A).  

Therefore, the pIC and aIC had not only a higher proportion of Lick-coherent neurons 

than OFC, but also IC neurons were better entrained with rhythmic licking. More 

importantly, we also uncovered, for the first time, that the level of coherence was 

significantly higher in the Stimulus-epoch in comparison with the pre-Stimulus and the 

Outcome epochs (all p’s < 0.0001), suggesting that lick-spike coherence reflects more 

than oromotor responses, perhaps it prepares taste cortices to receive sensory inputs. 

 

For the neuronal populations of each brain region, a linear decoder was used to estimate 

the accuracy for discriminating Low and High sucrose trials (Meyers, 2013; see Methods). 

As seen in Figure 3B, the contribution of the Non-evoked responses (grey bars) was found 

to be at chance level (50%), indicating that they contained little, if any, information about 

sucrose intensity. In contrast, all Cue-D evoked neuronal responses (All- black bars) 
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significantly decoded sucrose concentrations above chance level (Fig. 3B). Importantly, 

we found that the small population of Intensity-selective neurons (red bars) contained 

more information than the larger Non-selective population (blue bars).  

Interestingly, the Non-selective group also decoded sucrose intensity significantly above 

chance level. One possibility is that they have subtle differences in firing rates that are 

not consistent enough across trials to produce a significant effect at single neuronal level. 

However, at the population level there is sufficient information about sucrose intensity. 

Alternatively and despite their similar firing rates (spike counts) evoked by Low and High 

Cue-D, these neurons could use spike timing to discriminate sucrose concentrations 

(DiLorenzo and Victor, 2013). To test this hypothesis, the spikes of all Non-selective 

neurons were shuffled without changing their average firing rates. When the spike timing 

information was eliminated from these neuronal responses, their ability to decode among 

the sucrose’s intensities dropped to chance level (Fig. 3B; see the horizontal white lines 

across the blue bars). Thus, the additional information in the Non-selective population 

was likely conveyed by precise spike timing patterns of activity.  

 

The decoding algorithm also revealed that the Intensity-selective neurons in the three 

cortical regions decoded sucrose intensity better than Non-selective neurons (Fig. 3B; 

red bars). It is unlikely that these results were due to the differences in the population size 

since Intensity-selective neurons were always fewer in number than the Non-selective 

and All Cue-evoked neurons. Thus, the Intensity-selective population (i.e., less than 18% 

of neurons) contained more information about sucrose intensity than the entire population. 

These data suggest the existence of a neuronal representation of sucrose concentration 
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across these three gustatory cortical regions. That is, each taste cortex seems to contain 

a copy of this information. Finally, we note that by removing the spike timing information 

contained in the Intensity-selective neurons, their percent decoding dropped to nearly 

chance level, indicating that the neural representation of sucrose intensity is also 

conveyed in the spike timing of neurons.  

 

It has been reported that spike counts in a pair of simultaneously recorded neurons, 

elicited by a stimulus, can covary across the session, a phenomenon denominated as 

noise-correlation and these correlations are thought to covary with attentional, behavioral, 

and overall brain-state of the network (Averbeck et al., 2006). Although the function of 

noise-correlations is not completely understood, it is well known that they could affect 

(either increase or decrease) population decoding (Averbeck et al., 2006; Averbeck and 

Lee, 2006; Carnevale et al., 2013; Cohen and Kohn, 2011; Zohary et al., 1994). For this 

reason, we also determined the impact of removing the noise-correlations on the 

decoding accuracy of sucrose intensity. We found that pIC (0.21 ± 0.005) had a 

significantly higher noise-correlations in comparison to aIC (0.19 ± 0.006) and OFC (0.19 

± 0.007) (F(2,386) = 7.85; p = 0.0005; Figure 3 – figure supplement 2A). Nevertheless, 

removing noise-correlations by shuffling trials (Figure 3 – figure supplement 2B) did not 

significantly affect decoding accuracy in any population or recorded brain region (Figure 

3B see the grey horizontal lines). Therefore, at least in these experiments, noise-

correlations do not have a significant effect over decoding of sucrose intensity. 
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We next determined which class of Cue-evoked responses contained sufficient 

information to decode sucrose’s intensity. To achieve this, we ran the neural classifier 

using a single neuronal population. In all three regions, the Coherent-Inactive and 

Coherent-Active had better percentage decoding accuracy than the Non-evoked control 

group (Table 3). Moreover, in the pIC, aIC, and OFC combining All-Coherent neurons 

(All-Coh) achieved the best sucrose decoding nearly matching that of the entire 

population (All). Thus, Lick-coherent populations contained sufficient information in their 

responses to decode sucrose intensity. 

 

Finally, to further determine which population contained information necessary to decode 

sucrose intensity, we performed a dropped population analysis (Gutierrez et al., 2006). In 

this analysis, only one population at a time was removed, and its decoding accuracy was 

compared against the decoding achieved by All the Cue-evoked populations combined 

(Table 4; referred as “All”). In the three cortical regions, the percent decoding accuracy 

was significantly reduced only when the two Lick-coherent groups were dropped from the 

entire population (compare All-Coh vs. “All;” Table 4). In sum, both analyses suggest that 

the neural responses of the Lick-coherent neurons were both sufficient and necessary to 

decode sucrose intensity information. 

 

Coding profile  

Having described the modulation profile evoked by two sucrose concentrations, we next 

characterized whether neurons in the three recorded cortices encode sucrose’s 

concentration-dependent information and decision-variables. We first describe neuronal 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

responses that encode information about sucrose’s concentrations. This is followed by 

neuronal responses that correlate with animal choices (“Choice neurons”), Direction 

(neurons with responses selective to either leftward or rightward movements), and finally, 

neurons that track the Outcome (responses that indicate the presence or absence of 

reward). We also discuss the overlapping among these populations. 

 

Concentration-dependent sucrose responses (Cue-G trials) 

To determine if there was a neuronal subpopulation that tracked sucrose concentrations 

among the Intensity-selective (Cue-D) neurons, we evaluated neural responses during 

generalization trials (Cue-G: 3, 4.75, 7.5, 11.75, or 18% sucrose). In these sessions, we 

recorded a subpopulation of 480, 403, and 337 neurons from the pIC, aIC, and OFC, 

respectively. Similar to the Cue-D sessions, in the generalization sessions, we found that 

94.1 ± 1.3% could be classified as Cue-evoked neurons and that from these, 83.3 ± 1.5% 

were Non-selective and 16.7 ± 1.5% were Intensity-selective. From the Intensity-selective 

population, the proportion that tracked the sucrose concentration (either positively or 

negatively) was 28.8% (19/66), 36.1% (26/72), and 32.3% (20/62) in the pIC, aIC, and 

OFC, respectively. Figure 4A shows raster plots and PSTHs of three representative 

neurons recorded in the pIC, aIC, and OFC whose responses increased with sucrose’s 

concentrations. That is, during the “best window” (cyan-shaded rectangle), these neurons 

responded with increasing activity to increasing sucrose concentrations (see Insets). We 

also identified neurons with an activity that negatively correlated with sucrose 

concentrations (Fig. 4B). The population activity of all neurons with increasing (red) or 
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decreasing (blue) responses was similar across the three cortical regions (Fig. 4C). Thus, 

all three of these cortical areas have neurons that track the sucrose concentration.  

 

Neurons involved in Choices 

Having demonstrated how sensory information about the sucrose concentration is 

encoded, we next identified neurons whose activity correlated with the animal’s 

behavioral choices. For this, in the Stimulus and Response epochs, we calculated the 

correlation between the neuronal activity and the perceptual intensity choices made by 

the animals on a trial-by-trial basis. To quantify the extent to which the neuronal 

responses could be underlying the behavioral decisions we compared psychometric and 

neurometric generalization curves (see Methods and de Lafuente and Romo, 2005). 

Initially, we aligned the responses to the onset of the Stimulus epoch, but no significant 

neuronal responses were detected in this epoch (data not shown). In contrast, Choice-

related responses were found in the Response epoch in the aIC and the OFC. Since in 

the pIC only two Choice neurons were detected (Figure 5–figure supplement 1B), no 

conclusions were drawn for this cortical area. The left panel of Figure 5A shows the 

PSTHs of a “Low-preferred” aIC choice neuron (left panel) whose activity decreased with 

increasing sucrose concentrations. The right panel shows a “High-preferred” OFC neuron 

that exhibits higher firing rates for trials ≥ 4.75% sucrose and that fired less for ≤ 3% 

sucrose (Fig. 5A, right panel). The cyan-shaded rectangle in the PSTHs depicts the 

window where neural responses best-predicted animal’s choices. It is seen that especially 

in OFC, the resulting neurometric function followed the psychometric function (Fig. 5A, 

insets). The averaged neurometric function of all 8 aIC (of 403; 2.0%) and 18 OFC (of 
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337; 5.3%) Choice-related neurons that covaried significantly with the behavioral 

psychometric function are shown in the left and right panel of Figure 5B, respectively. 

However, only in the OFC were the confidence intervals of the slopes overlapped, 

indicating that neuronal responses in this area better followed the behavioral choices, in 

comparison to the aIC. To determine the temporal dynamics of choice selectivity (Low vs. 

High), we plot a ROC index across the Response epoch (Fig. 5C).  We observed that aIC 

neurons encoded the choice only when the rat is responding (time > 0 s), while OFC 

Choice neurons discriminated between sucrose concentrations before subjects started to 

communicate their choice. That is, OFC neurons encoded the subject’s choice while the 

animals were still licking in the central port (time < 0 s). In sum, OFC neurons carry 

information about sucrose intensity judgment earlier than aIC neurons.  

 

Instead of using sucrose intensity, we note that the animals could be using palatability to 

generate their behavioral responses. To investigate this possibility, we used the sucrose-

evoked lick rate to construct a palatability generalization function that we then compared 

with the psychometric generalization function. The results show that licking responses 

could be used to predict behavioral responses in only 1 out of 171 sessions.  Moreover, 

no Choice-related neurons were recorded from this session (data not shown). Therefore, 

we consider it is unlikely that rats guided their choices based on oromotor sucrose -

evoked palatability responses but rather favor the idea that rats make decisions based on 

sucrose’s intensity. 

 

Preferred Direction neurons 
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Previous studies have demonstrated the existence of neurons in the OFC that encoded 

information about movement direction (Feierstein et al., 2006; MacDonald et al., 2009; 

Roesch et al., 2006). To both confirm and extend those studies we determined if there 

was a similar movement-direction coding in the pIC, aIC, and OFC. This was 

accomplished by employing a Receiver Operating Characteristic (ROC) curve (Green and 

Swets, 1966) which determined how distinguishable were the firing rate distributions of 

two events (i.e., leftward vs. rightward movement). The area under the ROC curve was 

scaled from -1 to +1, providing a Preference Index (Pindex), where -1 means a complete 

preference for leftward direction, +1 a complete selectivity toward the rightward direction, 

and 0 indicates no preference. Then, using the firing rates, we computed Pindex’s for the 

Return and Response epochs.  

  

In the Response epoch, rats moved from the center port to a lateral port (left/right) 

whereas in the Return epoch go from a lateral port to central port (left/right; see 

schematics Figs. 1A and 6A). Thus, both epochs shared a similar, leftward or rightward, 

movement direction. We reasoned that Direction-selective neurons should fire for 

movements sharing a direction, but that may occur at different spatial locations. In the 

three cortices studied, we identified neurons that exhibited direction selectivity. Figure 6A 

shows three neuronal responses that exhibited either a Leftward-preferred selectivity 

(upper and lower panel) or a Rightward-preferred selectivity (middle panel). That is, the 

Leftward-preferred responses increased for leftward movements and did not respond to 

rightward movements (Fig. 6A, cyan PSTHs). The middle panel shows a neuronal 

response from the aIC that fired better for a Rightward movement. The three panels in 
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Figure 6B show, for all Direction-selective neurons in the three areas, the scatter plot of 

the Return’s Pindex relative to the Response’s Pindex. The black arrows indicate the Pindexes 

for the three representative neurons shown in Figure 6A. Note that Pindex values closer to 

the diagonal denote similar direction selectivity for the Return and Response epochs.  

 

We also found that Direction-selective neurons displayed similar responses for Correct 

and Error trials (see raster plots), supporting the notion that movement direction was the 

primary feature modulating their firing rates. We note that the OFC had the best 

representation of direction selectivity tuning (Response’s Pindex; One-way ANOVA: F(2, 462) 

= 6.1; p < 0.0001). A Bonferroni post hoc confirmed that OFC had a better representation 

of direction selectivity in comparison to pIC and aIC (p < 0.05 and p < 0.01, respectively). 

Another more complete example of direction selectivity can be seen in its population 

activity in both task epochs (Fig. 6C; also see the magnitude of Z-scores), with OFC 

yielding the greatest differences. To this point, a higher proportion of Direction-selective 

neurons was found in OFC (19.1%) in comparison to pIC and aIC (10.8%, χ2=23.85, p < 

0.0001 and 10.8%, χ2=22.32, p < 0.0001, respectively; Fig. 6B). Note that most of these 

neurons were Right-Selective neurons (Insets Fig. 6B) perhaps because we recorded 

unilaterally in the left hemisphere. Overall, these data reveal that more OFC neurons 

tracked movement direction in comparison to both areas of the IC.  

 

Outcome responsive neurons  

Once the subjects are in the lateral goal-port, they would or would not receive water 

according to their choice (Correct or Error) and trial type (discrimination (Cue-D; water) 
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or generalization (Cue-G; no water)). Recall that in Cue-D trials, reward delivery depends 

upon task performance whereas, in Cue-G trials, no reward was delivered regardless of 

choice. Thus, for Cue-G trials of 3 and 18 wt% sucrose, rats could not predict if the reward 

would be delivered or omitted. Therefore, by analyzing all rewarded vs. unrewarded trials 

(regardless of choice), we could disambiguate whether neurons tracked the outcome. In 

this regard, we identified a subpopulation of neurons that selectively fired for reward 

omission vs. reward delivery. Figure 7A displays the raster plots and PSTHs of three 

representative neurons. The pIC and OFC neurons did not respond to reward omission 

(RWO-named the Inactive population), but they fired to rewarded trials (RW- see dashed 

PSTHs). In contrast, the aIC neuron fired after reward omission (named Active 

population), while no responses were observed during reward delivery (Fig. 7A, middle 

panel). Note that the pIC (57.1% vs. 17.9%) and the aIC (45.7% vs. 28.3%) had a higher 

proportion of neurons with Inactive than Active responses after reward omission (χ2=72.88, 

p < 0.0001 and χ2=12.05, p = 0.0005; respectively); while the OFC the proportion was 

similar (36.5% vs. 42.4%; χ2=1.1, n.s.), suggesting that pIC and aIC exhibited a bias 

toward having more neurons with Inactive responses after reward omission relative to 

OFC neurons. The population responses of both Inactive and Active Reward Omission 

neurons are seen in Figure 7B.  

 

Figure 7C depicts the lick rates during reward delivery (dashed line) and omission (solid 

line). Note that the rats rapidly detected reward omission since they stopped licking faster 

when water was omitted (the arrows indicate the second rewarded lick after delivery of 

the first water reward -time = 0 s- for RW trials; also see Fig. 1H).  
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Finally, to quantify, the temporal dynamics of behavioral and neural decoding of the 

outcome, we ran a population decoder analysis. The data presented in Figure 7D 

revealed that pIC, aIC, and OFC contain neurons that detect and provide more 

information about reward omission than licking behavior itself. That is, the decoding 

accuracy was better when the algorithm used spiking activity (blue line) instead of the 

licking rates (black line). Our results suggest that all three of these cortical taste regions 

are highly sensitive to both reward delivery and reward omission.  

 

Integration and overlap among coding profile 

Given that neurons encoding sensory and decision-variables were detected in different 

task epochs, we tested if there were any overlapping populations. This was accomplished 

using a Fisher’s exact test to determine if the proportion of neurons that belong to two 

coding categories was above-expected chance levels. Figure 8A depicts a contingency 

table of the pairwise comparison of each coding profile category. For example, the left 

and middle quadrants indicates the number of neurons that encodes both Sensory and 

Direction (the parenthesis indicates the corresponding percentage of overlapping). Also, 

since in the discrimination task the Low and High Cue-D were also associated with a 

left/right movement, it is possible that some Sensory responses recorded in the Stimulus 

epoch, besides discriminating sucrose intensity, could jointly encode movement direction 

(in the Response epoch). We reasoned that if this were the case, then most Sensory 

neurons will also belong to the Direction population. This overlap was significant only in 

pIC (Fig. 8A, upper panel; in 10% of the neurons). Moreover, the same result was found 
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when we used all the Intensity-selective neurons to compute the contingency matrix (data 

not shown). Thus, it is unlikely that most Sensory neurons (or Intensity-selective neurons) 

jointly encoded sucrose intensity and movement direction. Instead, the results suggest 

that Sensory neurons play a more circumscribed role in chemosensory sucrose intensity 

processing.  

 

Other observations revealed that the OFC Direction population was significantly 

associated with Choice and Outcome (Fig. 8A, lower panel), suggesting that OFC 

neurons are capable of carrying, at multiple time periods, more than one spatiomotor 

variable related to performing the discrimination task.  

 

The overlap between modulation and coding profiles 

We also explored if neurons encoding decision-variables (coding profile) tend to exhibit a 

specific modulation profile (i.e., Phasic, Tonic, Coherent). It is important to note that all 

modulation profiles could, in principle, encode almost any of the sensory and decision-

variables. However, only a few subpopulations exhibited a significant overlap. In general, 

no systematic overlapping pattern was shared across the three cortical regions, 

suggesting that by knowing the modulation profile of one neuron provides little, if any, 

information about what kind of decision-variables it might encode. That said, we observed 

that Lick-coherent neurons in the pIC and aIC had a higher likelihood of encoding 

decision-variables, except for Choice neurons in the aIC which were non-preferentially 

encoded by any modulation profile (Fig. 8B, upper and middle panels). In contrast, Tonic-

Active neurons in the OFC jointly encoded Choice, Direction, and Outcome variables (Fig. 
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8B, lower panel). In sum, these data suggest a prominent role of the Lick-coherent 

neurons in encoding critical features of the task in the Insula, whereas in the OFC the 

tonic activity prevails in encoding decision-variables.  

 

Discussion 

Sucrose intensity is a sensory attribute that contributes to the overconsumption of high-

energy palatable foods (Avena et al., 2008; Spector and Smith, 1984; Veldhuizen et al., 

2017). This study was undertaken to uncover how the perceived intensity of sucrose is 

represented across rat taste-related cortices (pIC, aIC, and OFC) and how this 

representation is transformed into decision-making variables such as choice or movement 

direction. We found that most neurons in these areas were responsive to the introduction 

of sucrose in the mouth. However, only a small subpopulation of them, in all areas, 

exhibited responses that tracked sucrose concentrations and that decoded sucrose’s 

intensity equally well. Further analysis revealed that information about sucrose’s intensity 

was conveyed in the both neuronal firing rate and spike timing. We also identified a 

population of neurons that tracked sucrose concentrations (Sensory neurons) with the 

ones that increased reflecting changes in sucrose’s intensity and the ones that decreased 

possibly reflecting changes involving either osmotic pressure (Hanamori, 2001; Lyall et 

al., 1999) or the washing out of bicarbonate ions in saliva (Zocchi et al., 2017). In addition, 

neurons in the pIC and aIC encoded movement direction although OFC neurons tracked 

direction better than those in the Insula. Also, the neuronal signals related to Outcome 

(reward) were tracked similarly by these three cortical regions. In sum, we found that, in 

rats at least, a small and distributed group of Intensity-selective neurons represent 
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sucrose’s intensity, whereas decision-variables were also encoded in a distributed 

manner, but the OFC tends to encode choice and movement direction earlier and better 

than the Insula. These findings add to our understanding of the neural representation of 

sucrose’s intensity in these three taste cortices and contribute to the elucidation of the 

decision-making processes that underlie choices guided by the concentration of sucrose.  

 

Cortical representation of the perceived intensity of sucrose 

 

The neural representation of sweet taste intensity has been usually characterized by firing 

rates that monotonically (or sigmoidally) increase with sucrose concentration along the 

gustatory axis from the periphery to taste cortices (Barretto et al., 2015; Rolls et al., 1990; 

Roussin et al., 2012; Scott et al., 1991; Thorpe et al., 1983; Villavicencio et al., 2018; Wu 

et al., 2015). These experiments usually have been performed in animals that do not have 

to make any other decision than to lick (Stapleton et al., 2006; Villavicencio et al., 2018) 

or have the tastant passively delivered (Katz et al., 2002). However, as noted, the intensity 

attribute of a tastant can only be measured in behaving animals that actively report the 

perceived concentrations of sucrose. To address this issue, we developed a sucrose 

intensity discrimination task (see Fig. 1) while recording from cortical three taste areas. 

We found that ~ 95% of recorded neurons were responsive to a single drop of sucrose 

(Cue-D), but the majority of them were unable to distinguish between 3 and 18 wt% 

sucrose. We posit that such a massive number of responsive neurons, which includes 

Intensity-selective and Non-selective neurons (see Figure 3-figure supplement 1), could 

be the result of the arrival of a salient cue (Cue-D) to an over trained animal. This stimulus 
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is highly relevant in the context of thirsty subjects whose internal state would motivate 

them to attend to the delivery of an stimuli whose accurate detection and identification will 

lead to obtaining water. These findings are in agreement with observations that a state of 

physiological need (e.g., hunger) gates insular cortex responses to food cues (Livneh et 

al., 2017) and that caudolateral OFC neurons are sensitive to hunger (Rolls et al., 1989). 

Likewise, in head-fixed trained mice, it was recently reported that odor stimulation also 

triggers a massive widespread cortical activation in mice performing a Go/No-Go goal-

directed behavior (Allen et al., 2017). 

  

Multiple pieces of evidence support the idea that a small population of cortical neurons 

could represent sucrose intensity. For example, electrophysiological studies in rodents 

and non-human primates have reported a low proportion (ranging between 2-35%) of 

Insular (pIC) and OFC neurons with selective responses to at least one taste quality 

(Pritchard et al., 2005; Rolls et al., 1990, 1989; Scott et al., 1991; Stapleton et al., 2006; 

Thorpe et al., 1983; Yamamoto et al., 1989; Yaxley et al., 1990). In contrast,  one recent 

study in anesthetized mice, using a calcium sensor (GcAMP6), reported almost 90% of 

taste responses in the pIC were tastant selective although only 26% were sucrose-best 

(Fletcher et al., 2017). The differences in proportions could be explained by different data 

analysis and experimental preparations employed (Chen et al., 2011; Katz et al., 2001). 

Unfortunately, only a few studies have reported the proportion of cortical neurons tracking 

taste intensity. In this regard, in the monkey Insula cortex, Scott et al. (1991) found that 

less than 1.5% (24/1661) of the recorded neurons responded linearly to increasing 

glucose concentrations. To the best of our knowledge, our data is the first demonstration 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

that a small subset of cortical neurons represents sucrose intensity better than the entire 

population. Although intensity-selective neurons comprise a “small” population relative to 

Non-selective neurons (Fig. 3B and Table 2), we note that 18% of neurons in a rat’s cortex 

would represent a large population. Further studies should investigate whether Intensity-

selective neurons are sucrose-selective or broadly tuned (Erickson, 2001).  

 

In this regard, it is interesting that Intensity-selective neurons were present in the recorded 

three cortical regions. This result is somewhat surprising in light of the experiments in the 

mouse Insula cortex showing the existence of non-overlapping posterior (aversive-pIC) 

and anterior (appetitive-aIC) “hotspots” (Chen et al., 2011). Gain and loss of function 

experiments in mice have demonstrated that the “sweet hotspot” is sufficient and 

necessary for sweet taste recognition (Peng et al., 2015), and a similar topographic 

separation of disgust-appetitive in monkeys’ anterior Insula has been found, although in 

a different anatomical axis (dorsal–appetitive and ventral-aversive (Jezzini et al., 2012)). 

One explanation for the distributed responses that we observed (Figs. 2 and 3) is that 

sucrose’s identity is initially encoded in the sweet hotspot (located in aIC), but information 

about its perceived intensity is then distributed to other areas. Further experiments should 

involve the inactivation of one or more of these areas. Nevertheless, we found that each 

recorded cortical region decoded sucrose intensity equally well, including the pIC which 

according to (Chen et al., 2011) is where the “aversive hotspot” is located.  Thus, 

whatever the explanation, each of these three cortical regions contains information about 

sucrose intensity, revealing the distributed nature of taste intensity coding. However, the 

fact that all three areas decoded sucrose intensity equally well does not imply that they 
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represent the same information, but rather they may encode different features of the 

sucrose intensity cues. In this regard, and despite that stimulation of the pIC elicits 

aversive behavioral responses (Peng et al., 2015), we posit that the pIC should also plays 

a general role in gustation since it receives most inputs from the gustatory thalamus 

(Cechetto and Saper, 1987), which could rationalize why there is sucrose responses in 

this cortical area (Fletcher et al., 2017).  The aIC responses might be related to encoding 

the sweet percept, due to the “sweet” hotspot, mentioned above, whose activation leads 

to appetitive behaviors (Chen et al., 2011; Peng et al., 2015; Wang et al., 2018). Finally, 

the OFC responses during the Stimulus epoch could also signal the relative reward value 

of Low and High sucrose cues (Rolls et al., 1990; Tremblay and Schultz, 1999). Our data 

suggest that the perceived intensity of sucrose is spatially distributed along taste cortices 

with a compact and distributed neural code, in the sense that a small subset of spatially 

disperse neurons contain more information, about sucrose intensity, than the entire 

population (Field, 1994; Olshausen and Field, 2004; Stüttgen et al., 2011).  

 

The contribution of spike timing and spike count in taste identity coding has been 

extensively studied by Di Lorenzo and colleagues (Di Lorenzo et al., 2009; Di Lorenzo 

and Victor, 2003; Roussin et al., 2012). However, less is known about its contribution to 

the encoding of sweet intensity. In this regard, we found that additional information about 

sucrose‘s intensity was conveyed in the spike timing of neurons (Fig. 3B). A recent study 

in the olfactory system reported that piriform cortex neurons encode odor intensity by 

using only the spike timing, and not the spike count information (Bolding and Franks, 

2017). Likewise, our results revealed that spike timing carries additional information about 
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taste intensity. However, spike count is also a  contributor since we found Sensory 

neurons that tracked the concentration of sucrose by increasing its firing rate (Fig. 4). 

Thus, in the taste system, it seems that both spike count and spike timing information 

could be complementary codes for the perceived intensity of sucrose.  

 

Precise spike timing entrained by rhythmic licking serves as an internal clock, relevant for 

coordinating activity across brain regions (Gutierrez et al., 2010, 2006; Roussin et al., 

2012). We found that the Lick-Coherent neurons were both sufficient and necessary to 

decode the perceived intensity of sucrose (Tables 3 and 4). More importantly, we also 

uncovered, for the first time, that the level of coherence was significantly higher in the 

Stimulus-epoch in comparison with the pre-Stimulus and the Outcome epochs (Figure 3-

figure supplement 3). This result implies that lick-spike coherence not only reflects 

oromotor responses, but that it is also involved in gating the input of sensory and taste 

information that can be “read out” across taste cortices in coordination with licking 

(Buzsáki, 2010; Gutierrez et al., 2010).  

 

Decision-making in taste cortices guided by sucrose concentration  

The best way to access the representation of the perceived intensity of sucrose is by 

allowing animals to make a decision about its intensity. Thus, it is important to determine 

the extent to which neuronal activity correlates with the animal’s behavioral choices. We 

found that a distinct subset of neurons exhibited Choice-related activity in aIC and OFC 

with responses that covaried with the subject’s choices (Fig. 5). Furthermore, OFC (but 

not aIC) neurons tracked choice before a response was emitted. These findings are in 
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agreement with behavioral observations which suggests the subjects have already made 

a decision before leaving the central port (Perez et al., 2013; Uchida and Mainen, 2003). 

Our findings reveal a neural correlate of the perceived intensity of sucrose in the gustatory 

system.  

 

Encoding of movement direction in taste cortices 

Spatial navigation is an essential behavior that allows organisms to explore the 

environment and direct their actions toward a goal (Epstein et al., 2017). Spatial variables 

such as direction are essential to reach the desired outcome or to avoid punishment. 

Although spatial information is encoded in brain regions specialized for spatial processing, 

such as the hippocampus and entorhinal cortex, recently it has been found that other 

unexpected areas also contain spatial information (Yin et al., 2018). In this regard, here 

we also found that OFC neurons robustly encoded movement direction. Likewise, 

neurons with direction selectivity in the OFC have been recorded in tasks involving two 

or four spatial locations (Feierstein et al., 2006; Lipton et al., 1999; Roesch et al., 2006). 

Lesioning the OFC disrupts performance in an allocentric foraging task (Corwin et al., 

1994), and radial arm and Morris water maze (Kolb et al., 1983). Moreover, the OFC also 

encodes head angle, spatial trajectory and movement speed in a spatial discrimination 

and reversal task in a plus maze (Riceberg and Shapiro, 2017). The latter evidence 

agrees with the high proportion of OFC Direction-selective neurons that we identified (Fig 

6). In contrast, less is known about the participation of the Insular Cortex in encoding 

spatial navigation parameters; although, it is known that ablating either the pIC or the aIC 

results in a severe impairment of spatial navigation in a water maze (Nerad et al., 1996). 
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Here, for the first time, we found that neurons in the pIC and aIC tracked movement 

direction, probably through their connections with the entorhinal cortex (Wang et al., 

2018). However, according to the Pindex values the encoding of direction was weaker in 

the IC in comparison to the OFC (Fig. 6). Altogether, our data points to a dominant role 

for the OFC, and to a lesser extent the IC, in encoding movement direction; an essential 

feature of spatial navigation for goal-directed behaviors.  

 

The detection of either reward delivery or reward omission is essential for animals’ 

survival and for triggering learning based on reward prediction errors (Schultz et al., 1997). 

Previous observations have shown that aIC and OFC neurons encode reward omission 

(Feierstein et al., 2006; Jo and Jung, 2016) and we found the pIC, aIC, and the OFC 

differentially respond to the presence and absence of reward (Fig. 7); suggesting a 

distributed tracking of reward omission.  However, this is the first demonstration that pIC 

neurons could also encode reward omission. The pIC has a key role in updating the 

current outcome representation to guide action selection. This is because without 

affecting the execution of the instrumental responses its chemogenetic inhibition impairs 

the ability of subjects to adjust their actions based upon the outcome current value 

(Parkes et al., 2017, 2015). Our results demonstrate a widespread representation of 

neural signals related to the Outcome, which is a crucial process for learning and adaptive 

behavior. 

 

As noted above, we identified several differences and similarities between the evoked 

pIC, aIC, and OFC responses. The main similarity among all three brain regions was that 
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they decoded sucrose concentration equally well. A major difference was that OFC 

neurons carry information about decision-variables earlier and with higher quality than 

neurons in the Insula (Figs. 5-7). That is, unlike the Insula, the OFC was the brain region 

with more neurons jointly encoding more than one decision-variable (Choice, Direction, 

and Outcome; Fig. 8A), indicating that the OFC has a complete representation of the most 

relevant task events. It follows that the OFC provides an up-to-date representation of task-

related information that is required to yield the best outcome. In reinforcement learning, 

this information is named “state” representation (Schuck et al., 2018; Stalnaker et al., 

2016; Sutton and Barton, 2017).  

 

The OFC is also involved in encoding the subjective reward value of associated choices 

(Conen and Padoa-Schioppa, 2015; Rolls, 2004; Tremblay and Schultz, 1999). However, 

in our task correct actions (choosing left/right) led to the same reward (i.e., 3 drops of 

water), suggesting, in agreement with findings in an odor guided task (Feierstein et al., 

2006), that OFC neurons could encode spatiomotor variables, such as Choice and 

Movement direction, even for actions with the same reward value. Our results both 

confirm and extend these findings by further demonstrating that OFC neurons could 

represent decision-variables in a task guided by the intensity of sucrose. We posit that 

OFC may act as a hub that represents decision-variables regardless of the type of 

sensory input used to guide goal-directed behaviors. The OFC is a brain area well suited 

to perform this function since it receives connections from sensory areas related to 

olfactory, gustatory, visual, and somatosensory processing (Cavada et al., 2000).  
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Concluding remark 

 

We found evidence that in animals trained to identify sucrose intensity the taste system 

uses a compact and distributed code to represent its perceived intensity. Moreover, the 

perceived intensity of sucrose and the decision-variables associated with the 

discrimination task can be fully reconstructed from a small population of neurons in the 

pIC, aIC, and OFC.  

 

Material and Methods 

Chemicals 

Sucrose was reagent-grade chemical quality purchased from Sigma-Aldrich (Mexico City, 

Mexico). It was dissolved in distilled water and used the following concentrations 3, 4.75, 

7.5, 11.75, and 18 wt/vol%. Solutions were prepared fresh every other day. They were 

maintained under refrigeration, and they were used at room temperature.  

 

Subjects 

We used 28 male Sprague-Dawley rats weighing 300-320 g at the beginning of the 

experiment, and by the end of recordings, their weights were 412.3 ± 8 g. Animals were 

individually housed in standard laboratory cages in a temperature-controlled (22 ± 1 °C) 

room with a 12:12-h light-dark cycle (lights were on 0700 and off at 1900). All procedures 

were approved by the CINVESTAV Institutional Animal Care and Use Committee. During 

experiments, rats were given ad libitum access to tap water for 30 min after testing. Chow 

food (PicoLab® Rodent Diet 20, St. Louis, MO, USA) was always available in their 
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homecage. All experiments were performed in the late light period from 1400 to 1900 h 

since at this period rats were more alert and motivated to work.  

 

Behavioral Equipment 

Animals were trained in four identical standard operant conditioning chambers of internal 

dimensions 30.5 x 24.1 x 21.0 cm (Med Associates Inc, VT, USA). The front panel of each 

chamber was equipped with one central and two laterals V-shaped licking ports with a 

photobeam sensor to register individual licks (Med Associates Inc, VT, USA). Each port 

had a licking spout that consisted of either one (for lateral ports) or a bundle of up to 6 

(for the central port) blunted needles (20-gauge) that were carefully sanded and glued at 

the tip of a stainless-steel sipper tube. Each needle was connected to a solenoid valve 

(Parker, Ohio, USA) via a silicon tube. The volume of the drop was adjusted before each 

session and maintained by using an individual and constant air pressure system (Perez 

et al., 2013). On the rear panel, there was an ambiance white noise amplifier with a 

speaker that was turned on in all the sessions. Chambers were enclosed in a ventilated 

sound-attenuating cubicle. Experimental events were controlled and registered by a 

computer via a Med Associates interface (Med Associates Inc, VT, USA). 

 

Sucrose intensity discrimination task 

All subjects were trained in a “Yes/No” psychophysical task (Stüttgen et al., 2011) to emit 

a response by either going left or right based on the concentration of a 10 µL sucrose cue 

(Low 3% or High 18 wt%). For trained animals, the task comprises four epochs: Return, 

Stimulus, Response, and Outcome. The outline of a trial is depicted in Figure 1A. A trial 
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began when trained subjects moved from either lateral port to return the central spout; 

this epoch was named Return. Once in the central port, the rats were required to lick the 

empty spout a variable number of times (between two or three) to receive a 10 µL drop 

of either 3 or 18 wt% sucrose (hereafter Cue-D). Rats could give additional empty licks 

after Cue-D delivery. These empty licks were used as a measure of the palatability 

oromotor responses elicited by sucrose (Perez et al., 2013). The time elapsed from Cue-

D delivery to the last lick in the central spout was designated as the Stimulus epoch. 

Subsequently, subjects had to move to either the Low or High sucrose-associated port 

(Response epoch) and emit, at least, one dry lick. If the response was correct, subsequent 

licks delivered three drops of water as a reward, while incorrect choices briefly turned off 

and on the lights during 50 ms (at the second dry lick) and subsequent licks were without 

a reward. The Outcome port comprises the interval where rats were licking in the lateral 

spout. The learning criterion was set at ≥ 80% correct responses during four consecutive 

sessions. 

 

Importantly, a drop of water was not delivered at the central port as a washout because 

in a pilot study we found that rats did not learn the task despite extensive training (> 50 

sessions). We speculate that this was due to an imbalance in the reward value between 

the licking ports. Specifically, the reward value of one drop of water + one drop of sucrose 

(3 or 18 wt%) at the central spout seems to be higher than the value of 3 drops of water 

delivered at the lateral spouts. The inclusion of a water washout failed to motivate rats 

and induced learning and thus the water washout, at central spout, was no longer used.  
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Generalization sessions:  

Once the animals learned to discriminate between Low (3 wt%) and High (18 wt%) 

sucrose by getting at least 80% of the trials correct, the generalization sessions were 

introduced. Generalization sessions were composed of 20% of the trials (80% were of 

discrimination trials). These trials were like discrimination trials with the exception that 

after at least two discrimination trials subjects received a drop of either 0, 3, 4.75, 7.5, 

11.75 or 18 wt% sucrose. In these trials, no reward was delivered after choosing either 

lateral spout (and in the second dry lick, the lights turned briefly on and off for 50 ms, 

signaling that no reward will be delivered). Discrimination and generalization sessions 

were interleaved, such that a generalization session occurred if at least one discrimination 

session with ≥ 80% correct responses took place the day before. This procedure avoids 

impairment of task performance.  

 

Since no statistical differences in task performance were found among groups, behavioral 

data were collapsed across subjects for the three brain regions recorded. For 

discrimination sessions, the percent correct responses were obtained by counting the 

number of trials for Low or High that subjects responded to the correct associated choice 

spout, divided by the total number of trials. To determine if performance was affected by 

electrode implantation, the average performance of the five sessions pre- and post-

surgery were compared using a paired t-test (Fig. 1). For generalization sessions, the 

percent responses given to the High concentration spout was plotted, and a sigmoid 

function was fitted to obtain the psychometric function. Likewise, surgery effects over 

generalization sessions were evaluated by comparing the average performance for all 
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these sessions before and after surgery with a paired t-test. The time spent licking in the 

central port for each concentration (Cue-D + Cue-G trials) during generalization sessions 

were collapsed and compared using a one-way ANOVA, and a Dunnett post hoc 

confirmed differences against sucrose 3 wt% Cue-D trials. As well, the time spent during 

the Return and Response epochs for each movement direction (left or right), and during 

the Outcome epoch for reinforced and unreinforced trials, were collapsed and compared 

using an unpaired t-test.  

 

Surgery and histology 

Once animals achieved the learning criterion and at least three consecutive 

generalization sessions were tested, then we proceeded to implant a custom-made 16 

tungsten wires (35 µm diameter) each arranged in a 4 x 4 (1 mm2) multielectrode array. 

The array was implanted in the posterior Insula (pIC; n=11), in the anterior Insula (aIC; 

n=8) and the orbitofrontal cortex (OFC, n = 9). All subjects were anesthetized using 

ketamine (70 mg/kg, i.p.) and xylazine (20 mg/kg, i.p.). The rats were put in a stereotaxic 

apparatus where a midline sagittal scalp incision was made to expose the skull and to put 

two holding screws. A third screw soldered to a silver wire that served as an electrical 

ground for recordings was inserted above the cerebellum (Gutierrez et al. 2010). A 

craniotomy in the left hemisphere was made to implant an electrode array in one of the 

following sites: posterior IC (AP: +1.0 to +1.4 mm, ML: +5.2 mm from bregma, DV: -4.4 

to -4.7 mm ventral to dura), anterior IC (AP: +1.6 to +2.3 mm, ML: +5.2 mm from bregma, 

DV: -4.6 to -4.7 mm ventral to dura) or OFC (AP: +3.5 mm, ML: +3.2 mm from bregma; 

DV: -4.4 mm ventral to dura). Dental acrylic was applied to cement the electrode array to 
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the screws. The rats were given intraperitoneal enrofloxacin (0.4 ml/kg) and ketoprofen 

(45 mg/kg) for three days after surgery and were allowed to recover for one week. After 

the completion of the experiments, subjects were deeply anesthetized with an overdose 

of pentobarbital sodium (150 kg/mg, i.p.) where they were transcardially perfused with 

PBS (1x) followed by 4% paraformaldehyde. Brains were removed, stored for one day in 

4% paraformaldehyde and posteriorly were changed to a 30 vol./vol.% sucrose/PBS 

solution. Brains were sectioned in 40 µm coronal slices, and they were stained with cresyl 

violet to visualize the location of electrode tips. 

 

Electrophysiology 

Neural activity was recorded using a Multichannel Acquisition Processor system (Plexon, 

Dallas, TX) interfaced with a Med Associates conditioning chamber to record behavioral 

events simultaneously. Extracellular voltage signals were first amplified x1 by an analog 

headstage (Plexon HST/16o25-GEN2- 18P-2GP-G1), then amplified (x1000) and 

sampled at 40 kHz. Raw signals were band-pass filtered from 154 Hz to 8.8 kHz and 

digitalized at 12 bits resolution. Only single neurons with action potentials with a signal-

to-noise ratio of ≥ 3:1 were analyzed (Gutierrez et al., 2010). The action potentials were 

isolated on-line using voltage-time threshold windows and three principal components 

contour templates algorithm. A cluster of waveforms was assigned to a single unit if two 

criteria were met: Inter-Spike Intervals were larger than the refractory period set to 1 ms, 

and if it is formed a visible ellipsoid cloud composed of the 3-D projections of the first 

three principal component analysis of spike waveform shapes. Spikes were sorted using 
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Offline Sorter software (Plexon, Dallas, TX) (Gutierrez et al., 2010). Only time stamps 

from offline-sorted waveforms were analyzed. 

 

Data analysis  

All data analysis was performed using Matlab (The MathWorks Inc., Natick, MA) and 

Graphpad Prism (La Jolla, CA, USA). Unless otherwise indicated, we used the mean ± 

sem and the α level at 0.05. 

 

Modulation profiles: 

Cue-evoked responses 

 

In the Stimulus epoch, five major Cue-evoked responses were identified: Phasic, Tonic 

either Active or Inactive and Lick-coherent either Active or Inactive (Fig. 2). We compared 

the proportions of Cue-evoked responses among brain regions using a chi-square test. 

Only correct trials were analyzed. Each Cue-evoked response type fulfilled a criterion that 

is described in detail below:  

 

Phasic responses 

To determine if there were phasic Cue-evoked responses, we compared the firing rate 

from 0 to 0.2 s after Cue-D delivery against the baseline, which encompassed the dry 

licks emitted from -0.3 to onset of Cue-D delivery (Villavicencio et al., 2018). If there was 

a significant difference (Wilcoxon rank-sum test), then we used a cumulative sum test to 

identify the onset of modulations (see Gutierrez et al., 2006). This analysis identified the 
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onset and offset of modulations by detecting in which time bin the firing rate significantly 

increased or decreased relative to the baseline (Figure 2–figure supplement 1). A neural 

response was denominated as Phasic if there was one excitatory modulation that started 

between the first 0.1 s after Cue-D delivery and the duration of this modulation was within 

0.04 and 0.2 s. This procedure assures that only phasic (but not tonic) modulations were 

selected.  

 

Tonically-Inactive and -Active responses 

To determine whether a neuron showed a statistically significant evoked response during 

the Stimulus epoch, we used a “best window” analysis. The analysis consisted of 

scanning the firing rate after Cue-D delivery in multiple window sizes (from 0.05 to 0.6 s 

in steps of 0.05 s) encompassing only the interval from 0 to 0.6 s. Hence, the firing rate 

in a variety of time centers (from 0.05 to 0.5 s, in 0.05 s steps) and for multiple window 

sizes was computed, such that each window was estimated as the center ± (window size 

/ 2). The firing rate on each window was compared against baseline using a Wilcoxon 

rank-sum test. For all statistically significant windows, the “best window” was the one with 

the largest delta (change) in firing rate relative to baseline.  A modulation was assigned 

to be tonic if the duration of the modulation was greater or equal to 0.2 s. Positive 

modulations were termed Active, while negative modulations were designated as Inactive.  

 

 

Lick Coherent responses (Coh-Inactive and -Active) 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

Oscillatory activity between spikes and rhythmic licking (in the 4-12 Hz bandwidth) was 

identified using multi-taper spectral analysis (Jarvis and Mitra, 2001) by segmenting into 

chunks the PSTHs aligned to the first lick given at the central spout (for additional details 

see Gutierrez et al., 2010). The confidence intervals and the significance threshold were 

determined by using a jackknife method (Jarvis and Mitra, 2001).  A neuron was classified 

as Lick-coherent only if the lower confidence interval was above the significance threshold. 

To detect if a Lick-coherent neuron exhibited a Cue-D-evoked response a “best window” 

analysis was employed. To determine whether the modulation was either inactive or 

active the mean firing rate of the significant window was subtracted from the baseline. If 

the result was positive, the modulation was named Lick-coherent Active, while if it was 

negative, it was named Lick-coherent Inactive. From these Lick-coherent neurons we 

calculated the average coherence value (in the 4-12 Hz band) between licks and spikes 

in the three brain regions. Differences in coherence values were analyzed using a one-

way ANOVA, and a Tukey post hoc. Finally, in order to assess the relevance of coherence 

in the detection of gustatory cues, we calculated the coherence value during three task 

epochs. Specifically, we used the central licks given before (pre-Stimulus) and after Cue-

D delivery (Stimulus epoch), and the reinforced licks given during the Outcome epoch. 

Coherence value between epochs was compared by using a one-way ANOVA, and a 

Tukey post hoc confirmed further differences. 

 

Non-modulated and Coherent-Non-evoked responses 

Neuronal responses that displayed no significant statistical differences between baseline 

and cue delivery were denoted Non-Modulated. Neurons that were Lick-coherent but 
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which firing was not significantly different between baseline and 0.6 s after Cue-D delivery 

were termed as Coherent Non-evoked. When Non-modulated and Coherent-Non-Evoked 

neurons were collapsed they were named as Non-evoked.  

 

Intensity-selective neurons 

To determine Intensity-selective responses we also used the “best window” approach. A 

Wilcoxon rank-sum test was applied to compare the firing rate between Low vs. High Cue-

D trials during different intervals within the evoked response. The significant window with 

the higher delta in the firing rate between intensities was named the “best window.” 

Neurons that responded similarly to both intensity cues were named Non-selective. A chi-

square test was used to determine differences in the proportion of Intensity-selective and 

Non-selective neurons among cortical regions. 

 

To measure the differences in licking and its impact on neural responses associated with 

sucrose’s intensity, we determined if lick rate differences occurred during the best-window 

of Intensity-selective neurons and, if so, we then quantified the proportion of the best-

window with lick rate differences. To accomplish this, we employed a Receiver Operating 

Characteristic (ROC) analysis (Green and Swets, 1966) that quantified how different were 

the lick rates distributions of Low and High trials during the first 0.6 s of the Stimulus 

epoch. The area under the ROC curve (auROC) and its confidence intervals were 

calculated for all bins (bin size 0.1 s). If the inferior confidence interval of a specific bin 

was above 0.5, then lick rates were significantly different in that bin. Only Intensity-

selective with significative lick rate differences within the best-window were counted and 
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considered to calculate the proportion of the best-window that displayed lick rate 

differences. 

 

Population decoding of sucrose intensity 

To evaluate if Intensity-selective neurons contained more information about sucrose 

intensity than Non-selective neurons we employed a neural population decoder (Matlab 

toolbox of the 1.0 version of the Neural Decoding Toolbox, www.readout.info) (Meyers, 

2013). To achieve this goal, the decoder was tested with a vector that contained the label 

of the sucrose intensity given (Low or High) in each trial and a matrix m x n that contains 

the number of spikes occurring in each trial (m) during each 20 ms time bins (n). This 

matrix is comprised of spikes occurring from Cue-D delivery 0 to 0.6 s. Then, the firing 

rate matrix was normalized to Z-score, and the data set was divided into k different splits 

(number of data sets). Subsequently, k-1 splits were used to train the classifier by 

averaging the firing rate from the selected trials according to the label class (Low or High), 

therefore generating a Low or High activity vector where each row represents the firing 

rate at each time bin. The remaining split was used to test the classifier. To improve the 

decoder performance this procedure was repeated k times using a different test split each 

time, the average of these results was reported as the percentage decoding accuracy. 

The decoder performance for Non-evoked, “All,” Non-selective, and Intensity-selective 

populations were obtained. Significant differences were determined by using a one-way 

ANOVA and a Bonferroni post hoc to detect differences in performance between 

populations. Furthermore, to determine if spike timing conveyed information about 

sucrose intensity, we maintained the original firing rate but the time at which each spike 
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occurred was shuffled, in each trial. For this, we counted the number of spikes (n) 

occurring from 0 to 0.6 s after Cue-D delivery and sampled without replacement n new 

timestamps during this interval. A paired t-test was employed to determine differences in 

decoding accuracy before and after spike timing shuffle. 

 

Since spike timing shuffling might disrupt the noise-correlation between pairs of 

simultaneously recorded neurons; and these correlations can affect population decoding 

(Carnevale et al., 2013; Cohen and Kohn, 2011b; Zohary et al., 1994), we determined the 

impact of removing noise-correlations over the decoding accuracy of sucrose intensity. 

To do so, we detected the neuron-pairs obtained from different channels (Cohen and 

Kohn, 2011) and normalized the firing rate of each neuron relative to each stimulus (Low 

or High) by following this equation: 

FRksn-‹FRsn› 

σsn 

Where FR is the firing rate, and k indicates the trial, s refers to the stimulus (Low or High), 

and n is the neuron evaluated (Neuron A or Neuron B). Note that for each neuron the 

firing rate of a given intensity is normalized relative to that intensity (i.e., Low relative to 

Low). The normalized firing rate of Low and High trials of Neuron A were concatenated, 

generating one vector; the same for Neuron B. From these vectors we calculated the 

Pearson´s correlation coefficient of the normalized spike counts (rsc, noise correlation); if 

rsc was significative (see Figure 3 – figure supplement 2A, upper panel), then a 

permutation test where the position of trials was shuffled for Neuron A and Neuron B 

separately was performed in order to remove noise-correlations (see Figure 3 – figure 
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supplement 2A, lower panel). The procedure was repeated 10,000 times. A corrected p-

value was obtained using the following formula: p = (k+1) / (n+1), where k is number of 

times that the shuffled p was greater than the unshuffled p-value and n is the number of 

shuffling repetitions. If the corrected p-value was still significant, then each neuron pair 

was considered to be noise-correlated. This procedure was accomplished for different 

time windows from 0.1 to 0.6 s (0.1s steps) after Cue-D delivery. However, since noise 

correlation values were similar across window sizes (see Figure 3 – figure supplement 

2B), and because 0.6 s offered the most stable firing rate across trials, we choose this 

window for subsequent analysis. Then, we shuffled trials positions of neurons that were 

noise correlated, and the decoder was fed with these shuffled matrices of the Non-

evoked, All, Non-selective, and the Intensity-selective population. A paired t-test was 

used to compare each population before and after removal of noise-correlation. 

 

To further explore the contribution that each Cue-evoked population adds to sucrose’s 

decoding, an inclusion and dropping population analysis was performed by either 

including or removing only one population at a time, respectively (Gutierrez et al., 2006). 

For these analyses, two more populations were added: All-Tonic (combining the Tonic-

Inactive + Tonic-Active) and All-Coherent (pooling Coherent-Inactive + Coherent-Active). 

The percent decoding accuracy for Non-evoked, “All,” Phasic, Inactive, Active, Coherent-

Inactive, Coherent-Active, All-Tonic, and All-Coherent were computed for the inclusion 

analysis. Differences between groups were tested with a one-way ANOVA and a Dunnett 

post hoc to compare each group (excluding Phasic) with the Non-evoked. The first 0.2 s 

of the decoder performance of the Phasic group was compared against the Non-evoked 
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group, by employing an unpaired t-test. On the other hand, for the dropped analysis the 

Non-evoked group was not included, and the percent accuracy when “All” neurons were 

used as a control group for the Dunnett post hoc. As well, Phasic (0.2 s after Cue-D) was 

compared to All population using an unpaired t-test. 

 

Coding profile: 

Sensory Neurons 

Responses that decrease or increase as a function of sucrose concentration were 

searched in the subpopulation of neurons that displayed Intensity-selective responses 

during 0.6 s after Cue-D onset (see Cue-evoked responses). We identified the “best 

window” by using the firing rates in each Cue-G trial computed for different window sizes 

and time centers. The firing rates of each window were correlated with sucrose 

concentration (3, 4.75, 7.5, 11.75 and 18 wt%) using a Pearson correlation. The 

statistically significant window with the highest Pearson correlation coefficient was named 

as the “best window.” A permutation test were intensity labels were shuffled without 

replacement was used as multiple-testing correction test  (Davison and Hinkley, 1997) for 

the “best window.” Briefly, data were shuffled 10,000 times. A corrected p-value was 

obtained as mention above. The Pearson correlation coefficient was computed for each 

significant neuron and then average for each population: increasing or decreasing activity 

as a function of sucrose intensity. Likewise, the activity of each population was normalized 

to 3 wt%, and the Z-score was computed.  

 

Choice-related neurons  
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To determine if neural activity tracked subjects’ choices, we identified the “best decision 

window” where the firing rate correctly classified trials as either Low or High intensity with 

the highest accuracy, thereby matching the responses made by the subject to the neural 

activity. This method has been successfully used in non-human primates to explore the 

somatosensory system (de Lafuente and Romo, 2005). The analysis was restricted to 

neurons recorded during generalization sessions during two window intervals: (1) from 0 

to 0.6 s from Cue delivery (Stimulus epoch), and (2) from 0.4 s before to 0.8 s around 

Response onset (time = 0 s), covering the Stimulus and Response epoch. These interval 

windows were chosen to assess if neurons could track subject’s decisions before they 

leave the central (Stimulus) port and during the Response epoch. First, using a 0.2 s fix 

window size and moving centers in steps of 0.1 s that encompassed all the interval 

window evaluated, a firing rate matrix (m x n) was obtained for Low (0, 3, 4.75 wt%) and 

High (7.5, 11.75, 18 wt%) trials, where m represented each neuron and n each time bin 

from the window interval. A ROC curve was employed to obtain the auROC index and its 

confidence interval following the methods described in de Lafuente and Romo (2005). A 

neuron was considered to significantly discriminate between Low and High trials if the 

inferior confidence interval of at least five consecutive time bins were above a ROC value 

of 0.5 (no significant difference). If this criterion was met, then the “best window” where a 

firing rate threshold classified a trial as being a Low or High trial, with the higher precision, 

was obtained. To reach this objective, the firing rate from different windows was computed 

and compared to different arbitrary firing rate criteria. If a neuron fired more at High trials 

was denominated as “High-Preferred,” and the number of “High trials” where the firing 

rate was above the arbitrary threshold were considered High Hits, while the number of 
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“Low trials” where firing rate was below this criterion (Low Hits) were counted. If a neuron 

was “Low-Preferred” the Low and High Hits were considered trials where the firing rate 

was above and below the arbitrary firing rate threshold, respectively. The Low and High 

Hits were summed and divided by the total number of trials and converted to a percentage 

of correct responses. Briefly, the neuron “responses” were calculated as follow:  

Correct neuron responses =
Low Hits + High Hits

Number of trials
𝑥 100 

If the neurometric performance was ≥70% correct responses, then it was considered a 

Choice neuron. This criterion was selected since it corresponds to the behavioral 

performance achieved by rats during the classification sessions (Figure 5–figure 

supplement 1A). The percentage of correct intensity responses from all Choice neurons 

was then averaged and plotted against sucrose intensity and fitted to a sigmoid function 

to obtain the neurometric curve. The psychometric data for the sessions where these 

neurons were recorded was plotted and fitted to a sigmoid function. Finally, the mean and 

the 95% confidence interval of the slopes for the psychometric and neurometric curves 

were obtained. A neurometric curve was determined to reliably matched behavior only if 

the confidence interval of the slopes of both curves were overlapped. 

 

Direction-selective neurons 

In the behavioral tests, subjects were required to move from the center to a lateral port 

(Response epoch) and from the lateral to the central port (Return epoch) to emit a 

response and to initiate a new trial, respectively (Fig. 1A). A Direction-selective neuron 

would be more active when the subject was moving to one direction (i.e., left) during both 

Response and Return epochs, while when moving to the other direction (i.e., right) the 
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neuron was less active or non-active. A ROC analysis was employed to detect differential 

responses for Left and Right trials from 0 to 0.7 s of the Response and Return epochs. 

First, the firing rates of the Left and Right trials were computed. Then, the auROC curve 

was determined and scaled by calculating a preference index Pindex = 2(auROC curve -

0.5) (Feierstein et al., 2006), which provides a value between -1 (Left preferred) and 1 

(Right Preferred), where 0 meant no preference. If the neuronal response preferred one 

side during the Response epoch, a permutation test where left/right labels were shuffled 

without replacement was used. Data were shuffled 10,000 times. A corrected p-value was 

obtained using the following formula: p = (k+1) / (n+1), where k is number of times that 

the shuffled auROC curve was greater than the non-shuffled auROC curve and n is the 

number of shuffling repetitions. If p was significant, the same analysis was repeated from 

0 to 0.7 s of the Return epoch. All trials were included in the analysis since for the Direction 

neurons it did not matter whether it was a correct or error trial, but only the direction of 

the movement. The Z-score of the population activity for Left- and Right-selective neurons 

was computed using as baseline the 0.3 s before the central and lateral port exit for the 

Response and Return epoch, respectively. A chi-square test was used to determine 

differences in the proportion of neurons with Right- or Left-preferred Direction. 

 

Neurons encoding reward (outcome) omission 

Neurons that were modulated by water reward omission were identified by using the same 

ROC analysis as described for the detection of Direction-selective neurons (see above), 

with the exception that this analysis was restricted to the Outcome epoch: from 0 to 0.6 s 

from the onset of the second lateral lick. The firing rate from rewarded (correct 
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discrimination) and unrewarded trials (error discrimination and generalization trials) were 

obtained to calculate the auROC curve. The population that displayed higher firing rate 

for reward omitted trials was named “Active” (positive Pindexes), while the population with 

lower firing rate for these types of trials was denominated “Inactive” (negative Pindexes). 

Furthermore, the lick rate for each type of trials (rewarded/unrewarded) was also 

calculated to allow visualization of oromotor differences. The population activity was 

normalized to Z-score by using the firing rate in the pre-Stimulus epoch (-0.3 to 0) as the 

baseline. 

 

Population decoding of reward omission 

The accuracy to predict the presence or absence of the reward was evaluated by 

providing the neural decoder with the spikes or the licks that occurred from -0.2 to 0.6 s 

around the second lateral lick. A ROC analysis was employed to detect the window 

intervals where performance between lick and firing rate were significantly different: if the 

inferior confidence interval was above 0.5 during at least five consecutive time bins (0.02 

s). 

 

Overlapping among coding profile populations and between modulation vs. coding profile 

neurons 

Since the neurons coding profile were identified in different epochs; then, it is possible 

that a neuron coding one variable (e.g., direction) could encode another variable in a 

different interval (e.g., outcome). Thus, we evaluated the existence of a significant overlap 

between coding profile populations (Villavicencio et al. 2018). To achieve this goal, a 

contingency matrix containing the number of only A, only B, A and B, non-A and non-B 
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neurons were obtained for all pair of combinations. A Fisher’s exact test was applied to 

the matrices. Only neurons recorded during generalization sessions were used for the 

analysis to guarantee that data is drawn from the same distribution. Likewise, we 

determined if a coding profile subset belonged preferentially to one modulation profile by 

performing the same analysis: A Fisher’s exact test was applied to a contingency matrix, 

where A was a modulation profile and B a coding profile. All possible pairwise 

comparisons were tested. Also, only generalization sessions were considered for the 

analysis. 

 

Acknowledgments: 

This project was supported in part by Productos Medix 3247, CONACyT Grants Fronteras 

de la Ciencia 63 (R.G.) and 245 (V.dL.), and Problemas Nacionales 464 (R.G.). 

Esmeralda Fonseca had a CONACyT doctoral fellowship and data in this work is part of 

her doctoral dissertation in the Posgrado en Ciencias Biomédicas of the Universidad 

Nacional Autónoma de México. We thank Mario Gil Moreno for building multielectrode 

arrays, Fabiola Hernandez Olvera for invaluable animal care, and Miguel Villavicencio for 

insightful comments on an early version of the manuscript. We also want to specially 

thank Aurora Sono Matsumoto for invaluable help training rats. 

 

Conflict of interest: The authors declare no competing financial interests. 

 

References 
Accolla, R., Bathellier, B., Petersen, C.C.H., Carleton, A., 2007. Differential spatial 

representation of taste modalities in the rat gustatory cortex. J. Neurosci. 27, 
1396–1404. https://doi.org/10.1523/JNEUROSCI.5188-06.2007 

Allen, W.E., Kauvar, I.V., Chen, M.Z., Richman, E.B., Yang, S.J., Chan, K., Gradinaru, 
V., Deverman, B.E., Luo, L., Deisseroth, K., 2017. Global Representations of 
Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron 94, 
891-907.e6. https://doi.org/10.1016/j.neuron.2017.04.017 

Avena, N.M., Rada, P., Hoebel, B.G., 2008. Evidence for sugar addiction: Behavioral 
and neurochemical effects of intermittent, excessive sugar intake. Neuroscience 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 
 

& Biobehavioral Reviews 32, 20–39. 
https://doi.org/10.1016/j.neubiorev.2007.04.019 

Averbeck, B.B., Latham, P.E., Pouget, A., 2006. Neural correlations, population coding 
and computation. Nature Reviews Neuroscience 7, 358–366. 
https://doi.org/10.1038/nrn1888 

Averbeck, B.B., Lee, D., 2006. Effects of Noise Correlations on Information Encoding 
and Decoding. Journal of Neurophysiology 95, 3633–3644. 
https://doi.org/10.1152/jn.00919.2005 

Barretto, R.P.J., Gillis-Smith, S., Chandrashekar, J., Yarmolinsky, D.A., Schnitzer, M.J., 
Ryba, N.J.P., Zuker, C.S., 2015. The neural representation of taste quality at the 
periphery. Nature 517, 373–376. https://doi.org/10.1038/nature13873 

Bermúdez-Rattoni, F., 2004. Molecular mechanisms of taste-recognition memory. Nat. 
Rev. Neurosci. 5, 209–217. https://doi.org/10.1038/nrn1344 

Bolding, K.A., Franks, K.M., 2017. Complementary codes for odor identity and intensity 
in olfactory cortex. Elife 6. https://doi.org/10.7554/eLife.22630 

Breslin, P.A.S., 2013. An Evolutionary Perspective on Food and Human Taste. Current 
Biology 23, R409–R418. https://doi.org/10.1016/j.cub.2013.04.010 

Buzsáki, G., 2010. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 
68, 362–385. https://doi.org/10.1016/j.neuron.2010.09.023 

Carnevale, F., de Lafuente, V., Romo, R., Parga, N., 2013. An optimal decision 
population code that accounts for correlated variability unambiguously predicts a 
subject’s choice. Neuron 80, 1532–1543. 
https://doi.org/10.1016/j.neuron.2013.09.023 

Cavada, C., Compañy, T., Tejedor, J., Cruz-Rizzolo, R.J., Reinoso-Suárez, F., 2000. 
The anatomical connections of the macaque monkey orbitofrontal cortex. A 
review. Cereb. Cortex 10, 220–242. 

Cechetto, D.F., Saper, C.B., 1987. Evidence for a viscerotopic sensory representation in 
the cortex and thalamus in the rat. J. Comp. Neurol. 262, 27–45. 
https://doi.org/10.1002/cne.902620104 

Chen, X., Gabitto, M., Peng, Y., Ryba, N.J.P., Zuker, C.S., 2011. A gustotopic map of 
taste qualities in the mammalian brain. Science 333, 1262–1266. 
https://doi.org/10.1126/science.1204076 

Cohen, M.R., Kohn, A., 2011. Measuring and interpreting neuronal correlations. Nature 
Neuroscience 14, 811–819. https://doi.org/10.1038/nn.2842 

Conen, K.E., Padoa-Schioppa, C., 2015. Neuronal variability in orbitofrontal cortex 
during economic decisions. J. Neurophysiol. 114, 1367–1381. 
https://doi.org/10.1152/jn.00231.2015 

Corwin, J.V., Fussinger, M., Meyer, R.C., King, V.R., Reep, R.L., 1994. Bilateral 
destruction of the ventrolateral orbital cortex produces allocentric but not 
egocentric spatial deficits in rats. Behavioural Brain Research 61, 79–86. 
https://doi.org/10.1016/0166-4328(94)90010-8 

Davison, A.C., Hinkley, D.V., 1997. Bootstrap Methods and Their Application. 
Cambridge University Press. 

de Araujo, I.E., Gutierrez, R., Oliveira-Maia, A.J., Pereira, A., Nicolelis, M.A.L., Simon, 
S.A., 2006. Neural ensemble coding of satiety states. Neuron 51, 483–494. 
https://doi.org/10.1016/j.neuron.2006.07.009 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 
 

de Lafuente, V., Romo, R., 2005. Neuronal correlates of subjective sensory experience. 
Nature Neuroscience 8, 1698–1703. https://doi.org/10.1038/nn1587 

Di Lorenzo, P.M., Leshchinskiy, S., Moroney, D.N., Ozdoba, J.M., 2009. Making time 
count: functional evidence for temporal coding of taste sensation. Behav. 
Neurosci. 123, 14–25. https://doi.org/10.1037/a0014176 

Di Lorenzo, P.M., Victor, J.D., 2003. Taste response variability and temporal coding in 
the nucleus of the solitary tract of the rat. J. Neurophysiol. 90, 1418–1431. 
https://doi.org/10.1152/jn.00177.2003 

DiLorenzo, P.M., Victor, J.D., 2013. Spike Timing: Mechanisms and Function. CRC 
Press. 

Engel, A.K., Fries, P., Singer, W., 2001. Dynamic predictions: oscillations and 
synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716. 
https://doi.org/10.1038/35094565 

Epstein, R.A., Patai, E.Z., Julian, J.B., Spiers, H.J., 2017. The cognitive map in humans: 
spatial navigation and beyond. Nature Neuroscience 20, 1504–1513. 
https://doi.org/10.1038/nn.4656 

Erickson, R.P., 2001. The evolution and implications of population and modular neural 
coding ideas. Prog. Brain Res. 130, 9–29. 

Feierstein, C.E., Quirk, M.C., Uchida, N., Sosulski, D.L., Mainen, Z.F., 2006. 
Representation of spatial goals in rat orbitofrontal cortex. Neuron 51, 495–507. 
https://doi.org/10.1016/j.neuron.2006.06.032 

Field, D.J., 1994. What is the Goal of Sensory Coding? Neural Comput. 6, 559–601. 
https://doi.org/10.1162/neco.1994.6.4.559 

Fletcher, M.L., Ogg, M.C., Lu, L., Ogg, R.J., Boughter, J.D., 2017. Overlapping 
Representation of Primary Tastes in a Defined Region of the Gustatory Cortex. J. 
Neurosci. 37, 7595–7605. https://doi.org/10.1523/JNEUROSCI.0649-17.2017 

Frank, S., Kullmann, S., Veit, R., 2013. Food related processes in the insular cortex. 
Front. Hum. Neurosci. 7. https://doi.org/10.3389/fnhum.2013.00499 

Gardner, M.P.H., Fontanini, A., 2014. Encoding and tracking of outcome-specific 
expectancy in the gustatory cortex of alert rats. J. Neurosci. 34, 13000–13017. 
https://doi.org/10.1523/JNEUROSCI.1820-14.2014 

Green, D.M., Swets, J.A., 1966. Signal detection theory and psychophysics. Wiley. 
Gutierrez, R., Carmena, J.M., Nicolelis, M.A.L., Simon, S.A., 2006. Orbitofrontal 

ensemble activity monitors licking and distinguishes among natural rewards. J. 
Neurophysiol. 95, 119–133. https://doi.org/10.1152/jn.00467.2005 

Gutierrez, R., Simon, S.A., Nicolelis, M.A.L., 2010. Licking-induced synchrony in the 
taste-reward circuit improves cue discrimination during learning. J. Neurosci. 30, 
287–303. https://doi.org/10.1523/JNEUROSCI.0855-09.2010 

Gutierrez-Barragan, D., Basson, M.A., Panzeri, S., Gozzi, A., 2018. Oscillatory brain 
states govern spontaneous fMRI network dynamics. bioRxiv 393389. 
https://doi.org/10.1101/393389 

Hanamori, T., 2001. Effects of various ion transport inhibitors on the water response in 
the superior laryngeal nerve in rats. Chem. Senses 26, 897–903. 

Hirokawa, J., Vaughan, A., Kepecs, A., 2017. Categorical Representations Of Decision-
Variables In Orbitofrontal Cortex. bioRxiv 135707. https://doi.org/10.1101/135707 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


53 
 

Jarvis, M.R., Mitra, P.P., 2001. Sampling properties of the spectrum and coherency of 
sequences of action potentials. Neural Comput 13, 717–749. 

Jezzini, A., Caruana, F., Stoianov, I., Gallese, V., Rizzolatti, G., 2012. Functional 
organization of the insula and inner perisylvian regions. Proc. Natl. Acad. Sci. 
U.S.A. 109, 10077–10082. https://doi.org/10.1073/pnas.1200143109 

Jezzini, A., Mazzucato, L., Camera, G.L., Fontanini, A., 2013. Processing of Hedonic 
and Chemosensory Features of Taste in Medial Prefrontal and Insular Networks. 
J. Neurosci. 33, 18966–18978. https://doi.org/10.1523/JNEUROSCI.2974-
13.2013 

Jo, S., Jung, M.W., 2016. Differential coding of uncertain reward in rat insular and 
orbitofrontal cortex. Sci Rep 6, 24085. https://doi.org/10.1038/srep24085 

Jones, L.M., Fontanini, A., Katz, D.B., 2006. Gustatory processing: a dynamic systems 
approach. Curr. Opin. Neurobiol. 16, 420–428. 
https://doi.org/10.1016/j.conb.2006.06.011 

Katz, D.B., Simon, S.A., Nicolelis, M.A., 2001. Dynamic and multimodal responses of 
gustatory cortical neurons in awake rats. J. Neurosci. 21, 4478–4489. 

Katz, D.B., Simon, S.A., Nicolelis, M.A.L., 2002. Taste-specific neuronal ensembles in 
the gustatory cortex of awake rats. J. Neurosci. 22, 1850–1857. 

Kennerley, S.W., Wallis, J.D., 2009. Encoding of Reward and Space During a Working 
Memory Task in the Orbitofrontal Cortex and Anterior Cingulate Sulcus. Journal 
of Neurophysiology 102, 3352–3364. https://doi.org/10.1152/jn.00273.2009 

Kolb, B., Sutherland, R.J., Whishaw, I.Q., 1983. A comparison of the contributions of the 
frontal and parietal association cortex to spatial localization in rats. Behav. 
Neurosci. 97, 13–27. 

Kusumoto-Yoshida, I., Liu, H., Chen, B.T., Fontanini, A., Bonci, A., 2015. Central role 
for the insular cortex in mediating conditioned responses to anticipatory cues. 
Proc. Natl. Acad. Sci. U.S.A. 112, 1190–1195. 
https://doi.org/10.1073/pnas.1416573112 

Lemon, C.H., 2015. Perceptual and neural responses to sweet taste in humans and 
rodents. Chemosens Percept 8, 46–52. https://doi.org/10.1007/s12078-015-
9177-8 

Lipton, P.A., Alvarez, P., Eichenbaum, H., 1999. Crossmodal associative memory 
representations in rodent orbitofrontal cortex. Neuron 22, 349–359. 

Livneh, Y., Ramesh, R.N., Burgess, C.R., Levandowski, K.M., Madara, J.C., Fenselau, 
H., Goldey, G.J., Diaz, V.E., Jikomes, N., Resch, J.M., Lowell, B.B., Andermann, 
M.L., 2017. Homeostatic circuits selectively gate food cue responses in insular 
cortex. Nature 546, 611–616. https://doi.org/10.1038/nature22375 

Lyall, V., Heck, G.L., DeSimone, J.A., Feldman, G.M., 1999. Effects of osmolarity on 
taste receptor cell size and function. Am. J. Physiol. 277, C800-813. 

MacDonald, C.J., Meck, W.H., Simon, S.A., Nicolelis, M.A.L., 2009. Taste-guided 
decisions differentially engage neuronal ensembles across gustatory cortices. J. 
Neurosci. 29, 11271–11282. https://doi.org/10.1523/JNEUROSCI.1033-09.2009 

Maffei, A., Haley, M., Fontanini, A., 2012. Neural processing of gustatory information in 
insular circuits. Curr. Opin. Neurobiol. 22, 709–716. 
https://doi.org/10.1016/j.conb.2012.04.001 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


54 
 

Maier, J.X., Katz, D.B., 2013. Neural dynamics in response to binary taste mixtures. J. 
Neurophysiol. 109, 2108–2117. https://doi.org/10.1152/jn.00917.2012 

Meyers, E., 2013. The neural decoding toolbox. Front. Neuroinform. 7. 
https://doi.org/10.3389/fninf.2013.00008 

Moskowitz, H.R., 1971. The sweetness and pleasantness of sugars. Am J Psychol 84, 
387–405. 

Nerad, L., Ramírez-Amaya, V., Ormsby, C.E., Bermúdez-Rattoni, F., 1996. Differential 
effects of anterior and posterior insular cortex lesions on the acquisition of 
conditioned taste aversion and spatial learning. Neurobiol Learn Mem 66, 44–50. 

Nogueira, R., Abolafia, J.M., Drugowitsch, J., Balaguer-Ballester, E., Sanchez-Vives, 
M.V., Moreno-Bote, R., 2017. Lateral orbitofrontal cortex anticipates choices and 
integrates prior with current information. Nat Commun 8, 14823. 
https://doi.org/10.1038/ncomms14823 

Olshausen, B.A., Field, D.J., 2004. Sparse coding of sensory inputs. Curr. Opin. 
Neurobiol. 14, 481–487. https://doi.org/10.1016/j.conb.2004.07.007 

Parkes, S.L., Bradfield, L.A., Balleine, B.W., 2015. Interaction of insular cortex and 
ventral striatum mediates the effect of incentive memory on choice between goal-
directed actions. J. Neurosci. 35, 6464–6471. 
https://doi.org/10.1523/JNEUROSCI.4153-14.2015 

Parkes, S.L., Ravassard, P.M., Cerpa, J.-C., Wolff, M., Ferreira, G., Coutureau, E., 
2017. Insular and Ventrolateral Orbitofrontal Cortices Differentially Contribute to 
Goal-Directed Behavior in Rodents. Cereb. Cortex 1–13. 
https://doi.org/10.1093/cercor/bhx132 

Peng, Y., Gillis-Smith, S., Jin, H., Tränkner, D., Ryba, N.J.P., Zuker, C.S., 2015. Sweet 
and bitter taste in the brain of awake behaving animals. Nature 527, 512–515. 
https://doi.org/10.1038/nature15763 

Perez, I.O., Villavicencio, M., Simon, S.A., Gutierrez, R., 2013. Speed and accuracy of 
taste identification and palatability: impact of learning, reward expectancy, and 
consummatory licking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R252-
270. https://doi.org/10.1152/ajpregu.00492.2012 

Pfaffmann, C., Frank, M., Norgren, R., 1979. Neural mechanisms and behavioral 
aspects of taste. Annu Rev Psychol 30, 283–325. 
https://doi.org/10.1146/annurev.ps.30.020179.001435 

Pritchard, T.C., Edwards, E.M., Smith, C.A., Hilgert, K.G., Gavlick, A.M., Maryniak, T.D., 
Schwartz, G.J., Scott, T.R., 2005. Gustatory neural responses in the medial 
orbitofrontal cortex of the old world monkey. J. Neurosci. 25, 6047–6056. 
https://doi.org/10.1523/JNEUROSCI.0430-05.2005 

Riceberg, J.S., Shapiro, M.L., 2017. Orbitofrontal Cortex Signals Expected Outcomes 
with Predictive Codes When Stable Contingencies Promote the Integration of 
Reward History. J. Neurosci. 37, 2010–2021. 
https://doi.org/10.1523/JNEUROSCI.2951-16.2016 

Roesch, M.R., Taylor, A.R., Schoenbaum, G., 2006. Encoding of time-discounted 
rewards in orbitofrontal cortex is independent of value representation. Neuron 51, 
509–520. https://doi.org/10.1016/j.neuron.2006.06.027 

Rolls, E.T., 2004. The functions of the orbitofrontal cortex. Brain Cogn 55, 11–29. 
https://doi.org/10.1016/S0278-2626(03)00277-X 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


55 
 

Rolls, E.T., Sienkiewicz, Z.J., Yaxley, S., 1989. Hunger Modulates the Responses to 
Gustatory Stimuli of Single Neurons in the Caudolateral Orbitofrontal Cortex of 
the Macaque Monkey. Eur. J. Neurosci. 1, 53–60. 

Rolls, E.T., Yaxley, S., Sienkiewicz, Z.J., 1990. Gustatory responses of single neurons 
in the caudolateral orbitofrontal cortex of the macaque monkey. J. Neurophysiol. 
64, 1055–1066. https://doi.org/10.1152/jn.1990.64.4.1055 

Rosen, A.M., Di Lorenzo, P.M., 2012. Neural coding of taste by simultaneously 
recorded cells in the nucleus of the solitary tract of the rat. Journal of 
Neurophysiology 108, 3301–3312. https://doi.org/10.1152/jn.00566.2012 

Roussin, A.T., D’Agostino, A.E., Fooden, A.M., Victor, J.D., Di Lorenzo, P.M., 2012. 
Taste coding in the nucleus of the solitary tract of the awake, freely licking rat. J. 
Neurosci. 32, 10494–10506. https://doi.org/10.1523/JNEUROSCI.1856-12.2012 

Schuck, N.W., Wilson, R.C., Niv, Y., 2018. A state representation for reinforcement 
learning and decision-making in the orbitofrontal cortex. bioRxiv 210591. 
https://doi.org/10.1101/210591 

Schultz, W., Dayan, P., Montague, P.R., 1997. A neural substrate of prediction and 
reward. Science 275, 1593–1599. 

Scott, T.R., Plata-Salaman, C.R., Smith, V.L., Giza, B.K., 1991. Gustatory neural coding 
in the monkey cortex: stimulus intensity. J. Neurophysiol. 65, 76–86. 
https://doi.org/10.1152/jn.1991.65.1.76 

Spector, A.C., Klumpp, P.A., Kaplan, J.M., 1998. Analytical issues in the evaluation of 
food deprivation and sucrose concentration effects on the microstructure of 
licking behavior in the rat. Behav. Neurosci. 112, 678–694. 

Spector, A.C., Smith, J.C., 1984. A detailed analysis of sucrose drinking in the rat. 
Physiol. Behav. 33, 127–136. 

Stalnaker, T.A., Berg, B., Aujla, N., Schoenbaum, G., 2016. Cholinergic Interneurons 
Use Orbitofrontal Input to Track Beliefs about Current State. J. Neurosci. 36, 
6242–6257. https://doi.org/10.1523/JNEUROSCI.0157-16.2016 

Stapleton, J.R., Lavine, M.L., Wolpert, R.L., Nicolelis, M.A.L., Simon, S.A., 2006. Rapid 
taste responses in the gustatory cortex during licking. J. Neurosci. 26, 4126–
4138. https://doi.org/10.1523/JNEUROSCI.0092-06.2006 

Stüttgen, M.C., Schwarz, C., Jäkel, F., 2011. Mapping spikes to sensations. Front 
Neurosci 5, 125. https://doi.org/10.3389/fnins.2011.00125 

Sutton, R.S., Barton, A.G., 2017. Reinforcement Learning: An Introduction. The MIT 
Press, Cambridge, Massachusetts. 

Tapper, D.N., Halpern, B.P., 1968. Taste Stimuli: A Behavioral Categorization. Science 
161, 708–710. https://doi.org/10.1126/science.161.3842.708 

Thorpe, S.J., Rolls, E.T., Maddison, S., 1983. The orbitofrontal cortex: neuronal activity 
in the behaving monkey. Exp Brain Res 49, 93–115. 

Tremblay, L., Schultz, W., 1999. Relative reward preference in primate orbitofrontal 
cortex. Nature 398, 704–708. https://doi.org/10.1038/19525 

Uchida, N., Mainen, Z.F., 2003. Speed and accuracy of olfactory discrimination in the 
rat. Nat. Neurosci. 6, 1224–1229. https://doi.org/10.1038/nn1142 

Veldhuizen, M.G., Babbs, R.K., Patel, B., Fobbs, W., Kroemer, N.B., Garcia, E., 
Yeomans, M.R., Small, D.M., 2017. Integration of Sweet Taste and Metabolism 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


56 
 

Determines Carbohydrate Reward. Curr. Biol. 27, 2476-2485.e6. 
https://doi.org/10.1016/j.cub.2017.07.018 

Verhagen, J.V., Kadohisa, M., Rolls, E.T., 2004. Primate insular/opercular taste cortex: 
neuronal representations of the viscosity, fat texture, grittiness, temperature, and 
taste of foods. J. Neurophysiol. 92, 1685–1699. 
https://doi.org/10.1152/jn.00321.2004 

Villavicencio, M., Moreno, M.G., Simon, S.A., Gutierrez, R., 2018. Encoding of 
Sucrose’s Palatability in the Nucleus Accumbens Shell and Its Modulation by 
Exteroceptive Auditory Cues. Front Neurosci 12, 265. 
https://doi.org/10.3389/fnins.2018.00265 

Wang, L., Gillis-Smith, S., Peng, Y., Zhang, J., Chen, X., Salzman, C.D., Ryba, N.J.P., 
Zuker, C.S., 2018. The coding of valence and identity in the mammalian taste 
system. Nature 558, 127–131. https://doi.org/10.1038/s41586-018-0165-4 

Wu, A., Dvoryanchikov, G., Pereira, E., Chaudhari, N., Roper, S.D., 2015. Breadth of 
tuning in taste afferent neurons varies with stimulus strength. Nat Commun 6, 
8171. https://doi.org/10.1038/ncomms9171 

Yamamoto, T., Matsuo, R., Kiyomitsu, Y., Kitamura, R., 1989. Taste responses of 
cortical neurons in freely ingesting rats. J. Neurophysiol. 61, 1244–1258. 
https://doi.org/10.1152/jn.1989.61.6.1244 

Yaxley, S., Rolls, E.T., Sienkiewicz, Z.J., 1990. Gustatory responses of single neurons 
in the insula of the macaque monkey. J. Neurophysiol. 63, 689–700. 
https://doi.org/10.1152/jn.1990.63.4.689 

Yin, A., Tseng, P.H., Rajangam, S., Lebedev, M.A., Nicolelis, M. a. L., 2018. Place Cell-
Like Activity in the Primary Sensorimotor and Premotor Cortex During Monkey 
Whole-Body Navigation. Sci Rep 8, 9184. https://doi.org/10.1038/s41598-018-
27472-4 

Zocchi, D., Wennemuth, G., Oka, Y., 2017. The cellular mechanism for water detection 
in the mammalian taste system. Nat. Neurosci. 20, 927–933. 
https://doi.org/10.1038/nn.4575 

Zohary, E., Shadlen, M.N., Newsome, W.T., 1994. Correlated neuronal discharge rate 
and its implications for psychophysical performance. Nature 370, 140–143. 
https://doi.org/10.1038/370140a0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


57 
 

Figures 

 
 
Figure 1. Behavioral report of sucrose’s intensity in a one-drop discrimination task. A. Structure of 
a single trial. The behavioral box was equipped with three spouts connected to a pressure-controlled 
solenoid valve that delivered 10 µL drops (not shown, see Methods). One spout was in the central (stimulus) 
port and the others in the left and right lateral (choice) ports. After the first trial, in the Return epoch, animals 
after obtaining one of the outcomes in the lateral ports, returned to the central port to begin a new trial. In 
the Stimulus epoch, after two or three dry licks, the cues (Cue-D -for discrimination) were delivered, and 
the animals had to make a High/Low decision as to which lateral port to go (Response epoch). If they 
choose correctly, a water reward was delivered in the Outcome epoch. Errors were unrewarded. Thus, in 
this task, the perceived intensity of sucrose (i.e., concentration) served as a discriminative cue (Cue-D, see 
the red tick and drop). B. Performance (percent correct choices) across training days before (dashed line 
squares) and after (circles) electrode implantation. C. Interleaved in sessions, all animals were tested in a 
variant of the above-described intensity discrimination task -named generalization sessions. These 
sessions were composed of 80% discrimination trials (3% Low / 18 wt% High) that were rewarded as 
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indicated in “A,” and 20% generalization trials; i.e., 0, 3, 4.75, 7.5, 11.75 and 18 wt% sucrose cues (named 
Cue-G). For generalization trials, rats were required to “classify” these sucrose concentrations as either a 
“Low” or “High,” but these trials were unrewarded. D. The percent responses to the “High” port during 
discrimination (Cue-D) and generalization (Cue-G) trials increases as the sucrose concentration increase. 
Note that the psychometric function was nearly identical both before (dashed line squares) and after surgery 
(circles). E. Latency to stop licking after cue delivery. On average, the higher the sucrose concentration, 
the longer the latency to stop licking. F-G Movement time for making a leftward or rightward movement in 
the Return and Response epochs. H. Time spent licking, in the Outcome epoch, in Cue-D trials that received 
water as a reward was longer then in Cue-G trials where the water reward was omitted. * Statistically 
significant with an alpha level of 0.05. 
 
 
 

 
 

Figure 2. Representative Intensity-selective Cue-evoked responses in the rat pIC, aIC, and OFC. 
Representative raster plots and PSTHs (in spikes/s solid lines) of sucrose Intensity-selective neurons 
belonging to each of the five classes of evoked responses in the pIC (upper), aIC (middle), and OFC (lower) 
rows: Phasic, Tonic-Inactive, Tonic-Active, Coh-Inactive, and Coh-Active. Coh indicates they are coherent 
with licking. These exemplar neuronal responses discriminated between 3 and 18 wt% sucrose (Intensity-
selective neurons). Most of the Cue-evoked responses were Non-selective to sucrose intensity, and 
individual examples are presented in Figure 2–figure supplement 1. Action potentials are depicted as black 
ticks around -0.3 to 0.6 s, from Cue-D delivery (time = 0 s). Only correct trials were included in these plots. 
The horizontal black line separates the sorted trials according to Cue-D delivery. The licks after 3 and 18 
wt% sucrose are indicated by green- and red-shaded area, respectively. The times that animals were licking 
at the central spout before cue delivery are shown in the shaded gray areas. Also shown are the PSTHs 
for licking (Licks/s; at right axis) either for Low (green-dashed) or High sucrose (red-dashed line). The 
rectangle in cyan highlights the best-window where the responses to 3 and 18 wt% sucrose are statistically 
distinct as determined by a Wilcoxon rank-sum test. The gray horizontal line on top indicates the times 
where the lick rates were significantly different. 
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Figure 3. A subpopulation of Intensity-selective neurons decodes sucrose concentrations (3 vs. 18 
wt%) better than other neuron classes. A. The color-coded PSTHs of the five Cue-evoked responses in 
pIC (left panel), aIC (middle panel), and OFC (right panel) sorted by modulation profile and Intensity-
selectivity (Low/High). Response types were first sorted from top to bottom as follows: Phasic (orange 
vertical line at the left edge), Inactive (dark blue), Active (red), Lick-coherent Inactive (cyan), and Lick-
coherent Active (magenta). The white horizontal dashed lines separate each modulation profile as a 
function of Low and High selectivity (see green and red vertical lines at the left edge). Each row represents 
the firing rate normalized in Z-score of a neuronal response aligned to 3 (Low, left panel) and 18 wt% (High, 
right panel) sucrose delivery (time=0, black vertical line). B. Percent decoding accuracy of sucrose intensity 
achieved by the neurons recorded in pIC, aIC, and OFC. Each colored bar represents a different group of 
neurons: Non-evoked (gray), All (black), Non-selective (blue), and Intensity-selective (red). A black dashed 
line indicates the 50% chance level, and the upper dashed line the behavioral performance. * Indicates 
significant differences against the Non-evoked population, while # indicates significant differences against 
All group. Only correct Cue-D trials were included for analysis. The white horizontal line in each bar 
indicates the percent decoding achieved by each population when spike timing information was removed 
(i.e., shuffled spikes but maintaining same firing rates). The gray horizontal lines depict the contribution of 
noise correlations for population decoding.  
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Figure 4. pIC, aIC, and OFC neurons track sucrose concentrations with either increasing or 
decreasing firing rates. A. Raster plots and PSTHs of three representative Sensory neurons, with a 
positive correlation, recorded in pIC (left), aIC (middle), and OFC (right panel). Responses were aligned to 
Cue-G delivery (i.e., 3, 4.75, 7.5, 11.75, 18 wt%). The colormap on the right indicates the five sucrose 
concentrations delivered in the generalization trials. Each row represents a single trial and trials were sorted 
according to the sucrose concentration. The cyan-shaded rectangles display the “best window,” in which 
the firing rates best correlated with sucrose concentrations (see Methods for additional details). Same 
conventions as in Figure 2. The Insets displayed the firing rates in the “best window” where responses had 
the best Pearson correlation coefficient against sucrose concentrations. B. Representative examples of 
chemosensory neurons with negative correlation, recorded in pIC, aIC, and OFC. Same conventions as in 
A. C. Normalized activity (relative to the 3 wt% trials) of all Sensory neurons that correlated either positively 
(red) or negatively (blue) with increasing sucrose’s concentrations. Only generalization trials (Cue-G) were 
included in the analysis. 
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Figure 5. OFC Choice neurons carried information about the subjects’ decisions earlier than in the 
aIC. A. Examples of an aIC (left panel) and an OFC (right panel) neuronal response aligned to the last lick 
given at the central spout. Firing rates covaried with subject’s Low or High choices. After the last lick in the 
central spout, subjects must walk to one of the lateral spouts. The colormap indicates the sucrose 
concentration. The PSTHs show the firing rates before and after rats had initiated the response movement. 
The cyan-shaded rectangle indicates the “best window” where neural activity tracked subject’s choices, see 
Inset for psychometric (black) and neurometric (red) functions of each neuron. B. Mean percentage of 
correct behavioral responses (psychometric curve, black sigmoid) and neuronal responses (neurometric 
curve, red sigmoid) of 8 aIC and 18 OFC neurons that tracked choice along the Response epoch. 
Responses to discrimination (Cue-D) and generalization (Cue-G) trials are depicted on the left and right 
side of the sigmoid, respectively. Data are expressed as mean ± sem. C. ROC index across the Response 
epoch for the aIC (left) and the OFC (right panel) neurons. 
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Figure 6. Movement direction coding in pIC, aIC, and OFC. A. Three representative examples of 
movement direction neuronal responses in the pIC, aIC, and the OFC are depicted in the upper, middle 
and lower panel, respectively. In the rasters, each row is a single trial aligned to the beginning of the 
Response (left) and Return (right) epochs. Trials were sorted according to the movement direction and task 
performance: rightward (purple) and leftward (cyan) and error and correct trials. Each black tick represents 
a single spike. Below the rasters are displayed its corresponding PSTHs. The error trials were omitted for 
clarity. B. Preference Indices for left (-1) or right (+1) side during the Return vs. the Response epoch (see 
Methods). The quadrants in gray indicate where the Rightward- (purple circles) and Leftward-selective 
(cyan triangles) neurons are expected to be. The Inset depicts the proportion of neurons with Left/Right 
selectivity. The black arrows signal the examples displayed in panels A. C. Normalized firing rates for 
Rightward- (upper) and Leftward-selective (lower panel) neurons, during the Response (left) and Return 
(right side) epochs. Data are expressed as mean ± sem. It is seen that the OFC exhibits the greatest 
difference in the Z-scores in comparison to pIC and aIC.  
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Figure 7. Neurons in pIC, aIC, and OFC are sensitive to reward omission. A. Shown are three 
representative neuronal responses from the pIC (left panel), aIC (middle panel), and OFC (right panel) that 
encoded reward omission (RWO). The raster plot was aligned to water delivery upon the second lick in a 
goal-port lateral spout. The first lick was always dry. In the raster plots, the first two rows are for the 
rewarded (RW) Low (3%) and High (18%) correct discrimination trials. The sessions below were for the six 
types of generalization trials that were not rewarded (RWO; Cue-G trials). The sucrose concentration is 
indicated by the color-coded bar on the right side. Below are the PSTHs for Cue-D discrimination trials 
(dashed lines) and Cue-G generalization trials (solid lines). The blue-shaded rectangle indicates responses 
in Outcome epoch. B. Population activity (Z-score) of the Inactive (upper panel) and the Active Reward-
omission population (lower panel). These reflect those responses that either decreased or increased their 
firing rates after reward omission (continuous blue lines) relative to reward delivery (blue dashed line). C. 
Lick rates from all generalization sessions. Continuous and dashed black lines indicate lick rates during 
reward omission and rewarded trials, respectively. The population PSTHs, of the firing and lick rate, were 
expanded from -0.2 to 0.6 s from the second lick to better appreciate the difference in firing and lick rates 
elicited by outcome delivery or omission. Note that the subjects required only one additional lick to detect 
reward absence (see arrows). D. Decoding accuracy of the population of Outcome neurons discriminating 
between rewarded and unrewarded trials, using either the firing rates (blue) or the lick rates (black). The 
horizontal dark-gray line depicts where differences reached statistical significance. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


64 
 

 

 
Figure 8. Neurons in pIC, aIC, and OFC encode more than one task-related variable. A. Overlap of 
coding profiles. Contingency matrix indicating the number (and percentage) of neurons that belong to more 
than one group. Purple squares depict significant overlap as detected by a Fisher’s exact test (p < 0.05). 
B. Contingency matrix showing the overlap between coding and modulation profiles. Same conventions as 
in A. Only neurons recorded from generalization sessions were included in this analysis to guarantee that 
data is drawn from the same distribution. Non-significant associated categories are indicated with a white 
0. Data are presented as a number of neurons and percent in parenthesis.  
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Figure 1–figure supplement 1. In sessions with rats having better performances, they licked 
similarly for both cues. Percentage of correct responses as a function of the increase in the correlation 
between low and high Cue-D lick rates. Each black dot represents one single session. Behavioral data from 
the three cortical areas are shown. 
 
 
 

 
Figure 1—figure supplement 2. Extracellular recordings were obtained in either the posterior, 
anterior Insular cortices, or orbitofrontal cortex (OFC). A schematic drawing of the parasagittal view of 
the brain showing in color the lateral location of each taste cortices recorded, using the medial cerebral 
artery (MCA) and the caudal rhinal vein as anatomical landmarks. Below is a coronal brain section with a 
drawing of a 4x4, 1 mm2, 16 electrodes array implanted and a Nissl-stained brain slide showing the 
electrode tracks was overlaid on the Paxinos atlas. Arrows indicate the tip of electrode tracks. 
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Figure 2—figure supplement 1. Representative Cue-evoked non-selective responses in the pIC, aIC, 
and the OFC. Representative examples of the five classes of evoked responses in the pIC (top), aIC 
(middle), and the OFC (bottom panels): Phasic, Inactive, Active, Coh-Inactive, and Coh-Active. Most of 
Cue-evoked responses were Non-selective to sucrose intensity. Raster plot and corresponding peri-
stimulus time histogram (PSTH) are shown. Same conventions as in Figure 2. 

 
 

 
Figure 2-figure supplement 2. Times in % where the lick rate differences overlapped the best-
window. Percentage of time during which the best-window contained lick rate differences for Intensity-
selective neurons with difference in licking. Note that pIC, aIC, and OFC distributions (left, middle and right 
panels, respectively) are shifted to the left, implying that differences in licking could not entirely account for 
the neuronal representation of sucrose intensity. A vertical line depicts the mean % of overlap, and the 
exact value is on top.  
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Figure 3—figure supplement 1. The population temporal activation pattern of all neurons recorded 
in the posterior IC (n = 1348), anterior IC (n = 1169), and the OFC (n= 1010), elicited in rats by a 
single10 µL drop of 3 and 18 wt% sucrose. A. The top panel displays the color-coded PSTHs of the five 
Cue-evoked responses in the pIC (left panel), the aIC (middle panel), and the OFC (right panel). Response 
types were sorted from top to bottom as follows: Phasic (yellow vertical line at the left edge), Inactive (blue), 
Active (red), Lick-coherent Inactive (cyan) and Lick-coherent Active (magenta). Each row represents the 
firing rate normalized in Z-score of a neuron aligned to Cue-D delivery (time=0, black vertical line). The 
bottom panel shows the color-coded PSTH for Non-evoked response types: Lick-coherent and Non-evoked 
(light gray) and Non-modulated (dark gray). From the Cue-evoked neurons, the subpopulation of Intensity-
selective neurons was always less in percentage (18.2 ± 1.04%) than the Non-selective (81.8 ± 1.04%; 
Table 2).  B. Population PSTHs of the Cue-evoked responses were aligned to Cue-D delivery (black vertical 
line) for Low (3 wt% -green) and High (18 wt% -red) sucrose trials. Note that the evoked population activity 
in the pIC and aIC exhibited a rapid peak (at 80 ± 20 ms), and its responses faithfully covary (oscillates) 
with licking whereupon the population activity gradually decreases in the pIC and increases in the aIC.  In 
contrast, the population activity in the OFC had less contribution of Phasic and Lick-coherent responses 
but, after Cue-D delivery, it showed a tonic and gradual increase in activity. Note that the population 
responses do not discriminate between sucrose concentrations. 
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Figure 3-figure supplement 2. Noise correlation is removed after shuffling the order of trials. A. 
Representative examples of noise correlation from pIC, aIC, and OFC pairs of neurons are depicted in the 
upper row from left, middle, and right panels, respectively. The normalized (Z-score) activity during each 
original trial (black dots) for pairs of neurons A-B of each structure is depicted in the upper panel. The lower 
panel shows the same neuron pair but after shuffled trials (white circles). B. Mean noise-correlation for 
original (dot circles) and shuffled (white circles) trials measured in different time windows from Stimulus 
onset. 
 

 
Figure 3-figure supplement 3. The coherence between licks and spikes is larger after Cue-D delivery 
in the Stimulus epoch than in pre-Stimulus and Outcome.  A. Coherence values between licks and 
spikes in the pIC, aIC, and OFC. * Significantly different relative to pIC and aIC. B. The coherence values 
of Lick-coherent neurons in the pIC, aIC, and OFC (left, middle, and right panel, respectively) during licks 
given in the central port during the pre-Stimulus (gray), Stimulus (red), and Outcome (blue) epochs. * 
Significantly different in comparison to pre-Stimulus epoch. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/391342doi: bioRxiv preprint 

https://doi.org/10.1101/391342
http://creativecommons.org/licenses/by-nc-nd/4.0/


69 
 

 
Figure 5—figure supplement 1. OFC Choice neurons display a better accuracy (% correct responses) 
than pIC and aIC neurons. A. Histogram of the behavioral performance during classification sessions from 
all animals. Dark grey dashed line indicates the behavioral criterion used to designate a neuron as a Choice 
neuron.  B. Number of pIC (magenta), aIC (green), and OFC (blue) neurons that crossed criterion, and thus 
they had a neurometric function that matched behavioral choices. 
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